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Abstract

Prisoners often require transportation to and from services such as hospital appointments, court
proceedings and family visits during their imprisonment. Organising daily prisoners transportation
consumes a huge amount of resources. A large fleet of highly protected vehicles, their drivers
and security guards must be assigned to all prisoner transports such that all safety and time-
related constraints are satisfied while inter-prisoner (inter-passenger) conflicts are avoided. It
is beyond human planners’ capabilities to minimize costs while attempting to feasibly schedule
all prisoner transportation requests. Whereas the prisoner transportation problem (PTP) bears
resemblance with vehicle routing, common software systems for vehicle routing fail to address
the intricacies associated with the PTP. A dedicated decision support system is required to both
support human planners as well as reduce operational costs. The considerable computational
challenge due to problem-specific components (inter-passenger conflicts and simultaneous servicing)
also makes the PTP interesting from an academic point of view. We formally introduce the problem
by providing mixed integer programming models. We implement exact iterative procedures to solve
these formulations and evaluate their performance on small instances. In order to solve instances
of a realistic size, we present a heuristic. Academic PTP instances generated and employed for
experimentation are made publicly available with a view towards encouraging further follow-up
research. The heuristic presented in this paper provides all the necessary components to solve the
PTP adequately and sets initial benchmarks for the new public instance set.

Keywords: Vehicle routing, prisoner transportation problem, simultaneous servicing,
inter-passenger conflicts, multi-compartment

1. Introduction

This paper introduces the Prisoner Transportation Problem (PTP) to the academic community.

The PTP, while being formally introduced by the present paper for the first time, has previously

been alluded to within operational research literature on occasion. In most cases, however, the

problem constitutes a mere academic footnote without any meaningful or rigorous elaboration,

for example by Partyka and Hall (2000). In essence, the problem concerns the transportation
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of prisoners to and from various destinations - such as hospitals and courts - in special prisoner

transportation vehicles which are subdivided into smaller individual compartments.

The PTP constitutes a variant of the commonplace vehicle routing problem (VRP), but more

specifically the dial-a-ride problem (DARP). Two unique components make it a particularly in-

teresting problem from a research point of view. The first one is simultaneous servicing, which

enables multiple prisoners to embark or disembark simultaneously rather than sequentially. This is

unlike the standard practice throughout most vehicle routing and delivery problems. The second

component concerns inter-passenger conflicts, which may occur either at compartment or vehicle

level. A compartment conflict indicates two prisoners who are not permitted to simultaneously

occupy the same compartment, whereas a vehicle conflict denotes that they may not be transported

in the same vehicle.

The PTP is a complicated problem and one which is currently solved manually by groups of

planners who formulate schedules for the following day. These planners are expected to incorporate

many safety measures while constructing such schedules. The real world case which inspired

this research required up to three employees with certain skill combinations to transport a single

prisoner. There are seven vehicle types, each of which has a different compartment layout and safety

level. The vast majority of vehicles, located at one of thirteen depots, are of two types. The first

is equipped with one compartment containing three seats and two compartments containing two

seats, while the second type is equipped with only one three-seat and one four-seat compartment.

After delivery of a prisoner within their time window, the vehicle may either travel onwards or

wait on-site for its next service to begin. When certain prisoners are on board, it may be forbidden

to wait on-site. Finally, maximum trip lengths should be respected for each individual prisoner.

Given that many hundreds of prisoners require transportation on a daily basis, these planners

employ technically unnecessary constraints, such as requiring vehicles to only carry prisoners of

the same category for the entire day. These constraints make the problem more manageable for

human planners, but are not necessary from a computational perspective.

While the PTP brings together a myriad of features and constraints, many of these are com-

monplace throughout other VRP or pickup-and-delivery problems. Therefore, in the interest of

stimulating further research concerning the PTP, only those constraints which are the most char-

acterizing for the PTP are maintained.

This paper first reviews related literature and indicates similarities and differences with respect

to the PTP in Section 2. Section 3 formally describes the PTP with a mathematical programming

formulation, while Section 4 adapts this formulation to several variants of the PTP. It also includes

a computational analysis using these models and an iterative procedure to solve small size problem

instances. Section 5 then provides a global overview of the contributing heuristic algorithm, while

Sections 6 and 7 describe how inter-passenger conflicts and time-related restrictions are handled.

Section 8 describes instances and discusses experimental results and, finally, Section 9 provides

concluding remarks and outline some possible future research directions.
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2. Related problems

Given that the PTP concerns the transportation of people, as opposed to goods or commodities,

it is associated with some uncommon constraints. Despite the vast number of published VRP

models and algorithms, the PTP is unsolvable with existing approaches. Indeed, due to the novel

constraints outlined in the introduction, the PTP generalises both the VRP and the DARP. When

considering passenger transportation, dial-a-ride (Cordeau and Laporte, 2007) and the handicapped

persons transportation problem (Toth and Vigo, 1997) provide inspiring foundations, albeit inter-

passenger conflicts are still absent in these studies.

The PTP differs from the DARP in that inter-passenger conflicts must be respected by prevent-

ing ‘conflicting’ prisoners from sharing a vehicle or compartment. Incorporating this constraint

dramatically increases computational complexity compared to existing passenger transportation

problems. The DARP variant studied by Beaudry et al. (2010) considers the transportation of

patients who need to be transported in isolation as well as those who can be safely transported

with others. Isolated patients can be considered as a special case of the conflicts present in the PTP

where certain requests have vehicle conflicts with all other requests. This dedication of vehicles

to a single patient can also be found in the study by Parragh et al. (2012). While Molenbruch

et al. (2017) introduce a DARP with restrictions similar to the PTP’s vehicle conflicts, they do not

consider compartments, and hence no compartment conflicts, in their study. Product incompati-

bility restrictions within compartments are considered in the multi-compartment VRP (MCVRP).

The three-index mixed integer programming formulation provided by Derigs et al. (2011) can be

adapted to several variants of the MCVRP. However, it is not straightforward to modify this for-

mulation to solve the PTP, primarily due to the pickup and delivery aspect of the PTP, which

allows for the transportation of conflicting prisoners in the same compartment at different legs

of a vehicle trip. This possibly necessitates decision variables with four or more indices. Such

a formulation is provided by Lahyani et al. (2015) for a multi-product, multi-period MCVRP to

restrict the number of different product types in a compartment to one at any period. From a

modeling point of view, a vehicle trip at a period in this MCVRP variant can be considered as

one leg of a vehicle trip in the PTP. Note that this type of compartment restriction remains a

special case of the one in the PTP where every prisoner (or a group of prisoners) conflicts with

every other prisoner (or every other group of prisoners) at the compartment level. Another VRP

variant studied by both Oppen and Løkketangen (2008) and Oppen et al. (2010) requires certain

animal types to be held in different compartments. However, since the animal types considered

in these papers have dedicated compartments, no conflict can occur within compartments. The

same characteristics appears in other MCVRP variants which dedicate separate compartments to

conflicting goods.

A second significant difference between the PTP and other related problems concerns the way in

which service times must be handled. Prisoner transportation enables the simultaneous execution
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of multiple services at a single location, for example (dis)embarking multiple prisoners at once. In

such a case, the total service time at a location must be greater than or equal to the maximum

of those individual service times. The combined service times encountered in batching machines

scheduling (Potts and Kovalyov, 2000) are similar. Indeed, a batching machine’s service time equals

the maximum service time of all items in the batch. However, Potts and Kovalyov (2000) do not

consider any time windows in their schedules.

The DARP, meanwhile, assumes no more than one service at a time. On-site service times may

be categorized as deterministic, stochastic, unknown or dependent according to Eksioglu et al.

(2009). Their taxonomic review and recent classification of VRPs never consider multiple services

per location. Nevertheless, many situations of this nature do occur in practice. For example,

services may be conducted sequentially, and thus their execution order becomes important. As

such, one on-site execution sequence may prove infeasible due to time window violations whereas

another may introduce unnecessary waiting times. Parragh et al. (2015) introduce the DARP with

split requests and profits, where group requests may be split across vehicles while service times

are assumed independent of the number of people being picked-up or delivered. Although the

problem is somewhat similar to the PTP, the model proposed by Parragh et al. (2015) does not

accommodate the simultaneous servicing of passengers whose time windows are possibly different.

Desaulniers (2010) assumes service times to be quantity-independent in the split delivery VRP

with time windows (SDVRPTW). Salani and Vacca (2011) introduce the discrete SDVRPTW

which assumes delivery-dependent service times. Although uncommon in academic papers, this

model is very appropriate in real-world logistics. Service times may, for example, equal the sum

of a delivery setup time and a duration proportional to the number of items delivered. In the

context of prisoner transportation, the critical period during which prisoners (dis)embark must be

minimized. The transportation organization consequently assigns sufficient staff and resources to

accommodate the handling of each prisoner’s service independently. Multiple on-site services are

therefore executed at once, provided the services’ time windows are respected.

From a fleet perspective, the PTP also generalizes the multi-compartment vehicle routing prob-

lem (MCVRP) (Fallahi et al., 2008). The MCVRP deals with specific product types, each having

a corresponding dedicated compartment, possibly of flexible sizes (Henke et al., 2015). Reverse

logistics, which exhibits conflicts at the product type level, represents an important application

domain for MCVRP. The PTP, by contrast, expresses conflicts at an individual level. Additionally,

prisoners may occupy any compartment provided there are no conflicts with other prisoners occu-

pying that compartment at the same time. Paraskevopoulos et al. (2017) indicate the existence

of multiple-compartment vehicles for transporting non-mixable products. They explicitly mention

that research regarding heterogeneous vehicle types and multiple products is largely absent.

When comparing the PTP to modeling knowledge available in the literature, both inter-

passenger conflicts and simultaneous servicing are new and provide interesting challenges to academia.
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3. Notation and problem formulation

Let G = (N,A) be a network such as that depicted in Figure 1, with arc set A and node set

N = U ∪I where U represents the set of depot nodes and I = IP ∪ID = {1, . . . , 2n} represents the

set of service nodes with IP = {1, . . . , n} corresponding to pickup nodes and ID = {n+ 1, . . . , 2n}
denoting delivery nodes. The set of depots U is a union of two partitions of identical size: U1 =

{u1, . . . , uk} and U2 = {ue1, . . . , uek} where U1 denotes the set of original depots as the starting

depots of vehicles and where U2 contains their duplicates as the ending depots. Thus, for any node

u ∈ U1, U2 contains one and only one duplicate node ue. Moreover, A = A1 ∪A2 ∪A3 where A1 =

{(i, j) : i ∈ U1, j ∈ I}, A2 = {(j, i) : i ∈ U2, j ∈ I} and A3 = {(i, j) : i, j ∈ I : i 6= j, i 6= j + n}.
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Figure 1: Underlying network representation for the PTP formulations.

Define P as the set of prisoners and R as the set of all transportation requests. Each request

corresponds to a node tuple (i, n+ i) such that 1 ≤ i ≤ n. Each node i ∈ I associated with request

r(i) = r(n + i) ∈ R of prisoner p(i) = p(n + i) ∈ P has a service time si and a time window

[t−i , t
+
i ]. Each service must be completed within its time window. Note that it is possible for an

individual prisoner to have multiple requests and multiple services (nodes) may take place at the

same physical location. Let L be the set of all distinct physical locations of the nodes in N and

l(i) ∈ L denote the location of i ∈ I, then the length eij of arc (i, j) ∈ A is equal to the travel

time from l(i) ∈ L to l(j) ∈ L, with eij = 0 if l(i) = l(j). We further define t+max = max
i∈ID

t+i and

tmax = t+max + max
(i,j)∈A2

eij to be used in the formulations.

Multiple services occurring at the same location may be executed simultaneously. However,

partial, or even the complete, simultaneous execution of services depends on the degree to which

their respective time windows overlap. In a general setting, we denote M = {(i, j) : i, j ∈ R} as

the set of request pairs which can be served simultaneously.

Let V = {1, . . . , |V |} denote the set of vehicles and uv, u
e
v ∈ U denote the starting and ending

depot nodes of v ∈ V . All vehicles are of the same type and each vehicle v is defined by a subset Cv of

compartments C. To be more explicit, C = {c1, c2, . . . , ck, ck+1, . . . , c2k, . . . , c(|V |−1)k+1, . . . , c|V |k}
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and Cv = {c(v−1)k+1, . . . , c(v−1)k+k}. Each compartment c ∈ C has a capacity of qc and belongs

to vehicle v(c) ∈ V . Figure 2 illustrates the notation for vehicle compartments. Let Hc and Hv

be the sets of all pairs of prisoners who may not simultaneously occupy the same compartment

and who may not travel in the same vehicle, respectively. Analogous to Hc and Hv, we further

introduce Rc = {(r(i), r(j)) : (p(i), p(j)) ∈ Hc} and Rv = {(r(i), r(j)) : (p(i), p(j)) ∈ Hv} as the

conflict sets at the request level.

ck+1 ck+2 c2kc1 c2 ck c (|V|−1)k+1 c (|V|−1)k+2 c |V|k

v1 v2 v |V|

Figure 2: The notation for vehicle compartments.

The trip length for any request r, which begins when the prisoner is embarked and ends im-

mediately before they disembark, should not exceed a certain time threshold Lr. Finally, the

duration of a vehicle’s trip may be no longer than Dmax. The objective of the problem is to serve

all prisoners while minimizing the total time spent by the vehicles.

We introduce three formulations which are slightly different from each other. The computa-

tional performances of these models are quite similar and none of them is clearly dominant over

the others. In this section we present only the one that gives the best average solution values and

keep the other formulations in Appendix A and Appendix B since the best solution values are

obtained from the others for some of the instances.

3.1. A mixed integer programming formulation (FPTP)

We define the following decision variables: zvij = 1 if vehicle v traverses arc (i, j) ∈ A, 0

otherwise; xrcij = 1 if the prisoner associated with request r is carried in compartment c on arc

(i, j) ∈ A3, 0 otherwise; yvij = 1 if node i precedes node j (not necessarily immediately) on the trip

of vehicle v, 0 otherwise; τvi is the departure time at node i ∈ N by vehicle v ∈ V ; and δvi is the

merged service time at node i ∈ I by vehicle v ∈ V . The following is a mixed integer programming

formulation for the PTP, which we will refer to as FPTP.

min
∑
v∈V

(τvuev − τ
v
uv) (1)

s.t.
∑
j∈IP

zvuvj ≤ 1 ∀v ∈ V (2)

∑
j∈IP

zvuvj =
∑
j∈ID

zvjuev ∀v ∈ V (3)

∑
j∈N

zvij =
∑
j∈N

zvji ∀v ∈ V, i ∈ I (4)

∑
v∈V

∑
j∈I

zvij = 1 ∀i ∈ IP (5)
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∑
c∈Cv

xrcij ≤ zvij ∀v ∈ V, (i, j) ∈ A3, r ∈ R (6)

∑
j∈I

∑
c∈C

x
r(i)c
ij = 1 ∀i ∈ IP (7)

∑
j∈I

x
r(i)c
ij =

∑
j∈I

x
r(i)c
j(i+n) ∀i ∈ IP , c ∈ C (8)

∑
j∈I

xrcij =
∑
j∈I

xrcji ∀r ∈ R, i ∈ I : r 6= r(i), c ∈ C (9)

xrcij + x
r(i)c
ij ≤ 1 ∀(r, r(i)) ∈ Rc, (i, j) ∈ A3, c ∈ C (10)∑

c∈Cv

xrcij +
∑
c∈Cv

x
r(i)c
ij ≤ 1 ∀(r, r(i)) ∈ Rv, (i, j) ∈ A3, v ∈ V (11)

∑
r∈R

xrcij ≤ qcz
v(c)
ij ∀(i, j) ∈ A3, c ∈ C (12)

τvi + eij + δvj ≤ τvj + tmax(1− zvij) ∀v ∈ V, (i, j) ∈ A : l(i) 6= l(j) (13)

τvi ≤ τvj + t+i (1− zvij) ∀v ∈ V, (i, j) ∈ A3 : l(i) = l(j) (14)

δvi ≥
∑

j∈I:l(i)=l(j)

sjz
v
ij ∀v ∈ V, i ∈ I (15)

δvj ≥
∑

i∈I:l(i)=l(j)

siz
v
ij ∀v ∈ V, j ∈ I (16)

τvn+i − τvi − si+n ≤ Lr(i) ∀v ∈ V, i ∈ IP (17)

τvuev − τ
v
uv ≤ Dmax ∀v ∈ V (18)

τvuev − τ
v
uv ≥

∑
i∈IP

(euvi + si)z
v
uvi

+
∑
i∈ID

(eiuev + si)z
v
iuev

+
∑

(i,j)∈A3

eijz
v
ij ∀v ∈ V (19)

t−i + si ≤ τvi ≤ t+i ∀v ∈ V, i ∈ I (20)

si ≤ δvi ≤ Lr(i) ∀i ∈ I, v ∈ V (21)

zvij ≤ yvij , ∀(i, j) ∈ A3, v ∈ V (22)

yvij + yvji = 1, ∀(i, j) ∈ A3, v ∈ V (23)

yvij + yvjl + yvli ≤ 2 ∀(i, j), (j, l), (l, i) ∈ A3, v ∈ V (24)

yvij ∈ {0, 1} ∀v ∈ V, (i, j) ∈ A (25)

zvij ∈ {0, 1} ∀v ∈ V, (i, j) ∈ A (26)

xrcij ∈ {0, 1} ∀r ∈ R, c ∈ C, (i, j) ∈ A3 (27)

The objective function (1) minimizes the total time spent by the vehicles. Constraints (2) limit

the number of outgoing arcs from the depot of any vehicle to one whereas Constraints (3) equal
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this number to the number of incoming arcs to its duplicate depot node. For any intermediate

node, Constraints (4) ensure that every vehicle which enters also leaves that node. Constraints (5)

ensure that each pickup is served by a vehicle. Constraints (6) prevent requests to traverse an arc

in a compartment if the vehicle associated with this compartment is not traversing that arc. While

Constraints (7) assign a compartment to each request when leaving its pickup node, Constraints

(8) and (9) make sure that the request is in the same compartment when entering its delivery

node as well as any intermediate nodes, respectively. Constraints (10) and (11) prevent request

assignments causing compartment and vehicle conflicts, respectively. The capacity restrictions of

compartments are enforced by Constraints (12). Since simultaneously servicing distinct requests

at the same location is possible, Constraints (13) update the time labels of consecutively visited

nodes of distinct locations. When the locations of two consecutively visited nodes are identical,

Constraints (14) ensure that the departure time at the preceding node is less than or equal to the

following node’s departure time. Constraints (15) and (16) ensure that the merged service time of

the nodes which are being simultaneously serviced is no less than the maximum of their individual

service times. Constraints (17) and (18) impose the maximum travel time for requests and for

vehicles, respectively. Constraints (19) require the total time spent by a vehicle to be greater

than or equal to the total traveling time plus the total service time of the nodes visited by it.

By Constraints (20), the departure time at each node is limited to be no earlier than the earliest

departure time plus the service time and no later than the latest departure time. Constraints (21)

restrict merged service time at a node to be greater than or equal to its service time and less

than or equal to the maximum traveling time of the associated passenger. We eliminate sub-tours

via Constraints (22)-(24), which are known to provide tight bounds (Öncan et al., 2009). Finally,

Constraints (25)-(27) are binary restrictions.

3.2. Symmetry breaking constraints and additional valid inequalities

When vehicles are identical, Constraints (28) break the symmetry among the vehicles of any

depot. Let v1∗ denote the smallest index vehicle of the closest depot to the smallest index pickup

node, Constraint (29) ensures that this pickup node is served by v1∗. For any identical pair

of compartments in the same vehicle, Constraints (30) assign compartments to new requests in

lexicographic order of compartment indices if both are empty.∑
j∈IP

zv2uj ≤
∑
j∈IP

zv1uj ∀v1 < v2 ∈ V : u = uv1 = uv2 (28)

∑
(1,j)∈A3

zv
1∗

1j ≥ 1 (29)

∑
(i,j)∈A3

x
r(i)c2
ij ≤

∑
(i,j)∈A3

∑
r 6=r(i)

(xrc1ij + xrc2ij ) ∀i ∈ IP , c1, c2 ∈ C : c1 < c2,

v(c1) = v(c2), qc1 = qc2 (30)
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Although Constraints (31)-(33) are implied by Constraints (2)-(5), their inclusion improves the

performance of the formulation when solving with CPLEX.∑
v∈V

∑
j∈U1∪I

zvji = 1 ∀i ∈ IP (31)

∑
v∈V

∑
j∈I

zvji = 1 ∀i ∈ ID (32)

∑
v∈V

∑
j∈I∪U2

zvij = 1 ∀i ∈ ID (33)

Constraints (34) and (35) are tighter than Constraints (13) for restricting the departure times at

the depot nodes when the triangular inequality holds for eij , (i, j) ∈ A.

τvuv + euvi + δi ≤ τvi + t+max(1−
∑
j∈I

zvij) ∀v ∈ V, i ∈ I (34)

τvi + eiuev ≤ τ
v
uev

+ tmax(1−
∑
j∈I

zvji) ∀v ∈ V, i ∈ I (35)

4. Modeling and testing the variants and special cases of the PTP

Heterogeneous fleets and passenger-vehicle compatibility restrictions: The formula-

tions presented in Section 3, Appendix A and Appendix B solve the generalization of the PTP

with a heterogeneous fleet of vehicles. When certain passengers can only be transported by a subset

of vehicles, one can easily adapt these formulations by defining Vi ⊂ V as the set of vehicles which

can transport the passenger associated with node i ∈ I.

Minimizing the total routing cost: A common objective function used in the vehicle routing

literature is to minimize the total routing cost, which is usually proportional to the total distance

traveled. Let fvij be the cost of traversing arc (i, j) ∈ A with vehicle v ∈ V . The PTP to minimize

the total routing cost can be solved by replacing the objective function with (36):

min
∑
v∈V

∑
(i,j)∈A

fvijz
v
ij . (36)

No simultaneous servicing (NSS): When M = ∅ (no passenger pair may be served si-

multaneously), the problem becomes a generalization of the DARP with passenger conflicts. To

model this general case, we exclude δ variables, the constraints including those variables as well

as Constraints (14) from FPTP. We then add (37) to update the departure times of consecutively

visited nodes.

τvi + eij + sj ≤ τvj + tmax(1− zvij) ∀v ∈ V, (i, j) ∈ A (37)
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No passenger conflicts (NC): In order to formulate the special case of the PTP where

there are no passenger conflicts (RC = ∅ = H), the compartment index of the x variables can be

replaced with a single vehicle index. In this case, xrvij = 1 if the passenger associated with request

r is carried in vehicle v on arc (i, j) ∈ A3, and 0 otherwise. While Constraints (10) and (11) are no

more relevant and can therefore be omitted, Constraints (6)-(12) must be replaced with (38)-(42).

xrvij ≤ zvij ∀v ∈ V, (i, j) ∈ A3, r ∈ R (38)∑
j∈I

∑
v∈V

x
r(i)v
ij = 1 ∀i ∈ IP (39)

∑
j∈I

x
r(i)v
ij =

∑
j∈I

x
r(i)v
j(i+n) ∀i ∈ IP , v ∈ V (40)

∑
j∈I

xrvij =
∑
j∈I

xrvji ∀r ∈ R, i ∈ I : r 6= r(i), v ∈ V (41)

∑
r∈R

xrvij ≤
∑

c∈C:v(c)=v

qcz
v
ij ∀(i, j) ∈ A3, v ∈ V (42)

The dial-a-ride problem: When there are no passenger conflicts (RC = ∅ = H) and simul-

taneous servicing is not possible for any pair of prisoners (M = ∅), the PTP reduces to the DARP

with the objective of minimizing the total travel time of the vehicles. For this case, FPTP can be

utilized to solve the DARP by employing the aforementioned modifications for the NSS and the

NC cases.

The PTP with transfers: An interesting variant of pickup-and-delivery problems involves

transferring the load from one vehicle to another at certain transshipment points. This variant

is referred to as PDPT in the literature. Although transfers are not considered in this particular

PTP application that we study, such a variant might be worthwhile investigating. For modeling

the PTP with transfers, we refer the reader to a very elegant study by Rais et al. (2014) that

formulates several variants of the PDPT which can easily be combined with the formulations we

provide for the PTP.

4.1. Testing the formulations

Although the PTP considers there to be an infinite number of vehicles available, the number of

vehicles utilized in any feasible solution cannot be greater than the number of requests. Preliminary

experiments indicate that models perform relatively better when |V | ≤ 3 but suffer from slow

convergence when |V | ≥ 4. In order to overcome this difficulty, we implemented an iterative

algorithm which utilizes any of these formulations to solve the problem for a fixed number 1 ≤ k ≤
|V | of vehicles at each iteration k.

Let F (UB, k) be any of the PTP models where |V | = k,
∑

j∈IP z
v
uvj

= 1, ∀v ∈ V and UB− ε is

an upper bound on the objective function value with ε > 0 being a sufficiently small number. Let
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Θ be an optimal solution obtained from F (UB, k) and f(Θ) be its value, Algorithm 1 details an

iterative procedure for solving the PTP to proven optimality.

Algorithm 1: Iterative algorithm (IT)

Input: n, UB ←∞, k ← 1, ε > 0
Output bestSolution

1 while k ≤ n do
2 Solve F (UB, k)
3 if feasible with the optimal solution Θ then
4 UB ← f(Θ)− ε
5 bestSolution← Θ
6 k ← k + 1

7 else if infeasible then
8 if UB =∞ then
9 k ← k + 1

10 else
11 k ← n+ 1

12 return bestSolution

In order to investigate the impact of simultaneous servicing and conflicts on the performance

of the models and the solutions they provide, we conduct tests removing these components one at

a time. Let PF be one of the aforementioned formulations for some variant of the PTP, we denote

the iterative procedure for solving PF as IT-PF in this section.

Table 1 compares the performance of the PTP and NSS formulations and their iterative proce-

dures on the instances with up to 10 requests (20 service nodes). The ‘id’ of an instance consists

of three numbers in a format n g nC where n is the number of requests to serve, g is the group

code and nC is the number of compartments in each vehicle. Among these instances, the first

group (g = 0) contains a large number of services that can be served simultaneously, none of which

conflict with one another. The second group of instances (g = 1) has either no or only few services

that can be served simultaneously and it contains many conflicting requests. The third group

(g = 2) has more balanced instances with both mergeable services and conflicting requests. For

each instance, the compartment configuration is provided in the second column: 1-1-1-1 indicates

four compartments where each has a capacity of a single unit, 2-2 denotes two compartments where

each has a capacity of 2, while the final configuration is simply 4 and denotes a single compartment

whose capacity is 4.

Table 1 indicates the optimal values in boldface and the best solution values obtained if none

of the methods reach proven optimality. Some of these optimal values are obtained by the iterative

procedures of other formulations (see Appendix C). Columns ‘g%’ report the CPLEX gap for the

compact formulations when they reach the time limit of one hour. If the time limit is reached at

any iteration of the algorithms, this is indicated with ‘TL’ under the solving time column ‘t(s)’ and

the objective value of the best solution obtained is reported under column ‘Obj’. We do not report
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Table 1: Comparison of PTP and NSS methods.

PTP FPTP IT-PTP NSS FNSS IT-NSS PTP (36)

id Comp. n Best k Obj t(s) g% Obj t(s) Best k Obj t(s) g% Obj t(s) Best k

4 0 4 1-1-1-1 4 54 1 54 9.73 0.00 54 3.21 129 1 129 17.22 129 5.97 9 1

4 1 4 1-1-1-1 271 2 271 0.22 0.00 271 0.65 271 2 271 2.32 271 0.82 42 1

4 1 2 2-2 271 2 271 0.24 0.00 271 17.12 271 2 271 0.24 271 11.38 42 1

4 1 1 4 271 2 271 0.19 0.00 271 15.43 271 2 271 0.16 271 8.31 46 1

4 2 4 1-1-1-1 181 2 181 0.62 0.00 181 2.04 226 2 226 3.52 226 3.09 102 1

4 2 2 2-2 181 2 181 0.98 0.00 181 2.10 226 2 226 4.07 226 1.69 102 1

4 2 1 4 181 2 181 1.25 0.00 181 12.54 226 2 226 1.21 226 3.78 102 1

6 0 4 1-1-1-1 6 90 2 90 TL 93.89 90 405.92 193 1 193 TL 94.82 193 3198.74 13 1

6 1 4 1-1-1-1 399 1 399 93.68 0.00 399 10.29 399 1 399 78.55 399 8.25 69 1

6 1 2 2-2 399 1 399 5.96 0.00 399 11.78 399 1 399 8.18 399 3.49 69 1

6 1 1 4 403 1 403 2.35 0.00 403 7.88 403 1 403 1.82 403 1.20 73 1

6 2 4 1-1-1-1 282 3 282 353.12 0.00 282 34.49 342 3 342 1137.91 342 135.57 106 1

6 2 2 2-2 282 3 282 130.94 0.00 282 13.61 342 3 342 380.57 342 39.69 106 1

6 2 1 4 282 3 282 6.27 0.00 282 114.64 342 3 342 47.34 342 38.67 106 1

8 0 4 1-1-1-1 8 106 2 126 TL 97.88 106 TL 256 1 256 TL 98.44 256 TL 15 1

8 1 4 1-1-1-1 516 2 519 TL 60.67 516 TL 529 2 536 TL 74.82 529 TL 83 2

8 1 2 2-2 516 2 516 TL 37.44 516 1659.33 529 2 529 TL 61.06 529 564.73 83 2

8 1 1 4 521 2 521 169.04 0.00 521 23.22 536 2 536 273.47 536 17.12 83 2

8 2 4 1-1-1-1 356 3 393 TL 59.45 356 TL 423 2 423 TL 69.98 423 TL 177 1

8 2 2 2-2 356 3 356 TL 16.57 356 2175.07 423 2 423 TL 39.95 423 3672.67 177 1

8 2 1 4 356 3 356 2757.98 0.00 356 823.36 423 2 423 TL 27.23 423 1251.62 177 1

10 0 4 1-1-1-1 10 106 2 273 TL 100.00 106 TL 331 3 366 TL 100.00 331 TL 20 2

10 1 4 1-1-1-1 599 2 607 TL 75.86 599 TL 629 2 642 TL 75.62 629 TL 134 2

10 1 2 2-2 599 2 682 TL 84.90 599 TL 629 2 674 TL 84.72 629 TL 134 2

10 1 1 4 601 2 603 TL 31.82 601 488.14 631 2 633 TL 37.60 631 436.35 134 2

10 2 4 1-1-1-1 451 2 706 TL 76.00 451 TL 541 2 631 TL 73.22 541 TL 227 2

10 2 2 2-2 450 2 531 TL 67.93 450 TL 540 2 581 TL 70.42 540 TL 227 2

10 2 1 4 450 2 467 TL 63.09 450 TL 540 2 540 TL 67.12 540 TL 227 2

Obj: best solution value; k: number of vehicles used; t(s): solving time in seconds; g%: CPLEX gap; TL: time limit (3600

seconds) is reached.
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CPLEX gaps for the iterative algorithms as they are only relevant for the restrictive individual

problems requiring exactly k vehicles, but not for the original problem with at most n vehicles.

The last two columns of this table provide the results obtained from the PTP where the objective

function is replaced with Equation (36) to minimize the total routing cost.

When there are many conflicting passengers, we observe that the compartment configuration

matters: the best solution value increases for those instances where vehicles have a single com-

partment rather than multiple. The optimal values mostly increase as the number of requests gets

larger, but the magnitude of the increase is less for g = 0 instances. Note that these instances are

high in number of requests that can be served simultaneously, with none of them conflicting. This

enables serving more requests without incurring any additional travel or service time if the new

requests can be combined with the existing ones, as in the case for instances 8 0 4 and 10 0 4.

Comparing the performance of individual PTP methods, we observe that although FPTP ex-

hibits a satisfactory performance on small instances, particularly the ones with 4 requests, it

performs poorly on larger instances. On the other hand, using the iterative algorithms we are able

to obtain the optimal solutions for all the instances with up to 8 requests, except for 8 0 4. The

iterative algorithms only terminate with proven optimality for 10 1 1 among the instances where

n = 10.

The performance of the NSS methods follows a pattern similar to that of the PTP methods

in the sense that the PTP instances which reach the time limit also remain unsolved. In general,

the g = 0 instances appear the most difficult for all methods. The compact formulations are in

particular unable to obtain high quality dual bounds quickly and they need to explore a large

number of branch-and-bound nodes. We suspect this is due to a large number of symmetric

solutions given that the time windows of most requests in this group largely overlap and there are

no conflicts to, at least partially, break the symmetry.

The most interesting observation when comparing the best solution values of the PTP and

the NSS is that one can save a considerable amount of time by simultaneously serving requests

whenever possible. The gain is particularly significant for those instances which contain a large

number of requests convenient for simultaneous servicing.

Table 2 provides the results for the NC and the DARP. Testing different compartment config-

urations is irrelevant for these problems since no passenger conflicts are present. Therefore, all the

instances in this table have vehicles with a single compartment whose capacity is 4. The last two

columns of this table report the results obtained from the DARP, where the objective function is

replaced with (36) to minimize the total routing cost. When comparing the best solution values of

the NC and the PTP, we observe that it is higher for the PTP in all instances that contain con-

flicting customers, except for 6 2 1 which has a relatively sparse conflict matrix. The best solution

values of the PTP are generally lower than the best solution values of the DARP. However, we

observe that these values might be higher for the PTP for those instances where there is little to

gain by simultaneous servicing and for which passenger conflicts are in effect.
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Table 2: Results for NC and DARP methods.

PTP NC FNC IT-NC DARP FDARP IT-DARP DARP (36)

id n Best Best k Obj t(s) g% Obj t(s) Best k Obj t(s) g% Obj t(s) Best k

4 0 1 4 54 54 1 54 2.35 54 11.42 129 1 129 10.28 129 2.85 9 1

4 1 1 271 271 2 271 0.27 271 4.43 271 2 271 0.49 271 1.26 42 1

4 2 1 181 181 2 181 1.09 181 8.50 226 2 226 0.9 226 1.34 102 1

6 0 1 6 90 90 2 90 279.78 90 119.19 193 1 193 1947.75 193 151.21 13 1

6 1 1 403 399 1 399 14.14 399 9.35 399 1 399 20.12 399 2.04 69 1

6 2 1 282 282 3 282 14.77 282 66.89 342 3 342 155.15 342 12.54 106 1

8 0 1 8 106 106 2 106 TL 96.23 106 TL 256 1 256 TL 98.34 256 TL 15 2

8 1 1 521 514 1 516 TL 31.36 514 378.64 529 2 536 TL 35.06 529 748.25 83 2

8 2 1 356 350 3 352 TL 44.55 350 5385.99 414 2 414 TL 71.56 414 TL 137 2

10 0 1 10 106 106 1 110 TL 96.36 106 TL 320 3 326 TL 99.39 320 TL 16 2

10 1 1 601 576 3 609 TL 91.20 601 TL 610 2 639 TL 92.04 610 TL 104 2

10 2 1 450 444 2 507 TL 80.19 444 TL 535 2 576 TL 79.35 535 TL 216 2

When comparing the best solution values of the PTP and its variants, we observe that among

all the problems included in these tables, the best solution values are always the highest for the

NSS. For those which consider inter-passenger conflicts, the least number of instances are solved to

optimality for the NSS. The results indicate that it was computationally easier to solve the PTP

with Objective (36) than the original PTP on these instances. This is reflected in both the number

of instances solved to optimality and the average solving time. A similar pattern is observed when

comparing the DARP and the DARP with Objective (36) as well.

The mathematical models introduced in this paper provide formal descriptions for the PTP

variants and insights for solving them to optimality. However, the challenging combination of

constraints present in these formulations make it difficult to solve real-world instances of the PTP

in reasonable amounts of time. As the practitioners need to update their trips on a daily basis,

we also introduce a heuristic to solve realistically generated large-scale instances and provide an

additional computational analysis on these instances.

5. PTP Heuristic

The heuristic approach introduced for addressing the PTP in this paper utilizes the ruin &

recreate approach proposed by Schrimpf et al. (2000), guided by a stochastic Local Search-based

metaheuristic (LS). LS is employed given that it is both computationally quick and effective for

the capacitated vehicle routing problem and similar other problems (Laporte, 2009). The PTP is

accordingly decomposed into a master and a subproblem. The master problem is modeled as a
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multi depot dial-a-ride problem with simultaneous servicing (Section 7), while the prevention of

the inter-passenger conflicts (Section 6) corresponds to the subproblem.

5.1. Constructive heuristic

The initial solution is created by a greedy constructive method. All prisoners are first stored in a

list while the solution is completely empty. The resulting unscheduled prisoner list is shuffled before

employing best insertion. The procedure iterates over all feasible combinations for both pickup and

delivery insertions inside the current partial solution and eventually inserts the prisoner’s request

into the solution at the minimal additional cost. If no such feasible combination exists, such as

when none of the vehicles inside the incumbent solution are capable of transporting the prisoner

within Dmax, a new trip is initiated at the depot closest to the relevant prisoner. This best insertion

procedure is repeated until all prisoner transports are scheduled.

5.2. Local search improvement

Simulated Annealing (Kirkpatrick et al., 1983) is utilized to guide the local search towards bet-

ter solutions. The initial temperature is set to 100 and is cooled down to 1 (the final temperature).

Both temperatures were empirically determined. The cooling rate α is computed such that the final

temperature is reached after one million iterations. Classical local search neighbourhoods such as

two-opt* would prove impractical given the PTP’s constraints since, for example, timing and allo-

cation feasibilities are both affected when adjusting the order of visits in a trip. Therefore, a more

flexible local search heuristic is applied during the improvement iterations. A current solution’s

neighbour is generated iteratively by a ruin & recreate procedure. This procedure begins from a

copy of the current solution and removes its first trip. The removed prisoners are subsequently

appended to the unscheduled prisoner list. The ruined solution is afterwards recreated by the same

best insertion procedure employed for the initial solution’s construction. The resulting neighbour

solution is passed to the metaheuristic’s acceptance procedure for either rejecting or accepting it

as the incumbent solution. Furthermore, a neighbour may only be accepted if it contains either an

equal or greater number of prisoners than the current solution. If the neighbour is rejected, the

current solution’s first trip is moved to the end of the solution’s list of trips.

6. Prisoner allocation heuristic

Given a vehicle’s trip and a set of prisoners, one should check whether or not all prisoners

can be allocated to truck compartments without violating inter-passenger conflicts. Formally, this

feasibility problem can be defined as follows: Let T = {T0, . . . , Tη} be the set of transit points

of a vehicle’s trip. Define Pt as the set of prisoners to be allocated to the compartments of the

vehicle at transit point t ∈ T , P T =
⋃
t∈T Pt, and F as the set of conflicting prisoner pairs. The

prisoner allocation problem (PAP) checks if a set P T of prisoners can be feasibly allocated to the
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compartments of the vehicle such that no conflicting prisoners are in the same compartment at the

same time.

The PAP is a generalization of the Bounded Vertex Coloring Problem (BVCP). Consider the

special case of the PAP where all compartments have identical capacities, say q, and all prisoners

of a vehicle trip T are picked up at the transit point T1 and delivered to transit point T2. The latter

implies that all prisoners will be traveling in the vehicle between points T1 and T2. This special

case of the PAP reduces to the BVCP which is known to be NP-Complete on general graphs with

q ≥ 3 (Hansen et al., 1993).

In order to formulate the PAP, define a binary decision variable Wpc which equals 1 if prisoner

p ∈ P T is assigned to compartment c ∈ C, and 0 otherwise. Equations (43)-(46) provide an integer

programming model for the PAP. Constraints (43) guarantee that each prisoner in P T is assigned

to exactly one compartment in C. Constraints (44) ensure that the number of assigned prisoners

to a compartment c never exceeds its capacity qc, while Constraints (45) ensure no conflicting

prisoners are assigned to the same compartment. Note that set F only contains those conflicting

pairs of prisoners whose presence in the vehicle overlaps in time.

(FPAP )
∑
c∈C

Wp,c = 1 ∀ p ∈ P T (43)∑
p∈Pt

Wp,c ≤ qc ∀ c ∈ C, t ∈ T (44)

Wp1,c +Wp2,c ≤ 1 ∀ (p1, p2) ∈ F, c ∈ C (45)

Wp,c ∈ {0, 1} ∀ p ∈ P T , c ∈ C (46)

This feasibility check must be conducted very frequently within the PTP heuristic. The fact

that FPAP requires a relatively lengthy amount of time encourages us to employ a fast greedy

approach for solving the PAP. Consider an iterative approach where prisoners are added to a trip

one by one. The feasibility check implies that, for each prisoner insertion evaluation, a feasible

prisoner-truck allocation must be achieved during the complete trip.

Figure 3 illustrates an example trip which stops at six transit points while transporting four

prisoners. Figure 3(a) shows the sequence of the trip’s transit points and prisoner transports a, b,

c and d via dashed arrows, whereas Figure 3(b) indicates the vehicle’s occupation throughout the

trip.

(a)

(b)

a b c d

0T 7T1T 2T 3T 4T 5T 6T

c
d

b
a

Figure 3: A trip transporting four prisoners (a) and their presence in the truck (b).
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Figure 4(a) illustrates a vehicle with two compartments with (b) corresponding to a graph

Hc wherein an edge indicates an inter-passenger conflict. It is noteworthy that while prisoners

b and d may not share the same compartment, this edge is irrelevant given that the presence of

these two prisoners in the vehicle does not overlap in time. Therefore this edge may be removed

from the graph, resulting in (c). In order to find a feasible prisoner allocation, one may consider

a graph coloring problem wherein the number of an individual color’s assignments is bound to a

compartment’s capacity at each transit point.

(b) (c)

a b

c d

a b

c d

(d)

a b

c d

(a)

1C

2C

Figure 4: Prisoner allocation and conflict graphs.

Figure 4(d) provides a feasible allocation: Prisoners a and c are assigned to compartment 2 and

prisoners b and d to compartment 1. Notice that while the color for compartment 1 is employed

more than its corresponding capacity, it never exceeds this capacity at any single transit point as

illustrated in Figure 5.

b

c
a

d

0T 7T1T 2T 3T 4T 5T 6T

1C

2C

Figure 5: Solution for allocating prisoners.

6.1. Greedy Prisoner Allocation Heuristic

This section introduces a greedy prisoner allocation heuristic (PAH) to assign prisoners to

compartments. The algorithm is based on a graph coloring heuristic proposed by Al-Omari and

Sabri (2006). The pseudocode is provided by Algorithm 2. All prisoners which are transported

by trip T are included in set P T . These prisoners are sequentially assigned to one of the vehicle’s

compartments. To begin, the prisoner p with the fewest feasible compartment allocations is selected

from P T (lines 3-11). If this number of compartments is the same for two prisoners, then the

prisoner with the greatest number of conflicts (the number of incident edges in Figure 4 (c)) is

selected. Next, the compartment with the greatest number of free seats is selected from the set of

all compartments with no conflicting prisoners for p (lines 12-21). If prisoner p cannot be assigned

to any compartment, the heuristic fails to find a feasible assignment for the trip.

Although Algorithm 2 does not guarantee finding a feasible allocation (should one exist), the

extensive experimental evaluations conducted indicate its effectiveness. In these experiments, the

PAH is tested on a set of randomly generated prisoner allocation instances, which are proven to
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Algorithm 2: Prisoner Allocation Heuristic
Input: Trip T and vehicle V
AllocatePrisoners(T , V )

1 PT ← prisoners transported by T

2 while PT 6= ∅ do
// select the next prisoner to allocate

3 p← null

4 foreach p′ ∈ PT do
5 if p = null then
6 p← p′

7 else if #nonConflictingComps(p′) < #nonConflictingComps(p) then
8 p← p′

9 else if #nonConflictingComps(p′) = #nonConflictingComps(p) then
10 if #conflicts(p′) > #conflicts(p) then
11 p← p′

// select a compartment for p
12 c← null
13 foreach c′ ∈ nonConflictingComps(p) do
14 if c = null then
15 c← c′

16 else if #freeSeats(c′) < #freeSeats(c) then
17 c← c′

18 if c 6= null then
19 assign p to c
20 else
21 return false

22 return true

be feasible using the FPAP. Vehicles contain up to 10 compartments, with the number of seats

within each individual compartment between 1 and 10. The number of transported prisoners is

50-100% of the total number of seats in the vehicle. The fraction of conflicting pairs is selected

from between 30% and 100% of all pairs. Finally, the number of transit points is fixed to 10 while

the number of transit points at which a prisoner can be present in the vehicle is at least 1 and at

most 7.

Among 19581 PAP instances mathematically proven to be feasible, the PAH was able to gen-

erate a feasible solution for 18949, corresponding to a success rate of 96.7%. Given its efficiency,

the greedy PAH was taken to be sufficiently effective for employment within the PTP heuristic.

7. Accommodating time constraints

When composing or evaluating a trip, intelligent time constraint handling is indispensable.

This section details how the PTP’s time constraints are employed for constructing feasible trips.

The discussion is presented for a single vehicle trip and, for simplicity reasons, vehicle indices are

dropped from the notations and equations.
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7.1. Time windows

Let k be a prisoner’s pickup or delivery service. The service time sk to embark or disembark

the prisoner from the vehicle must be completed within its time window tk = [t−k , t
+
k ]. Figure

6 represents the time window by way of a gray rectangle, with the earliest possible execution

of the service illustrated by a black rectangle above this time window while the latest possible

execution is illustrated with a black box below this same time window. Figure 6(a) illustrates a

lengthy time window for servicing prisoner a. A service which must take place at a specific time is

represented by way of the time window’s length equaling the service time (sk = |tk|), as indicated

in Figure 6(b). The third possible case occurs when a truck departs or arrives at the depot with

no prisoners on board, here the service is only restricted by a time window without any service

time for (dis)embarking a prisoner (sk = 0), as illustrated in Figure 6(c).

tearliest

latest
(a) (b) (c)

ta ta tc tctb tb

sa ta sb sc sc

Figure 6: Time window and service time notations.

Inserting a single service into a trip’s sequence of η transit points requires evaluating the

feasibility of completing all services within their time windows. Although it is possible to evaluate

this in O(η) time by iterating over the complete trip, an alternative approach based upon auxiliary

variables enables O(1) evaluation. First, earliest arrival times a−k and earliest departure times d−k
are precalculated at every location by iterating from the earliest transit over the entire trip (Eq.

47). Second, latest departure times d+k and latest arrival times a+k are precalculated by iterating

over the trip from the latest to earliest transit (Eq. 48).

a−k = d−k−1 + ek−1,k d−k = max{a−k , t
−
k }+ sk (47)

d+k = a+k+1 − ek,k+1 a+k = min{d+k , t
+
k } − sk (48)

Arrival and departure times may therefore only occur within their associated arrival time window

ak = [a−k , a
+
k ] and departure time window dk = [d−k , d

+
k ]. Such feasibility time windows are illus-

trated via two examples in Figure 7. A trip’s transit points are denoted by the set {T0, T1, T2, T3},
where the first and last points correspond to the depot. The travel time from Ti to Tj (eij) is

represented by an arrow. The arrival time window a and departure time d are illustrated by gray

rectangles above and below the service time window t, denoted by (a, t, d)i for transit point Ti.

Consider the insertion of a service k between services i and j of a trip’s service sequence.

It is sufficient to simply ensure feasibility of earliest arrival and earliest departure at k: d−k ≤
min{t+k , d

+
k }. Equivalently, one could check for feasible latest departure and latest arrival times

at k: a+k ≥ max{t−k , a
−
k }. In essence, the length of each arrival window |ak| is equal to the
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(a,t,d)1

(a,t,d)2

(a,t,d)3

(a,t,d)0T0

T1

T3

T2

(a) (b)
8:00 18:00 8:00 18:00

(a,t,d)1

(a,t,d)2

(a,t,d)3

(a,t,d)0

e0,1

e1,2

e2,3

e0,1

e1,2

e2,3

Figure 7: Feasibility time windows, schedules without (a) and with wait times (b).

precomputed maximum delays, as in the push forward method proposed by Savelsbergh (1992,

1990) and Kindervater and Savelsbergh (1997).

7.2. Maximum trip duration

In addition to time window constraints, a trip is only feasible if its minimum duration D is no

longer than Dmax. Given feasibility time windows ak and dk for all trip transit points, one may

determine a fixed time schedule by either earliest or latest trip execution of minimum duration.

Figure 8 provides sample fixed schedules for the time windows provided by Figure 7.

T0

T1

T2

T3

(a) (b)
8:00 18:00

Earliest
schedule

Latest
schedule

8:00 18:00

Earliest
schedule

Latest
schedule

=

Wait time
at T1 or T2

Figure 8: Fixing the schedules, without (a) and with (b) wait times.

The earliest schedule is obtained when all a+k values are updated by pulling back the latest

arrival time at the final transit point as much as possible (a+η = a−η ) and enabling the trip’s

schedule to begin at a+0 . Similarly, if the earliest departure time at the first transit point were

pushed forward as much as possible (d−0 = d+0 ), before updating all following d+k , the latest schedule

may be obtained, starting at d−0 . The duration of a trip may now simply be obtained byD = a−η −d+0
of either the earliest or latest schedule. While this approach is inefficient as regards determining D

due to its O(η) runtime, it is employed given that it helps us introduce the following O(1) approach.
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First, notice that if no inevitable wait times are imposed, see Figure 8(a), a trip’s duration D is

equal to the sum of all travel and service times. This simply corresponds to the amount of time

that the trip’s vehicle is active, which we refer to as A, given as in Eq. 49.

A =

η−1∑
k=0

ek,k+1 +

η∑
k=0

sk (49)

When inevitable wait times are imposed, as illustrated in Figure 8(b), the earliest and latest

fixed schedules are equal. Let d+0 be the latest start time of the trip, a−η be the earliest end time

of the trip, and S = a−η − d+0 denote the time elapsed in between, a trip’s duration can then be

obtained using S. It is therefore possible to determine D without first fixing the schedule.

When no wait times occur, S may be smaller than D, and even negative. When wait times

are imposed, active duration A is shorter than D. Therefore, knowledge of any wait times is not

required to calculate a trip’s duration via Eq. 50.

D = max {A,S} = max

{
η−1∑
k=0

ek,k+1 +

η∑
k=0

sk, a
−
η − d+0

}
(50)

s2 s3 s4s1

s2 s3 s4s1

s2 s3 s4s1

s2 s3 s4s1 s2 s3 s4s1

s2 s3 s4s1

s2 s3 s4s1

s2 s3 s4s1

s2 s3 s4s1

s2 s3 s4T0

T1

T2

T3

T4

T5

s1

a5a4a3a2a1 d0 d1 d2 d3 d4

(b)(a)

s2 s3 s4s1 s2 s3 s4s1

a5 (3)

d0 (2)

Figure 9: Visual representation of Eq. 52 (a) and Eq. 54 (b).

It is possible to determine the effect of inserting a service i upon a trip’s duration as follows.

First, as an alternative to the recurrence formulations for earliest arrival time a−k (Eq. 47) and

latest departure time d+k (Eq. 48), explicit formulations can be derived intuitively. Consider the

example in Figure 9, which consists of six transit points, with each point’s time window ti denoted

by a gray rectangle and its associated service time by a black square. At every Ti in Figure 9

(a), service i is executed as soon as possible, with its initiation dependent on the start of its time

window t−i . As such, the earliest arrival time at Tk depends exclusively on the start of the time

window at Ti. Let a−k (i) be defined as in Eq. 51 for 0 ≤ i < k. Then, Eq. 52 gives a−k .
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a−k (i) = t−i +
k−1∑
j=i

(
sj + ej,j+1

)
(51)

a−k = max
0≤i<k

a−k (i) = max
0≤i<k

[
t−i +

k−1∑
j=i

(
sj + ej,j+1

)]
(52)

For the example in Figure 9 (a), earliest arrival times a−5 (0...4) depend on T2...4 whereas the

time window of T3 delays the arrival time at T5 the most and therefore a−5 = a−5 (3). The earliest

arrival times at all other transit points may be obtained via Eq. 52, with the results indicated on

the timeline of Figure 9 (a).

A similar approach is employed to derive all latest departure times d+k . At every Ti in Figure 9

(b), service i is executed as late as possible, depending exclusively upon the end of its time window

t+i and preceded by all prior travel and service times. Define d+k (i) as in Eq. 53 for k < i ≤ η, Eq.

54 then gives the value of d+k . Among all latest departure times d+0 (1...5) in Figure 9 (b), d+0 (2) is

the earliest and thus d+0 = d+0 (2).

d+k (i) = t+i −
i∑

j=k+1

(
sj + ej−1,j

)
(53)

d+k = min
k<i≤η

d+k (i) = min
k<i≤η

[
t+i −

i∑
j=k+1

(
sj + ej−1,j

)]
(54)

When a service j is inserted between transit points Ti and Tk, the resulting trip duration D∗

is affected as follows. First, A∗ is obtained by simply adjusting the traversed edges and adding

the necessary service time (Eq. 55). The earliest arrival time a−η at the last transit point may

consequently be delayed due to the additional travel and service times. Let a−∗k be the new earliest

arrival time at Tk and A+
k be the sum of all service and travel times from Tk to Tη. The earliest

arrival time at Tη is only delayed if a−∗k +A+
k > a−η (Eq. 56). Similarly, a+∗i is defined as the new

latest departure time at Ti and A−i as the sum of all service and travel times from T0 to Ti. The

new latest departure time d+0 can be obtained via Eq. 57.

A∗ = A− ei,k + ei,j + ej,k + sj (55)

a−∗η = max{a−η , a−∗k +A+
k } (56)

d+∗0 = min{d+η , d+∗i −A
−
i } (57)

Assuming feasibility time windows ai and di are precalculated together with the sum of preced-

ing A−i and succeeding A+
i activity at each transit point Ti, it is possible to validate time window

feasibility and maximum trip duration in O(1).
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7.3. Simultaneous servicing (merged service times)

Multiple services conducted by a vehicle at a single transit point may be executed simulta-

neously provided that each individual service is executed within its time window. Therefore, the

total time spent at the transit point may be longer than the longest service time of those services.

Execution of services a(ta, sa) and b(tb, sb) at a single transit point may therefore be merged into

the service m(tm, sm) which represents the shortest feasible execution of both. Earliest departure

d−m and latest arrival a+m times are derived simply by Eqs. 58 and 59.

d−m = min{d−a , d−b } (58)

a+m = max{a+a , a+b } (59)

Merged service time sm and its associated time window tm are derived from d−m and a+m by Eqs.

60, 61 and 62.

sm = max{sa, sb, d−m − a+m} (60)

t−m = d−m − sm (61)

t+m = a+m + sm (62)

Figure 10 illustrates four examples of two services (t, s)a and (t, s)b merged into single service

(t, s)m. This difference between the earliest departure d−m and latest arrival time a+m is progressively

increased in each example from (a) to (d). The difference in example (a) is negative, thus much

shorter than the longest service time, which ultimately results in a service with a lengthy time

window. Meanwhile, for (d) the difference is greater than the longest service time and thus equals

merged service time sm with time window tm = sm, thereby representing a fixed service in time.

7.4. Maximum ride times

In order to guarantee maximum ride time feasibility, we apply the following preprocessing step.

Let tp−r and spr be the beginning of pickup time window and pickup service time for request r and

let td+r and sdr be the end of delivery time window and delivery service time. Feasibility for the

request’s maximum ride time Lr is ensured by restricting the earliest pickup time t̂p−r , as in Eq.

63.

t̂p−r = max
{
tp−r , td+r −

(
spr + Lr + sdr

)}
(63)
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Figure 10: Four examples of merging services a and b into m.

8. PTP instances and solutions

The proposed instances have been made publicly available at the PTP benchmark site1 in order

to stimulate further research regarding the problem. Real world PTP data and the accompanying

schedules for a single day of prisoner transports were obtained, which enabled a fair comparison

between the heuristically generated and the manually constructed solutions. The location coordi-

nates of PTP instances that were generated using real world data have been altered in the interest

of preserving confidentiality. As such, it is impossible to retrieve the original coordinates from any

of the instances that have been made publicly available. This ensures that private user information

cannot be unambiguously extrapolated from these instances.

Table 3 summarizes instance properties as a function of the number of prisoner transporta-

tion requests. The smallest number of requests r begins at 50, immediately challenging exact

approaches. Instances of sizes 100, 200, 400 and, in order to reflect the real world problem size,

700 were also generated. The number of prisoners per instance p varies from 38 to 476, with the

number of unique locations associated with their trips ranging from 28 to 169, of which between 1

and 13 are depot locations. Cartesian coordinates for each location are obtained by way of clas-

1https://benchmark.gent.cs.kuleuven.be/ptp/
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sical multidimensional scaling of real travel times. Therefore, the cartesian distance between the

obtained locations’ coordinates provide realistic travel times. A single depot is assumed for the

smallest instances, all the way up to a total of 13 for the largest instances. This number of depots

is based on the ratio of trips per depot present in the real world data. The maximum trip duration

is fixed to 9 hours (540 minutes) for all instances. For each transportation request, separate time

windows and service times for pickup and delivery services are defined. Time windows occur in a

timespan of 24 hours, and although service times are typically 15 minutes, they may be as long as

225 minutes.

Table 3: Common properties of the PTP instances.

Name r p l u Dmax

(x)-r050-(v) 50 38 28 1 540

(x)-r100-(v) 100 71 45 2 540

(x)-r200-(v) 200 140 70 4 540

(x)-r400-(v) 400 264 101 8 540

(x)-r700-(v) 700 476 169 13 540

Ten different vehicle types are considered for each of these instances (Table 4), resulting in a

total of 50 PTP instances. Each vehicle type’s capacityQ totals four seats for v1 - v5 and seven seats

for v6 - v10, which are grouped in various compartments. The vehicle types contain compartments

of various sizes, a few of which are worth detailing. Vehicle types v1 and v6 have compartments of

one single seat. Such vehicles always avoid inter-passenger conflicts at compartment level, however

they are less common in practice due to their high investment costs. Vehicle types v2 and v7

represent vehicle configurations with two (almost) equal sized compartments. Vehicles of v5 and

v10 type contain one single compartment and are, therefore, incapable of combining conflicting

prisoners.

Table 4: PTP vehicle types.

Name Q C Name Q C

v1 4 {1, 1, 1, 1} v6 7 {1, 1, 1, 1, 1, 1, 1}

v2 4 {2, 2} v7 7 {3, 4}

v3 4 {1, 1, 2} v8 7 {2, 2, 3}

v4 4 {1, 3} v9 7 {1, 6}

v5 4 {4} v10 7 {7}

In order to assess the impact of inter-passenger conflicts and maximum ride time restrictions,

this set of instances - referred to as Set A - is duplicated to solve the PTP by relaxing these

constraints one at a time. This results in three additional instance sets: Set B with H 6= ∅ and
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Lr = Dmax ∀r ∈ R, Set C with H = ∅ and Lr = 150 ∀r ∈ R, and Set D with H = ∅ and Lr = Dmax

∀r ∈ R.

Relaxation of these conflicts essentially constitutes instances for the multi depot DARP with

simultaneous servicing. Additionally, when relaxing both conflicts and maximum ride durations,

the problem becomes a multi-depot pickup-and-delivery problem with time windows and simulta-

neous servicing. Notice that only one vehicle type is employed for the problem sets where conflicts

are relaxed, given that the vehicle’s total capacity then becomes the only relevant constraint.

In order to provide initial solutions and verify error-free instance files for these four benchmark

sets, ten runs are conducted for which the best (Best) and average (Avg.) results are accompanied

by average run times Ta in minutes. These results are detailed in Tables 5 and 6. Considering

only the real world scale of the problem instances, which contain 700 requests, we observe the

following. The presence of inter-passenger conflicts implies an overall cost increase of up to 4.4%

when employing small vehicles (v1 - v5) and up to 5.3% when employing large vehicles (v6 -

v10). Meanwhile, the effect of inter-passenger conflicts at compartment level can be determined by

comparing results for v1, which is always capable of combining conflicting prisoners, and v5, which

is always incapable of combing them. Employing v1 rather than v5 implies a cost reduction of 1.8%.

Similarly, employing v6 rather than v10 implies a cost reduction of 1.6%. Increasing the vehicle’s

capacity from 4 (v1 - v5) to 7 seats (v6 - v10) may reduce the total cost by up to 2.1%. Finally,

we observe that the presence of the maximum ride time constraint may triple the cost. These

results are not without practical significance given that the maximum ride time constraints were

not initially considered as critical constraints by the prisoner transportation company involved in

this research. However, after modeling the problem and evaluating the solution approach through

these experiments, it became apparent that maximum ride times are indeed crucial for prisoner

transportation. On the other hand, it is very likely that this observation is not only related to the

constraint, but also to how it is accommodated by preprocessing the time windows. Therefore, the

computational results of maximum ride time must not be regarded as an independent observation.

9. Conclusion

This paper introduced the Prisoner Transportation Problem (PTP), which constitutes a gen-

eralization of common combinatorial optimization problems: vehicle routing with time windows,

dial-a-ride and multi-compartment vehicle routing. The PTP is interesting from a practical view-

point because its daily operations inevitably represent a huge cost for society. Its modeling difficulty

is primarily related to the presence of inter-passenger conflicts and simultaneous servicing, two in-

tricate constraints for which models were previously absent. The PTP therefore posed a significant

academic challenge.

Together with several mathematical formulations this paper contributed a set of instances

and provides initial benchmarks obtained by applying a local search based approach in order
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Table 5: PTP instance and results for vehicle types v1 to v5.

Set A(v1-v5) (H 6= ∅, Lr = 150) Set B(v1-v5) (H 6= ∅, Lr = Dmax)

Instance Best Avg. Ta Instance Best Avg. Ta

a-r050-v1 (18) 7385 7385.7 1.1 b-r050-v1 (6) 2208 2216.0 3.0

a-r050-v2 (18) 7382 7384.4 1.0 b-r050-v2 (6) 2211 2226.4 2.6

a-r050-v3 (18) 7382 7387.2 1.1 b-r050-v3 (6) 2211 2217.6 2.9

a-r050-v4 (18) 7413 7413.2 1.0 b-r050-v4 (6) 2220 2229.9 2.8

a-r050-v5 (18) 7434 7441.1 1.0 b-r050-v5 (6) 2392 2403.3 2.3

a-r100-v1 (37) 16514 16524.5 1.9 b-r100-v1 (13) 5317 5348.9 4.4

a-r100-v2 (38) 16511 16524.9 1.7 b-r100-v2 (13) 5275 5322.1 3.9

a-r100-v3 (37) 16509 16530.2 1.8 b-r100-v3 (13) 5294 5338.6 4.2

a-r100-v4 (38) 16546 16559.9 1.8 b-r100-v4 (13) 5315 5364.0 4.0

a-r100-v5 (38) 16604 16615.2 1.7 b-r100-v5 (14) 5458 5489.6 3.3

a-r200-v1 (67) 30308 30376.3 3.6 b-r200-v1 (21) 9778 9922.6 9.5

a-r200-v2 (67) 30337 30370.4 3.3 b-r200-v2 (22) 9878 9990.4 8.0

a-r200-v3 (67) 30311 30359.8 3.5 b-r200-v3 (22) 9814 9967.3 9.0

a-r200-v4 (67) 30371 30427.1 3.4 b-r200-v4 (22) 9872 9990.6 8.3

a-r200-v5 (68) 30671 30751.5 3.2 b-r200-v5 (22) 9896 10075.8 6.9

a-r400-v1 (128) 59030 59164.4 7.3 b-r400-v1 (41) 19562 19809.8 18.3

a-r400-v2 (128) 59134 59212.2 6.8 b-r400-v2 (42) 19715 19924.5 15.7

a-r400-v3 (127) 59030 59152.6 7.2 b-r400-v3 (42) 19765 19971.0 17.3

a-r400-v4 (127) 59123 59207.2 7.0 b-r400-v4 (41) 19576 19896.5 16.3

a-r400-v5 (131) 60128 60307.6 6.5 b-r400-v5 (42) 20014 20305.2 13.4

a-r700-v1 (274) 120836 121019.7 12.0 b-r700-v1 (84) 41270 41570.8 27.7

a-r700-v2 (272) 121292 121503.2 11.5 b-r700-v2 (84) 41511 41930.5 24.5

a-r700-v3 (272) 120820 120990.8 12.0 b-r700-v3 (85) 41116 41466.1 26.7

a-r700-v4 (275) 120865 121143.1 11.6 b-r700-v4 (83) 41218 41593.0 25.5

a-r700-v5 (276) 123044 123185.8 10.9 b-r700-v5 (87) 42527 42804.5 20.8

Set C(v1) (H = ∅, Lr = 150) Set D(v1) (H = ∅, Lr = Dmax)

Instance Best Avg. Ta Instance Best Avg. Ta

c-r050-v1 (18) 7343 7352.5 1.1 d-r050-v1 (6) 2118 2133.3 3.0

c-r100-v1 (37) 16346 16374.9 2.0 d-r100-v1 (12) 4991 5070.6 6.8

c-r200-v1 (64) 29510 29572.6 3.7 d-r200-v1 (21) 9316 9453.4 14.5

c-r400-v1 (123) 57411 57583.1 7.4 d-r400-v1 (40) 18821 19094.2 24.9

c-r700-v1 (261) 117399 117947.9 12.1 d-r700-v1 (78) 38125 38604.9 36.0
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Table 6: PTP instance and results for vehicle types v6 to v10.

Set A(v6-v10) (H 6= ∅, Lr = 150) Set B(v6-v10) (H 6= ∅, Lr = Dmax)

Instance Best Avg. Ta Instance Best Avg. Ta

a-r050-v6 (18) 7343 7343.0 1.1 b-r050-v6 (6) 2102 2126.1 3.0

a-r050-v7 (18) 7343 7343.0 1.0 b-r050-v7 (6) 2113 2127.7 3.0

a-r050-v8 (18) 7343 7343.0 1.1 b-r050-v8 (6) 2102 2124.9 3.0

a-r050-v9 (18) 7371 7373.4 1.0 b-r050-v9 (6) 2131 2141.4 3.0

a-r050-v10 (18) 7395 7399.5 1.0 b-r050-v10 (7) 2318 2327.7 2.5

a-r100-v6 (36) 16112 16135.3 2.0 b-r100-v6 (13) 4970 5014.5 5.8

a-r100-v7 (37) 16175 16195.3 1.7 b-r100-v7 (14) 4982 5022.9 4.4

a-r100-v8 (37) 16185 16201.4 1.8 b-r100-v8 (13) 4987 5015.0 4.8

a-r100-v9 (36) 16113 16124.6 1.8 b-r100-v9 (14) 4945 5013.9 4.6

a-r100-v10 (37) 16206 16224.5 1.7 b-r100-v10 (13) 5107 5137.6 3.8

a-r200-v6 (65) 29377 29431.2 3.8 b-r200-v6 (20) 8970 9067.7 12.9

a-r200-v7 (65) 29375 29431.7 3.3 b-r200-v7 (20) 9010 9096.7 9.2

a-r200-v8 (65) 29404 29448.8 3.5 b-r200-v8 (20) 8939 9067.4 10.6

a-r200-v9 (66) 29421 29452.8 3.4 b-r200-v9 (21) 9043 9131.8 9.6

a-r200-v10 (66) 29694 29727.6 3.2 b-r200-v10 (20) 9160 9298.7 7.9

a-r400-v6 (124) 57248 57330.0 7.6 b-r400-v6 (37) 17625 17802.8 25.3

a-r400-v7 (125) 57236 57380.2 6.8 b-r400-v7 (39) 17812 17927.8 18.1

a-r400-v8 (123) 57272 57404.6 7.0 b-r400-v8 (38) 17692 17872.6 20.0

a-r400-v9 (124) 57274 57406.5 7.0 b-r400-v9 (40) 17837 17961.8 18.8

a-r400-v10 (128) 58636 58734.6 6.5 b-r400-v10 (40) 18204 18434.4 14.9

a-r700-v6 (264) 118372 118748.7 12.6 b-r700-v6 (78) 37566 37937.0 35.3

a-r700-v7 (267) 118722 119041.6 11.3 b-r700-v7 (77) 37756 38060.7 26.2

a-r700-v8 (263) 118282 118720.6 11.8 b-r700-v8 (79) 37734 38101.8 29.1

a-r700-v9 (263) 118301 118642.3 11.6 b-r700-v9 (77) 37947 38218.2 27.9

a-r700-v10 (273) 120523 120690.7 10.8 b-r700-v10 (81) 39263 39652.5 22.0

Set C(v6) (H = ∅, Lr = 150) Set D(v6) (H = ∅, Lr = Dmax)

Instance Best Avg. Ta Instance Best Avg. Ta

c-r050-v6 (17) 7303 7303.0 1.2 d-r050-v6 (5) 1964 1973.5 3.0

c-r100-v6 (36) 15948 15969.6 2.1 d-r100-v6 (12) 4620 4660.9 10.2

c-r200-v6 (61) 28427 28502.2 3.9 d-r200-v6 (19) 8305 8460.8 24.2

c-r400-v6 (116) 55359 55606.1 7.7 d-r400-v6 (35) 16379 16552.8 41.0

c-r700-v6 (250) 114166 114657.3 12.5 d-r700-v6 (70) 33554 33767.2 51.2
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to stimulate further research on the PTP. While constructing and optimizing the PTP’s trips,

feasible prisoner-to-compartment allocations are essential. An efficient and effective heuristic has

been introduced for solving this subproblem.

The mathematical formulations introduced in this paper set in place the strong foundations nec-

essary for subsequent research on the PTP. Possible future research directions include establishing

further theoretical insights as well as practical algorithms for improving solutions. Several variants

being already discussed in this paper, it is also worthwhile to study the impact of additional real

world constraints which have, for the sake of clarity, been omitted in this study.
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Appendices

Appendix A. Formulation with single-index time variables (FPTP-2)

In this formulation, x, y and z variables are defined as before. Variable τi denotes the departure

time from node i ∈ I and δi is the merged service time of node i ∈ I. Moreover, φv is the departure

time from the starting depot and Φv is the arrival time to the ending depot of vehicle v ∈ V . The

following is a mixed integer programming formulation for the PTP with single-index time variables.

min
∑
v∈V

(Φv − φv) (A.1)

s.t. (2)− (12), (22)− (27)

τi + eij + δj ≤ τj + t+max(1−
∑
v∈V

zvij) ∀(i, j) ∈ A3 : l(i) 6= l(j) (A.2)

τi ≤ τj + t+i (1−
∑
v∈V

zvij) ∀(i, j) ∈ A3 : l(i) = l(j) (A.3)
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δi ≥
∑
v∈V

∑
j∈I

sjz
v
ij ∀i ∈ I (A.4)

δj ≥
∑
v∈V

∑
i∈I

siz
v
ij ∀j ∈ I (A.5)

τn+i − τi − si+n ≤ Lr(i) ∀i ∈ IP (A.6)

Φv − φv ≤ Dmax ∀v ∈ V (A.7)

Φv − φv ≥
∑
i∈IP

(euvi + si)z
v
uvi

+
∑
i∈ID

(eiuev + si)z
v
iuev

+
∑

(i,j)∈A3

eijz
v
ij ∀v ∈ V (A.8)

Φv ≥ τi + eiuev + tmax(zviuev − 1) ∀v ∈ V, i ∈ I (A.9)

φv ≤ τi − euvi − δi + t+max(1− zvuvi) ∀v ∈ V, i ∈ I (A.10)

t−i + si ≤ τi ≤ t+i ∀i ∈ I (A.11)

si ≤ δi ≤ Lr(i) ∀i ∈ I (A.12)

The objective function (A.1) of FPTP-2 is expressed as a linear function of single-index Φv and

φv variables for v ∈ V . Constraints (A.2), (A.10) and (A.9) replace (13) of the original model. The

remaining constraints are analogous to those omitted from FPTP.

Appendix B. Formulation without δ variables (FPTP-3)

In addition to FPTP and FPTP-2, we provide a third formulation which does not contain δ

variables. Model FPTP-3 then becomes:

min (1)

s.t. (2)− (12), (22)− (27), (14), (17)− (20)

τvi + eij + sj ≤ τvj + tmax(1− zvij) ∀v ∈ V, (i, j) ∈ A : l(i) 6= l(j) (B.1)

As in the case of FPTP, we utilize all the valid inequalities introduced in Section 3 for PTP-

2 and PTP-3 whenever applicable. Additionally for PTP-2, we replace (A.9) and (A.10) with

stronger constraints (B.2) and (B.3).

Φv ≥ τi + eiuev + tmax(
∑
j∈I

zvij − 1) ∀v ∈ V, i ∈ I (B.2)

φv ≤ τi − euvi − δi + t+max(1−
∑
j∈I

zvji) ∀v ∈ V, i ∈ I (B.3)

Appendix C. Comparison of the formulations and iterative algorithms for PTP
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Table C.7: Comparison of PTP methods.

FPTP FPTP-2 FPTP-3 IT-FPTP IT-PTP-2 IT-PTP-3

id Comp. n Best k Obj t(s) g% Obj t(s) g% Obj t(s) g% Obj t(s) Obj t(s) Obj t(s)

4 0 4 1-1-1-1 4 54 1 54 9.73 0.00 54 48.04 0.00 54 5.2 0.00 54 3.21 54 9.44 54 4.30

4 1 4 1-1-1-1 271 2 271 0.22 0.00 271 9.62 0.00 271 0.38 0.00 271 0.65 271 7.55 271 0.92

4 1 2 2-2 271 2 271 0.24 0.00 271 3.50 0.00 271 0.18 0.00 271 17.12 271 6.22 271 0.64

4 1 1 4 271 2 271 0.19 0.00 271 3.72 0.00 271 0.22 0.00 271 15.43 271 5.78 271 0.36

4 2 4 1-1-1-1 181 2 181 0.62 0.00 181 10.47 0.00 181 1.43 0.00 181 2.04 181 8.08 181 2.57

4 2 2 2-2 181 2 181 0.98 0.00 181 5.53 0.00 181 1.16 0.00 181 2.10 181 11.91 181 1.52

4 2 1 4 181 2 181 1.25 0.00 181 4.76 0.00 181 0.37 0.00 181 12.54 181 6.86 181 1.49

6 0 4 1-1-1-1 6 90 2 90 TL 93.89 90 TL 93.33 90 TL 92.33 90 405.92 90 399.15 90 506.80

6 1 4 1-1-1-1 399 1 399 93.68 0.00 399 72.13 0.00 399 35.17 0.00 399 10.29 399 8.74 399 6.69

6 1 2 2-2 399 1 399 5.96 0.00 399 12.93 0.00 399 7.47 0.00 399 11.78 399 7.77 399 3.85

6 1 1 4 403 1 403 2.35 0.00 403 9.03 0.00 403 1.83 0.00 403 7.88 403 21.27 403 0.98

6 2 4 1-1-1-1 282 3 282 353.12 0.00 282 331.20 0.00 282 89.94 0.00 282 34.49 282 38.02 282 75.83

6 2 2 2-2 282 3 282 130.94 0.00 282 192.35 0.00 282 110.53 0.00 282 13.61 282 15.19 282 16.63

6 2 1 4 282 3 282 6.27 0.00 282 36.82 0.00 282 11.82 0.00 282 114.64 282 74.58 282 6.44

8 0 4 1-1-1-1 8 106 2 126 TL 97.88 294 TL 99.46 128 TL 100.00 106 TL 106 TL 106 TL

8 1 4 1-1-1-1 516 2 519 TL 60.67 516 TL 66.38 516 TL 56.77 516 TL 516 4281.62 516 3165.77

8 1 2 2-2 516 2 516 TL 37.44 516 TL 38.87 516 TL 39.15 516 1659.33 516 849.50 516 1114.13

8 1 1 4 521 2 521 169.04 0.00 521 215.38 0.00 521 223.97 0.00 521 23.22 521 56.44 521 24.25

8 2 4 1-1-1-1 356 3 393 TL 59.45 356 TL 49.89 356 TL 54.19 356 TL 356 5061.98 356 TL

8 2 2 2-2 356 3 356 TL 16.57 356 TL 18.03 356 TL 18.57 356 2175.07 356 911.33 356 2160.09

8 2 1 4 356 3 356 2757.98 0.00 356 TL 16.29 356 2543.25 0.00 356 823.36 356 1037.22 356 486.27

10 0 4 1-1-1-1 10 106 2 273 TL 100.00 423 TL 100.00 366 TL 100.00 106 TL 106 TL 131 TL

10 1 4 1-1-1-1 599 2 607 TL 75.86 601 TL 75.39 607 TL 73.63 599 TL 599 TL 599 TL

10 1 2 2-2 599 2 682 TL 84.90 620 TL 70.91 656 TL 84.36 599 TL 599 TL 599 TL

10 1 1 4 601 2 603 TL 31.82 603 TL 34.30 603 TL 32.43 601 488.14 601 410.27 601 334.30

10 2 4 1-1-1-1 451 2 706 TL 76.00 841 TL 79.84 770 TL 78.01 451 TL 453 TL 453 TL

10 2 2 2-2 450 2 531 TL 67.93 579 TL 69.01 519 TL 66.90 450 TL 450 TL 450 TL

10 2 1 4 450 2 467 TL 63.09 453 TL 57.24 451 TL 60.53 450 TL 450 TL 450 TL
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