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Abstract

Boundary Element Method frequency sweep analyses in acoustics are usually

accompanied by a vast numerical cost of assembling and solving numerous linear

systems. In that context, this work proposes a model order reduction technique

to mitigate the resulting computational cost of such analyses. First, a series

expansion of the Green’s function BEM kernel is leveraged to construct a series

of frequency independent matrices. Next, in a model order reduction way, the

arising matrices are projected on a reduced basis utilizing a Galerkin projection.

By this off-line matrix projection, both the assembly and the solution of the

BEM full-size linear systems degenerate into assembling and solving a reduced

system for all frequencies. Significant speed-up factors can, thus, be achieved

for both operations. The projection basis employed in this model reduction

scheme is developed through an Arnoldi algorithm for the BEM systems on a

grid of master frequencies. The method is based on Krylov subspaces recycling,

as the subspaces produced at master frequencies are recycled to approximate

the surface distribution of the acoustic variables on the whole frequency range

of interest. Utilizing Krylov subspaces facilitates as well the definition of a

robust error estimator that indicates the quality of the reduced system. The

performance of the proposed method is assessed for both an exterior and an

interior problem for a simple and more complicated geometry respectively.
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1. Introduction

The Boundary Element Method [1, 2] (BEM) is an established numerical

technique that is often used in the context of acoustic simulations. It is usually

categorized by its formulation either as a direct or an indirect approach [3, 4].

The direct approach, on the one hand, describes the boundary conditions by5

physical quantities e.g. pressure, fluid normal velocity and its applicability is

limited to closed geometries, with the exception of half-space problems with long

geometries e.g. tunnel problems [5]. On the other hand, although the indirect

formulation covers a broader range of applications by enabling modelling of open

geometries for common problems as well, the boundary conditions are described10

by the pressure and normal velocity difference between its outer and inner face.

Both approaches can be deployed either through a collocational scheme or by a

Galerkin formulation [6, 7].

The BEM is regarded as an alternative technique to the Finite Element

Method (FEM) in acoustic simulations. Comparing the two methods, the for-15

mer relaxes the meshing requirement of a given 3D problem to a mere 2D mesh

while the latter still demands a 3D mesh. Additionally, exploiting the BE for-

mulation, the Sommerfeld radiation condition is automatically satisfied, while

in the FE context it can only be fulfilled by employing techniques such as infi-

nite elements [8] or the Perfectly Matched Layer (PML) [9, 10]. Nevertheless,20

the FEM has proven to be more numerically efficient both in terms of required

memory and of algorithmic efficiency to reach the solution of a time-harmonic

acoustic analysis [11]. In detail, although BEM benefits from a smaller number

of Degrees of Freedom (DOFs) N , the produced matrices are not only fully pop-

ulated and frequency dependent but also, in general, they do not demonstrate25

any regularity such as positive definiteness, symmetry, etc. [7]. Thus, the com-

putational demands for the storage of a BE system matrix amount to O(N2),
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while the algorithmic complexity for the calculation of the solution scales be-

tween O(N2) and O(N3), depending on the employed linear systems solution

algorithm (direct, iterative).30

However, the computational cost grows considerably with the increase of fre-

quency due to the meshing requirements. Specifically, as indicated by Marburg

et al. [12], in certain applications the mesh refinement requirement can rise up to

10 elements per wavelength. In that context, several techniques to speed-up the

BE solution have been developed. The most popular techniques are found in the35

combination of the Fast Multiple Method (FMM) [13, 14] and the H-matrices

[15] with the BEM. The FMM-BEM method divides the geometry into a tree-

structure and by using a spherical wave expansion both the assembly and the

solution of the BEM system are accelerated, while the H-matrix-BEM approach

is based upon the concept of hierarchical matrices and low rank approximations40

of the solution. Although these techniques relax the computational cost related

to the storage and assembly of the BEM system to O(N logN) and thus, per-

form well for large problems, they still require a system assembly and solution

for each frequency line considered, which renders them highly time consuming

for frequency sweep analyses.45

In that way, additional techniques have been developed in an attempt to

accelerate the fast frequency sweep analysis with the Boundary Elements as

reported by Kirkup et al. [16]. These techniques simplify the BEM kernel aiming

at avoiding to assemble the BEM system for each frequency line. In detail,

discrete form interpolation strategies have come to the fore and are related to50

the Green’s function frequency and space interpolation [17, 18, 19]. Alongside,

Taylor expansion of the Green’s function has been exploited already since the

early ’80 [16, 20, 21], and has been further extended to account for the periodicity

of the Green’s function [22] and the indirect BEM formulation [23].

Despite the increasing popularity of these fast frequency sweep techniques55

based on interpolation strategies, they all demonstrate the same weaknesses.

Specifically, as several master frequency systems or derivative matrices are nec-

essary to approximate the system at intermediate frequencies, the memory re-
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quirements might rise to the extent of making the methods fail. Additionally,

although the acceleration of the system assembly proves quite algorithmically60

efficient, despite the broadband character of the techniques, no specific strategy

is employed to expedite the solution of the system. Hence, the offered accel-

eration by these techniques ends up being insignificant, especially in case of

rather large BEM systems, where the solution of the system constitutes the

most time-consuming part.65

Aiming at alleviating these weaknesses, Lefteriu et al. [24] have combined

the frequency interpolation technique by Schenck and Bethien [17, 18] with

the Well-Conditioned Asymptotic Waveform Evaluation (WCAWE) introduced

[25] and deployed by Slone in the framework of the finite element fast frequency

sweep analyses [26]. Specifically in [24], the frequency interpolation technique70

is leveraged not only to accelerate the assembly of the BEM system, but also to

speed up the solution of the system through a Galerkin projection on moment-

matching subspaces. Nevertheless, the disadvantage of this procedure lies on

the fact that each system matrix needs to be projected in an online fashion

i.e. after its assembly. Thus, although the basis constructed by the moment-75

matching procedure is able to act universally inside each frequency window,

an N × N system needs, first, to be assembled and then projected for each

frequency. In addition to that, the recursive relation of the moments-vectors

in combination with the computation of the derivative matrices ”on-the-fly”,

renders the creation of the projection basis costly.80

In that context, this work introduces a novel Model Order Reduction (MOR)

technique in conjunction with the Boundary Element analysis for acoustic prob-

lems. Although combining MOR with BEM can be regarded as an appealing

idea, the development of such techniques is hindered due to certain bottlenecks.

First, standard MOR-techniques are usually not applicable for BEM systems85

considering the heavily frequency dependent nature of BEM systems. In fact,

constructing the representative basis might prove to be more cumbersome than

the solution of the system itself. Krylov methods [27, 28, 29] that conveniently

match the first moments of low order polynomial systems are not eligible in this

4



case, as the complicated frequency dependency renders the moment matching90

a tedious procedure. Modal truncation methods that are often involved in vi-

broacoustics and dynamics model reduction [30, 31] cannot be employed in a

straightforward manner as the cost of solving the non-linear eigenvalue problem

formulated in Boundary Elements [32] would defeat the purpose of reducing the

model. Regarding the Proper Orthogonal Decomposition (POD) [33, 34, 35],95

although its flexibility and generality can make it applicable for BEM systems,

the quality of the reduced model cannot be guaranteed, as it depends on the

representativeness of the snapshots selected in the POD procedure [36].

Second, even obtaining a representative basis does not guarantee a significant

reduction of the computational cost of a frequency sweep analysis. Namely, the100

projection of the assembled BEM system on the reduced basis in an online

manner as conducted in [24], is cost-competitive to just solving the system by

an iterative procedure such as GMRES [37]. The latter is usually facilitated in

BEM as it significantly speeds-up the solution procedure [38, 39]. Some of the

few attempts of joint BEM-MOR has been reported by Ryckelynck et al. [40]105

as an ”a priori” reduction technique for potential problems in fluid mechanics.

Finally, recently Liang et al. [41] proposed a MOR technique for coupled BE-

FE systems by constructing a modal projection basis through the Resolvent

sampling based Rayleigh-Ritz method (RSRR) [42].

The idea of the method proposed in this work is based on finding a represen-110

tative basis through an appropriately adjusted combination of POD and Krylov

subspaces and subsequently, employing this basis for a Galerkin projection of

the BEM system in an off-line fashion. In detail, an Arnoldi algorithm [43] is

deployed for the BEM systems of a predefined master frequency grid to obtain

Krylov subspaces of a certain order. These are exploited as the input snapshots115

for a POD algorithm which further selects the basis subspaces associated with

the highest contribution. Hence, by expanding and accumulating these Krylov

subspaces, a larger subspace that contains the subspace of approximated eigen-

vectors, i.e. the Ritz vectors [44] of the BEM system for each frequency, is

created. The presented technique resembles to the Krylov subspaces recycling120
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for varying systems [45] that was also recently employed in the context of a

series of FMM-BEM acoustics systems [46]. Krylov subspaces recycling implies

that the Krylov subspaces of the jth system are utilized for accelerating the

convergence of the iterative solution procedure of the (j + 1)st system. In fact,

Carlberg et al. in [47] and [48] have introduced a POD technique retaining all125

Krylov vectors produced for a series of related linear systems. Nonetheless, the

yielded POD basis is only deployed to enrich the basis utilised in the iterative

solution algorithm for each system independently and thus, accelerate the con-

vergence of the iterative procedure and not as a global basis for the full set of

linear systems in a model reduction scheme.130

Analogous techniques that leverage a POD-Krylov combination have been

reported in the literature. In certain works, Krylov subspaces up to third or-

der are employed for the enrichment of the POD basis in a 2D fluid analysis

[49, 40] and in 3D elasticity [50, 51]. Additionally, a Krylov-enhanced POD

method (KPOD) [52] is also proposed where the moment-matching Krylov sub-135

spaces constitute the POD snapshots. Nevertheless, the basic motivation of

these techniques is either the enrichment of the POD basis or the orthogonal-

ization of the moment-matching subspaces respectively, while in the proposed

technique the basic goal is to assemble a subspace containing the Ritz vectors

of neighbouring – in the frequency domain – BEM systems.140

Subsequently to the construction of an appropriate basis, an off-line Galerkin

projection is deployed on the BEM system. However, instead of projecting the

newly assembled BEM systems, first, the Green’s function Taylor expansion is

leveraged as a frequency decoupling technique, as documented previously for

MOR in conjunction with material frequency dependency in FEM [53]. Next,145

the resulting derivative matrices of the expansion are projected on the reduced

basis. This is gradually performed for each power of the series expansion and at

the end, a series of more compact matrices is obtained. Consequently, not only

the algorithmic efficiency of the assembly and solution for each new BEM system

is accelerated, but also the overall required memory scales more favourably as a150

function of the reduced model order `, tackling the previously reported memory
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problem arising from the combination of the BEM with Taylor Series [21]. This

memory requirement relaxation can also prove advantageous in cases of large

industrial models where even storing one full order BEM system is problematic.

Additionally, employing Krylov subspaces facilitates the derivation of an155

error estimator for the error induced due to the model reduction. Taking ad-

vantage of the fact that increasing the order of Krylov subspaces, the subspaces

of a higher number of approximated system eigenvectors are assembled, the true

relative error can be approximated by deploying a projection to a more detailed

basis. The yielded distribution of the variables is compared to the one resulting160

from the more detailed reduction basis, instead of comparing to the solution of

the full scale model. A similar procedure is followed in [54].

The method proposed in this work, constitutes a proof of concept for the

combination of model order reduction with Boundary Elements. It selects a

Taylor expansion for the frequency decoupling and a direct BEM formulation.165

There is no limitation in developing similar techniques leveraging different poly-

nomial approximations of the kernel and concerning alternative BEM formula-

tions such as the indirect BEM or the Burton-Miller approach [55]. However,

depending on the recyclability of the generated Krylov subspaces, a different or-

der of Krylov subspaces and density of master frequency grid might be required170

for the different BEM formulations, respectively.

The paper is organized as follows. In section 2, BEM is derived and the

assembly of the system matrices through a collocational approach is demon-

strated. Next in section 3, the Taylor expansion of the Boundary Element

system and the off-line projection of the system onto a representative basis are175

discussed, along with a CHIEF method [56] projection framework. In section

4, the construction of a representative basis is elaborated and in section 5 an

error estimator is introduced for the proposed MOR technique. In section 6, the

method is first assessed with respect to the theoretical algorithmic complexities

and then deployed on a simple benchmarking case and on a more industrially180

relevant model. Finally, section 7 summarizes and concludes the paper.
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2. The direct Boundary Element Method with a collocational ap-

proach

In this section, the Boundary Element Method formulation utilised in this

work is elaborated. First, the Helmholtz equation is converted to the Boundary185

Integral equation. Then, after discretizing the boundaries, the BEM system

of equations is obtained through a collocational procedure. For more detailed

derivation of the BEM system one can further refer to the seminal works of

Marburg and Nolte [7] and Kirkup [57].

2.1. The boundary integral equation for acoustics190

Starting from the well-known wave equation for linear acoustics in inviscid

and incompressible flows, it is possible to introduce a time-harmonic dependency

of e−jωt in the description of acoustic variables and derive the Helmholtz equa-

tion, where j2 = −1, ω the angular frequency and t the time. The homogeneous

Helmholtz equation in terms of acoustic pressure is given by195

∇2p(y) + k2p(y) = 0, y ∈ Ωtot, (1)

where p(y) represents the pressure fluctuations induced by acoustic waves at

any point y of the domain Ωtot, k = ω
c0

is the acoustic wavenumber and c0 the

speed of sound in air.

Using the weak formulation of the above equation (1) and selecting the

Green’s function in 3D for the test function, the well-known Boundary Integral200

equation can be derived as

c(y)p(y) +

∫
Γtot

∂G(x,y)

∂n(x)
p(x)dΓtot(x) =

= jρ0ω

∫
Γtot

G(x,y)un(x)dΓtot(x), y ∈ Ωtot, x ∈ Γtot.

(2)

Equation (2) is also known as the representation formula and it signifies that

the pressure at any point y of the domain Ωtot can be calculated as a function

of the acoustic variables on the boundary Γtot. In equation (2) un(x) and n(x)
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Figure 1: Domain definition for exterior problem

are the normal velocity of air and normal vector at point x of the geometry205

surface Γtot, respectively, and r(x,y) = |x−y|. G(x,y) is the Green’s function

in 3D and is defined as

G(x,y) =
1

4π

e−jkr(x,y)

r(x,y)
. (3)

The function c(y) indicates the participation factor and is calculated by the

exterior solid angle at the position of y; Referring at Figure 1, for points in the

domain Ωext it is unitary, in the domain Ωint it is nullified, while for points on210

a smooth boundary Γtot, it takes the value of 1
2 . In expression (2), the integrals

containing the Green’s function G(x,y) can be identified as the single layer

potential, while the integrals containing the normal derivative of the Green’s

function ∂G(x,y)
∂n(x) constitute the double layer potential.

As illustrated in Figure 1, the boundary Γtot is divided into non-overlapping215

sections according to the boundary conditions characterizing it. In detail, ΓD

signifies the boundaries with pre-described pressure, ΓN are boundaries with

known normal velocity and ΓR represents boundaries with predefined normal

impedance. Next, the boundary Γtot is discretized by a number of boundary

elements Nel defined by the surface mesh nodes, as220

Γtot =

Nel⋃
i

Γi. (4)

Having discretized the boundary, the acoustic variables are accurately repre-
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sented on the nodes and approximated by interpolation in between the nodes. In

this work, piecewise linear polynomials are employed as interpolation functions

Φi(x) to describe the acoustic variables as

p(x) =

Nφ∑
i

Φi(x)pi,

un(x) =

Nφ∑
i

Φi(x)un,i,

(5)

where Nφ is the number of shape functions of the geometry.225

2.2. The collocation approach

By employing the discretization strategy, the only unknowns of the problem

are the nodal values of the acoustic variables. Thus, collocating the position of

vector y to all nodes, the BEM system of equations is derived as

Hp = Gun, (6)

where G, H ∈ CN×N represent the contribution of the whole boundary on230

the single and double layer potential respectively. Deploying the boundary

conditions defined as per Figure 1 and rearranging, system (6) takes the form a

linear system of equations given by

A(ω)ξ(ω) = b(ω), (7)

where A ∈ CN×N and ξ, b ∈ CN , which can be solved by a direct or iterative

solver. The yielded system (7) is frequency dependent and needs to be assembled235

and solved for each frequency line under consideration.

3. Series Expansion BEM and Model Order Reduction

Assembling systems like (7) is often quite computationally demanding. Hence,

to alleviate the respective computational cost a series expansion technique can
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be exploited that facilitates the assembly of systems in multi-frequency prob-240

lems. In this section, a series expansion method for the direct collocational BEM

is derived and the combination with a Galerkin projection is demonstrated. Fi-

nally, the procedure is adjusted to account as well for an appropriate treatment

for the non-uniqueness problem through a valid CHIEF overdetermination tech-

nique [56].245

Series expansion of a BEM system might be conducted leveraging different

polynomial expansion or interpolation techniques, such as Taylor expansion,

Lagrange and Chebyshev polynomials [58]. In this work, a Taylor expansion of

the Green’s function kernel is selected as it enables analytical evaluation of the

polynomial coefficients. Nevertheless, as polynomial interpolation methods are250

based on the assembled systems at certain frequencies, they can be utilised to

save on the additional assembly time needed for the derivative matrices of the

Taylor expansion and to generate a less intrusive procedure.

3.1. System assembly acceleration

The basic idea of the Series Expansion BEM (SEBEM) relies on the Taylor255

expansion of the frequency-dependent part i.e. the BEM kernel. In detail, the

coupled term e−jkr can be approximated through a Taylor expansion around a

preselected wavenumber k0 by

e−jkr = e−jk0r
Mmax∑
m=0

(−jr)m

m!
(k − k0)m, (8)

where Mmax represents the order of the series expansion.

Introducing the above expansion in the BEM integrals, the single and double260

layer potentials can be reformulated and substituted by a series of integrals

depending only on r. The single layer potential approximation is given by

∫
G(x,y)dr =

1

4π

∫
e−jkr

r
dr =

=
1

4π

Mmax∑
m=0

(k − k0)m

m!

∫
e−jk0r

r
(−jr)mdr,

(9)
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while the double layer potential can be reconstructed analogously.

Transferring the series approximation of the Green’s function to the system

matrix level, implies the transformation of the system into a series of frequency265

decoupled matrices Gm,Hm ∈ CN×N , each one corresponding to a different

exponent of the frequency term (k−k0)m. Hence, the BEM system of equations

(6) and (7) takes the form

(Mmax∑
m=0

(k − k0)m

m!
Gm

)
un =

(Mmax∑
m=0

(k − k0)m

m!
Hm

)
p, (10)

(Mmax∑
m=0

(k − k0)m

m!
Am

)
ξ(ω) =

Mmax∑
m=0

(k − k0)m

m!
bm, (11)

respectively.

Expressing the BEM system as a series of frequency decoupled matrices ac-270

celerates the assembly of the system at wavenumbers different than k0. Never-

theless, the efficiency of this procedure is limited due to the complexity of assem-

bling and storing all the derivative matrices of the system. In fact, this expansion

starts being more cost efficient than regular BEM in cases that the number of

derivative matrices Mmax used in the series expansion is lower than the number275

of frequencies Nf the system needs to be solved for, namely Mmax ≤ Nf . In

that sense, it constitutes a fast frequency sweep algorithm for BEM systems.

However, the excessive memory that is needed for this method constitutes

the bottleneck in case of large systems. As all the N×N derivative matrices are

needed simultaneously for the assembly of the BEM system at one frequency,280

the memory requirements easily exceed the available memory and thus, broad

use of this technique is hindered.

In that context, this work proposes to combine the SEBEM approximation

method with a suitable Model Order Reduction technique to scale down the

requirements of BEM both with respect to memory and algorithmic complexity.285
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3.2. Order of Series Expansion approximation

The frequency range validity of SEBEM depends on the order of the Taylor

expansion Mmax, the selected expansion point k0 and the maximum distance

rmax occurring in the geometry. The residual at a specific wavenumber k induced

due to the Taylor approximation of the Green’s function is given by [59]290

σ(k) = |e−jknrmax (−jrmax)Mmax+1

(Mmax + 1)!
(k − k0)Mmax+1|

≤ | (−jrmax)Mmax+1

(Mmax + 1)!
(k − k0)Mmax+1|,

(12)

where kn is a wavenumber between k0 and k.

A low residual σ at a specific frequency indicates that the SEBEM can still

be considered valid. In Figure 2, the resulting maximum frequency interval

∆fmax for a pre-defined residual upper bound of σ = 0.01 is illustrated. The

order Mmax of respective Taylor expansion of the Green’s function, as well as the295

potential maximum distance rmax between two nodes of the geometry constitute

the contributing parameters. Hence, it is possible to consider in advance the

desired frequency range of validity, which can be broadened by employing a

multi-point Taylor expansion.

Deploying a multi-point Taylor expansion can also alleviates any potential300

concerns regarding the numerical stability of the high order polynomial that

approximates the well-behaved, though highly oscillatory kernel. Although, for

the parameter values of Figure 2 numerical stability of the polynomial expansion

does not prove to be an issue, a combination of a longer maximum distance

rmax with a high order expansion Mmax, might induce a considerable numerical305

error in the approximated kernel. In that case, a multi-point expansion can

compress the expansion orders of all Taylor expansions, ensuring in parallel a

stable behaviour. Finally, leveraging a multi-point Taylor expansion allows for

the utilization of meshes of different refinement. Depending on the validity of

each mesh for different frequency spectra, a coarser mesh can be used for the310

lower frequency range, while a more refined one for the higher frequency range.

13



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

r
max

 [m]

10

20

30

40

50

60

70

80

90

100

M
m

a
x
 [

-]

40

100

1000

4000

Figure 2: ∆fmax [Hz] for maximum residual σmax = 0.01, considering c0 = 343m
s

.

3.3. Galerkin Projection of a SEBEM system

Expanding the BEM system in a series does not offer a great advantage as

it leads to excessive memory consumption. Nonetheless, combining a Galerkin

projection technique with the SEBEM approach, substantially improves this315

method. Specifically, deploying a Galerkin projection to the derivative matrices

Gm and Hm reduces the size of the system and as a result, cuts down drastically

the resources required to store the sequence of original full size matrices.

The Galerkin projection is based on expressing the full system by its pro-

jection on a lower dimensional subspace V` ∈ CN×`, the assembly procedure of320

which is described in a section 4. In case of the BEM system of (6), the degrees

of freedom ξ are approximated as

ξ ≈ ξ̂ = V`ξ` (13)

where ξ` represents the degrees of freedom of the reduced system.

Introducing the approximation of (13) in (7) would yield an overdetermined

system. By left-multiplying the yielded system with a left projection matrix325

W` ∈ C`×N , the system matrix regains its square form, this time obtaining a
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much smaller dimension `� N as illustrated by

W`AV`ξ` = W`b, (14)

or equivalently by

A`(ω)ξ`(ω) = b`(ω), (15)

where A` ∈ C`×` and b` ∈ C` are the system matrix and right hand-side of the

reduced system.330

Enforcing W∗
` = V`, where W∗

` is the conjugate transpose of W` constitutes

the one-sided or Galerkin projection approach. Introducing the series expansion

BEM system of (11) in (14), yields the series of reduced order derivative matrices

and vectors as

(Mmax∑
m=0

(k − k0)m

m!
W`AmV`

)
ξ(ω) =

Mmax∑
m=0

(k − k0)m

m!
W`bm, (16)

or equivalently as335

(Mmax∑
m=0

(k − k0)m

m!
A`m

)
ξ(ω) =

Mmax∑
m=0

(k − k0)m

m!
b`m, (17)

with A`m ∈ C`×` and b`m ∈ C`.

The polynomial system of (17) is now of lower dimension ` � N and thus,

the system that needs to be assembled and solved at each frequency is more

concise. In that sense, the above projection is conducted in an off-line manner,

meaning that the system is reduced even before the assembly.340

Additionally, the algorithmic implementation is of particular interest as it

alleviates the previously reported issue of excessive memory consumption for the

SEBEM. As illustrated in Algorithm (1), the derivative matrices Am are directly

projected onto the already produced Galerkin basis V` after their assembly.

In that way, it is only necessary to allocate memory for the series of already345

reduced derivative matrices A`m, in addition to the memory needed for the

derivative matrix under assembly. However, as the reduced matrices can be
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Algorithm 1 Galerkin projection for Series Expansion BEM

1: Obtain V`

2: for m = 0 : Mmax do

3: Assemble Am and bm

4: A`m ← V∗`AmV`

5: b`m ← V∗`bm

6: Delete Am and bm

7: end for

8: Advance with assembly and solution of different frequency BEM systems

directly stored in the disk, the only memory required in the workspace during

the construction of the reduced system is related to the storage of the projection

matrices and, following a column by column projection, the one-side projection350

of the derivative matrix processed, namely O(2N×`) and O(N×`) respectively.

Upon projection of all derivative matrices, at the online stage of the assembly

of the reduced system, the required storage scales with O(`2×Mmax), which is

the memory required for storing the series of A`m matrices.

3.4. The CHIEF in the model order reduction SEBEM355

Considering exterior acoustic problems, the well documented non-uniqueness

issue arises [60]. Specifically, for a set of so-called irregular frequencies the

integral equation given in (2) becomes singular. Thus, the respective system

of equations (7) does not yield a unique solution resulting in a set of fictitious

resonances. Dealing with this issue, Schenck proposed the Combined Helmhotz360

Integral Equation Formulation (CHIEF) [56] that alleviates the effect of the

fictitious resonances by employing a certain number NCH of overdetermination

points (CHIEF points) in the interior of the cavity that defines the exterior

problem.

In essence, the CHIEF takes advantage of the lack of acoustic field inside365

the considered cavity to assemble NCH additional equations and transforms the
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square linear system (7) into the overdetermined linear system,

 A(ω)

ACH(ω)

 ξ(ω) =

 b(ω)

bCH(ω)

 ⇐⇒ AAug(ω)ξ(ω) = bAug, (18)

that can be solved in a least squares fashion. In the system of (18), ACH ∈

CNCH×N and bCH ∈ CNCH represent the system coefficients and right hand-

side yielded through the same procedure equations (6) and (7) are derived, by370

deploying equation (2) for the preselected CHIEF points.

Employing the same series expansion of the kernel, equation (18) can be ap-

proximated analogously to equation (11) by simply substituting square deriva-

tive matrices Am with AAug,m, where the latter represent the derivative matri-

ces necessary in the approximation of the augmented system AAug.375

In the context of model order reduction dealing with an overdetermined

system of equations demands for a variation of the projection procedure, as the

conjugate transpose of the right projection matrix V∗` mismatches in dimensions

with the system matrix dimensions. Therefore, in this case a different left

projection matrix WAug ∈ C`×(N+NCH) needs to be employed leading to a380

Petrov-Galerkin or two sided projection. The left projection matrix WAug is

constructed as

WAug =

 V∗` 0

0 INCH×NCH

 , (19)

where INCH×NCH is the identity matrix of dimension NCH . Utilizing the left

projection matrix WAug implies that no reduction is leveraged in the row space

of the full system CHIEF coefficients ACH or, analogously to the previous no-385

tation, of the derivative matrices ACH,m. Nevertheless, as usually a limited

number of CHIEF points, e.g. 5% of the DOFs, is employed to stabilize the

system, maintaining the dimension NCH without reduction is not considered

detrimental for the proposed MOR technique.
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4. Projection basis based on Krylov subspaces recycling390

The most significant part in Model Order Reduction techniques is usually

the basis defined through the projection matrix V`, as this drives the quality of

the reduced model. In this section, a method for constructing an appropriate

basis is proposed employing Krylov subspaces.

4.1. Assembling the projection basis395

The proposed technique is based on the recycling of Krylov subspaces for

BEM systems at different frequencies. In detail, it consists of expanding Krylov

subspaces for BEM systems on a grid of predefined master frequencies and

collecting them to produce an appropriate basis for the reduced system. Conse-

quently, the larger subspace that is generated, contains the subspace describing400

the first Ritz vectors of all BEM systems on the master frequencies’ grid.

The Krylov subspaces can be represented by

Kfi
q (Afi ,bfi) = span{bfi ,Afibfi ,A

2
fi ,bfi , . . . ,A

q−1
fi

bfi}. (20)

where fi constitutes a single frequency of the master frequency grid. The order

of the Krylov subspaces q indicates the number of Ritz vectors of the BEM

system that lie within the specific subspaces.405

The Krylov subspaces of (20) are generated through an Arnoldi algorithm

omitting the calculation of the upper Hessenberg matrix [29] (Algorithm 2). In

order to prevent numerical instabilities, orthogonality is enforced amongst the

Krylov subspaces through the Modified Gram-Schmidt procedure [61].

Having generated the Krylov subspaces Kfi
q up to a predefined order q for410

all BEM systems of the master frequency grid, a larger subspace is devised

containing all these Krylov subspaces as

Ktot = span{Kf1
q ∪Kf2

q ∪ · · · ∪KfL
q }. (21)

The projection basis V` is constructed by orthogonalizing the collection

of subspaces Ktot as in (22) and truncating U ∈ CN×qL with respect to the
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Algorithm 2 Arnoldi algorithm

1: Assemble Afi ,bfi

2: v1 ←
bfi
|bfi |

3: Vfi ← [v1]

4: for p = 2 : q do

5: vp ← Afivp−1 −
∑p−1
l=1 (vlAfivp−1)vl

6: vp ← vp
|vp|

7: Vfi ← [Vfivp]

8: end for

components of highest energy given by Σ as415

UΣVT = svd([Vf1Vf2 . . .VfL ]) (22)

and

V` = [u1u2 . . .uk], (23)

in which, ui represents a column vector of U and uk, k < qL is the kth largest

energy vector.

4.2. Discussion about the projection basis

Utilizing the projection matrix V`, the quality of the reduced order model

achieved through expression (17) is high due to two main reasons. First, the420

BEM system at frequency fx, a frequency line between two master frequen-

cies fi and fi+1, is projected on Krylov subspaces produced by BEM systems

not only at these master frequencies but also at all other master frequencies.

Equivalently, it is stated that the Krylov subspaces of all master frequencies are

recycled for all the BEM systems of the frequency range under consideration.425

Thus, the subspaces, upon which the approximated eigenvectors (Ritz vectors)

of BEM systems at the master frequencies lie, are exploited to project the BEM

system at the in-between frequency fx.

As Krylov subspaces recycling is deployed usually for slowly varying systems,

the Krylov subspaces of the neighbouring master frequencies fi and fi+1 will430
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contribute the most to the expression of the solution subspace for the system

at frequency fx. However and secondly, the subspaces of Ritz vectors of BEM

systems that lie further away in the frequency range are leveraged and their

contribution is also important. Specifically, the Ritz vectors of a BEM system

at a master frequency fm ≈ 2fx will yield a surface variation of the acoustic435

variable of half the wavelength approximately, comparing to the Ritz vectors

of the systems at adjacent master frequencies. Hence, a basis including the

subspaces defined by the former Ritz vectors, i.e. Vfm , attributes more flexibility

to the projected system and thus this adjusts better to the local differences

occurring due to the recycling of the Krylov subspaces.440

In the process of constructing the reduction basis, the two parameters that

affect its quality are the location of the master frequencies and the order of the

Krylov expansion. In this work, the master frequencies are selected according

to a pre-defined frequency grid and the order of Krylov subspaces is maintained

constant for all the master frequencies. Nevertheless, this selection does not445

reflect to the optimal settings of the MOR technique. Instead, considering the

increasing importance of Krylov subspaces of higher frequencies’ systems for

the flexibility of the basis at the lower frequencies, it is more optimal to select

e.g. a logarithmic distribution of the master frequencies in combination with an

adaptive order for the assembled Krylov subspaces.450

Finally, employing a multi-point Taylor expansion using meshes of differ-

ent refinement at different regions of the frequency spectrum, as proposed in

section 3.2, implies the construction of different projection matrices for each

expansion. Nevertheless, constructing additional projection bases does not lead

to additional computational cost as compared to constructing one single global455

basis. As the method is based on the Krylov subspace recycling, each basis

will contain only the Krylov subspaces of the neighbouring master frequencies,

resulting in constructed projection bases of lower order than the one yielded by

a single point Taylor expansion.

Although, a multi-point Taylor expansion might seem preferable in terms460

of computational cost of constructing the bases and numerical stability of the
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polynomial expansion itself, the quality of the different bases might drop. As

each basis will contain only the Krylov subspaces of the neighbouring master

frequencies, the influence of the Krylov subspaces generated by higher frequency

systems –having shorter wavelength variations– will be weakened or even can-465

celled.

5. Error Estimator

Exploiting the fact that the expanded Krylov subspaces span the subspaces

of the approximated eigenvectors of the BEM systems, the definition of an

error estimator is enabled. Specifically, Krylov subspaces of higher order, de-470

veloped by a BEM system at a single master frequency, will match respectively

the subspaces of a larger number of approximated eigenvectors of that sys-

tem. Analogously, by increasing the order of Krylov subspaces at all master

frequencies, subspaces of additional system eigenvectors are approximated also

for non-master frequencies systems. Thus, since the Krylov subspaces of order475

q will be contained in the Krylov subspaces of order q + 1 as illustrated by

Kq ⊆ Kq+1, (24)

a basis constructed by increasing the order of Krylov subspaces at all master

frequencies will be more representative.

The true error induced by substituting the full scale BEM system by a

Reduced Order Model (ROM) can be defined in (25) by the Euclidean norm480

of the difference of the approximated surface variables ξ̂q due to projection on

the Kq, with the precise surface variables ξ, normalized with the approximated

quantities

εq =
|ξ̂q − ξ|
|ξ̂q|

=
θq

|ξ̂q|
. (25)

Manipulating the right hand side of (25), an upper error bound for εq can
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be achieved by deploying the triangle inequality as485

εq =
|ξ̂q − ξ|
|ξ̂q|

=
|ξ̂q − ξ̂q+t1 + ξ̂q+t1 − · · · − ξ̂q+tn + ξ̂q+tn − ξ|

|ξ̂q|

≤
|ξ̂q − ξ̂q+t1 |
|ξ̂q|

+ · · ·+
|ξ̂q+tn−1

− ξ̂q+tn |
|ξ̂q|

+
|ξ̂q+tn − ξ|
|ξ̂q|

=
θq,q+t1

|ξ̂q|
+ · · ·+

θq+tn−1,q+tn

|ξ̂q|
+
θq+tn

|ξ̂q|
,

(26)

where q < q + t1 < · · · < q + tn. Considering that the subspace Kq+tn is

more detailed, the norm of difference of the approximated solution to the true

solution θq+tn is assumed to be negligible and thus, it is truncated. This as-

sumption is valid when θq+tn−1,q+tn takes low values as the convergence of the

approximated solution has been initiated. In cases θq+tn−1,q+tn takes higher490

values, the assumption is not valid any more and the error estimator might fail

to approximate the true error. Nevertheless, in such cases it is already indicated

that the reduced model is not accurate enough by the non truncated terms of

the sum in expression 26. Consequently, the error estimate can be formulated

as follows,495

εq =
|ξ̂q − ξ|
|ξ̂q|

≤ θq,q+t1

|ξ̂q|
+ · · ·+

θq+tn−1,q+tn

|ξ̂q|
. (27)

Relating to the BEM-MOR procedure, the derived error bound estimator

implies that the full scale derivative matrices Am of (11), apart from being

projected on the basis resulting from Kq, need to be projected as well on more

detailed bases given by Kq+t1 , . . . ,Kq+tn . Depending on how conservative the

error bound estimator needs to be, one or more additional higher detailed pro-500

jection bases are employed respectively.
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6. Numerical assessment

In this section, the proposed technique is first assessed in terms of algorith-

mic complexity and then it is deployed to accelerate two fast frequency sweep

examples. The first problem is related to an exterior cube problem with the505

top surface vibrating while the second provides solution to a more industrially

relevant problem, namely the interior acoustic response of a car cavity due to a

monopole excitation. Without loss of generality, both examples are based on a

single point Taylor expansion.

The method proposed in this work was developed in a Matlab environment510

based on the OpenBEM code provided by Henriquez et al. [62]. The mesh of

the geometries was generated through the Gmsh [63] and NX software. All

computations are performed on a single machine of 32 GB RAM and 2.9 GHz

processing power.

6.1. Theoretical algorithmic complexities515

The advantage of the proposed method emanates from the fact that most

operations are shifted in the beginning of the frequency sweep and thus, the

corresponding computational demands are transformed to fixed overhead costs

i.e. off-line costs. These resources that are spent in advance, as demonstrated in

Table 1, are then compensated through the significantly reduced costs necessary520

per frequency that are provided in Table 2.

Specifically, the parameters that affect the overhead costs, as emerge from

equations (10)-(23), can be identified as the order of the Taylor expansion Mmax,

the size of the initial model N and the size of the reduced model `, the number

of master frequencies L and the order of the Krylov expansion q.525

The memory required for the off-line procedures apart from the assembly

of the master frequencies’ systems, illustrated in Table 1, considers a column

by column assembly and projection of the Taylor matrices. Upon construction

of each column, left projection occurs leading to memory requirements scaling

with O(` × N) for the storage of the two projection matrices and the deriva-530

tive matrix under projection. The O(N2) storage requirement of the master

23



Operation Algorithmic efficiency Required memory

Assembly of Taylor matrices O(Mmax ×N2) O(N)

Master frequencies system assembly O(L×N2) O(N2)

Subspaces computation O(L× q ×N2) O(L× q ×N)

Orthogonalization of subspaces O(L2 × q2 ×N) O(L× q ×N)

Projection of Taylor matrices O(Mmax × `×N2) O(`×N)

Table 1: Theoretical algorithmic efficiency and storage requirements of off-line opera-

tions

frequency system assembly might become a limitation in large industrial cases.

However, in these cases instead of utilizing a conventional BEM system assem-

bling procedure, an FMM-BEM or H-matrices algorithm can be employed to

relax this storage requirement.535

As can be deduced from Table 1, in order for the proposed method to be

computationally more competitive than the conventional BEM, the following

conditions must hold:

1. ` < N

2. Mmax < Nf540

3. Mmax × `2 ≤ N2.

The first condition indicates that the order of the reduced model needs to

be lower than the original model and describes the essence of model order re-

duction. The second is related to the number of the system or derivative matrix

assemblies involved in the MOR technique, which is required to be lower than545

the total number of frequencies under consideration. The last condition is re-

lated to maintaining at most the same levels of memory as in a conventional

BEM procedure. It indicates that the total memory required to store all the

reduced SEBEM derivative matrices need to scale more favourably than storing

one single full-scale model. Although in problems that are not memory demand-550

ing the latter need not be strictly satisfied, satisfying the two former remains

crucial to maintain the computational advantage in terms of the total CPU time
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of the frequency sweep procedure. In fact, higher accelerations are achieved in

case these are fulfilled in a more pronounced way.

Operation BEM SEBEM MOR

Assembly of single matrix O(N2) O(N2) O(`2)

Solution of system O(N3) O(N3) O(`3)

Table 2: Comparison of theoretical algorithmic efficiency and storage requirements of

online operations for BEM, SEBEM and MOR

The algorithmic efficiencies provided in Table 2 consider a direct system555

solution algorithm. Employing an iterative scheme for the respective procedure

transforms the scaling of the system solution to O(sBEM ×N2), O(sBEM ×N2)

and O(sMOR × `2) for BEM, SEBEM and MOR respectively, where sBEM and

sMOR are the number of iterations to reach convergence of the solution for the

full and reduced system, respectively.560

6.2. Cube Exterior problem

The geometry of the first model investigated is depicted in Figure 3a. The

model consists of a cube of 1m, located at the origin and towards the positive

side of all axes. The lateral and bottom faces are assigned with the homogeneous

Neumann boundary condition i.e. un = 0, while the top surface is vibrating with565

un = 1ms .

The mesh demonstrated in Figure 3b is composed of 2606 nodes and 5208

triangular elements. The validity of the mesh extends up to 1200Hz considering

6 elements per wavelength, the minimum requirement as reported in [12]. To

the yielded square system of N = 2606 DOFs, additional 130 CHIEF points570

equations are appended, resulting in a 2736× 2606 overdetermined system.

The frequency range of interest extends on Frange = [50, 1200]Hz, while

the system is solved with a 1Hz increment. In terms of the non-dimensional

Helmholtz number the range of interest is karange = [0.9, 22], where arange = 1m

being the characteristic dimension of the geometry. Following a conventional575
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100cm

un = 1msvibrating cap

Rec. 1

Rec. 2

Rec. 3

(a) Cube sketch (b) Cube mesh

Figure 3: Exterior cube problem with vibrating cap

BEM procedure, this rises the needs to assembling and solving the system for

1151 distinct frequency lines.

6.2.1. Model reduction

According to the dimensions of the model, the maximum distance rmax as

defined in (12) is the big diagonal of the cube, namely rmax ≈ 1.73m. Con-580

sulting Figure 2, an expansion of the BEM kernel up to the 60th order satisfies

the minimum requirement for a maximum residual, σmax = 0.01. In detail, the

60th order expansion provides a maximum range of validity of ∆fmax ≈ 600Hz.

Thus, selecting as an expansion point the middle frequency of the range under

consideration i.e. 600Hz, renders the expansion valid for the whole range of in-585

terest. Additionally, a series expansion of order 60 satisfies the second condition

of section 6.1 and thus, the computational advantage of the MOR technique is

ensured.

In order to assemble the reduction subspace, the procedure described in

section 4 is followed. Krylov subspaces are generated as expressed in (21)590

by the BEM systems constructed for a grid of master frequencies fmaster.

These are defined by frequency increments of 50Hz, taking the values fmaster =

[50, 100, . . . , 1150, 1200]. Subsequently, the collection of Krylov subspaces is or-
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thogonalized and truncated as in (22).

The construction of the projection matrix is conducted by employing Krylov595

subspaces of order 15 at each master frequency. Given the number of the master

frequencies selected, the resulting union of these subspaces produces an N×360

matrix, which is orthogonalized and truncated for subspaces with energy less

than 10−4. Finally, the yielded projection matrix is V` ∈ CN×306, leading

to a reduced order model of 306dofs, namely 88% fewer than the full order600

model, satisfying the first condition stated in section 6.1. Including the CHIEF

overdetermination equations, the system takes dimensions 436×306 and is solved

in a least-square manner.

Inspecting the memory requirements of the reduced model, the third con-

dition in section 6.1 indicates that the total memory of the SEBEM reduced605

matrices scales at least similarly to one full-scale model BEM matrix. In this

problem this is translated by constructing a reduced order model that employs

∼ 1/7− 1/8 of the initial number of the degrees of freedom of the cube model,

which is also fulfilled by the constructed reduced model.

Regarding the computation of the error estimate, one new, more enriched610

basis is created. In detail, this time, before orthogonalizing and truncating the

collection of the Krylov subspaces, the order of the Krylov subspaces produced

per master frequency is increased, to further enrich the projection basis. Specif-

ically, referring to (27) it is selected n = 1 and t1 = 4 and thus, the basis is

created by collecting the 19th order Krylov subspaces, yielding a reduced model615

of 390DOFs.

Evaluation points x y z

Rec. 1 0.5m 0.5m −0.5m

Rec. 2 0.5m 0.5m 1.5m

Rec. 3 1.5m 1.5m 0.5m

Table 3: Coordinates of domain evaluation points; Cube model (N = 2606) with

vibrating cap
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Figure 4: Sound Pressure Levels at evaluation points of Table 3 (top). True relative error ε15

and error estimate of surface pressure reduced model of 308dofs (bottom); Cube model with

vibrating cap

In the following, the acoustic quantities yielded from OpenBEM code [62]

are considered as benchmark results. The sound pressure levels are evaluated

at 3 domain points, as given in Table 3, and illustrated in Figure 4. In the same

figure, the relative error and the relative error estimates that are induced to the620

surface pressure distribution by the proposed model reduction, are demonstrated

both including and omitting CHIEF overdetermination.

The incurring error for both cases does not exceed the threshold of 1%, ren-

dering the ROM acceptable for the whole frequency range under consideration.

However, the relative errors and error estimators for the two cases demonstrate625

different behaviours. Specifically, omitting CHIEF overdetermination results in

rougher but of a lower magnitude error curves, while the error estimator ob-

serves closely the true relative error curve. On the contrary, the error curves

including CHIEF treatment are smoother but overall associated with higher

values of error, while the error estimator deviates from the true error curve.630

This different behaviour is, on the one hand, a consequence of failing to include

information related to the row spaces of the CHIEF points to the constructed

basis as elaborated in section 3.4, while on the other hand, the smoothness of
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the curves in the second case is connected with the treatment of the irregular

frequencies. Although, in this case the relative error including CHIEF reflects635

the true error of the model reduction technique, the curves related to the non-

CHIEF procedure are a more representative measure for the quality of the basis

employed to project the full system.

Finally, the lower relative errors that are observed at lower frequencies can

be associated with two facts. On the one hand, the surface pressure distribution640

at lower frequencies is usually simpler to describe, making the local recycling

of fewer Krylov subpspaces more efficient. On the other hand, the subspaces

spanned by the Ritz vectors of the system at higher frequencies contribute to

describe inter-frequency local spatial variations of the surface pressures. In fact,

referring to the non-CHIEF relative error curve, it can be visually divided into645

two distinct parts. The first part covers the region below fmax/2 = 600Hz,

where the projection space includes Ritz vectors of systems of at least double

the frequency and thus, the error takes its lowest values, while in the second

part above 600Hz, the error is inflated by some orders of magnitude. Thus,

introducing additional Ritz vectors of higher frequencies systems would further650

reduce the error as well in the second part of the frequency range.

6.2.2. Computational resources analysis

Although through this frequency sweep analysis example the full potential

acceleration of the proposed method is not pronounced, already a computational

gain is apparent. Due to the small size of the model, the absolute accumulated655

computational cost saved is mostly attributed to the acceleration of the system

assembly and less to the speed-up of the solution of the system. However, due to

the cubic algorithmic complexity of the latter, it is expected that by an increase

of the number of degrees of freedom, the absolute speed-up of that will take

more effect.660

In Figure 5, the required computational resources for producing the fre-

quency sweep response of the considered model are illustrated, using conven-

tional BEM, SEBEM and the proposed model reduction technique (labelled as
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Figure 5: Computational resources comparison measured in CPU time and required memory;

Cube model with vibrating cap

ROM). Most of the CPU time utilized in all different techniques is associated

with either the system assembly for conventional BEM or with the derivative665

matrices construction in the SEBEM and SEBEM & MOR technique. Thus,

based on the total CPU time needed for this model, the computational advan-

tage of the MOR technique is not pronounced. Nevertheless, in relative terms,

the model reduction technique still outperforms the SEBEM regarding the on-

line operations, as the associated CPU time scales with a different order of670

magnitude – [s] and [min] respectively.

The overall computational advantage of the proposed model reduction tech-

nique is evident in the right part of Figure 5, despite the small size of the model.

Specifically, although the total necessary CPU time scales similarly to that of

SEBEM, comparing the storage costs of the two methods, the benefit offered675

by the proposed technique is clear, as in SEBEM all the full-scale derivative

matrices need to be stored, inflicting a multiple storage cost.

As described in section 5, the error estimator degenerates into a computation

of an additional reduced model. Thus, the cost of the error estimator scales

similarly to that of the construction of the original reduced model.680
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Operation SEBEM & MOR Cost type

Assembly of single Taylor matrix 6m 50s Off-line

System assembly per master frequency 8m 40s Off-line

Subspaces computation per master frequency 1.5s Off-line

Orthogonalization of subspaces 1s Off-line

Projection per Taylor matrix 0.25s Off-line

Assembly of reduced system per frequency 0.05s Online

Solution of reduced system per frequency 0.01s Online

Table 4: Computational costs of all operations involved into Series expansion reduced

BEM measured in CPU time; Cube model (N = 2606) with vibrating cap

In Table 4, the computational costs of the proposed method are illustrated

along with the type of the cost. An off-line cost, in contrast to an online cost,

is related to an action that is not performed for each frequency line under

consideration, but rather in advance of the frequency sweep, to acquire the

derivative matrices and the essential respective projection bases. The yielded685

CPU time for online costs exhibits insignificant values as the related operation

scales now as a function of the number of degrees of freedom of the reduced

system. On the contrary, as the off-line costs scale with the number of the

DOFs of the full system, the off-line cost of constructing the reduced model is

comparable to that of assembling a number of conventional BEM systems.690

Consequently, the frequency sweep using the proposed technique becomes in-

creasingly advantageous when the computation of systems at multiple frequency

lines is involved. Thus, the higher the number of frequency lines the BEM so-

lution is required, the more pronounced acceleration is expected as stated as

well in section 6.1. Selecting a larger frequency increment of 5Hz would signify695

a reduction of all online costs by a factor of 5. Specifically, the CPU times of

Figure 5 that are related to the number of frequency lines to be solved would be

scaled down by the factor 5. As a result the speed-up offered by the proposed

technique would be less pronounced.

Having constructed the reduced model, the speed-up factors offered by the700
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Operation Cost Speed-up factor

Method Conventional BEM SEBEM SEBEM & MOR

System assembly 8m 40s 57.4 10.3× 103

System solution 1s 1 100

Table 5: Comparison of computational costs of operations performed online between

BEM, SEBEM and SEBEM & MOR; Cube model (N = 2606) with vibrating cap

proposed technique for each frequency line are considerably high. As indicated

in Table 5, in this case the more highlighted gain originates from the system

assembly, however, taking into account the algorithmic efficiencies correlated to

the system assembly and system solution (O(N2) and O(N3) respectively), this

will be reversed for larger models.705

6.2.3. Parameters affecting the model reduction efficiency

As described in section 6.1, the number of master frequencies and the order

of Krylov subspaces expanded at each master frequency constitute the most

important parameters that affect the computational efficiency of the model or-

der reduction technique. Although in this work a constant spacing of master710

frequencies and order of Krylov subspaces are utilized, in this section the influ-

ence of the choice of the frequency spacing and the order of Krylov subspaces

is investigated.

In order to examine the efficiency of the reduced model the following quanti-

ties are considered: i) the total relative error over the frequency range ε = |εq|2,715

where q is the respective order of the Krylov subspaces, ii) the memory scaling

comparing to the conventional BEM µ and iii) the acceleration rate of the online

procedures α with respect to the necessary CPU time in the SEBEM procedure.

Using these measures, both efficiency parameters α and µ are compared to the

most competitive alternative method of the two benchmark methods. Specifi-720

cally, although by the measure µ the required memory of the proposed technique

is compared to the memory utilised in the conventional BEM, measure α reflects

to the respective speed-up offered only by the projection on a reduced basis and
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Figure 6: Total error ε, memory scaling µ and acceleration rate α varying order of Krylov

subspaces or number of master frequencies; Cube model with vibrating cap

not through the series expansion scheme.

In Figure 6 the accuracy together with the computational efficiency of the725

model reduction technique are depicted. As illustrated, all measures of compu-

tational efficiency scale similarly for increasing either the order of the Krylov

subspaces or the density of the master frequencies grid. In both cases, the mea-

sures tend to asymptotically converge to a constant value. This behaviour is

justified, as in the former case, appending additional Krylov subspaces does not730

contribute to the basis with subspaces yielded by systems of different wavenum-

bers, while in the latter case adding master frequencies of low order Krylov

subspaces does not cover the subspace of enough approximated system eigen-

vectors, especially for the higher frequency range.

Considering this behaviour, the optimal subspaces could result through an735

adaptive procedure where the density of the master frequencies grid would in-

crease in parallel with the order of the Krylov subspaces adaptively for the

higher frequency regime. Thus, both additional subspaces that vary with differ-

ent wavelength would be leveraged and the subspace of a sufficient number of

eigenvectors would be matched, maintaining in the same time the order of the740

reduction basis in acceptable limits that respect condition 3 of section 6.1.
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Figure 7: Interior car cavity problem with absorbing roof and monopole excitation

6.3. Car Cavity interior problem

Next, the interior problem of a car cavity is evaluated. A car interior surface

is considered, assigning constant impedance at the elements of roof of the car

Y0 = 1
ρ0c

= 0.0024kg/m2s and the homogeneous Neumann condition un = 0 for745

the rest of the elements. Monopole excitation is selected at position S and the

sound pressure is evaluated in two locations R1 and R2. The above information

is graphically depicted in Figure 7a.

The mesh of the model (Figure 7b) consists of 6500 elements leading to a

number of nodes and DOFs ofN = 3253. Fulfilling the requirement of 6 elements750

per wavelength, the range of validity of the model reaches 700Hz. Taking an

increment of 1Hz the system assemblies and solutions required, amount to 651

frequency lines for the range of Frange = [50, 700] or in terms of non-dimensional

Helmholtz number karange ≈ [2, 33], with arange = 2.2m.

6.3.1. Model Reduction755

Considering the maximum distance separating any two elements rmax =

3.25m, a 50th order Taylor expansion of the BEM kernel is selected. Approxi-

mately the central frequency of the range of interest is elected as the expansion

frequency, namely f0 = 400Hz.

Due to the complexity of the geometry and the nature of the interior prob-760

lem, where several cavity resonances take place, a finer grid of master frequen-

cies is utilized by taking a 25Hz spacing and a higher order of Krylov sub-

spaces is selected. Thus, the Arnoldi procedure (2) is deployed for fmaster =
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[50, 75, . . . , 675, 700], constructing 30-dimensional subspaces for each master fre-

quency. Accumulating these subspaces and orthogonalizing, an orthogonal basis765

of order 810 is obtained. Truncating the subspaces of energy lower than 10−4,

yields the final projection matrix V` ∈ CN×657 leading to a model with 80%

fewer DOFs than the original model. The reduced model satisfies all the con-

ditions stated in section 6.1, related to the parameters ranking the proposed

technique as more competitive than the conventional BEM.770

For the respective error estimator, a more elaborate subspace for each master

frequency is employed, namely spanning 35 dimensions. By truncation of lowest

energy vectors, the devised reduced model for the error estimator reaches 750

DOFs.

Figure 8: Sound Pressure Levels at R1 and R2 from car cavity sketch in 7a(top). True relative

error ε30 and error estimate of surface pressure reduced model of 657dofs (bottom); Interior

car cavity problem with absorbing roof and monopole excitation

In Figure 8, the sound pressure levels at receivers R1 and R2 are plotted, as775

well as the respective relative error for the surface pressure distribution. The

acoustic quantities yielded from OpenBEM code [62] are considered as bench-
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mark results. The relative error satisfies the criterion of 1% for the region until

600Hz, while it increases for the rest of the frequency range under consideration.

This increased error is attributed to the highly resonant behaviour of the cavity,780

as illustrated also in the graph of the computed sound pressure levels.

In general, in cases of highly resonant problems, the proposed model reduc-

tion scheme necessitates the use of more Ritz vectors of the corresponding BEM

systems to describe accurately the acoustic response on the boundary. Thus,

recycling of a higher number of Krylov subspaces needs to be performed on a785

denser master frequency grid. However, still for a relative error of around 10%

the sound pressure levels coincide with a difference of 1dB.

The constructed error estimator succeeds in predicting the true relative er-

ror especially for the lower frequency region. In the higher frequencies where

the true relative error demonstrates higher values, the error estimator fails to790

approximate so closely the true relative error curve. Due to the highly resonant

behaviour of the model, the last term of estimated error bound that is truncated

in expression (26) cannot be considered negligible. Nevertheless, although the

error estimator does not predict the correct true error, it is predicted that the

reduced model is not accurate enough in this frequency range.795

To improve the accuracy of the reduced model in high frequencies, instead

of deploying a fixed-spacing frequency grid with constant order of Krylov sub-

spaces, an adaptive distribution of the master frequencies could be leveraged

with varying order of Krylov subspaces. Taking into account the higher errors

involved in the higher frequencies of the frequency interval under consideration,800

an adaptive approach would include a gradual densification of the master fre-

quencies grid and an increasing order of the Krylov subspaces for the higher

frequency region. However, this procedure needs to respect the constraints de-

fined in section 6.1 to ensure the computational advantage.

6.3.2. Computational resources analysis805

In Figure 9, the computational resources required by the three methods

are illustrated as in the problem of section 6.2. Similarly to the cube exterior
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problem, due to the small size of the model, the most apparent computational

advantage in terms of CPU time is related to the system assembly. In detail,

both the proposed method (labelled as ROM) and the SEBEM offer an equiv-810

alent total computational speed-up as the assembly of discrete system matrices

for all frequency lines is avoided. The SEBEM appears to be even faster in

comparison with the proposed method, as it does not require the assembly of

any BEM matrices apart from the Taylor expansion derivative matrices.

Nevertheless, as illustrated by the respective subfigures, the online opera-815

tions performed by the proposed technique necessitate one order of magnitude

less CPU time comparing to the SEBEM and conventional BEM. Additionally,

the proposed model reduction scheme demonstrates superior behaviour in terms

of storage required. Namely, a slightly higher amount of memory is necessitated

for the whole frequency range of interest than the memory involved in the solu-820

tion of a single frequency line with the conventional BEM.

Figure 9: Computational resources comparison measured in CPU time and required memory;

Interior car cavity problem with absorbing roof and monopole excitation

Generally, disregarding the cost of solving the system, the proposed method

becomes more computationally efficient than the conventional BEM in case the
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number of frequencies assembling the BEM system is higher than the combined

number of the order of Taylor expansion and the number of master frequencies825

involved. On the contrary, solving the system by the proposed method is always

faster than the conventional BEM and SEBEM due to the lower dimensions of

the resulting linear system. Thus, in larger models and more sophisticated

BEM implementations the speed-up associated with the solution of the system

is expected to become more discernible and lead to a faster compensation of the830

off-line cost needed for the assembly of the Taylor matrices.

Finally, assessing the speed-up factors with respect to the online operations,

the factor related to the assembly of the system is already high for SEBEM,

as calculating the surface integrals for each entry of the matrix is replaced by

summing-up a series of matrices. This procedure is even accelerated between835

SEBEM and the model reduction scheme by a factor of 1450/72.5 ≈ 20, due to

the more limited size of the reduced system. Furthermore, in contrast to the

SEBEM, the solution of the system is also accelerated by the proposed technique.

In fact, as expected the speed-up factor of the solution of the system with respect

to SEBEM, this time, ranks higher with 53.6, as the assembly demonstrates a840

computational complexity of O(N2), while the solution of O(N3).

Operation Cost Speed-up factor

Method Conventional BEM SEBEM SEBEM & MOR

System assembly 14m 30s 72.5 1450

System solution 1.3s 1 53.6

Table 6: Comparison of computational costs of operations performed online between

BEM, SEBEM and SEBEM & MOR; Interior car cavity problem with absorbing roof

and monopole excitation

7. Conclusions

In this work, a novel model reduction technique for the direct collocational

Boundary Element Method is introduced in the context of linear acoustics. The
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proposed technique accelerates in particular the frequency sweep analysis for845

a specific BEM problem. A series expansion of the Green’s function is lever-

aged to express the BEM system as a series of frequency-decoupled matrices.

Subsequently, these matrices are reduced by a Galerkin one-sided projection to

economize on both memory and algorithmic efficiency. The basis upon which

the projection is performed, is yielded by spanning the subspace of the Ritz850

vectors produced on a master frequency grid. The procedure is arranged al-

gorithmically in such a manner that the memory requirements of the method

scale more favourably to that of a conventional BEM procedure. Due to the

overhead cost of providing the Taylor derivative matrices and constructing the

corresponding projection basis, the proposed method is especially suitable for855

frequency sweep analyses, as the off-line cost needs to be compensated with the

computational speed-up gained through the online operations. Finally, an error

estimator is employed to assess the quality of the produced reduced model.

The present work constitutes a proof of concept for the combination of the

model order reduction with the BEM. The Taylor expansion selected for the860

frequency decoupling offers the advantage of analytical calculation of the poly-

nomial coefficient of the constructed series, however, the respective procedure is

quite intrusive comparing to current methods. This problem can be addressed

using alternative polynomial expansion techniques. Additionally, the use of the

direct BEM is not mandatory, as the generality of the polynomial expansion can865

offer similar techniques for the indirect BEM formulation and an extension of

the direct method with a Burton-Miller approach [55]. These suggestions form

the basis for future improvements to the proof of concept as presented in this

paper.

Finally, in the paper the efficiency of the method is demonstrated by tackling870

a simple and a more industrially relevant example. Significant speed-up factors

have been reported both for the assembly and the solution of the BEM system,

maintaining in parallel low relative errors. The generated error estimator shows

in general good agreement with the true relative error, indicating robustly the

quality of the reduced model. As illustrated through the examples, the method875
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is more efficient for less complex and less resonant geometries as recycling of

Krylov subspaces of lower dimensions is required to ensure an acceptable relative

error. This renders the method more applicable for exterior problems, where

usually less resonances occur.
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