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Highlights 

 Uncertain parameters have a high influence on the lifecycle-based energy efficiency. 

 Uncertainty analysis must be performed to identify the impact of the uncertainties. 

 Results allow the designer to prioritize decisions to decrease uncertainty. 

 Enable lifecycle-based energy efficiency already at beginning of construction 

projects. 
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Abstract 

During building design and especially in early stages, important decisions influencing the 

lifecycle-based energy demand of buildings are made. Life Cycle Energy Assessment 

(LCEA) is used to evaluate this energy demand already in early stages of design. However, at 

that point, the building design and the related information can quickly change and are subject 

to potentially large uncertainty. This uncertainty in building information influences the 

LCEA and therefore decisions taken by the designer. Due to the uncertainty, it is difficult to 

distinguish between the performance of different design variants to decide for the best option. 

This study presents a method to perform LCEA and to assess and consequently strategically 

reduce the influence of uncertainties in buildings‘ information on the LCEA in early design 

stages. Uncertainty analysis is used to assess the influence of uncertainty on LCEA and to 

prioritize decisions to reduce uncertainty. The method is embedded in a multi-Level of 

Development (LOD) modelling approach covering the development of the building during 

the early stages of design. The method is applied to seven different building shapes as a proof 

of concept. It is concluded that the method renders valid results to assess the project-specific 

uncertainty in LCEA results. 

Keywords 

Life Cycle Energy Assessment (LCEA); Life Cycle Assessment (LCA); Early Design Stages; 

Uncertainty Analysis; Sustainable Building Development. 

1 Introduction  

When designing buildings in industrialised countries, certain energy efficiency standards are 

obligatory. In Europe, for example, the Energy Performance of Buildings Directive 

(European Commission, 2018) and the Energy Efficiency Directive (European Parliament 

and Council of 25th October 2012, 2012) provide regulations regarding energy efficiency for 

buildings. With the Energy Saving Ordinance (Energy Saving Ordinance - 

Energieeinsparverordnung (EnEV), 2013), Germany defines a minimum energy efficiency 

standard for residential and non-residential buildings, which has to be fulfilled by newly 

constructed as well as refurbished buildings. However, the Energy Saving Ordinance, as well 

as other standards only refer to the operational stage of buildings but do not consider the 

energy demand for construction, maintenance and end-of-life treatment (Eckrich et al., 2016). 

                  



   

 

In order to design and operate buildings in an energy-efficient and sustainable manner, their 

energy requirements must be assessed and optimised over their entire lifecycle (Ramesh, 

Prakash, & Shukla, 2010). To achieve this, it is not only necessary to analyse the energy 

demand during their operational stage but also during their construction and end-of-life stage 

(Basbagill, Flager, Lepech, & Fischer, 2013). Life Cycle Energy Assessment (LCEA), based 

on Life Cycle Assessment (LCA) methods, is used in this study to analyse the lifecycle-based 

primary energy demand and to assist the designer during the early design stages (Chau, 

Leung, & Ng, 2015; Ramesh et al., 2010). 

With more strict energy standards, which aim to decrease the energy demand during the 

operational stage of buildings, more building material, in most cases insulation material, is 

needed to fulfil this task (Weiler, Harter, & Eicker, 2017). With more material and insulation 

input and the resulting lower energy demand during the operation of the building, the energy-

related share for construction, maintenance and end-of-life of the building is getting larger 

(Weiler et al., 2017). It is therefore mandatory to not only analyse the operational stage of 

buildings, but the whole lifecycle.  

When designing new buildings, there is a high potential in decreasing the total lifecycle-

based primary energy demand (Gehin, Zwolinski, & Brissaud, 2007; Röck, Hollberg, Habert, 

& Passer, 2018). In order to do this cost-efficiently and without much effort, energy 

efficiency measures must already be taken into account in early stages of design (de Wilde, 

Augenbroe, & Van der Voorden, 2002; De Wilde & Van Der Voorden, 2004; Kovacic & 

Zoller, 2015). 

Currently, energy calculation is often pushed to the end of the design process to generate 

compliance reports (Schlueter & Geyer, 2018). It needs to be integrated already in early 

design stages and within the design process at each detailing step, which affects the energy 

calculations, to enable the design of energy-efficient buildings. Therefore, designers require 

methods to obtain information about the total lifecycle-based primary energy demand of the 

building already in the early stages of design. Uninformed decisions about the design of 

buildings are made at those stages which might compromise the performance of the final 

design (Attia, Gratia, De Herde, & Hensen, 2012; Ritter, Geyer, & Bormann, 2015). 

Moreover, the quality of information available needs to be ascertained, as the information 

needed for analysing the total lifecycle-based primary energy demand in early stages of 

design is incomplete and fraught with uncertainties (Hopfe, Augenbroe, & Hensen, 2013). 

The uncertainty of information and their impact on the calculation in the early stages of 

design must be assessed for providing meaningful and reliable results (Tian, Heo, et al., 

2018).  

To address the situation that essential decisions on lifecycle-based primary energy demand 

made in early stages of design are afflicted with uncertainty, the objective of the presented 

research is to develop a method to enable LCEA in early stages of building design. This 

method considers the trade-off between the embedded energy (EE), also known as embodied 

                  



   

 

energy, and the operational energy (OE), as well as the analysis and assessment of the 

uncertain input information, according to the current stage of design. The method‘s feedback 

enables the designer
1
 to develop lifecycle-based energy-efficient building designs and to 

interpret results correctly while knowing the impact of uncertain information on the LCEA. 

Additionally, by analysing the effect of input uncertainty on the building performance, the 

designer can improve the quality of the results by strategically prioritizing decisions to 

decrease uncertainty. This prioritization allows for steering the design quickly to a well-

performing solution and drastically reduce potential later re-planning efforts by the right 

decisions in the early stages of design. 

The use of Building Information Modeling (BIM) offers opportunities to share design 

information quickly and efficiently between the designer and consultants of different 

disciplines involved in the design process (Borrmann, König, Koch, & Beetz, 2015). 

However, to date, BIM models lack information on design intentions, variants and 

uncertainties. In the scope of the context of this research, the research group ‗MultiSIM (FOR 

2363)‘ funded by the German Research Foundation (DFG), Abualdenien and Borrmann 

(2019) developed a method to describe the level of maturity of entire digital building models 

in early design stages (Abualdenien & Borrmann, 2019). The models typically contain 

elements at different levels of development (LOD). The term LOD describes the level of 

geometric and semantic maturity of individual building components, but not the overall 

building maturity (BIMForum, 2019). For the LCEA and the related uncertainty analysis 

approach, the input parameters for the calculations, including related uncertainties, are 

extracted from a digital model following this approach. Methods, which embed machine 

learning in a component-based way, directly link to the multi-LOD approach and provide 

instant results for operational energy demand without time-consuming modelling and 

simulation to allow the uncertainty analysis quickly for each design case (Geyer & 

Singaravel, 2018; Geyer, Singh, & Singaravel, 2018; Singaravel, Geyer, & Suykens, 2018). 

In the Concept and Methodology section, the implementation of a component-based 

embedded energy calculation is described that is embedded in the multi-LOD approach. On 

this basis, the multi-LOD modelling and the uncertainty analysis for the LCEA are applicable 

in real-time in a design process. 

The Introduction and Literature Review part of this scientific paper will be followed by the 

explanation of the study‘s Concept and Methodology, which describes the overall approach 

of the methodology and the taken assumptions. Moreover, the test cases, parameters and the 

calculation models are described. The concept and methodology are applied to a specific case 

study, including seven different building shapes that are potential solutions in the case study, 

for illustration and validation. For the final implementation of the LCEA and uncertainty 

analysis, the already mentioned parameters and further project-specific parameters are 

defined, which is described in more detail in the chapter Setting up Calculation Models. After 

                                                

1 In the following, the term designer is used as an umbrella term for architects in a designing role as well as 
engineers contributing to the design. 

                  



   

 

that, the calculated LCEA and Uncertainty Analysis Results will be interpreted and discussed. 

It can be seen that with conducting strategically prioritized decisions, the LCEA and 

uncertainty results are getting much more precise and therefore, much more interpretable for 

the designer.  The study will end with a Discussion and Conclusion section. 

2 Literature Review 

As mentioned by Dixit (2017), existing studies, concerning to the design of energy-efficient 

building, primarily focus either on optimizing the embedded or operational energy while 

ignoring the trade-off that exists between the two (Dixit, 2017). This can also be stated when 

comparing state-of-the-art tools, which are concerning embedded energy or operational 

energy calculation and are currently used in research and economy/practice. Either they are 

only considering the operational stage and/or uncertainty in information (Hopfe & Hensen, 

2011; Hopfe, 2009), or the whole lifecycle-based energy demand, including embedded 

energy, or only the embedded energy, but no assessment of uncertainty in input information, 

such as CAALA (Hollberg, Lichtenheld, Klüber, & Ruth, 2018), OneClick LCA (Bionova 

Ltd, 2019) or Tally (KTInnovations, 2019). Studies on uncertainty in LCA cover data 

uncertainties (Cavalliere, Habert, Dell‘Osso, & Hollberg, 2019; Tecchio, Gregory, Ghattas, & 

Kirchain, 2019) or uncertainties due to methodological choices (system boundaries, reference 

service life, etc.) (Huijbregts, Gilijamse, Ragas, & Reijnders, 2003; Larsson Ivanov, Honfi, 

Santandrea, & Stripple, 2019), but no design uncertainty. 

Currently, there is to our knowledge no study assessing both, the buildings‘ total lifecycle-

based primary energy demand and the related uncertainty in the early stages of design.  

 Design Stages and its Basis 2.1

The definition of Level of Development (LOD) or stages of design, defined by professional 

bodies in the domain, primarily relate to increasing the level of information that can be 

derived from the building components step-by-step. Table 1 documents the design stages 

defined by three professional bodies – Royal Institution of British Architects (RIBA) (British 

Standard Institution, 2013), American Institute of Architects (AIA) (NIBS buildingSMART 

Alliance, 2015) and Building and Construction Authority Singapore (BCA) (Building and 

Construction Authority, 2013). These definitions do not include enough information for Stage 

1 to be considered for LCEA. RIBA plan of work defines eight stages for building 

procurement activity, first with the strategic definition and preparation, next three with the 

design stage, and the remaining four with the construction and post-construction stage. AIA 

and BCA define five stages in a BIM based project delivery. The first three relate to the 

design stage and the remaining two with the construction and post-construction stage. 

Sawhney, Singh, & Ahuja (2017), suggests similar practices are being follwed in other 

regions for BIM-based project delivery (Sawhney, Singh, & Ahuja, 2017). 

Table 1 Design stages and deliverables as defined by professional bodies 

RIBA AIA BCA 
Design Deliverables (as per BCA) 

                  



   

 

Stage 2- 

Conceptual Design 

Step 2: 

Schematic 

Design 

Conceptual 

Design 

Building massing studies or other forms 

of data representation with indicative 

dimensions, area, volume, location and 

orientation 

Stage 3- Developed 

Design 

Step 3: 

Design 

Development 

Preliminary 

Design 

Generalized building component or 

system with approximate dimensions, 

shape, location, orientation, and quantity. 

May include non-geometric properties. 

Stage 4- Technical 

Design 

Step 4: 

Preparation 

of 

Construction 

Documents 

Detailed 

Design 

A more detailed version of a generalized 

building component or system with 

accurate dimensions, shape, location, 

orientation, and quantity. Non-geometric 

properties should be provided. 

 

However, these definitions are missing the energy calculation perspective. This means that no 

parameters or parameter sets are included that can define the input parameters for an LCEA 

in different design stages. As already mentioned in the Introduction (see Section 1) 

Abualdenien and Borrmann (2019) defined a standard, which on one hand defines the 

building‘s design stages in BIM-models and on the other hand allows and enables the 

integration of LCEA-parameters, as well as other project relevant parameters, e.g. for 

structural planning in early design stages (Abualdenien & Borrmann, 2019). This standard is 

called the Building Development Level (BDL), whereby 5 BDLs are defined. BDL 1 to 4 is 

defined to consider the early design stages of buildings, further defining the above-mentioned 

design stages 1 to 4. Since BDL 1 only contains information about the building‘s footprint 

but no volumetric information, only BDL 2, 3 and 4 are used in this study for the 

calculations, analysis and assessments. BDL 5 defines a building that is already too detailed 

to be counted in the early stages of design and is therefore not considered. The concept of 

BDL provides for project-specific flexibility as the elements contained in the BIM model, 

and their respective LODs can differ between projects. Schneider-Marin and Abualdenien 

(2019) proposed a framework to facilitate an interdisciplinary design process using BIM 

(Schneider-Marin & Abualdenien, 2019). 

 Uncertainty / Sensitivity Analysis of Building Energy Models 2.2

The uncertainty or sensitivity analysis becomes an essential part of building performance 

simulation given that the design parameters are inherently uncertain at an early stage of 

design (Tian, Heo, et al., 2018). In the past, researchers have used various sensitivity analysis 

methods to simplify a model by parameter screening (De Wit, 1997), identify robustness of 

model (Heo, Choudhary, & Augenbroe, 2012; Manfren, Aste, & Moshksar, 2013), quality 

assurance (C. Hopfe, Hensen, Plokker, & Wijsman, 2007; Struck, Hensen, & Plokker, 2010) 

and provide decision-support (Christina J. Hopfe & Hensen, 2011; Struck, 2012; Struck, Jan 

Hensen, & Kotek, 2009). Furthermore, the uncertainty in the external factors also results in 

uncertain prediction such as microclimate (Sun et al., 2014), macroclimate (Tian, de Wilde, 

Li, Song, & Yin, 2018) and economic parameters (Rysanek & Choudhary, 2013). Heeren et 

                  



   

 

al. (2015) has studied several internal and external factors which influences the 

environmental impact of buildings and ranked climate change, electricity mix, ventilation 

rate, heating system and construction material as highly influential factors (Heeren et al., 

2015). However, modelling the uncertainty in the design parameters through the design 

process is not addressed which is based on the concept that with the design progress the 

uncertainty in the design parameters reduces and enables thus more accurate performance 

predictions (C. Hopfe et al., 2007; Christina J. Hopfe & Hensen, 2011; Rezaee, Brown, 

Augenbroe, & Kim, 2015; Singh & Geyer, 2019). 

3 Concept and Methodology 

This section describes the overall concept and methodological approach for analysing the 

information required at all considered BDLs. Section 3.1 describes the overall approach and 

the taken assumptions for the LCEA. Section 3.2 describes the test case building. Section 3.3 

develops various building shapes as alternatives to the test case building to represent early 

BDLs. It is followed by a description of the calculation method for uncertainty analysis under 

Section 3.4. Section 3.5 describes the overall calculation method for LCEA, as well as the 

calculation of the embedded and operational energy and Section 3.6 presents the project 

specific definition of the design parameters, relevant for LCEA. 

 Approach and Assumptions 3.1

The total primary energy demand calculation is based on the approach of Life Cycle Energy 

Assessment (LCEA)
2
, which is also used in several other published studies (Ramesh et al., 

2010). LCEA is again based on Life Cycle Assessment (LCA) methods according to DIN EN 

ISO 14040 (DIN German Institut for Standardization e.V., 2009), DIN EN ISO 14044 (DIN 

German Institut for Standardization e.V, 2018) and DIN EN 15978 (DIN German Institut for 

Standardization e.V., 2012), which focuses on the assessment of the environmental 

performance of buildings. LCEA assesses all product-related energy inputs for 

manufacturing, producing components, materials, services for manufacturing processes and 

its use (Cabeza, Rincón, Vilariño, Pérez, & Castell, 2014). The energy inputs related to the 

multitude of products used in a building is considered for building LCEA as well as the 

energy input for building operation. 

                                                

2 In the following, the term Life Cycle Energy Assessment (LCEA) is used as an umbrella term for the 
calculation of the total lifecycle-based primary energy demand, including the operational and embedded energy. 

                  



   

 

 

Figure 1 Representation of modular information for the various building lifecycle stages 

according to DIN EN 15978:2012-10; lifecycle stages marked in grey are considered in the 

study, if available. 

In our study, the results of the LCEA refer to the primary energy demand in MJ. The 

calculation is split into two calculation models, one model for the operational energy 

calculation (OEC), considering the lifecycle stage B6, and another model for the embedded 

energy calculation (EEC), considering the lifecycle stages A1-3, B4 and C3 and/or C4 (see 

Figure 1). 

OEC is performed by setting up a parametric simulation model with the dynamic energy 

simulation tool EnergyPlus (US Department of Energy, 2018). OEC includes the energy 

required to maintain the thermal comfort, provide lighting and operate the equipment.  

For performing the EEC, the Oekobaudat LCA-database, version 2017-I,  is used (Federal 

Ministry for the Environment Nature Conservation and Nuclear Safety, 2019).  

It should be noted, that only the lifecycle stages the Oekobaudat provides data for can be 

considered. This can vary between different building materials. The Oekobaudat guidelines 

stipulate that only LCA data for stages A1-3 of a material or product must be available in 

order to be included in the database as a data record. For the waste treatment and disposal 

stages, process datasets are used to fill the gap if the information is not contained directly in 

the material dataset, e.g. ―construction waste disposal‖ was used for stage C4 of the 

insulation. Therefore, for all materials considered we used life cycle stages A1-A3 and C3 

and/or C4. Stage B4 Replacement includes stages C3 and/or C4 of the material which is 

getting disposed and stages A1-A3 for the new material. When interpreting the results, this 

has to be kept in mind (Harter, Schneider-Marin, & Lang, 2018). Additionally, it has to be 

noted, that, amongst others, missing LCA data for different life cycle stages in material 

specific datasets, varying transport distances of the same material, generic material datasets, 

non-availability of LCA datasets for exactly the same materials which are used in the 

building, can lead to uncertainties in the LCEA calculation. Due to the fact that each of the 
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mentioned topics represent individual research areas in itself, they will not be further 

investigated within the framework of this study. 

The considered Reference Service Life (RSL) of buildings is 50 years. According to Cabeza 

et al. (2014), this RSL is used in the majority of studies concerning LCEA/LCA for buildings 

(Cabeza et al., 2014). Both models use the same input information for the calculation, 

sampling the same range, providing the results for primary energy and referring to the same 

defined early stages of design. The calculated results of both models are merged and assessed 

to consider the trade-off between the embedded energy and operational energy. The 

uncertainty assessment is performed using variance-based sensitivity analysis method 

described by Saltelli et al. (2008; 2010) (Saltelli et a., 2010; Saltelli et al., 2008). 

 Test Case 3.2

We are using an office building as a test case, which was built at the end of 2016 (Ferdinand 

Tausendpfund GmbH & Co. KG, 2019). It is representative of a typical medium-sized office 

building. The location of the building is Regensburg near Munich, Germany. The climate of 

Munich is classified as Cfb (Warm temperate – full humid – warm summer) in Koppen-

Geiger climate classification, which represents most part of western Europe (Beck et al., 

2018). The building has a total area of 1,200 m
2
, equally distributed on three floors with a 

rectangular floor plan. 

 Uncertainty Shapes Used in the Study 3.3

The building shape is one of the uncertainties at an early stage of design. In this research, 

seven alternative building shapes, as shown in Figure 2, are developed, based on the 

rectangular floor plan of the test case, to represent this uncertainty. These shapes are most 

commonly used for medium-size office buildings (Asadi, Amiri, & Mottahedi, 2014; Neufert 

& Neufert, 2010) and thus represent general design options at this BDL. All the shapes have 

an equal probability of occurrence; thus, it follows a uniform distribution. In our case, the 

geometry of the building is assumed to remain the same throughout the BDLs, but their 

corresponding information will become more precise along the process (see Subsection 4.4). 

Shape1 represents a rectangular building, matching the test case, whereas building shapes 

Shape2 to Shape6 represent a small range of possible building designs. Shape7 is similar to 

Shape1 but includes a basement. The geometrical parameters Width, Length, ratio of LengthA 

to Length (rLenA) and the ratio of WidthA to Width (rWidA) describe the footprint of the 

building in each shape. They appear in building shapes Shape 2 to Shape 6 (see Figure 2). In 

Shape2 to Shape6, the area is always equal to (Length × Width) - ((1-rLenA) × Length) × ((1- 

rWidA) × Width) and increasing the value of rLenA, rWidA increases the floor area. These 

parameters are selected in a way to keep the floor area of all the shapes equal. By controlling 

the exterior dimensions such that the average floor area remains constant between all shapes, 

Shape3 and 6 have the same range of exterior wall area, which is larger than the exterior wall 

area of Shape1 and 7 but again different to Shape2. For Shape4 and 5, the range of exterior 

wall area is also the same, and the largest of all shapes. 

                  



   

 

  

Figure 2 Seven Building Shapes for LCEA in Early Design Stages 

 Uncertainty Analysis using a variance-based method 3.4

The uncertainty analysis using variance-based method is based on the decomposition of 

model output variance (Menberg, Heo, & Choudhary, 2016; Saltelli, Tarantola, Campolongo, 

& Ratto, 2004). It is used to calculate two sensitivity indicators – first-order effect and total 

effect. The first-order effect is a measure of uncertainty which can be removed if the 

parameter is certain, thus indicative of the importance of a parameter (Saltelli & Tarantola, 

2002). The total effect indicates the effect of a parameter, including higher-order effects and 

parameter interaction (Saltelli et al., 2010). The uncertainty attributed to a group of 

parameters is calculated by summing up the value of their first-order effect. Since the sum of 

first-order effects of all the parameters is close to 1, the uncertainty caused by the higher-

order and interaction effects is ignored. The accuracy of the estimated uncertainty 

contribution depends on the number of samples, which is 500 in this case. The number 500 is 

selected based on two previous studies (Menberg et al., 2016; Singh; & Geyer, n.d.). This 

corresponds to n × (p + 2) simulations based on sampling scheme described by Saltelli et al. 

(2008), where n is the number of samples and p is the number of parameters (Saltelli et al., 

2008). This sampling scheme is based on Latin hypercube sampling (LHS) method with 

                  



   

 

some additions as explained by Saltelli et al. (2008) (Saltelli et al., 2008). There is no 

prescribed limit for the number of samples; however, the accuracy of the method is tested 

using Mean Absolute Error (MAE). The MAE, in any case, does not exceed 0.02. It should 

be noted that running simulation is the most time-consuming time-step in the whole process. 

It takes approximately 600 minutes to calculate the energy demand for all the samples. 

 Life Cycle Energy Assessment 3.5

OEC is performed using a state-of-the-art dynamic energy simulation tool for a period of one 

year. Since the results of OEC and EEC are referring to primary energy in MJ and the same 

RSL of the building, the values are summed up and presented as a single primary energy 

value. The minimum, maximum and mean value are provided as results concerning all 

sampling sets and building shapes. These results are analysed, using variance-based analysis 

methods described in Subsection 3.4. The merged analysis can be conducted for the sum of 

primary energy as one single parameter. With providing the information to the designer, the 

designer can consequently strategically reduce the influence of uncertainties in buildings‘ 

information on the LCEA in early design stages, in order to increase the results‘ precision. 

The overall concept is graphically described in Figure 3. Additionally, Table 2 shows the 

elements and systems which are included, according to each considered lifecycle stage, in the 

LCEA calculation. The ‗x‘ for the constructional elements (exterior and interior walls, 

windows, baseplate, roof and floor slabs) in lifecycle stage B6 refer to their u-value, which 

influences not only the EEC but also the OEC. 

 

Figure 3 Uncertainty analysis of LCEA calculation 

Table 2 Elements and systems included in the LCEA calculation; Lifecycle stages according 

to DIN EN 15978 (see Fig. 1)  

Life 

cycle 

stage  

Exterior 

walls, 

windows 

Baseplate Floor 

slabs 

Roof Interior 

walls 

Heating 

demand 

Cooling 

demand 

Lighting 

demand 

A1-A3 x x x x x    

B4 x   x x    

                  



   

 

B6 x x x x x x x x 

C3-C4 x x x x x    

 

3.5.1 Operational Energy Calculation (OEC) 

The OEC is performed by setting up parametric simulation models in EnergyPlus (US 

Department of Energy, 2018). We have developed a program to generate an EnergyPlus input 

file for a combination of parameters. After running the EnergyPlus simulation, the results are 

read to map the operational energy requirement for each combination of parameters. The 

simulation model considers the effect of available daylight while calculating the energy 

requirement for lighting. For the LCEA-parameters, please refer to Table 5. The simulation 

model calculates the annual energy demand, which is multiplied with the RSL of the building 

to get the operational energy requirement for the whole lifecycle of the building. The results 

are converted using datasets from Oekobaudat to arrive at primary energy values. The heating 

is provided by a gas boiler and electricity mix is used for lighting and cooling. 

3.5.2 Embedded Energy Calculation (EEC) 

The EEC model considers the primary energy demand needed for the production (A1-A3), 

exchange (B4) and end-of-life stages (C3/C4) of the building‘s construction elements. For the 

use stage, only the exchange of material, according to its durability, is considered, i.e.  its 

end-of-life stage and the production stage for the new material.  

The calculation model for the EEC was developed on the basis of the standards and norms 

described in Subsection 3.1 (Harter et al., 2018) and implemented by using python and SQL 

programming language. The model uses the samples generated by variance-based sampling 

(see Subsection 3.4), as input information for the component based-calculation (see Table 4). 

The building model is therefore split into building components (external walls, roof, 

baseplate, etc.) for calculation. Afterwards, all results are summed up to generate a single EE 

value. The geometric information of each building component, the information about the wall 

thickness, length and height, referring to the construction material, is used to calculate the 

material volumes of the components the building is constructed of. By multiplying the 

material volume with the material-specific density, the material masses are calculated in the 

next step. The windows are an exception as they are related to the unit square meter. The 

different window-to-wall ratios of all exterior walls are considered to calculate the total 

window area of the building. 

The volume of insulation material is calculated according to the construction material, using 

the information about the wall thickness and the u-values. The u-values thereby refer to 

country-specific energy standards, e.g. defined by the German Energy Saving Ordinance 

(Energy Saving Ordinance - Energieeinsparverordnung (EnEV), 2013) or by the 

‗Kreditanstalt f r  iederaufbau (Kf )‘ (Kreditanstalt für Wiederaufbau (KfW), 2019), 

which has to be defined by the designer. In our study, the u-values were used in accordance 

with the German Energy Saving Ordinance.  

                  



   

 

The calculated masses, volumes and areas are then multiplied with the material-specific 

primary energy values, which are referring to the respective functional unit and are stored in 

the SQL-database. In Equation 3, the calculation of the EE for each building 

material/component is exemplarily shown. The LCA-values (e.g. PE for producing 1 kg of 

construction steel (Production Stage A1-A3)) stored in the SQL-database are sourced from 

the Oekobaudat database (Federal Ministry for the Environment Nature Conservation and 

Nuclear Safety, 2019) and multiplied with the specific building material/component mass. 

 

      ∑    

  

    

 

(1) 

where EE = Embedded Energy [MJ]; m = material mass [kg]; ∑    
  
     = sum of primary 

energy (PE) demand for all considered lifecycle stages A1 to C4 [MJ]. 

This calculation is conducted for each sampling in each BDL and for every building shape 

and therefore embedded in the multi-LOD approach (see Figure 4 for graphical 

representation of EEC). This approach enables the EEC in real-time in a design process. 

 

 

Figure 4 Lifecycle-based EE calculation 

 Definition of LCEA Parameters 3.6

Since the existing LOD-definitions do not include the energy calculation or LCEA 

perspective, specific parameters have to be defined to allow LCEA in early design stages  and 

integrated into the BDL standard by Abualdenien and Borrmann (Abualdenien & Borrmann, 

2019) (see Subsection 2.1). The project-specific definition of LCEA parameters can be seen 

in Subsection 0. It has to be noted that two numeric parameters have to be defined for each of 

the parameters. The initial value (input value) for the calculation represents the mean value of 

a defined minimum and maximum, and the uncertainty value describes a range of uncertainty 

with a uniform distribution, within which these parameters are indicated.  

The project specific LCEA parameters (see Subsection 0) are used and relevant for the LCEA 

calculation considered in BDL 2, 3 and 4 in the scope of this study. The methodology allows 

the analysis and assessment of each parameter specifically, but for simplification reasons, the 

                  



   

 

parameters are grouped to be further used in the study to present the calculation and 

uncertainty analysis results.  

We grouped the parameters based on their nature (see Subsection 4.3). In this case, the 

Geometrical Parameters define the total floor area and volume of the building, which is of 

extreme importance from the perspective of space requirement. The Internal Spaces and 

Technical Specifications are relevant to fulfil functional requirements. The group Window 

Construction includes all parameters concerning the transparent parts of the exterior walls. 

The groups are also related to the design process, as the parameters contained in one group 

tend to be determined at the same time.  

4 Setting up Calculation Models 

When setting up the calculation models, it has to be kept in mind, that all used definitions of 

parameters are chosen explicitly for calculating the LCEA and conducting uncertainty 

analysis for the seven building shapes, considered as test cases, in the scope of this study. 

These definitions can vary from study to study and are not suitable for reproduction since 

construction projects and buildings always have individual factors, e.g. location, climate, etc., 

that have to be explicitly considered and which influence the mentioned parameters. The 

study instead presents and validates the study's methodical approach that is applicable to 

other construction projects by adjusting the mentioned parameters. 

 OEC Model 4.1

For setting up the OEC model, additional parameters have to be defined. The remaining 

details of these parameters are listed in the following Table 3:  

Table 3 Parameters for developing the operational energy model 

Parameter Detail 

Location and 

Climate 

Munich, Germany, Köppen-Geiger climate classification - Cfb (warm 

temperate – fully humid – warm summer) (Beck et al., 2018). 

Thermal Comfort Heating Setpoint 20 °C; Cooling Setpoint 24 °C; 

Heating Setback point as 10°C; Cooling Setback point 28°C. 

Lighting Level 500 lux 

Occupant Load 1 person/ 10 m2 

Zoning One zone per floor (internal walls included to provide thermal inertia) 

 

 EEC Model 4.2

The additional specific parameters needed for the EEC model consist of material-specific 

information, including exact material definition and the RSL (see Table 4). The information 

                  



   

 

about the RSL is given in years and sourced from the definition of RSLs of components for 

LCA according to the Sustainable Building Assessment System (BNB) (BBSR - 

Bundesministerium des Innern für Bau und Heimat, 2017). These definitions are used for all 

calculations in every BDL. They can be adjusted for other projects, based on the available 

data, material-specific LCA-datasets in the Oekobaudat database and definition of RSL of 

components for LCA in accordance with the Sustainable Building Assessment System 

(BNB). In the case of this study and for simplifying the proofing of the results, only the 

defined materials of Table 4 are considered for the calculations and assessments.  

Table 4 Material Definition as Input for EEC model 

Material Related Input Information for 

EEC Model 
Definition Oekobaudat dataset 

RSL 

(years) 

Insulation Material External Walls  Mineral wool (façade insulation) 40 

Insulation Material External Walls 

Basement 
XPS altern 40 

Construction Material 
Concrete of compressive strength 

class C 20/25 
50 

Window 

Insulated glazing, triple pane; 

Aluminum frame profile, powder-

coated; Window fitting for tilt and 

turn window 

40 

Steel Reinforcement Steel wire 50 

Construction Material Internal Walls  Gypsum plasterboard (fire protection) 20  

 

Table 4 also shows the Oekobaudat datasets which are assigned to the different materials for 

the EEC. The LCA-datasets for the windows were previously calculated by using the tool 

eLCA of the German Federal Institute for Research on Building, Urban Affairs and Spatial 

Development (Federal Institute for Research on Building - Urban Affairs and Spatial 

Development, 2019), which is also using Oekobaudat datasets for calculation. The datasets, 

which are used for the window calculation, are also listed in Table 4. 

 Project Specific Definition of LCEA Parameters 4.3

For the simulation of the OEC and EEC in the mentioned BDLs, the input values have to be 

defined for the different introduced shapes. As already mentioned, the LCEA-parameters are 

linked with varying uncertainty in different BDLs. The uncertainty changes along the BDLs 

(see Subsection 4.4), influenced by the increasing accuracy of the information, which is 

provided by the designer via the building‘s BIM-model. In this way, the designer influences 

and controls the LCEA performance of the building through their design decisions. The 

uncertainty of LCEA-parameters, therefore, changes in the course of the BDLs and is based, 

for example, for BDL3 on the uncertainty analysis results from BDL2. The uncertainties for 

all BDLs are shown in Table 5 of Subsection 4.4. The parameters Internal Walls, 

Reinforcement, Basement and their units are shortly described for better understanding. The 

parameter Internal Walls defines the percentage of internal walls volume compared to the 

                  



   

 

interior volume of the building without exterior walls and floor plates. The parameter 

Reinforcement defines the mass of steel in kilogram, related to one cubic meter of reinforced 

concrete. The parameter Basement Depth describes the depth of the basement into the ground 

in meters. The parameter group Building Operation and System Efficiency are an exception 

for the LCEA, because they cannot be influenced by the designer in early stages of design but 

are relevant for the calculation of the OEC. Because of this, the parameters are assigned an 

input and uncertainty value, which does not change over the course of the early stages of 

design. But it is important to include these parameters in the study to see the interaction effect 

between these parameters and other design parameters. 

Table 5 shows all mean values for the LCEA-parameters to calculate the LCEA for the 

introduced building shapes. The parameters are representative for this size of office buildings 

and rely on actual and empirical values for this size of an office building, which is taken for 

demonstration purposes. The input values are sourced from the building‘s BIM-Model.  

Table 3 Specific Definition of Values of LCEA-Parameters used for all considered BDLs and 

for all Shapes 

Group LCEA-Parameters 
Shape 1 

& Shape7 
Shape 2-6 

Geometrical 

Parameters 

Length [m] 15.0 17.3 

Width [m] 27.0 31.2 

Height [m] 9.0 9.0 

rLenA - 0.5 

rWidA - 0.5 

Basement Depth [m] (only Shape7) 2.0 - 

Orientation [°] 20.0 20.0 

Internal Spaces 

and Technical 

Specifications 

Infiltration [-] 0.6 

Construction Thickness External Walls [m] 0.2 

Internal Walls [%] 13 

U-Value Wall [W/m²K] 0.28 

U-Value Ground Floor [W/m²K] 0.35 

U-Value Roof [W/m²K] 0.2 

Reinforcement [kg/m3] 140.0 

Window 

Construction 

U-Value Window [W/m²K] 

G-Value Window [%] 

1.3 

0.6 

Window to Wall ratio North [%] 30 

Window to Wall ratio West [%] 30 

Window to Wall ratio South [%] 30 

                  



   

 

Window to Wall ratio East [%] 30 

Building 

Operation 

Operating Hours [h] 9.0 

Lighting and Equipment Heat Gain [W/m²] 20.0 

System 

Efficiency 

Boiler Efficiency [-] 0.85 

Chiller COP [-] 4.0 

 Definition of Uncertainty at each BDL 4.4

In Table 6, the uncertainty of LCEA-Parameters for all BDLs is presented. These values are 

used as initial values, which indicate the range for generating the sampling sets. For the 

purpose of this study, the initial ranges for BDL2 were chosen to provide a starting point 

from a rough design. The reduction of the uncertainty range of higher BDLs then follows the 

results of the uncertainty analysis of the previous BDL, such that the parameter group with 

the highest uncertainty contribution is set to be more certain. The uncertainty of the grouped 

parameter Window remains the same along all BDLs, for example. This appears because the 

uncertainty contribution of the grouped parameter Window is never the highest throughout 

the course of BDLs and therefore remains unchanged (see following Figure 5 and Figure 6). 

The grouped parameter Technical will for example remain the same until BDL3, until the 

influence of the uncertainty of ±25% of the Technical parameter is highest and will therefore 

be provided by the designer with an increased accuracy in BDL4, ergo an uncertainty of ±5% 

(see following Figure 5 and Figure 6).  

The application of the ranges means, that, e.g. the LCEA-Parameter Length, with a defined 

input value for Shape1 of 15.0 m, is sampled for BDL2 in the range of ±10%, hence from 

13.5 m to 16.5 m. This will then affect, amongst others, the calculation of the floor area, the 

material mass of the floor slabs, base plate, external walls. The underlying distribution for 

sampling the parameters and creating the sampling sets is a uniform distribution. The 

sampling sets serve as input for the OEC and EEC. The uncertainties should be adjusted to 

individual project requirements by the designer. For example, there could be cases where 

geometrical parameters are subject to legal or construction restrictions such that there would 

be no uncertainty in some dimensions.  

Table 4 Specific Definition of Uncertainty of LCEA-Parameters at each BDL 

Grouped 

Parameters 

Uncertainty 

BDL2 

Uncertainty 

BDL3 

Uncertainty 

BDL4 

Geometrical ±10% ±2% 
±1% 

Technical ±25% ±25% 
±2% 

Window ±25% ±25% 
±25% 

Building 

Operation 
±5% ±5% 

±5% 

                  



   

 

System 

Efficiency 
±5% ±5% 

±5% 

 

5 LCEA and Uncertainty Analysis Results 

The results are presented in the following sorted by BDLs. The LCEA results and the 

uncertainty analysis results are, therefore conceptualised in an easy to understand way. 

Therefore, a graphical representation of the results is chosen. The designer, with the help of 

an energy specialist, gets a quick overview of the results. A designer familiar with early 

design stage uncertainties can interpret their value in order to place them in the context of the 

project and make decisions for the further course of the project. 

The LCEA-results or total lifecycle primary energy demand results are graphically 

represented (see Figure 5 and Figure 6) as total primary energy value in MJ for all seven 

shapes in the course of BDLs. Since these results are based on defined sampling sets, the 

mean values, the interquartile ranges and the maximum and minimum values are represented 

for the results.  

The uncertainty analyses are based on the LCEA-results. The influence of each parameter 

group‘s uncertainty on the end result is analysed and shown. The uncertainty results are 

presented for the total primary energy demand in comparison in the course of BDLs. These 

results are based on the merged results of the OEC and EEC. The results for the grouped 

parameters Building Operation and System Efficiency are shown in lighter colors (see Figure 

5) because they cannot be influenced by the designer but are crucial for the OEC, as already 

described in Subsection 4.3. Based on the results of each BDL, decisions are made, and the 

uncertainty for the grouped parameter with the highest impact is reduced to validate the 

correct functionality of the model with the results of the uncertainty analysis of the following 

BDL.  

For a better comparison of the results, the LCEA and uncertainty analysis results for BDL2 to 

4 and for all building shapes are presented in Figure 5 and Figure 6. 

                  



   

 

 

Figure 5 LCEA and uncertainty analysis results for BDL 2 to 4 and for all building shapes 

 

 Results for BDL2   5.1

As can be seen in Figure 5, Shape4 and Shape5 account both for the highest mean value in 

total primary energy, as well as the highest maximum and minimum values. Shape2, 3 and 6 

show the medium range for mean value and maximum value. Shape1 and Shape7, the most 

                  



   

 

compact of the shapes, display the lowest mean and maximum values. Shape2, 3 and 6 have 

the lowest minimum values and therefore seem to display the highest potential for 

minimizing the total energy demand. 

The uncertainty analysis results show that, with the defined uncertainty (see Table 6), the 

Geometrical Parameters have the highest impact on uncertainty with a share of about 0.8 in 

terms of the first-order effect. The second-highest impact is observable for the parameter 

group Technical Specifications, followed by the group Window Constructions. If the grouped 

parameter of Building Operation was included in the scope of the analysis, it would have the 

second-highest influence on the results, even with the relatively low defined parameter range 

of ± 5 %. However, it was not included as it is not influenced by the designer in early design 

stages but left to decisions in later stages.  

The designer can easily calculate and conclude that with the defined input values for the 

LCEA-parameters and the defined uncertainty for each LCEA-parameter in BDL2, the 

overall LCEA results (see Total Energy values in right graph Figure 5, for BDL2) can only be 

provided with a range of results of ±61% around the average mean value, when comparing all 

shapes. With regard to the lifecycle-based energy efficiency or to lowering the total lifecycle 

primary energy demand, the designer looking at the lowest minimum can conclude, that 

Shape2 provides the most potential for minimizing the total primary energy demand. 

However, Shape1 and 7 provide a smaller risk of high energy demand considering the given 

uncertainty correctly as they display the lower mean values. 

Furthermore, in summary, the results in BDL2 can only be given with a very high degree of 

inaccuracy due to the high uncertainty of information. This considerably restricts the 

possibility of target-oriented interpretation and communication of the results. However, since 

the parameter group with the highest uncertainty contribution is known, the designer can 

manage to minimize the uncertainty for exactly this grouped parameter and to provide more 

precise information for BDL3 via the BIM model. This more precise information strategically 

lowers uncertainty, which is shown by the LCEA calculation for BDL 3 (see Table 6). 

 Results for BDL3 5.2

For BDL 3, the uncertainty of the grouped parameter Geometrical is reduced from ±10% to 

±2%, taking into account the results of BLD 2 showing this parameter to have the highest 

contribution to the uncertainty of the results. All other values for the input parameters are 

kept with the same uncertainty as at BDL2 (see Table 6). 

We are comparing the results for the total primary energy of BDL2 with those for BDL3 in 

Figure 5. It can be seen that Shape4 and 5 still represent the highest mean, minimum and 

maximum values, followed by Shape2, 3 and 6. Shape1 and 7 now have not only the lowest 

maximum and mean values, but also the lowest minimum values. All shapes still show the 

same, but a significantly smaller, inter-quartile range. 

When assessing the results for the uncertainty analysis of BDL3 it can be seen, that, now that 

the uncertainty for the grouped parameter Geometrical has decreased by 8%, the grouped 

parameter Technical Specification has the highest uncertainty contribution overall shapes. 

                  



   

 

This was to be expected since the Technical Specification accounted for the second-highest 

contribution in BDL2. This can be rated as the first proof of the study‘s methodology.  

It is interesting to see that the grouped parameter Geometrical still has the second-highest 

share in uncertainty contribution. The uncertainty contribution of Building Operation is 

gradually increasing from BDL2 to BDL3, even though its uncertainty is remaining at ± 5% 

in both BDLs.  

For the designer, this means that by reducing the uncertainty of the grouped parameter 

Geometrical, it is possible to make a much more precise statement about the total lifecycle 

primary energy demand. This is because the fluctuation range of the results has been highly 

reduced from ±61% at BDL2 to ±32% at BDL3 when comparing all shapes. With lowering 

the uncertainty for the mentioned grouped parameter, now Shape1 and 7 can be seen as the 

shapes which allow the realisation of better lifecycle-based energy efficiency or to lower the 

total lifecycle primary energy demand, compared to all other shapes.  

Overall, the total primary energy results become much more representable, interpretable and 

communicable to the designer. To now generate even more precise results for BDL4, the 

designer should now focus on lowering the uncertainty for the grouped parameters 

Geometrical and Technical Specifications. Since the Geometrical parameter still has, with 

±2% uncertainty, an impact which is not to be neglected, it has to be considered again. 

 Results for BDL4 5.3

With the new, more accurate design information at BDL4 (see Table 6), the uncertainty in the 

design parameters has now decreased for the grouped parameter Geometrical from ± 2% to 

±1% and for the Technical Specifications from ± 25% to ± 2%.  

The interpretation of the results at BDL4 in Figure 5 remains the same. The only change is 

now a significantly lower interquartile range. Also, the range of the highest maximum and 

lowest minimum value decreased again, when comparing all building shapes. This was to be 

expected and represents validation of BDL3.  

It can be seen that after reducing the uncertainty for Geometrical and Technical 

Specifications, the Geometrical parameters have the highest uncertainty contribution, except 

for Shape4 and 5, for which the window construction has the highest contribution. The latter 

is due to the fact that Shape4 and 5 have the highest average exterior wall area, i.e. the 

contribution of the windows is higher than for all other shapes. The significance of the 

Geometrical parameters is interesting since the uncertainty decreased to ± 1% and the 

uncertainty for the Window Construction parameter is still at ± 25%, which illustrates how 

crucial the parameter Geometrical is for the LCEA in our case study. This represents 

essential information for designers in the early planning stages. Again, contribution by the 

parameter Building Operation increases further.  

The designer now has total primary energy values with a highly reduced fluctuation range of 

the results of ±61% in BDL2 and ±32% in BDL3 to ±21% in BDL4, when comparing all 

shapes. From this, it can be deduced for the designer that already the initial reduction of the 

uncertainty of the parameter Geometrical caused a minimization of the fluctuation range in 

                  



   

 

the total primary energy results of 29% from BDL2 to BDL3. The reduction of the 

uncertainty for again the Geometrical parameter and the Technical Specifications caused a 

reduction of 11% from BDL3 to BDL4. This again emphasizes the enormous importance of 

using uncertainty analysis in early design stages, without which the project-specific effect of 

the Geometrical parameter could not have taken place so efficiently, early and quickly. 

                  



   

 

 

Figure 6 Uncertainty in Parameters and resulting Uncertainty Contribution according to 

BDL (average all shapes) 

 

6 Discussions  

A method for conducting LCEA and uncertainty analysis already in the early stages of 

building design has been introduced in this paper. Thereby, a possibility to strategically 

reduce the influence of uncertainties in LCEA-parameters has been described, to show an 

efficient way to reduce their impact on the LCEA results and thereby to make the results 

more accurate, precise and better to interpret for the designer.  

The minimisation of uncertainties across the BDLs also produces the expected result and 

additionally shows the expected trends, which means that with decreasing the uncertainty of 

the grouped parameter with the highest influence, the grouped parameter with the second-

highest influence appears as the parameter with the highest influence in the next BDL. 

Additionally, the inter-quartile range and scattering range of min and max values decrease 

with lowering the uncertainty along the BDLs. The methodology and calculation results 

therefore render plausible and expected results and trends. In addition, the graphical 

representation of the results enables the designer to quickly understand, interpret and 

communicate the results, concerning the impact of uncertain parameters on the LCEA results 

as well as the overall LCEA results, in the course of BDLs. This enables the designer to 

better discuss and justify decisions which have to be or are already made. 

                  



   

 

Although the selected case is representative, we recommend that the definition of parameters 

and uncertainties is adapted to the specific project in order to obtain the desired results. 

However, performing the simulation using EnergyPlus is time-consuming, thus, adapting it to 

the new case may not be time efficient. Machine learning-based model can be used to make 

the whole process quick. The methods mentioned in the introduction for quick calculation of 

operational energy demand as well as the methods presented in this paper‘s method section to 

calculate the embedded energy demand based on LCA methods allow for applying the 

uncertainty analysis for each individual design case. If project-specific uncertainties are 

determined and used for the respective input parameters, the calculation will give a clear 

indication which input parameter groups should be decided on and further specified to reduce 

uncertainties in the energy calculations. 

Nonetheless, we expect conclusions on uncertainties and parameters and their groups to be 

comparable for buildings and climate conditions that are similar to the given case. In the 

results for the case, the differences between shapes that can be detected are due to the 

parameters with the highest uncertainty contribution for each BDL, respectively.  

It can be noticed that the energy demand across different building shapes varies a lot, thus, 

shape also contributes to the uncertainty in energy prediction at early stage of design. For 

BDL2, the geometry of the different shapes causes a higher range for Shape2 to 6, as the 

range of floor areas is larger. The higher mean values for the total primary energy demand for 

these shapes can be deduced from the fact that these shapes are less compact, i.e. they have a 

larger exterior all area for the same volume, with Shape4 and 5 being the least compact. In 

BDL 3, the geometrical parameters, as described above, still play a role, but technical 

specifications are more significant than others. Since these parameters concern the exterior 

building parts to a large extent, compactness of the shapes as described for BDL2 is still an 

important factor. For BDL4, the higher interquartile range can be derived from the largest 

exterior wall area, for which the window to wall ratio plays a significant role. Furthermore, 

the results indicate that operational parameters, such as lighting systems and use of the 

building, should be considered in early design stages. At BLD 3 these parameters have the 

highest influence. Designers should consider realistic scenarios to reduce uncertainty. 

The results do not significantly differ between shapes due to uncertainty, as the values are 

overlapping. This means that for relatively simple geometries which are comparable because 

they render the same floor area, no general recommendation for a building form can be given. 

In the case of our study, this may mean that the choice between the individual building 

shapes does not have much influence, but for other projects, building shapes and LCEA 

parameter definitions may be quite different. To apply the method to other case studies, the 

new case study has to be checked first, on being able to provide the needed information for 

the calculation models and second, the LCEA-parameters have to adapted adequately in the 

calculation models, as already mentioned above. Future research should analyse this further 

to determine an ‗optimized combination‘ of parameters where trade-off effects apply, e.g. 

amount of insulation vs heating demand; window-to-wall ratio vs cooling and/or daylight; 

etc. In Figure 5, at BDL2, a good performance is visible for Shape 2. This parameter 

combination is lost in the process as currently no optimization assistance for the decisions is 

implemented. 

                  



   

 

The results in this paper are presented as a single performance criterion for cumulated 

lifecycle-based operational and embedded energy, using the total primary energy demand as 

an indicator. In light of the pressing environmental problems related to climate change, global 

warming potential needs to be investigated in addition. This, however, requires the inclusion 

of variations in energy supply systems, as they strongly influence the amount of greenhouse 

gas emissions. 

7 Conclusions 

From the study‘s results, it can be concluded, that it is very important to provide modelling 

approaches and calculation methods to conduct LCEA already in early design stages, to 

provide designers results for the lifecycle-based energy demand of buildings, which can be 

improved in further steps. However, the presented results show that there is a significant 

influence of uncertain parameters on the LCEA in early stages of design. It is therefore 

essential to also provide methods and calculation approaches to the designer, to perform 

uncertainty analysis, to assess the impact of the uncertainties on the LCEA results, as well as 

to identify the uncertain parameters with the highest impact on the calculation 

This information is highly valuable for the designer not only to prioritize decisions to 

decrease uncertainty and its impact on the LCEA results, but also to communicate and 

discuss results and decisions with the client or future building owner. It additionally enables 

the designers to analyse individual building cases in the course of BDLs and to provide the 

information in the transition along the BDLs that best reduces uncertainty. The LCEA results 

of each BDL can influence design decisions. However, the influence on the design decision 

depends very much on how the designer decides on measures based on the LCEA results of 

each BDL. In addition to questions regarding the optimisation of the lifecycle-based energy 

demand of buildings and the reduction of uncertainties in its calculation in early design 

stages, there are questions regarding, for example, life cycle costs or the statics of the 

building. These questions and topics can be weighted differently by the designer and result in 

conflicting goals that have to be investigated and weighed up. Within the framework of this 

study, no general statements can be made about the influence of the LCEA results in early 

planning stages on concrete design decisions, since they are highly depending on each 

specific building, which is being assessed. However, the LCEA results can help the designer 

to find the right parameters for improving the LCEA results in early design stages and to 

allow the topic of the lifecycle-based energy demand of buildings to flow transparently and 

soundly into the planning already in early design stages.  

The method renders plausible results, as the reduction in uncertainty and the increasing 

accuracy of LCEA-parameters reduces uncertainty in the overall results without changing 

average results. For future assistance in the design process, the representation of additional 

information will be required as to which parameter combinations provide the lowest total 

primary energy values. 

For further research, it is therefore important, to refine the existing method and models to 

enable possibilities for design assistance. For this purpose, various combinations of building-

specific energy supply models and construction and insulation materials have to be 

investigated and analysed along their whole lifecycle. Additionally, the presented and 

mentioned methodological approaches need to be implemented in a user-friendly and easy to 

                  



   

 

use tool for designers, which can be embedded in BIM-Software. Due to the easier usability 

the tool is used more and therefore more results and analyses can be carried out. From this, 

guidelines for designers can be derived which presents on which parameters to focus first to 

reduce the uncertainty in LCEA in early stages of design. In addition, an important future 

step in the development of an assistance approach to support the designer in the design 

process is the development of lifecycle-based energy-efficient buildings. The method 

presented in this study thus contributes significantly to establishing and implementing energy 

efficiency in the building sector and also points out concrete applications. 
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