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Abstract—Utility companies, such as electricity suppliers or
telecom operators, typically have to maintain large-scale infras-
tructure. They typically contract out maintenance work to a large
collection of local subcontractors, while nevertheless retaining
final responsibility. To track the quality of the performed work,
the parent company dispatches its own inspectors to the sites
to perform audits, particularly concerning safety and signaling.
Since at any given time hundreds of sites can be open, this
requires a lot of effort. In this paper, we investigate how to
optimize this effort by focusing audits on those sites that are most
likely to exhibit problems. Because poorly executed or indicated
maintenance works can have a significant impact on road safety
and mobility, especially in cities, this will not only reduce the
cost for the utility company, but also contribute to a healthier
and safer environment for local residents.

Index Terms—Subcontractor performance, Monte Carlo sim-
ulation, Bayesian Network, predictive maintenance

I. INTRODUCTION

The work in this paper revolves around the following situ-
ation. Given a number of open maintenance sites managed by
several subcontractors working for a same general contractor,
an inspector from the contractor will be sent to these sites for
inspection. This inspection is carried out by means of a tablet
with a dedicated application that presents the inspector with a
predefined set of questions, which are grouped per topic and
mainly revolve around security and safety. The list of questions
the inspector needs to answer for a specific inspection is
decided upon beforehand, and revolves around chosen topics.
In other words: either all questions belonging to a topic are
presented, or none are. A specific question can be answered
one of four ways: ok (the question is satisfied), nok (there was
an issue), sos (“solved on site”: there was an issue, but it was
immediately resolved) or na (not applicable). The answers
are communicated to a central server and stored for further
processing or review.

The research question we answer in this paper is whether
historical audits collected this way can be used to predict
which currently open sites require more urgent inspection. We
demonstrate that this is possible, and make available an end-
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to-end framework, for which the source code can be found at
the project website1.

This appears to be an understudied field. Some works
suchs as [1] and [2] do deal with predicting subcontractor
performance, but substantially differ from this work in both
goal, approach and data used. To the best of our knowledge,
this is the first work of its kind that proposes a simple method,
using clearly defined data from a central and homogeneous
source, with the specific aim to rank open sites according to
expected performance.

II. DATA

The data at our disposal are an anonymized historical
list of audits, ranging in time from 2016-09-14 to 2018-
09-25. The data was provided as a tabular file, where each
row corresponds to an answered question together with an
assortement of other fields such as the applicable subcontractor
and site, and all rows are ordered chronologically. Mapping
this data to individual audits needed to be done by relating
this file to a separate file containing a list of audits, with the
date they were performed.

The data comprises 9672 unique audits of 4569 unique
sites from 21 different subcontractors. Each site is located in
one of nine distinct areas, and relates to one of four distinct
tasks. Fig. 1 depicts the number of sites per subcontractor, as
well as the number of areas and tasks each were active in.
Over all audits, answers are given to 152 unique questions,
which are divided across 21 topics. Typically, questions are
answered on a per-topic basis. In the remainder, we consider
a question “answered” if it was answered anything but na. Fig.
2 shows how many times each question was answered, while
Fig. 3 shows the ratio of answers per question. Questions are
weighted, with weights decided upon by the general contractor.
Specifically, for our data the weights were ∈ (1, 5, 20).

A site hence relates three variables: a subcontractor, an area
and a task. In the remainder of this text, we will refer to such a
triplet as a configuration. An audit is then a combination of a
site, a configuration and a (pre-)prepared list of questions that

1https://iiw.kuleuven.be/onderzoek/eavise/iats/home
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Fig. 1. Statistics per subcontractor.

Fig. 2. How many times was each question answered?

Fig. 3. Ratio of different answers per question.

relate to a number of chosen topics. For each audit, a score
can be computed as follows, which we call the deficiency:

deficiency =

{ ∑
i∈{nok} wi∑

i∈{nok,ok,sos} wi
, denom > 0.

1, denom = 0.
(1)

where {nok} denotes the set of indices of questions that
were answered nok for that audit, and analogously for
{nok,ok,sos}, and wi is the weight of the question with
index i. Put into words, the deficiency essentially answers the
question: of all the questions that were answered, what ratio
were answered nok?

III. MODEL ARCHITECTURE

We model the auditing process as a random process. In other
words, we assume the result of an audit, i.e., its deficiency, is
drawn from a well-defined probability distribution. Our goal
is to find a way to rank currently open sites according to our
expectation of their deficiency. To do this, we will simulate the
necessary probability distributions, and by comparing these,
obtain the sought after ranking.

A. Critical Questions

Before moving on to the modeling proper, we need to
introduce a new concept. As analysing of the data revealed
that when the deficiency of an audit equals 1, typically only
one or two questions were answered. Upon closer inspection
these appeared to always be the same questions, which gave
rise to the notion of a critical question: a question that when
answered nok prompts the inspector to stop inspecting further.
Let us now introduce two definitions. Note that looking at the
data at site-level means we take all audits for that site together
as if it were one single audit (with some questions possibly
answered multiple times).

Definition III.1. A critical site/audit is a site/audit for which
the deficiency = 1.

Definition III.2. A critical question for a specific critical
site/audit is a question that was answered for this particular



critical site/audit (and hence, was answered nok). In other
words, a question is only critical within the specific context
of a critical site/audit.

Table I shows which questions were most often critical, i.e.,
answered for a critical site/audit. The results shown are limited
to the 10 most answered questions, and do indeed suggest that
some questions are more critical than others. Moreover, the
most critical questions are identical whether we analyze at the
site or audit level.

TABLE I
TOP 10 MOST COMMON CRITICAL QUESTIONS AT SITE AND AUDIT LEVEL.

Rank Site Audit
Question ID Count Question ID Count

1 58 73 58 132
2 47 70 47 92
3 130 32 130 53
4 124 14 124 31
5 131 13 122 22
6 132 13 123 22
7 133 11 131 22
8 134 11 132 21
9 122 10 125 20
10 135 10 133 19

Critical
sites

Total
sites

Critical
audits

Total
audits

189 4569 325 9672

When narrowing down the analysis to the five most active
contractors, the top 3 results per subcontractor are shown in
Table II. Except for Subcontractor D, who has no critical sites,
for all other contractors it is indeed apparent that there is
always one question that is clearly more critical than others,
namely question 47 for Subcontractor G, and question 58 for
all others, with sites and audits agreeing. These are indeed
also the two most critical questions as per the entire dataset.

TABLE II
TOP 3 CRITICAL QUESTIONS PER SUBCONTRACTOR. IF LESS ARE SHOWN,

THERE WERE LESS THAN 3 CRITICAL QUESTIONS FOR THIS
SUBCONTRACTOR.

Subcontractor Site Audit
ID Count ID Count

C
58 43 58 61
47 5 130 8
130 4 47 132

D – – 130 1

A
58 5 58 5
130 4 130 4

P
58 8 58 14
122 2 122 5
47 1 130 4

G
47 49 47 54
124 3 124 5
125 3 138 4

The next question is whether these questions are sometimes
answered nok without this immediately resulting in a critical
site or audit. The answer is: yes, quite often actually. For the
top 5 most critical questions as per the site analysis (see Table
I), we get the results shown in Table III. As these results
show, most often a nok for these questions will not result in

a critical audit, but nevertheless the top 2 questions are critical
in more than 24% of the cases. Rephrased: when one of these
questions is nok, there is almost a 25% chance of the audit
being critical.

TABLE III
TOP 5 MOST COMMON CRITICAL QUESTIONS: HOW OFTEN ARE THEY

CRITICAL?

ID Critical
sites

#Sites
nok

Critical
sites%

Critical
audits

#Audits
nok

Critical
audits%

58 72 348 20.7 132 412 32.0
47 67 281 23.8 92 383 24.0
130 31 273 11.4 53 361 14.7
124 10 577 1.7 31 742 4.2
131 12 301 4.0 22 353 6.2

B. Modeling the Auditing Process

An audit is essentially a list of questions to be answered.
As such, it can be modeled by randomly generating an answer
to every question. The priors for each possible answer to each
question can be extracted from the data, and are dependent on
the subcontractor, area and task. A Bayesian Network lends
itself perfectly to this type of application.

The preceding subsections suggest the following structure
for our model. First of all, we decided to create two different
networks: one for modeling performance dependence on area,
the other for modeling performance dependence on task. An
alternative would have been to use one network to model
performance based on area and task together. However, we did
not have enough data to reliably learn the parameters of the
CPTs of such a network. Moreover, this problem is inherent
to the problem at hand which puts a “physical” limit on the
amount of data collectable per subcontractor – a subcontractor
cannot serve 100 sites per day.

Our model is graphically depicted in Fig. 4. We start off
with a root node representing the subcontractor, since this is
the first variable that determines a configuration.

Fig. 4. Schematic of our Bayesian Network. ‘CQx Ans’ = ‘answer to Critical
Question x’, ‘CQx C?’ = ‘is Critical Question x critical?’, ‘RQ’ = ‘Remaining
Question’.



Next up is either the area or the task, depending on which
model we consider. This node is the only differing node
between the two networks.

Once we have a subcontractor and an area or task, we can
essentially begin filling in our questionnaire. But as we have
seen in §III-A, sometimes the audit consists of only one or two
critical questions. Hence, we chose to include this behavior in
our model by means of a succession of three layers of nodes:

• The first layer contains as many nodes as there are
critical questions considered in the model. This is a model
parameter, and in this work we chose to use the top 3
critical questions. Each node represents the answer (nok,
ok, sos or na) to a specific critical question.

• The second layer also contains one node per critical
question, and represents whether the question is indeed
critical or not. Note that it can only be critical if the
answer to the question represented by its parent node in
the first layer is NOK.

• The third and final layer contains a “Sum” node that sim-
ply encodes whether at least one of the critical questions
is critical, i.e., whether at least one of its parent nodes
has fired. If this is the case, then no further questions will
be answered.

At this stage in the network, we know whether the site is
critical or not, and hence, whether we need to answer the
remaining questions or not. If so, we start by chosing whether
or not to look at the questions belonging to a specific topic.
This is encoded in a layer containing one node per topic
which represents the odds of (the questions belonging to) this
topic begin answered. If a topic node fires, all its children,
which represent the questions belonging to that topic, will be
answered (possibly na).

The final layer contains one node per question. Each node is
connected to its associated topic node, and represents the odds
of each possible answer for a question. The only exception
is for critical nodes, for which an RQ-node is created that
duplicates its state (see Fig. 4). Having these duplicate nodes
makes it easier afterwards to process the audit code-wise.

Initializing a network amounts to determining the CPT for
each node. This in turn is done by parsing the data on a per-
audit basis, and keeping track of all node states. The CPTs
can then trivially be derived from the counts of all states.

Once the network has been initialized, we can sample from
the probability distribution it represents by randomly assigning
a value to each node by sampling its corresponding CPT and
respecting the hierarchy of the network. For each sample we
can then compute the corresponding deficiency by looking at
the final layer, i.e., the answers to all questions, and applying
(1).

C. Scoring an Open Site

So far, we have two classes of models. One class represents
subcontractor performance given a specific area, the other
represents subcontractor performance given a specific task.
Ultimately, given a specific configuration (subcontractor, area,
task) by which we parameterize an open site, we want to

use both these models to obtain one single estimate of the
expected deficiencies, so that by comparing these estimates
the corresponding sites can easily and straightforwardly be
ranked.

The way we go about doing this is as follows. Given a
certain configuration (subcontractor, area, task), we decompose
it into two subconfigurations: (subcontractor, area) and (sub-
contractor, task). These two subconfigurations are then used to
initialize the two uppermost layers of our models, after which
the models are sampled. The number of samples to be drawn
from each model is a parameter.

For each sample we draw from a model, we can compute
the corresponding deficiency. To transform these sampled
deficiencies into a distribution, we use a normalized histogram
with a binwidth of 0.01. Hence, bins are the half-open intervals
[0, 0.01), [0, 01, 0.02),..., except for the last interval which is
the closed interval [0.99, 1]. This is essentially a Monte Carlo
simulation.

To check the effect of the number of samples drawn on
the stability of the generated distribution, we conducted the
following experiment. For a specific model2, for several values
of the number of samples to be drawn, we generated 25 dis-
tributions. We then plotted the ratio of the standard deviation
to the average over these 25 distributions as a function of the
number of samples drawn, and obtained Fig. 5. As expected,
the more samples are drawn to generate the distribution, the
less the different simulations differ from each other. Time
considerations made us decide to settle for 10,000 samples for
our work. Our 8th Gen i7 CPU manages to generate about 100
random audits per second, meaning generating one distribution
takes about 100s. Note that generating distributions can be
parallelized.

Fig. 5. Effect of the number of samples on robustness of generated
distribution.

To compare distributions, we use what we call the mass of
the distribution:

mass =

√√√√ 100∑
n=1

(0.01 · n · bn)2, (2)

where bn represents the weight of the nth bin. This metric
thus ranges between 0.01 and 1, with the lowest end attained

2We chose the area model for Subcontractor C, although the exact model
does not really matter in this case.



when all mass is contained in the first bin, and the highest end
attained when all mass is contained in the last bin. The higher
the mass, the more the distribution is concentrated towards 1,
and therefore the higher the odds of obtaining a high deficiency
when randomly sampling the distribution.

We now derive our estimate of the expected defificiency
of the given configuration from two numbers: the mass of
the histogram for the area subconfiguration, and that of the
histogram of the task subconfiguration. In a sense, we consider
these numbers to represent a probability, namely the probabil-
ity of obtaining a high deficiency when randomly sampling the
distribution. Combining both into one number to characterize
the full configuration is then done, inspired by the statistical
rule P (A,B) = P (A) · P (B), multiplying both numbers.3

This ultimately gives us one number by which we express
the belief that a certain configuration (Subcontractor, Area,
Task) will result in a high deficiency. Given a set of such
configurations, this number can then be determined for each
configuration and used to rank them.

D. Lookback

We explored the idea of giving less weight to older audits.
The rationale behind this is that the performance of a sub-
contractor varies over time and hence that more recent audits
more accurately reflect the level of performance that can be
expected of this particular subcontractor right now.

This concept, which we refer to as lookback, is graphically
illustrated in Fig. 6. The figure shows a cutoff date, the date up
until which the training data is used. The number of lookback
days defines a timespan, starting from a given cutoff date and
going back into the past, in which samples are unweighted.
Going back further past this timespan, the weight of the
samples lineary decreases. This results in the following rule:

weight =

1 days past ≤ lookback days
lookback days

days past days past > lookback days

(3)
with “days past” the number of days between the audit date
and the cutoff date. Besides this, we also examined two
variations that use either the square or the square root of this
value. Space constraints prohibit an elaborate analysis, but the
results in this paper use a square root weight.

Fig. 6. Schematic illustration of lookback concept.

3Of course, this rule is only valid when A and B are independent, which
isn’t (necessarily) the case here, hence “inspired by”.

E. Weighted Laplace Smoothing

When only little data is available for a given subcontractor,
it is to be expected that many questions will never have been
answered. In our approach, this would result in sparse CPTs,
which in turn would mean that when sampling the model
these unseen questions can never be answered, resulting in
a distorted model. We solve this issue using the well known
Laplace smoothing, concretely meaning we initialize all CPTs
with a pseudocount instead of 0, be it with a twist. The relative
weight of the pseudocount gains in relative importance as we
add lookback. Consider, e.g., the case where we start giving
less weight to audits that are older than 10 days past. In this
case a pseudocount of 1 is already very high, compared to the
case where all audits have a weight of 1, not just those of the
past 10 days (i.e., the case without lookback).

Fig. 7. Comparison of sampled distributions for Subcontractor A using a
Lookback of 10 days. “LS=1W” refers to the weighted variant of Laplace
smoothing.

For this reason we decided to implement “weighted Laplace
smoothing”. Basically, the idea is that we take as pseudocount
the lookback weight of an observation on the oldest date in the
train dataset. This way, the pseudocount gets weighted using
the weighting mechanism described in §III-D, as if it was an
audit that took place on that specific date.

Fig. 7 illustrates the effect of this weighted Laplace smooth-
ing. The top graph shows a simulated distribution with 10
lookback days and no Laplace smoothing. The middle graph
show the same, but with Laplace smoothing added with
pseudocount = 1. As can clearly be seen, this heavily distorts
the distribution. This problem is solved in the bottom graph,



TABLE IV
DEFICIENCY AT RANK k FOR TOP 5 CONTRACTORS FOR DIFFERENT TIME PERIODS. ‘REF.’ INDICATES REFERENCE ORDERING, ‘PRED.’ INDICATES
PREDICTED ORDERING, ‘−1’ INDICATES THERE WERE NOT ENOUGH AUDITS TO REACH THE DESIRED RANK. BEST RESULTS INDICATED IN BOLD.

Rank 2018-06-03 2018-06-17 2018-07-01 2018-07-15 2018-07-29
ref. pred. ref. pred. ref. pred. ref. pred. ref. pred.

1 0.048 0.0 0.159 0.500 0.429 0.800 0.0 0.147 0.161 0.077
2 0.055 0.500 0.091 0.330 0.614 0.415 0.035 0.108 0.125 0.116
3 0.370 0.373 0.227 0.273 0.420 0.413 0.072 0.072 0.134 0.081
4 0.292 0.381 0.177 0.330 0.317 0.316 0.054 0.054 0.120 0.101
5 0.257 0.316 0.168 0.269 0.253 0.339 0.043 0.043 0.096 0.097
6 0.214 0.274 0.167 0.274 0.217 0.449 0.038 0.038 0.085 0.095
7 0.186 0.244 0.214 0.254 0.329 0.403 0.033 0.032 0.087 0.086
8 0.165 0.220 0.192 0.347 0.289 0.357 0.029 0.029 0.076 0.087
9 0.153 0.201 0.178 0.311 0.257 0.317 -1.0 -1.0 0.067 0.078

10 0.178 0.183 0.164 0.286 0.231 0.290 -1.0 -1.0 0.069 0.070

which uses a weighted Laplace smoothing, thus weighting the
original pseudocount of 1.

Note that adding Laplace smoothing to our model in practice
requires a bit of carefulness. Indeed, several entries in the
CPTs correspond to configurations that should never occur in
reality, and hence, should always be kept to 0. E.g., when the
“Sum” node is “True”, meaning we are dealing with a critical
site, all Topic nodes should be “False”, always. This required
coding some custom rules in these specific cases.

IV. EVALUTION

To check the efficacy of our method, we wish to compare
the rankings of sites as determined by our model for, say, a
given day to the true ranking of the sites on that day according
to their deficiencies. For this, we used an “average deficiency
at rank k” approach as follows:

1) Train model with data up to date d.
2) Take all sites that were audited in the x days following

d, with x a user-defined parameter.
3) Rank the sites according to our system, and according

to the original order they were visited.
4) At rank k, compute the average deficiency of all sites

of rank ≤ k.
5) Compare the results for both orderings: the higher, the

better.
Note that if more than one audit is present for a same

configuration in the evaluation period, we take the average of
the deficiencies of these audits to determine the rank of this
configuration. All models used for evaluation use lookback
days = 25 and weighted Laplace smoothing.

A. Main Results

Table IV summarizes our main results. It shows results
of the same experiment repeated five times for five different
dates. The date at the top of a column indicates the cutoff
date used when training the model (always a Sunday), making
the test dates the 10 working days following this date. Data
was limited to the top 5 most active contractors to avoid data
scarcity problems (see Fig. 1). These results show that our
model often strongly outperforms the original order, meaning
concretely that if our order were followed, many sites with
poor audit results would have been visited earlier.

TABLE V
AVERAGE DIFFERENCE IN DEFICIENCY AT RANK k BETWEEN PREDICTED

AND REFERENCE ORDERINGS.

1 2 3 4 5 6 7 8 9 10
.145 .110 -.002 .044 .049 .082 .034 .058 .050 .037

These results are summarized in Table V, which lists the
average difference over the five periods between the deficiency
at rank k for the predicted and reference orderings at every
rank. The benefits of our system are clear, with a more than
10% increase in average deficiency for the top two ranks, and
a 5% increase still apparent at lower levels.Note that as k
grows larger, the top-ks according to different rankings will
have more sites in common (in the extreme case, k equals the
total number of sites and every ranking’s top-k will consist
of all sites). Therefore, it is to be expected that the difference
between two rankings decreases as k grows.

V. CONCLUSION

This paper proposes an end-to-end framework that takes
historic audits as input, and outputs a ranking of open sites
ordered by their expected deficiency. To this end, the auditing
process is modeled using a Bayesian Network whose node
CPTs are initialized by extracting the corresponding statistics
from the historic data. A Monte Carlo simulation is then per-
formed using this network to sample the underlying probability
distribution over the deficiency outcomes. We then rank these
distributions by their mass. We demonstrate orderings by our
system attain an increase in average deficiency of 10% at the
top two ranks, with a 5% increase still apparent at lower levels.

ACKNOWLEDGMENT

We are grateful to TenForce4 for providing us with the
necessary data to carry out this work.

REFERENCES

[1] K. Chien-Ho, “Predicting Subcontractor Performance Using Web-Based
Evolutionary Fuzzy Neural Networks,” The Scientific World Journal,
vol. 2013, pp. 9, 2013.

[2] Eddie W.L. Cheng, “Risk assessment in prospective performance predic-
tion for subcontractors”, Architectural Science Review, 59:2, pp. 126-
135, 2016.

4https://www.tenforce.com/

https://www.tenforce.com/

	Introduction
	Data
	Model Architecture
	Critical Questions
	Modeling the Auditing Process
	Scoring an Open Site
	Lookback
	Weighted Laplace Smoothing

	Evalution
	Main Results

	Conclusion
	References

