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Abstract In a variety of research fields, including linguistics, human-computer
interaction research, psychology, sociology and behavioral studies, there is a grow-
ing interest in the role of gestural behavior related to speech and other modalities.
The analysis of multimodal communication requires high-quality video data and
detailed annotation of the different semiotic resources under scrutiny. In the ma-
jority of cases, the annotation of hand position, hand motion, gesture type, etc. is
done manually, which is a time-consuming enterprise requiring multiple annotators
and substantial resources. In this paper we present a semi-automatic alternative,
in which the focus lies on minimizing the manual workload while guaranteeing
highly accurate annotations. First, we discuss our approach, which consists of sev-
eral processing steps such as identifying the hands in images, calculating motion
of the hands, segmenting the recording in gesture and non-gesture events, etc. Sec-
ond, we validate our approach against two existing corpora and one own-recorded
corpus in terms of accuracy and usefulness. The proposed approach is designed to
provide annotations according to the McNeill (1992) gesture space and the output
is compatible with annotation tools such as ELAN or ANVIL.

Keywords (semi)-automatic annotation · gesture analysis · video analysis · hand
annotation · gesture space · motion analysis

1 Introduction

Research on human communication and interaction increasingly focuses on the
embodied nature of these processes and more specifically on the interplay be-
tween speech and gesture in construing and coordinating meaning. A variety of
disciplines, including linguistics, psychology, sociology, human-computer interac-
tion research, and behavioral studies inquire into the specifics of multimodal com-
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EAVISE KU Leuven Belgium,
E-mail: stijn.debeugher@kuleuven.be E-mail: toon.goedeme@kuleuven.be

Geert Brône
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munication (see e.g. Müller et al (2013, 2014); Jewitt (2009) for multidisciplinary
overviews). One of the main challenges for this type of analysis, independent of the
specific research question or approach, is gaining access to qualitatively and quan-
titatively rich data. Experimental and corpus-based studies rely on high-quality
video data of language in (inter)action, with detailed annotations of relevant pa-
rameters related to speech (transcriptions including verbal and para-verbal infor-
mation such as hesitation markers, pauses, intonational contours, etc.) and bodily
action (including hand gestures, body posture, eye gaze data, etc.). For the ma-
jority of studies and availably resources (corpora & databases), the annotation
work was done manually, based on existing multimodal coding schemes (see Kipp
et al (2009); Bressem (2013); Abuczki and Esfandiari (2013) for overviews of such
schemes). This is a labor-intensive process, requiring multiple annotators and thus
substantial resources. As a general guideline, it is assumed that the annotation of
a recording has a time-ratio of at least 10:1, thus one minute of video material
takes up a minimum of 10 minutes of annotation, depending on the level of detail
required. When a detailed transcription is needed, in combination with the anno-
tation of several multimodal layers, this ratio can easily amount to 50:1, which
makes the compilation of large-scale annotated data sets practically unfeasible.
Due to this issue of labor intensiveness, some large scale databases designed for
multimodal analysis have not been annotated yet, as is the case for the Distributed
Little Red Hen Lab (http://www.redhenlab.org/). For projects such as these, a
(semi-)automatic approach to at least some steps in the annotation process is es-
sential. Only by introducing such an approach, the wealth of available data can
be made accessible for multimodal analysis.

In this paper, we present a semi-automatic tool for the segmentation and an-
notation of specific gestural features during language production. The purpose of
this tool is to provide a reliable basic annotation that can be easily enriched by fur-
ther manual analysis. The first step in the development of an automated gesture
detection algorithm logically consists of measuring the position of the hands in
each frame of a video. This information can be obtained in several ways, including
depth sensors such as the Kinect or motion capturing systems such as OptiTrack.
Since the majority of (existing) recordings are made using standard 2D cameras,
we need to rely on other methods. Based on a comparison of existing methods,
we selected several concepts as basis of our approach. On top of that, we present
a novel integration of a minimal amount of manual interventions to obtain highly
accurate estimations of hand positions. Once the exact position of each hand in
each frame is determined, the next step consists of a basic gesture annotation. The
gesture analysis algorithm produces a segmentation of gesture and non-gesture se-
quences, a location in gesture space based on McNeill’s model (McNeill 1992), and
an indication of the directionality of the gesture. For each of these dimensions, an
XML file is generated, which makes the output compatible with multimodal anno-
tation tools such as ELAN or ANVIL, and integratable with existing transcriptions
and annotations.

To maximize the applicability of our approach, the system must deal with
the following challenges: (i) the system should be maximally unobtrusive, i.e. it
should work on existing video data without information collected with markers or
other sensors (ii) the system has to function even if the position of the camera
changes during the recording (e.g. recordings made with head-mounted cameras
or mobile eye-trackers). The participant must have the ability to move freely (iii)
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the accuracy of the resulting annotated gesture sequence should be very high,
requiring virtually no manual correction afterwards.

To summarize, our goal is to develop a highly accurate, semi-automatic gesture
analysis tool that is applicable on recordings in which a minimum of restrictions
is imposed on the participants. Using such an approach will benefit the analysis
of this type of data. In general, the analysis of gesture in human interaction is
based on either experimental data or on relatively small-scale corpora. The first
method has the advantage that the researcher can control some of the variables,
making it easier to elicit rich data (and thus to manually process the collected
data). The drawback is (i) that researchers need to design new experiments for
each new research question, and (ii) that it is notoriously difficult to elicit naturally
occurring interaction in a controlled lab setting. The second method, using video
corpus data of spontaneous interactions, obviously reduces the latter risk, but
comes with a cost as well. Naturally occurring data may confront the researcher
with relative data scarcity (low density of the phenomenon under scrutiny in the
data), thus requiring the collection of a large corpus to be able to make well-
founded claims. Given the above-mentioned challenges of lab our-intensiveness,
multimodal corpus studies based on big data are scarce, especially in comparison
to the strong quantitative corpus movement that can be observed for written
language. A similar development for multimodal corpora would, however, open
up a massive new area of research on multimodal patterning, i.e. the study of
recurrent co-occurrences between verbal and nonverbal resources (e.g. markers of
obviousness co-occurring with shoulder shrugs, hesitation markers such as uhm

co-occurring with gaze aversion, etc., see Feyaerts et al (2016) for an overview).
A semi-automatic annotation procedure like the one presented in this paper can
pave the way for a more quantitative approach.

We present our results on two subsets of existing corpora: the NeuroPeirce cor-
pus (Brenger and Mittelberg 2015) and The Bielefeld Speech and Gesture Align-
ment Corpus (SaGA) (Lücking et al 2010) and on one own recorded corpus.

The remainder of this paper is structured as follows: in section 2 we give a
detailed overview of existing methods for the detection of human hands in images
as well as the automatic detection of gestures. In section 3, an introduction to
our hand annotation approach is given, while in section 4, we give a thorough
explanation of our gesture detection approach including the characteristics we are
able to extract. Finally, in section 5 we validate our approach on the three corpora
and in section 6, we formulate some concluding remarks.

2 Related work

This section presents an overview of existing algorithms and approaches relevant
to the field of gesture and interaction analysis. Since the concept of automated
gesture analysis is a general term, we narrow down the focus of this paper as
the detection of gestures in standard 2D color camera images. It is important to
highlight the difference between gesture detection and gesture recognition. Ges-
ture detection essentially involves segmenting gesture sequences from non-gesture
sequences. Gesture recognition, on the other hand, requires the re-identification
of specific gestures. In this paper, the focus is primarily on gesture detection as a
first but essential step in any gesture annotation process. Moreover, there is also a
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difference between fine-grained finger movements with specific semantics, as is the
case in sign languages, and the larger movement of the entire hand as pointing or
waving. In this paper, we focus on the larger movements rather than the detection
of individual finger poses, again as a first but necessary step towards even more
fine-grained systems. In what follows, we present an overview of existing tech-
niques regarding various aspects of gesture analysis. The following subsections are
organized as follows: in subsection 2.1 some state-of-the art approaches for fine
grained finger movements are described. In subsection 2.2 a short overview of ap-
proaches that combine several modalities is given. Finally subsection 2.3 gives an
overview of techniques that work on traditional 2D images.

2.1 Fine grained finger movement

Rautaray and Agrawal (2012) present a thorough overview of existing approaches
to the analysis of fine-grained finger gestures. In another recent contribution, Badi
(2016) proposes a novel method for the recognition of six specific hand poses in the
context of human-computer interaction (HCI): open, close, cut, paste, maximize
and minimize. Input images are standard RGB images, but severely conditioned:
containing only a single hand on a black background. Two features are extracted
from these images: hand contours and complex hand moments. In a final step, these
features are used in an Artificial Neural Network (ANN) classifier to identify the
different hand poses. Another approach to the recognition of specific finger poses
can be found in the work of Kapuscinski et al (2015). Here, two types of depth
cameras, viz. ToF (time-of-flight) and Kinect, are used to recognize hand gestures.
Next to the identification of dynamic gestures such as “to feel” or “to ache”,
they also developed a technique for the recognition of the specific signs for the
Polish finger alphabet. In this system two classification approaches are compared:
a Hidden Markov models (HMM) classifier and a nearest neighbors technique
with dynamic time warping (DTW), allowing a non-linear mapping of one pose
to another by minimizing the distance between them. A similar approach is found
in Kuznetsova et al (2013), where a highly precise method for the recognition
of static hand gestures is proposed using data from a consumer depth camera.
In addition to the approach of Kapuscinski et al (2015), a multi-layered random
forest (MLRF) classifier is used to identify different signs such as the 24 letters
of American Sign Language (ASL). It is important to note that in the techniques
described above, the input data contain information of a single hand, either in
a standard image or in depth information. In the approach we present in this
paper, we are interested in larger movements of the entire upper body. Here,
the input data traditionally contain footage of an entire person in a much more
natural setting and thus, an additional challenge consists in the segmentation of
relevant body parts from the background. In the next subsection, several existing
approaches to this type of gesture analysis are discussed.

2.2 Hand detection using a combination of multiple modalities

A recent challenge that addresses gesture recognition for larger movements is the
Chalearn looking at people challenge (Escalera et al 2015). In the model presented
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here, several modalities can be utilized to automatically recognize a vocabulary
of 20 Italian cultural/anthropological signs in image sequences. These modalities
include RGB images, depth images, skeleton representation and binary masks.
As expected the top-competitors (Monnier et al 2015; Neverova et al 2014; Chang
2015) of this challenge combine several modalities to achieve top accuracy. Another
approach in which several modalities are used was developed by Yin and Davis
(2013). Here RGB, depth and data from a motion capturing system (Xsens) are
combined to locate the position of both hands. An off-the-shelf skin segmentation
is used to mask the Kinect depth data and combined with a motion mask averaged
over three frames. Once the position of the hands is found in each frame, a HMM
is trained for each phase for each gesture. This means that a separate model was
trained for pre-stroke, nucleus and post-stroke. In the end, a Viterbi decoding was
used to optimally segment the gesture sequences. The above-mentioned approaches
are capable of detecting gesture sequences and they can identify specific gestures.
However, since not all existing recordings are captured using multiple and/or spe-
cific camera’s, our goal is to develop a system that is able to detect gestures in
normal RGB images in natural settings. In the next subsection we discuss existing
approaches that only rely on RGB data.

2.3 Hand and gesture detection in RGB images

In case a recording was made without a depth sensor nor motion tracking system,
the level of complexity of gesture detection increases significantly. Due to the
lack of this additional depth and skeleton information, one needs to detect the
relevant body parts (i.e. hands, face, torso) in advance and thereafter one could
start detecting the gesture sequences. In recent years, some promising approaches
for the detection of human hands in images were developed. In this subsection, we
thoroughly discuss several methods and approaches for accomplishing this complex
task. In general, gesture analysis in standard RGB images consists of two main
phases: first the retrieval of the hand positions, and secondly, the segmentation
of the recording in gesture and non-gesture sequences using extracted information
from the hands.

The first step in an automatic gesture detection in RGB images is retrieving
the hand positions in each frame. In general, this is done using skin segmentation
in various ways. A first approach is using manual fine-tuning of a set of sliders
selecting threshold on specific color channels (Gebre et al 2012; Schreer and Mas-
neri 2014). Often the images are therefore converted to another color range such
as HSV, since skin segmentation in RGB is known to be sensitive for slight illu-
mination changes. Other approaches automatically detect a face (Viola and Jones
2001) in an image and uses this for the extraction of skin information (Mittal et al
2011). In Jones and Rehg (2002) a statistical color model was developed, allowing
the calculation of skin-tone probability of each pixel.

Skin segmentation is often combined with monitoring the velocity of the skin
regions. Obtaining this motion is done in several ways: a basis approach is to
calculate the displacement in subsequent frames, but more sophisticated methods
such as Mixtures of Gaussian (MoGs) are also widely applied (Zhang et al 2014).
In Marcos-Ramiro et al (2013) an approach for modeling non-verbal communica-
tion was presented and here a 2D hand likelihood map was developed. This map
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follows the assumption that in an image, the hands are skin colored and that they
show more movement than the face, which is obviously also skin colored. In Alon
et al (2009), the same assumption was followed and here the motion of the skin
regions was applied to further refine the hand detections.

Other methods for the detection of human hands exist as well, whether or not
combined with the skin segmentation. An example is the approach of Mittal et al
(2011), in which a Deformable Part Model (DPM) (Felzenszwalb et al 2010) of a
human hand was developed. By applying this model to an image, they are able
to recognize human hands in various poses. In Bennewitz et al (2008) a similar
methodology was used, but here a Haar feature classifier (Viola and Jones 2001)
was used to detects the hands. Another model based approach is found in Karlinsky
et al (2010) and is capable to locate parts of interest in a robust and precise
manner, even when the surrounding context is highly variable and deformable.
Applied to hand detection, the chains model generates a feature chain between an
easily detectable object, such as a face, and the object of interest (i.e the hands).
Although model based approaches allow for accurate hand detections, they are
often extremely slow, making them inapplicable for real-life use. For example, the
approach of Mittal et al (2011) requires more than 200 seconds for the processing
of a single image frame of 1280×720 pixels.

Many hand detection approaches work fine for still images, however when ap-
plying them to recordings where persons move naturally a problem arises. Since
these algorithms obtain no information regarding the human pose, it is impossible
to discriminate left and right hand. Nevertheless such a distinction is indispensable
in gesture analysis. In Marcos-Ramiro et al (2013), next to the hands, a face is also
detected, making the hand positions relative w.r.t the position of the person. This
is combined with a synthetic 3D polygonal torso model, resulting is an approxi-
mated 3D pose of upper body of the person. Another approach for distinguishing
left and right hand is found in Bennewitz et al (2008) here, next to applying a
model for the detection of a human hand, they also use specific models for left and
right hand allowing them to differentiate both hands.

Once the location of both hands is found in each image of a recording, a
gesture detection algorithm can be applied. The purpose of such an algorithm is to
segment a recording in gesture and non-gesture sequences. In Gebre et al (2012) an
approach for the automatic detection of gesture strokes was presented. Next to the
skin segmentation, they also apply a corner tracking algorithm to the segmented
image. Their approach is developed to cluster three sets of corners: one cluster
for each hand and one for the head, assuming there is only one person presented
in the video. Finally, values extracted from the clusters of corners are fed into a
machine learning algorithm that is trained to predict whether or not a given frame
is inside a stroke. Unfortunately, they achieve an average accuracy (F1-measure) of
only 38.71%, which makes their approach insufficiently accurate for practical use.
Another gesture spotting system is presented by Peng et al (2015) here, a simple
yet effective approach to divide a video in short clips of gestures and non-gestures
was applied. They assume that the hands of an actor are almost in the same
position when he or she is not performing a gesture. Using this assumption, one
could determine a static hand position for each hand. By performing a frame-based
calculation of the distance between each hand and the static hand positions, one
could easily distinguish the gestures from the non-gestures. However they achieve
high accuracy in terms of recognizing different gestures, they do not provide any
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measurements of the detection of gesture sequences. Since they define a static
position for each hand, their approach can only be applied in a context with a
fixed camera and a immobile subject. In Schreer and Masneri (2014) an automatic
video analysis for the annotation of human body motion in humanities research
was presented, which is highly similar to our goal. The first step in their approach
consists of a skin color segmentation that is done manually using a set of sliders.
Once the skin-segmentation was done, their software tracks the hands based on
the motion of them. This motion information is used to segment the video in
gesture and non-gesture parts. On top of the detection of gesture sequences, their
tool also provides information regarding the type of movement in terms of: Phasic,
Repetitive and Irregular. Next to the gesture sequence detection, they also provide
automatic information on the position of the hands related to the body as defined
in the McNeill gesture space (McNeill 1992). Despite their efforts, the accuracy
of the gesture sequence detection on their datasets is limited to 75.3%. In our
opinion, another drawback of this approach is the skin segmentation using a set
of sliders, making the accuracy of their approach unpredictable.

It is clear that automatic gesture detection, although it has been studied for
several years, remains a hot topic in several research fields. Many approaches rely
on multiple modalities to detect the gesture sequence. In the above-mentioned pa-
pers, some novel methods for the detection of human hands as well as the detection
of gestures are presented. Unfortunately none of the above-mentioned approaches
meets our imposed requirements in terms of applicability and accuracy. We con-
clude that a fully automatic approach will never reach the necessary accuracy.
Nevertheless, we used some of the previously described concepts in our imple-
mentation to develop the gesture detection algorithm. For example: taking into
account the distance between a hand and its static position as proposed in Peng
et al (2015) and expressing the usage of the gesture space according to the Mc-
Neill definition as proposed in Schreer and Masneri (2014). In the next section, we
discuss the methodology that was used for retrieving the position of the hands.

3 (Semi-) automatic hand annotation

As mentioned above, each gesture analysis algorithm starts with retrieving the
positions of the hands in the recording. Here, we discuss our approach for the
accurate extraction of the hand positions in images. To accomplish that goal, we
argue that the only way to ensure highly accurate annotations in all circumstances
is to integrate a minimal amount of manual intervention in an automatic detec-
tion approach. Moreover, this offers the gesture analysis researcher a minimal but
important amount of control and quality assurance over the annotation process.
In the next subsections, we give a more detailed description of our approach, il-
lustrated in 1.

3.1 Semi-automatic approach

One of the most important contributions of our hand annotation approach is the
novel integration of manual interventions. For each frame we analyze, our tool
automatically calculates a confidence score of the hands. This confidence score
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Fig. 1: Workflow of our semi-automatic hand annotation approach.

Fig. 2: Generation of hand candidates: a) original image, b) skin segmentation, c)
contour detection, d) fit ellipse, e) final hand candidates.

indicates how confident our algorithm is that the correct hands are detected. In
case the confidence of a hand drops below a predefined threshold, the automatic
analysis is halted. Then and only then manual intervention is asked from the user
using a graphical user interface in which one can easily manually annotate the
position of the respective hand. After this intervention, our automatic analysis
continues. As shown in figure 1, the first frame of each recording is also annotated
manually ensuring a good starting point.

3.2 Retrieve hand candidates

Retrieving the hands in an image is done automatically using a combination of
several image processing techniques as shown in figure 2. First, we start by applying
a human torso detector to find out whether there is a person present in the image.
Once we have that location information, we define a region around that person in
which we search for his hands as indicated by the blue rectangle in figure 2a. Next,
an automatic skin segmentation is applied to this cropped region (figure 2b), using
a set of predefined color ranges (Rahim et al 2006) as well as color information
that is automatically obtained from an automatic face detection (Viola and Jones
2001). This is different from some of the other approaches discussed above, such
as (Schreer and Masneri 2014; Gebre et al 2012) where the skin segmentation relies
on manual fine-tuning. In a next step, we fit a contour around each group of skin
pixels using the hypothesis that some contours coincide with the actual hands.
This result is shown in figure 2c.
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It is clear that when the person is wearing short sleeves as in figure 2, the entire
arm is selected using our skin segmentation technique. Since our goal is to retrieve
the location of the hand, we need to apply an additional analysis. Therefore, we
fit an ellipse around each contour and we identify the endpoints of its major axis
(see figure 2d and e). Here we assume that when this axis coincides with an arm,
one end point overlaps with the hand, while the other endpoint overlaps with the
elbow. In case the subject wears long sleeves the same approach is applied: one
endpoint corresponds to the fingertips while the other endpoint corresponds to the
wrist. To summarize our approach: we fit an ellipse around each contour and we
assume that one endpoint of the major axis will correspond to the hand, while the
other endpoint overlaps with a joint (either wrist or elbow). The assignment of
the endpoints is described in the next subsection.

3.3 Filter hand candidates

Figure 2d shows four ellipses, which illustrates that a procedure must be defined
to remove wrong candidates. First, we remove the contours that coincide with the
face, which is straightforward since we use a face detection algorithm (Viola and
Jones 2001) as shown in figure 2e. In order to find which endpoint corresponds to
an actual hand, we apply two methodologies: tracking and pose validation.

Our annotation tool was developed to detect human hands in a sequence of
images (such as a video) rather than in isolated frames. In fact, we employ the
sequential character of a video to further enhance the recognition rate. Once we
know the exact position of a hand in a particular frame (obtained using manual
intervention), we are able to track the position of that hand over time using a
mathematical filter (i.e. a Kalman filter (Kalman 1960) with a constant velocity
motion model). By using such a filter we can predict the position of the hand in
the next frame(s). This allows us to easily assign a hand-label to the endpoint that
is closest to this prediction. Once a hand-label was assigned to one endpoint of an
axis, we automatically assign a joint-label to the remaining endpoint. Of course,
this approach is used for both left and right hand.

To verify the correctness of the chosen endpoints, we developed a validation
method based on knowledge of the human pose. From a fully annotated video
corpus, (Ferrari et al 2009) we built up a set of probability maps of human arm
poses, representing all possible poses a human arm may take w.r.t. the torso. We
compare our obtained poses against these maps and calculate the likelihood that
this particular pose is a valid one. Finally we take the tracking information and
the likelihood into account in the confidence calculation. In case the confidence in
a particular frame drops below a predefined threshold, we interrupt the automatic
analysis and ask for manual intervention. On the other hand, in case the confidence
lies above the threshold, the position of both hands and joints are stored in a
temporary text file. On top of that, we also store both face and torso detection
in each frame, since it might be useful for further analysis. In figure 3 we show
some examples of our technique on four image frames. The green circles represent
the final hand detections, while the yellow circles indicate the joints. In the last
image of this figure, we see that even when only the hand is visible, our approach
still manages to detect the hand. In this case the joint corresponds to the wrist
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Fig. 3: Examples of our detections on four image frames. Green circles are the hand
detections, yellow circles are the corresponding joints. Green rectangles represent
the torso detections and the blue rectangles represent the face detections.

instead of the elbow as shown in the other frames. A video illustrating our system
is available online 1.

An experimental validation of this hand annotation approach is given in sec-
tion 5, where we discuss the accuracy of the proposed method and the degree of
manual intervention needed. For more information regarding this approach, we
refer to De Beugher et al (2016). The above-mentioned approach is used as basis
of our gesture analysis tool as discussed in the next section.

4 Gesture detection

Once the positions of the hands in an entire recording are retrieved, automatic
gesture analysis can be initiated. As discussed in section 2, there are several ap-
proaches for this type of analysis. Despite the large variety in approaches, we
propose the development of a gesture analysis tool in which we impose a mini-
mum of restrictions to the participants in order to enlarge the applicability. For
example, our gesture analysis tool should be able to handle participants in a sitting
as well as standing position. On top of that, we allow a participant to walk during
the recording and we even allow a moving camera position, which is particularly
useful for recordings made with wearable cameras (e.g. GoPro) or head-mounted
eye-tracking systems (e.g. Tobii, SMI). Finally it is important to notice that our
gesture analysis tool relies only on the semi-automatic annotations as described in
the previous section (i.e. annotations of the hands and the position of the human
torso). No additional information such as depth information or motion sensors is
required.

Our gesture analysis tool consists of several blocks as shown in figure 4. Each
individual block is described in the following sub-sections, starting with the calcu-
lation of the rest position in subsection 4.1. Once the rest positions are known, we
segment a recording in gesture segments and non-gesture segments based on the
displacement between each hand and its respective rest position (subsection 4.2).
Subsection 4.3 discusses our algorithm to automatically provide information con-
cerning the gesture space. A final analysis is applied on the directionality of the
gestures is given in subsection 4.4.

1 http://youtu.be/DsxdBc4gGjg
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Fig. 4: Workflow of our automatic gesture analysis tool. This figure also reveals
which type of analysis results in XML compatible output.

4.1 Calculation of the rest positions

Starting from the hand positions, there are two main approaches to segment a
recording into gesture and non-gesture sequences. The first method monitors the
velocity of the hands with the assumption that a hand does not move when one is
not gesturing, as is proposed in Schreer and Masneri (2014). A second approach
measures the distance between a rest position (i.e. the position of the hands when
one is not gesturing) and the hands as proposed by Peng et al (2015). Despite the
fact that both approaches are widely applied in the literature, we argue that the
second one is more efficient. Indeed, during our experiments we noticed that, for
particular large gestures, the velocity of the hands stalls within the gesture. An
obvious example is the hold phase of a pointing gesture. Here, the above-mentioned
approach would not recognize the hold phase as (part of a) gesture, since there is
little or no velocity of the hand.

Essential for the chosen approach is the determination of the rest positions. We
can define this position as: the position were the hand is positioned most frequently

during an entire recording. An obvious approach is simply plotting the positions
of both left and right hand into a map and calculating a local maximum for
each hand. In our application on the other hand, we allow moving participants
as well as a moving camera viewpoint, which means we need to transform the
coordinates of the hands relative to the position of the participant. Since we use
the annotations that are retrieved using our semi-automatic approach, we have
access to the coordinates of the human torso detection in each frame to accomplish
this task. The transformation of the hand coordinates is given in equation 1 where
xrel

H represents the relative x-coordinate of the hand, xH stands for the original
x-coordinate of the hand, xT the center of the human torso detection and wT

width of the torso detection. The same methodology is used for the y-coordinates:

x
rel

H =
xH − xT

wT

y
rel

H =
yH − yT

wT

(1)
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Fig. 5: Normalized hand positions of an entire recording. Green dots represent
right hands, red dots represent left hands. Two asterisks indicate the respective
rest positions. The upper smoothed map belongs to the right hand coordinates,
the bottom smoothed map belongs to the left hand coordinates.

By applying this transformation to each frame of a recording we obtain a map as
shown in the left part of figure 5. The two asterisks represent the local maxima
for both left and right hand. These are indeed the rest positions for each hand
for that particular recording. They are obtained by extracting the local maxima
for each hand in a Gaussian smoothed map as shown in the right part of figure 5.
Here the color represents the density of the hand coordinates: red means dense
coordinates, whereas blue means sparse coordinates. Once the rest positions are
known, we are able to segment an entire recording in terms of gesture sequences
and non-gesture sequences as described in the next section.

4.2 Gesture phase segmentation

The segmentation of gesture and non-gesture sequences is done by calculating
the displacement between each hand and its respective rest position. Once the
displacement of at least one hand is beyond a set threshold we assume that a
gesture sequence was initiated. When subsequently the displacement drops below
this threshold, the gesture sequence ends since the corresponding hand is back in
the vicinity of the rest position. Using this methodology we are able to segment
an entire recording in gesture and non-gesture segments.

A decisive aspect in this approach is the calculation of the optimal threshold
value. This value indicates how much deviation from the rest position is allowed
before our software initiates a gesture sequence. A straightforward approach is to
define a fixed value that is used for both hands. However, our experiments revealed
that it is challenging to find a unique value that results in accurate segmentation
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of multiple recordings each with its own characteristics. To overcome this problem
we proposed a set of solutions: a) separate thresholds for both left and right hand,
b) use separate threshold values in both x and y direction, and c) obtain threshold
values from the data itself by extracting a sigma from the Gaussian smoothed
hand maps, as shown in the right part of figure 5. An illustration of this technique
for the right hand in a recording is given in figure 6. Here we plot, for the first
1000 frames of a recording, the distance between the rest position and the assumed
right hand. The red line in the top part represents the applied threshold. In the
bottom part, we illustrate the gesture segmentation based on this displacement.

GS = {(DLX > ασLX) ∨ (DLY > ασLY )}∨

{(DRX > ασRX) ∨ (DRY > ασRY )}
(2)

In equation 2 the condition to initiate a gesture sequence GS is given. DLX

represents the displacement of the left hand in x-direction, σLX is the sigma value
for the left hand in x-direction that was obtained from the smoothed map and
finally α is a tuning parameter that can be used to fine-tune our system. If at least
one of the four displacements exceeds its respective threshold, a gesture sequence
is initiated. The accuracy of this segmentation is thoroughly discussed in section 5.

As a final point, it is important to mention that this analysis is automatically
written into an XML file, containing a the gesture segmentation annotations. Next
to this basic segmentation, our gesture analysis tool also generates information
regarding the usage of the gesture space as described in the next subsection. This
file type is compatible with existing multimodal annotation tools such as ELAN
or ANVIL.

4.3 Gesture space annotation

Researchers in gesture studies are interested in the spatial distribution of gestures,
i.e. where in the gesture space a gesture occurs. A commonly used methodology
for this purpose is the gesture space as defined by McNeill (1992) and illustrated
in figure 7. He proposed to divide, the space into sectors using a system of concen-
tric squares. The sector directly in front of the chest is the center-center sector,
surrounding this, we the center sector is defined. Then the periphery, which is sub
divided into upper, lower, right and left. Finally, the extreme periphery is defined,
which is divided in even more sub sectors. Manually annotating the gesture space
is extremely labor-intensive since ideally, one has to assign a specific gesture sector
to each individual frame of a gesture sequence. In order to reduce this workload,
we noticed that the manual analysis of the gesture space is often reduced to the
allocation of a single sector for each entire gesture. For example: the annotation of
the sector where the majority of the gesture occurs or the annotation of the sector
where the gesture is the largest. It is clear that such an annotation reveals only a
fraction of the spatial information. In order to overcome this problem, we can use
our semi-automatic hand annotations as described in section 3 to automatically
annotate the gesture space. As mentioned before, next to the hands both face and
human torso are detected, as illustrated in figure 3. We defined a mathematical
relationship between the face -, torso detection and the individual gesture sectors
as defined by McNeill. This allows us to automatically define the gesture sectors on
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line indicates the applied threshold. Bottom part: gesture segmentation that is
generated using this displacement.



A semi-automatic annotation tool for unobtrusive gesture analysis 15

Fig. 7: Gesture space as defined by McNeill (1992). We can distinguish 4 larger
sectors as represented by capital letters as well as the respective sub sectors.

each individual image as shown in figure 8. Here we distinguish four larger sectors:
center-center, center, periphery and extreme periphery as well as the subdivisions
for both periphery and extreme periphery. Using these automatically generated
sectors we are able to easily determine in which sector each hand is located at
each moment. Therefore our system compares automatically the hand coordinates
with the coordinates of each sector. Similar to the previously mentioned approach,
this analysis is also stored in an XML file. For each hand a unique tier is added in
which, for each gesture sequence, the usage of the sectors is expressed. Compared
to manual analysis, our approach always provides a frame-based analysis of the
gesture space, which is in case of manual analysis practically infeasible. Since our
automatic analysis generates gesture sectors based on both face and torso detec-
tion, we are able to ensure a consistent and non-subjective definition of the sectors
across several recordings. In manual labelling on the other hand, significant differ-
ences exist in the exact definition of the sectors between several annotators. Our
automatic system excludes these unwanted side effects.

4.4 Gesture directionality

A final type of analysis to be included in our system is the directionality of gestures
as discussed in this subsection. Using the above-mentioned approaches, we are able
to automatically segment a recording in gesture and non-gesture sequences. Fur-
thermore, we can automatically provide information regarding the gesture space
for each individual frame. Another vital aspect of gesture analysis is the direction-
ality of gestures. Researchers are interested in the direction and movement of each
gesture, resulting in a specific trajectory of each hand (see e.g. the gesture anno-
tation scheme presented by Bressem (2013)). Although this is of great importance
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Fig. 8: Automatically generated gesture space based on the human torso and face
detections. Here the left hand is located in the periphery, while the right hand is
located in the extreme periphery. Image obtained from the NeuroPeirce corpus.

in several aspects of gesture analysis, we often notice that manual annotation is
restricted to a partial analysis. For example, the directionality of an entire left-
ward pointing gesture is often annotated as left, since this is the major direction
of movement. Again, this partial analysis arises from the tremendous amount of
work that manual, frame-based, analysis requires. To further support the anno-
tation of this type of recordings, we propose an automatic alternative. Here we
calculate the direction of movement for each frame by comparing the hand posi-
tions of the current frame and the positions in the previous frame. Thereafter we
apply a temporal smoothing by using a 1-D convolution filter to reduce jitter on
the annotations. Currently our approach automatically annotates four directions:
left,right, upwards and downwards for each hand in each frame of a recording. And
again, the results of this analysis can exported to an annotation file for further
processing in ELAN and other tools such as ANVIL.

As mentioned before, the focus of this paper was on the accurate detection
of gesture sequences rather than the recognition of specific gestures. Next to this
gesture detection, we also extract relevant features from each gesture sequence
such as usage of the gesture space and directionality of the gestures. Since our goal
was to develop a tool for simplifying the work of manual annotators, our system
needs to achieve high accuracy. Therefore we performed a profound validation of
the above-mentioned approaches. In the next section, we present the results of
this validation in terms of accuracy, usefulness and cost-effectiveness compared to
manual analysis.
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(a) Frame of NeuroPeirce corpus (b) Frame of the SaGA corpus

Fig. 9: Example frames of both corpora that we used in our validation.

5 Results

To validate our approach, we searched for existing pre-annotated corpora as a ba-
sis for comparison between manual and semi-automatic annotation. We found two
independent institutes willing to provide their corpora as well as their annotations.
The first corpus, the NeuroPeirce corpus (Brenger and Mittelberg 2015), was cre-
ated by the research group of Professor Irene Mittelberg (University of Aachen) in
the context of a larger research project. Within this project several recordings were
made of participants during natural gesturing i.e. non-elicited speech and gesture
production. For our validation, we got access to one recording of approximately 7
minutes (10500 frames) as well as the corresponding annotations in ELAN. These
annotations include the above-mentioned parameters of gesture phases, position
in gesture space, etc. An example frame can be found in the left part of figure 9.
The second corpus was created at the university of Bielefeld and is known as The
Bielefeld Speech and Gesture Alignment Corpus (SaGA) (Lücking et al 2010). Here
direction-giving dialogues were recorded using multiple cameras. For our valida-
tion we used a recording lasting approximately 8.5 minutes (in total 13000 frames).
Again, this recording was annotated in ELAN and includes annotations of the ges-
ture phases. In the right part of figure 9, an example frame of this recording can
be found. Since both corpora contain participants are that are sitting, we also
evaluated our approach on a self-recorded corpus of a lecture recording in which
a speaker gives a PowerPoint presentation. This introduces additional challenges
since the speaker if free to move around in front of the presentation screen, making
the calculation of the rest positions much more challenging.

We processed each recording separately using the above-mentioned approaches.
First we used our semi-automatic hand annotation tool in order to retrieve the
hand, face and torso locations in each frame. Some measurements regarding this
annotation can be found in table 1. Here we notice that the amount of manual
interventions required by the system (based on the predefined threshold) is negligi-
ble. In less than 3% of the frames manual annotation was required, i.e a reduction
of manual work with a factor of 37 as compared to fully manually annotating
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Table 1: Measurements of the semi-automatic hand annotation of the used record-
ings.

NeuroPeirce SaGA Lecture

length 7 min 8,5 min 4,8 min
#frames 10500 13000 6700
#manual annotated frames 253 358 120
pct manual annotated frames 2,41% 2,75% 1,7%
processing time candidate generation 40 min 34 min ?
processing time automatic filtering 29 min 26 min ?
amount of manual intervention 8 min 12 min 4 min
total processing time 77 min 72 min 29 min

each frame. The total processing time includes the face and torso detection, the
generation of the skin segments, filtering the candidates as well as the manual
interventions. Starting from the hand, face and torso detections in each frame, we
can apply our gesture analysis tool to both recordings. In the remainder of this
section we compare our automatic analysis and the manual annotations. First, we
evaluate the accuracy of the semi-automatic hand annotation tool 5.1, after which
we present the results of an accuracy measurement of the gesture phase segmenta-
tion 5.2. In a third and fourth section, we review the gesture space annotation 5.3
and directionality 5.4. Finally, in section6, we elucidate some limitations of our
analysis approach.

5.1 Accuracy of the hand annotations

Since the accuracy of our gesture detection algorithm relies on the accuracy of
the semi-automatic hand annotations, it is important to validate their accuracy.
For this, we manually labeled the hand positions in the first 1000 frames of the
NeuroPeirce recording. Then we compared our semi-automatic hand annotations
to this ground-truth in terms of accuracy. A hand annotation is considered valid if
the distance between the detection and the manual annotation was below half face
width, which is a commonly used measure for hand detection algorithms (Zhang
et al 2014). This comparison reveals that in 97% of the hands, the position was
obtained correctly using our semi-automatic approach. Furthermore, for the entire
set of 2000 annotated hand positions, the average distance was only 10 pixels,
which indicates that our approach is indeed highly accurate and can be used as a
basis of our gesture analysis tool.

5.2 Accuracy of gesture phase segmentation

To validate our gesture phase segmentation, we propose a frame-based comparison
between our automatically generated gesture sequences and the manual annota-
tions of both recordings. Based on the manual gesture phase annotations in ELAN,
we assigned a label to each frame: 1 if the frame was part of an annotated gesture
phase, 0 otherwise. The same frame-based information was extracted from our
automatic gesture phase segmentation. Finally a validation scheme as illustrated
in figure 10 was used. For each frame we compare both manual and automatic
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Fig. 10: Validation methodology that is used for the gesture phase segmentation.

Table 2: Accuracy of the optimal working point i.e. α = 0.9. Bottom row of the
table shows the best accuracy of the AUVIS tool tested on the same corpora.

NeuroPeirce SaGA

Precision 98,85% 94,38

Recall 83,41% 80,22

F1-score 90,48% 86,73%

Best F1-score AUVIS 82.23% 62.17%

annotations, resulting in one out of four labels per frame: True Positive (TP),
False Positive (FP), True Negative (TN) and False Negative (FN). Using these
labels, we can determine the accuracy of our approach as shown in equation 3.
The precision (P ) is the fraction of retrieved instances that are relevant, while the
recall (R) is the fraction of relevant instances that are retrieved. By combining
them into the F1-score (F1), we obtain a single value that expresses the accuracy
of our system, which is a commonly used approach for measuring the accuracy of
a computer vision algorithm.

P =
TP

TP + FP

R =
TP

TP + FN

F1 = 2
PR

P +R

(3)

In equation 2, we already introduced the tuning parameter α. This parameter
is used to find the optimal fraction of the σ thresholds. For validation, we varied
α in the range from 0 up to 3 in steps of 0.1 in order to find the optimal setting.
The results of these experiments are shown in figure 11, in which we plot precision
versus recall. The most optimal point on such a graph is the upper-right corner
(both P and R equal to 1). It is clear that the curves of both recordings approach
this point. Both curves reach their best accuracy at the same α: 0.9. The corre-
sponding accuracy measurements for this α are given in table 2. Here, we notice
that our approach achieves very high accuracy on both recordings.

Next to the validation of our own approach, we also compared our accuracy
against another gesture analysis algorithm. We opted to use the AUVIS gesture
analysis tool as presented by Schreer and Masneri (2014), since a) it formulates
the same goal and b) it is directly available in the ELAN annotation software
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Fig. 11: Precision-recall curves of our approach for both recordings. Colored circles
represent the accuracy of the Schreer and Masneri (2014) method.
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(the latter experiment was performed in ELAN version 4.9.4). For more informa-
tion regarding this integration, we refer to2. As mentioned in section 2.3, their
approach relies on manual tuning of the skin-segmentation parameters. We asked
5 participants this tuning for each recording in order to provide a fair comparison,
both experienced and non-experienced annotators. In this publicly available imple-
mentation of their approach, two methods for gesture segmentation are available:
taking the distance to the static position into account or not using the static po-
sition and only relying on the velocity of the hands. The results of their approach
are shown in figure 11 using the colored circles. These circles reveal that the skin
segmentation of the NeuroPeirce recording was rather easy since the same accu-
racy was achieved for each skin segmentation setting. On the other hand, the skin
segmentation of the SaGA recording was far more complex as shown by the diverse
accuracy results. This was mainly caused by the presence of the wooden chair in
each image as shown in figure 9, which has more or less skin tone. In table 2, the
best F1-score of the AUVIS approach is given for both corpora. Overall it is clear
that our approach outperforms the method of Schreer and Masneri (2014). Fur-
thermore our approach results in more consistent accuracy over multiple recordings
without time-consuming and subjective parameter tuning.

Since there were no independent annotations of the gesture sequences were
available of our own-recorded corpus, another validation technique was used. First,
our gesture segmentation approach identified the segments in which the speaker
is gesturing based on the retrieved information (i.e. face, upper body and hand
locations). In total, our approach found 91 gesture sequences in this recording.

For validation of our gesture segmentation approach, we asked an independent
annotator to manually assign a label to each extracted segment. The annotator
could choose between either gesture or non-gesture. Then, we compared the auto-
matically generated annotations to the manually assigned labels to measure the
reliability of our gesture segmentation approach. As shown in the leftmost columns
of table 3, the reliability of our approach is again satisfying, although the overall
score is somewhat lower as compared to measurements of the previous experiments.

Manual inspection of this result revealed that the majority of disagreements
occur in short gesture sequences. Indeed, it might happen that the Kalman filter of
at least one hand floats away before our hand detection approach requests manual
intervention, resulting in false positives. Furthermore, as shown in figure 12, there
are some translations in the upper body detections. These are mainly caused by the
deformable aspect of the model that we use. Since the relative hand positions are
calculated using the center of the upper body detection, their position is affected
by these translations. As a result, it might happen that the distance between the
rest position and the relative position of some hands exceeds the threshold, causing
an erroneous gesture sequence. Besides these translations, we also noticed slight
scale variations in the upper body detections, which also affect the obtained hand
positions.

As an additional validation step, we removed the gesture sequences which have
a duration less than 500 ms, which is indeed relatively short for a gesture, and we
repeated the reliability measurements. The rightmost column of table 3 shows the
improved results of this additional validation. It is clear that the lower reliability

2 https://tla.mpi.nl/projects_info/auvis/
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(a) (b)

Fig. 12: Variations in upper body detections that may cause changes in relative
hand positions.

Table 3: Reliability of gesture analysis.

Level
Level without

short segments

Agreement 79.1% 87.5%
Scott’s Pi 78.7% 87.3%
Cohen’s Kappa 78.7% 87.3%
Krippendorff’s Alpha 78.7% 87.4%

scores in the left part of this table are indeed mainly caused by the shorter gesture
segments.

5.3 Accuracy of gesture space annotation

The validation of the gesture space is far more complex since the available an-
notations are inadequate. As mentioned before, the majority of existing gesture
space annotations cover only a small portion of the data. Indeed, the annotation
of the gesture space in the NeuroPeirce recording was restricted to a single label
for each gesture stroke, whereas our system provides a frame-based gesture space
annotation for an entire gesture phase (preparation, stroke and retraction). This
imbalance in level of precision made it difficult to perform a meaningful comparison
between the manual annotation and our automatic labeling. The SaGA recording
did not include annotations of the gesture space at all.

Since our gesture space analysis provides a frame-based annotation, we needed
to transform this output for validation. We extracted the frame sequences from
each gesture stroke and calculated the most occurring label in each stroke. Then,
we compared these extracted labels to the manual annotations resulting in an
accuracy of 64.42%. Again, this comparison is suboptimal since our automatic
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(a) (b)

Fig. 13: Examples of two gestures captured into a single image.

analysis produces a much more fine-grained annotation compared to the manual
annotations.

Since there is a mathematical relation between the hand positions and the
gesture sectors, one can assume that if the positions of the hands are obtained
highly accurately, our gesture space analysis is likewise accurate. As mentioned
above, the accuracy of our semi-automatic hand annotation tool is 97%, thus we
might suppose our gesture segmentation is as accurate as well.

5.4 Output of gesture directionality

In this last subsection, we discuss the analysis results of the gesture directionality.
As mentioned in subsection 4.4, our system defines the direction of each hand in
each frame. Comparing our automatic direction labels to the manual annotations
was impossible since none the corpora provided such annotations, since it is prac-
tically unfeasible to perform this type of annotations manually. Nevertheless, we
might assume that our directionality analysis is highly accurate since it is directly
extracted form the semi-automatic hand annotations.

A final advantage of this automatic frame-based analysis is the possibility to
represent an entire gesture into a single frame. Examples are given in figure 13.
Here we show the first frame of each gesture sequence and we plot a circle for the
individual hand positions of the entire gesture onto this frame. The displacement
between two frames is illustrated using arrows. In case a hand was held still, we
indicate this by increasing the radius of the corresponding circle. Such a repre-
sentation of each gesture can be used in a graphical representation of a recording,
where for example the gesture images represent interesting moments on a time
line.

At last, it is worth to mention that the total processing of our entire gesture
processing algorithm lasts only a few minutes.
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6 Conclusion and future work

In this paper we presented a semi-automatic approach for the annotation of ges-
tures that are relevant in research on human-human interaction e.g. in the field of
psychology, linguistic or behavior analysis. Our focus lies on minimizing the work-
load that is related to this type of annotations. To provide a useful alternative,
it is of vital importance that our approach produces highly accurate annotations.
Therefore, our first step is the extraction of relevant body parts including face,
human torso and hands in each image of the recording. This is achieved using
our own semi-automatic hand detection algorithm in which manual intervention
is required in case if and only if the confidence of a hand detection is too low.
Several validation experiments revealed that this method is capable of detecting
the hands highly accurate, which makes it a valid basis for the gesture analysis. On
top of that we are able to reduce the amount of manual analysis by a factor of 37
as compared to fully manually annotating each frame. The gesture analysis starts
by defining the rest position of each hand during an entire recording. Once this
location is known, we calculate for each frame the distance between each hand and
its respective rest position. Based on this displacement, we are able to segment a
recording in gesture and non-gesture segments. On top of that, we automatically
analyze the usage of the gesture space according to the McNeill (1992) sectors.
A final analysis is done on the directionality of the hands. Here, we analyze the
trajectory of each hand during gesturing. Each analysis generates automatically a
unique tier in an XML compatible file, making our approach integratable with ex-
isting annotations. We performed a thorough comparison between our automatic
gesture analysis and the annotations of two existing corpora revealing that our
approach is highly accurate.

Although our analysis framework has proven to a valuable alternative for the
traditional, manual and time-consuming, annotation of hand position, hand mo-
tion, gesture type, etc, there is room for improvement and future development.
As mentioned in section 5.2, we noticed that the upper body detections are some-
times not perfectly aligned with the persons that are presented in the images.
As a result, it might happen that some gesture segments are created erroneously.
This issue can be solved by tracking the detection scale at which an upper body is
detected. By doing so, one could limit the search space and therefore remove the
fluctuations in the size of the detection windows. Furthermore, a more advanced
tracking may overcome the translation issues.

Another straightforward enhancement consists of expanding our hand and ges-
ture detection approach to multiple persons. Currently, our approach is developed
to detect the hands of only a single person. The ability to analyse the gestures of
multiple persons is relevant in for example the analysis of multi-party interactions.
Furthermore, integrating a person re-identification step in the gesture analysis ap-
proach is inevitably linked with this expansion. Such an integration will bring the
analysis of e.g. triadic conversations to a next level by automatically analysing the
gestures of each participant as well. Building on our gesture detection approach,
a gesture recognition approach can be developed allowing for a fine-grained ges-
ture analysis. The automatic recognition of several basic gesture patterns, such as
pointing or batons, is relevant in various application domains including research
on gestural behaviour and research on sign language for the automatic subtitling
of singers. Finally, our gesture analysis approach could be expanded as well. Cur-
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rently we define a single rest position for each hand, but evidently it might occur
that the rest position of the speaker changes during the experiment. Therefore, our
approach can be modified by searching for multiple rest positions, based on the
density of the relative hand positions. Another modification that could improve
the accuracy of the gesture segmentation approach is combining the displacement
to the resting position with the velocity of the hands. Such an integration would
allow for a more accurate and finer segmentation, and therefore an accurate iden-
tification of a hold phase in a pointing gesture would be possible. Furthermore, it
would be interesting to measure the influence of multiple annotators on the manual
input of our semi-automatic analysis. We do expect that our system is highly ro-
bust since manual intervention is only required sporadically. Therefore, the manual
annotation is no longer a repetitive task, reducing the chance of erroneous manual
annotations.
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