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A B S T R A C T

The concept of multi-Level-of-Development (multi-LOD) modelling represents a flexible approach of information
management and compilation in building information modelling (BIM) on a set of consistent levels. From an
energy perspective during early architectural design, the refinement of design parameters by addition of in-
formation allows a more precise prediction of building performance. The need for energy-efficient buildings
requires a designer to focus on the parameters in order of their ability to reduce uncertainty in energy perfor-
mance to prioritise energy relevant decisions. However, there is no method for assigning and prioritising in-
formation for a particular level of multi-LOD. In this study, we performed a sensitivity analysis of energy models
to estimate the uncertainty caused by the design parameters in energy prediction. This study allows to rank the
design parameters in order of their influence on the energy prediction and determine the information required at
each level of multi-LOD approach. We have studied the parametric energy model of different building shapes
representing architectural design variation at the early design stage. A variance-based sensitivity analysis
method is used to calculate the uncertainty contribution of each design parameter. The three levels in the
uncertainty contribution by the group of parameters are identified which form the basis of information required
at each level of multi-LOD BIM approach. The first level includes geometrical parameters, the second level
includes technical specification and operational design parameters, and the third level includes window con-
struction and system efficiency parameters. These findings will be specifically useful in the development of a
multi-LOD approach to prioritise performance relevant decisions at early design phases.

1. Introduction

The process of building design is described as an increase in in-
formation in the digital model. However, the process of building design
involves switching between levels, described as scaling [1,2]. The
concept of multi-Level-of-Development (multi-LOD) addresses this si-
tuation by integrating performance prediction and enabling informed
decision-making [3,4]. Multi-LOD is based on the concept of defining
design parameters with uncertainty in the beginning and, at each level
of development, few parameters are focussed and a suitable value is
assigned to these parameters as explained in Fig. 1. This approach is
more appropriate to represent the evolutionary and iterative nature of
the design process [5]. However, it lacks a method based on en-
gineering information for defining the levels and information required
at each level. For the inherent prioritisation, we introduce the use of
sensitivity analysis to ascertain which of the design parameters should
be focussed at each level of multi-LOD. In addition, this research

quantitively estimates the uncertainty caused by the design parameters
in energy prediction using sensitivity analysis method. A variance-
based sensitivity measure represents the uncertainty in model outcome
caused by a parameter or the uncertainty which can be removed from
predictions by defining the value of the parameter [6,7].

Since the building energy models are deterministic in nature, it will
deliver only one estimation of energy performance without considering
any uncertainty in parameters. But, due to the inherent uncertainty in
design parameters and related information at an early stage of design, it
is required to make a probabilistic estimate of the energy performance
[8]. The probabilistic estimation of energy performance is made by
sampling the design parameters in their uncertainty ranges. This
probabilistic estimation of energy performance needs to be addressed
by a statistical approach [9]. As the design process progresses, the de-
sign parameters are defined more precisely, thus, resulting in a more
accurate estimation of the performance.

The energy-efficient solutions have been one of the prime focus of
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research in building design, given that approximately one-third of
global energy is required to operate the buildings [10,11]. Thus, it will
be imperative for a designer to focus on the design parameters with
strong influence at the beginning to reliably reduce the uncertainty in
the energy prediction and develop energy-efficient building designs
further. Sensitivity analysis of energy models is performed to prioritise
the design parameters in order of their influence on energy consump-
tion. Previous research works examine the energy models of buildings
with fixed architectural shape and size [7,12–14] or rectangular
building of variable size [15,16]. However, fixing the shape is not re-
presentative of the early stage of design when an architect is interested
in developing the building shape. The behaviour of parameters is ex-
pected to be influenced by the building shape and should be studied
before extending the results to the early stage of design. There are re-
search works focussed on finding an optimal building shapes based on
energy performance [17–19] and multi-criteria optimisation [20].
However, these approaches overlook the designer’s involvement in the
design process [21,22]. The underlying concept of this research is to
assist the designers by identifying the most important design para-
meters (information), thus suggesting them to focus on some selected
parameters at each level of multi-LOD. The three research gaps ad-
dressed in this research paper can be summarized as follows. Firstly,
earlier research works do not study the effect of design parameters in
the energy model of different building shapes. Secondly, previous re-
searches estimate uncertainity caused by individual parameters while
the uncertainty contribution by a group of parameters will provide
useful information for the development of multi-LOD approach. Finally,
there is a lack of study to identify the information required at each level
of multi-LOD approach, focussing on energy-efficient building design.

There is a potential to streamline the design process with energy
prediction by the appropriate use of building information modelling
(BIM) data structures according to the multi-LOD approach [3]. This
approach will be supported by focussing suitable design parameters at
each level of multi-LOD approach, giving priority to the influential
parameters. The focus is on the design phase of the building life cycle
when the information regarding shape, size, and technical specification
is being developed. The research is aimed to identify which of the de-
sign parameters should be focussed at each level of multi-LOD approach
by performing a sensitivity analysis of building energy models. Thus,
the objectives of the research are:

1. To determine the sensitivity of design parameters and rank them in
the energy models of different building shapes.

2. To identify uncertainty levels for information required (design
parameters) at each level of multi-LOD BIM approach.

The paper is structured in sections – overview of sensitivity analysis
methods, research methodology, results, discussion, and conclusions.
The overview section documents the significance of sensitivity analysis
for energy models and the selection of a sensitivity analysis method for
the current research work. The research methodology section explains
the representative test case, the alternative building shapes, and the
calculation process of sensitivity indices and uncertainty. The results
section includes the finding of the research work, i.e. sensitivity indices
and ranking of parameters, uncertainty contribution and information
requirement for multi-LOD approach. The discussion section mentions
the limitations of the methodology and results. The conclusion section
documents the variation in parameter ranking in building energy model
at an early stage of the design and the possibility of identifying the
information required in multi-LOD approach.

2. Overview of the sensitivity analysis method

The sensitivity analysis is becoming a more common method to
study the effect of design parameters as most of the design parameter
required to make energy prediction are inherently uncertain [23]. The
global sensitivity analysis methods are used to rank the parameters in
the order of influence and quantify the uncertainty in the output vari-
able [24–27]. The sensitivity analysis studies in the domain are fo-
cussed on design support [28], assessing the robustness of energy
models [29] and variation in the output variable [30,31]. There are
various global sensitivity analysis methods, such as the Morris method,
regression-based and variance-based methods, are implemented to
study the effect and behaviour of design parameters in energy models
[7,16,32]. Each method offers certain advantages over others based on
the scenario under consideration. Morris and regression-based method
assume a model structure to calculate the sensitivity indices, thus more
suitable for linear models with fewer parameter interactions [33,34].
The variance-based method is more suitable for complex models be-
cause of its model-independent nature.

A building energy model is expected to contain higher-order effects
and parameter interactions. Thus, the variance-based method is more
suitable for the building energy model under consideration [35]. There
are two sensitivity indices calculated using the variance-based method,
i.e. first order effect S, and total effect ST. First order effect is an esti-
mate of the fraction of variance, i.e. uncertainty in the model output,
which can be removed if a value is assigned to it [7]. Thus, it is suitable
to identify the parameters with significant influence on the model
output [36,37]. The higher value of S shows the higher effect of the
design parameter on the model output and better the rank. The value of
ST represents the effect of design parameters, including interactions and
higher-order effects. S and ST are the comparative measure of

Fig. 1. Parametric uncertainty in a multi-LOD approach.
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sensitivities and represent the effect of a parameter with respect to the
overall effect of all the parameters [38].

3. Research methodology

The research methodology section consists of three sub-sections.
Sub-section 3.1 describes the test case with alternative building shapes.
Sub-section 3.2 provides the details of parameters studied and their
selection. Sub-section 3.3 describes the implementation of sensitivity
analysis method, calculation procedure for sensitivity indices and un-
certainty contribution, and details out the number of adequate samples
for variance-based sensitivity analysis.

3.1. Test case

The sensitivity analysis study starts from a rectangular floor plan
building – the Tausendpfund test case. The selected building is a re-
presentative of an average-sized office building with the total floor area
of 1200 (14.8 × 27.0 × 3) m2, equally distributed on three floors and
floor-to-floor height of 3.26 m. This building is located in Regensburg
near Munich, Germany. The climate of Munich is classified as Cfb
(warm temperate – fully humid – warm summer) in Köppen-Geiger
climate classification, which represents most of western Europe [39].
The building follows the 5-day schedule with the heating and cooling
set point as of 20 and 24 °C and setback point of 10 and 28 °C re-
spectively. The occupant load is one person per 10 m2. The energy in-
cludes the energy required to maintain thermal comfort, provide
lighting and operate the equipment. The effect of available daylight to
reduce the requirement of artificial lighting is also considered. The
external envelope of the building plays a significant role in determining
building energy consumption compare to internal space divisions [40].
Thus, for the simplicity of the simulation model, the one-zone-per-floor
calculation method is used, which assumes there is only one thermal
zone is present at each floor [4,41].

The early stage of design is represented by the test case and alter-
native building shapes (Fig. 2). All shapes are configured to provide the
same floor area. Alternative shapes support the objective to have a
representative range of design variants for the early design phase in
order to assess sensitivities and parametric range correctly. The shapes
1, 2, 3, 4, 5, and 6 represent rectangular, plus-shape, L-shape, U-shape,

H-shape and T-shape floor plans respectively. The mentioned geome-
trical configurations are commonly used shapes in small and medium-
size office building design [17,41,42]. The selected building shapes are
orthogonal to match the typical design of such office buildings. They
are suitable to represent the possible variation at an early stage of de-
sign with a limited number of geometrical parameters. Six geometrical
parameters, which are Length, Width, Height, the ratio for LengthA
(rLenA), the ratio for WidthA (rWidA) and Orientation, represent further
variation in size. rLenA and rWidA are the ratio of LengthA to Length and
WidthA to Width, respectively. LengthA and WidthA for each shape are
mentioned in Fig. 2.

3.2. Definition of parameter space

The effect of parameters on energy prediction, listed in Table 1,
forms the basis for the study. The dimensions have been constrained so

Fig. 2. Architectural design variations studied in the research.

Table 1
Details of design parameters.

Group Parameter Symbol Unit Min Max

Geometrical Length L meters 13 16.75
Width W 23.5 30.2
Height H 8.1 9.9
Ratio for LengthA rLenA – 0.7 0.9
Ratio for WidthA rWidA 0.7 0.9
Orientation Ori degrees 15 25

Technical
Specifications

Wall U-Value U_Wall W/m2°K 0.21 0.35
Ground Floor U-
Value

U_GFloor 0.26 0.44

Roof U-Value U_Roof 0.15 0.25
Infiltration Infil ACH 0.45 0.75

Window Construction Window U-Value U_Window W/m2°K 0.98 1.63
Window g-Value g_Window – 0.45 0.90
WWR (North) WWR_N 0.23 0.38
WWR (West) WWR_W 0.23 0.38
WWR (South) WWR_S 0.23 0.38
WWR (East) WWR_E 0.23 0.38

Operational Design Light & Electrical
Heat Gain

L/EHG W/m2 15 25

Operating Hours OpH hours 8 10
System Efficiency Boiler Efficiency B_Eff – 0.8 0.9

Chiller COP C_COP 3 5
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that the total floor area is always in the range of 1200 ± 25% sqm, and
length to width ratio is close to the testcase building. This adjustment is
required to make the results comparable. Since we are performing the
sensitivity analysis on a specific building case, the dimensions are
chosen according to the site restrictions and are a limited variation to
the real building case. The shapes and parameters represent typical
design cases; more complex designs are possible and can be extended
using a similar method. Generally, the compact shape such as cube is
expected to perform better than other shapes, but in the given scenario,
an option is unlikely to lead to a cube because of site conditions, day-
light and desired internal conditions (office rooms). The most compact
shape in the given parameter range is Shape1 with the dimensions of
13 m × 23.5 m × 9.9 m.

Wall U-Value, Ground Floor U-Value, Roof U-Value and Infiltration
describes the technical specifications. Window U-Value, Window g-Value
and Window-to-Wall Ratios (WWRs) for each direction define window
construction. Four other parameters, which are Operating Hours, Lighting
and Electrical Heat Gain, Boiler Efficiency and Chiller Coefficient of
Performance (COP), represent building operation and system efficiency.
The average of the U-values of building components is the same as the
reference building described in German regulation [43]. The minimum
and maximum values are ± 25% of the average. The thermal capa-
citance of the constructions is kept constant with generic values for a
typical construction type. The infiltration is set to 0.6 air changes per
hour (ACH) with a variation of ± 25%. The WWRs is 0.3 and
varied ± 25%. The operating hours are varied between 8 and 10 h a
day during weekdays. The lighting and electrical heat gain are
20 ± 25% W/m2. The boiler efficiency ranges between 0.8 and 0.9 and
the chiller COP between 3 and 5. The parameters are grouped based on
their nature; for instance, L, W, rLenA, rWidA, H and Ori are grouped as
geometrical parameters. In total, the five parameter groups are identi-
fied as geometrical, technical specification, window construction, op-
erational design and system efficiency parameters.

3.3. Calculation method

The sensitivity indices, S and ST, are calculated using variance-based
method as described in Saltelli et al. 2010 [35]. The calculation of
sensitivity indices starts by setting up a sample matrix, followed by
calculation of energy demand (model output) and analysis of model
output to calculate the values of sensitivity indices. The sample matrix
X, of size n × p representing n design configurations of p parameters, is
set up using SALib python library [44] as shown in Eq. (1). A program
developed for this research automates the generation of EnergyPlus
input files corresponding to each design configuration. A building’s
energy demand corresponding to each design configuration is calcu-
lated using the dynamic energy simulation tool EnergyPlus [45] at the
Vlaams Supercomputer Center (VSC). We used ten nodes equivalent to
360 cores at the clock speed of 2.3 GHz. The use of supercomputer
allows running EnergyPlus simulations in parallel (360 simulations at a
time), reducing the time required to generate data. The data generation
for sensitivity analysis is fully automated. The results of EnergyPlus
simulations are read using a program which provides the model output
corresponding to each design configuration and represented by vector Y
(X). The model output, i.e. vector Y(X), is analysed to calculate the
sensitivity indices, S and ST for each design parameter.

= =X Y X

x x x
x x x

x x x

and ( )

y
y

y

1,1 1,2 1,p

2,1 2,2 2,p

n,1 n,2 n,p

1

2

n (1)

The parameters are ranked based on the value of their first-order
effect, higher the value better the rank. The uncertainty attributed to a
group of parameters is calculated by summing up their absolute first-

order effects. The approach ignores the contribution towards un-
certainty caused by interaction and higher order effects of the para-
meters. If the higher-order effects and interactions are not significant,
this will provide a reliable measure of uncertainty caused by the
parameter. The sum of interactions and higher-order effects is calcu-
lated by subtracting the first-order effect from total effects. The three
levels are observed in the uncertainty contributed by the group of
parameters, which forms the basis of information required at the three
levels of multi-LOD approach. The designer should focus on parameter
groups which exceed the observed level threshold.

The required number of samples is tested by calculating the mean
absolute error (MAE), described in Saltelli et al. 2010 [35]. If the
number of samples is N, then it requires n = N×(p + 2) design con-
figurations to generate the data for variance-based sensitivity analysis.
The tests are conducted, starting with a low number of samples and
gradually increasing the number of samples. The validity of the method
depends on MAE, which is expected to decrease with the number of
samples. The preliminary test is conducted with 50, 100, 250, 500, 750
and 1000 samples for Shape1. The values of MAE for the number of
samples are plotted in Fig. 3. The number of simulations represents the
computational efforts as the simulations are the most time-consuming
activity in the process. The computational efforts increase linearly with
the number of samples, but the value of MAE doesn’t reduce much once
the number of samples is higher than 500. So, for further analysis, the
data has been collected with 500 samples for each shape.

4. Results

The sensitivity analysis is carried out for each shape and results are
documented in this section. Section 4.1 presents the values of sensitivity
indices and ranking of parameters. Section 4.2 documents the un-
certainty contribution by the group of parameters and Section 4.3 de-
tails the information required at each level of multi-LOD approach.

4.1. First order and the total effect

The value of sensitivity indices is calculated for each parameter
using 500 samples for each shape using the variance-based method. The
values of S and ST are plotted as a bar graph in Fig. 4. It can be noticed
that there is a little variation in the parameters’ sensitivities across
shapes. The value of indices for parameters such as L, W, Infil, OpH and
L/EHG is slightly different for Shape1 than other shapes. The values of
indices are much lower for U-values of components, g_Window and
WWRs. The value of indices for these parameters is plotted in zoomed
inset figures. The values of the first-order effect for L, W, Infil and OpH
are close to 0.25, 0.25, 0.15, 0.1, making these most influential para-
meters. The value of S and ST for WWRs is close to 0, rendering these as
insignificant parameters.

The parameters are ranked based on the value of S for each shape,

Fig. 3. Number of samples for variance-based methods (colour).
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and the results are plotted as trendline in Fig. 5, higher the value, better
the rank. It allows identifying any change in the ranking of parameters
across different architectural designs. The ranking of parameters for
AllShapes is based on the mean value of S calculated over all the shapes.
There is no change in the ranking of parameters for the parameters W,
L, Infil, OpH, L/EHG, H, B_Eff and g_Window and ranked in the similar
order as mentioned for all the shapes. For remaining parameters, the
rank of parameter changes across shapes.

4.2. Estimation of uncertainty in energy prediction

The uncertainty in energy prediction attributed to a group of
parameters is calculated by summing up the absolute value of the first-
order effect of the parameters. The sum of values of higher-order effects

Fig. 4. First order and total effect for different shapes (colour).

Fig. 5. Ranking of parameters for each design alternative (colour). Fig. 6. Uncertainty contribution by a group of parameters for energy prediction
(colour).
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and interactions of all the parameters is close to 0.05; hence, ignored
for calculating the uncertainty contribution. The results are shown in
Fig. 6 for the group of parameters, namely geometrical, technical spe-
cifications, window construction, operational design, and system effi-
ciency parameters. There seems to be no to little variation in un-
certainties across different building geometry. More than 50% of the
uncertainty in energy prediction is represented by geometrical para-
meters. The technical and operational design parameters cause 1/5 of
the total uncertainty individually. Window construction and system
efficiency parameters represent the uncertainty of less than 5% in the
prediction.

4.3. Information requirement at each level of multi-LOD approach

The three levels in the uncertainty contribution by the groups of
parameters are identified at 50%, 15% and 2%, as shown in Fig. 6.
These levels are used to determine the information required in a multi-
LOD approach. The geometrical parameters cause the most part of
uncertainty for all shapes. Thus, finding the suitable value for geome-
trical parameters is most important and should be prioritised at the first
level of multi-LOD approach. At the next level, the designer should
focus on technical specifications and operational design parameter
group, which causes more than 15% of uncertainty individually. At the
third level, decisions on system efficiency and window construction
parameters will reduce uncertainty by about 2%.

The designer assigns suitable values to the design parameters by
design decisions following the order of preference at each level. The
approach needs to be tested by assigning values to the design para-
meters and observing its effect on the uncertainty in the energy pre-
diction at each level. The energy prediction is performed using the fixed
design parameters (with an average value assigned to it) and the un-
certain design parameters (random combinations) at each level. The
energy prediction results are plotted in Fig. 7, with a mean value, range
and interquartile range (IQR) for each shape. The range and IQR re-
present the uncertainty in the energy predictions. It can be noticed the
uncertainty reduces as the designer assigns the value to the design
parameters. The uncertainty as Level 1 is highest, followed by Level 2
and Level 3. For example, in Shape1, the mean value of energy

prediction is 1.70 × 105 kWh/a, ranges at Level 1, 2 and 3 are
1.32 × 105 kWh/a (77%), 0.73 × 105 kWh/a (43%) and 0.26 × 105

kWh/a (15%) respectively. The IQRs at the same levels are 0.31 × 105

kWh/a (18%), 0.18 × 105 kWh/a (11%) and 0.06 × 105 kWh/a (4%)
respectively. It should be noted that the energy performance changes
from one shape to another but (as shown in section 4.2) the parameters’
sensitivities vary a little across the shapes. Thus, the shape also influ-
ences the energy performance but cannot be quantified with other de-
sign parameters due to its categorical nature.

5. Discussion

The parameter groups are ranked in the order of their influence on
the energy prediction using the method of variance-based sensitivity
analysis. It has been shown that the reduced uncertainty in the design
parameters allows a more precise prediction of energy performance.
Moreover, the order of the influential parameters is important as
finding a suitable value for these parameters reduces the uncertainty
more than the others. Thus, the order of the influential parameters
forms the basis of information requirement for multi-LOD approach.

The value of indicator S and the ranking of parameters based on this
indicator shows W, L, Infil, OpH, L/EHG, H and B_Eff are the most in-
fluential parameters and ranked in the similar order as mentioned for
all the shapes. A change in the ranking of parameters occurs with lower
values of S (less than 0.01) only, which means the most significant
parameters show similar ranking across different architectural designs.
In most of the case, WWRs and Ori shows the negligible effect and
ranked in the last. It should be noted that the input range of all the
parameters only varies ± 25% from the mean value. Due to non-lin-
earity, results cannot be generalised if a higher range is defined. The
ranking of parameters based on the value of S for AllShapes is re-
presentative of early-stage design as it is calculated over several ar-
chitectural designs.

The sum of values of S for the first seven influential parameters is
close to 0.9, which means 90% of uncertainty can be removed by
finding the value of these seven design parameters. However, it is not
logical to focus on these parameters at one level, as nature of these
parameters is completely different. For example, a designer cannot

Fig. 7. Effect of the uncertainty in design parameters on the performance prediction.
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focus on length and width with system efficiency parameters. The value
of S for W and L is close to 0.25, which means 50% of the uncertainty
can be removed as soon a suitable value is assigned to these parameters.

There is no significant change in the parameters’ sensitivities across
the geometrical shapes. Therefore, the results of the sensitivity analysis
can be generalised for multi-LOD approach to determine which in-
formation best serves to reduce uncertainty in a model at an early stage
of design. The parameter groups are divided into three levels, which
causes more than 50%, 15% and 2% variation of response respectively,
i.e. predicted energy consumption. The designers should prioritize
finding a suitable value for geometrical parameters at the first level of
multi-LOD as it causes most part of the uncertainty. In the next level,
technical specifications and operational design parameters should be
focussed. In the final stage, suitable values to be assigned to window
construction and system efficiency parameters. The shape of the
building also influences its energy performance but difficult to be
quantified because of its categorical nature.

It should be noted that the variance-based sensitivity analysis
method provides sensitivity indices of comparative nature, i.e. the in-
fluence of a parameter with respect to all the parameters under con-
sideration. Thus, the results cannot be used to interpret the effect of one
parameter if other parameters do not have the mentioned uncertainty
range. There are some parameters such as WWRs, infiltration and
lighting and electrical heat gains which may not be possible to define in
the range of ± 25% at an early stage of design. In that case, the
method can be used to compute the uncertainty contribution and use
the new findings to determine the information required at each level.

A typical office building in Munich as a test case has been examined
in the research. The weather plays a significant role in energy predic-
tions and affects the parameters’ sensitivities; thus, the results are
cannot be generalised for another location without further tests. The
different building shapes of the comparable area with varying length
and width have been included in the analysis to make the sensitivity
analysis results still more generalisable for the early stage of design. The
parameter space is varying only ± 25% from the mean values for most
of the parameters, and the sensitivity analysis results are only applic-
able in the defined range. The building energy model considers the
effect of self-shading only. The effect of shading from the surroundings
or overhangs is not studied in this research, which is expected to in-
fluence the energy prediction. As the focus of the paper is to study the
early stage building energy models, the building system is represented
in a simplified way by efficiency parameters only. The presented ap-
proach is of mono-disciplinary nature, i.e. the decision-making for an
energy-efficient design while the building design process is of colla-
borative nature, which involves several different disciplines. There are
possibilities that some other design parameters are important, or the
parameters have conflicting influences on the performance prediction
involving multiple disciplines. This issue can be resolved using the
weighted-sum method or focussing all the important parameters for
each discipline per LOD.

6. Conclusions

The ranking of design parameters based on their influence on en-
ergy prediction is useful for the development of information require-
ments in a multi-LOD approach from an energy-efficiency perspective.
There is very little change in the sensitivities of design parameters
across different building shapes and no change in the ranking of highly
influential parameters. Thus, it is concluded that there is no variation in
the ranking of design parameters in the building energy models at an
early stage of design. The uncertainty contribution by a group of
parameters is more relevant for the identification of required in-
formation at each level. It is possible to identify three levels in the
uncertainty contribution by the group of parameters corresponding to
the three levels of multi-LOD approach. In a typical multi-LOD ap-
proach, a designer shall start the design process with a rough definition

of all the design parameters, i.e. defining parameters with a mean value
and range of ± 25%. Afterwards, the designer should focus on the de-
sign parameters in the following order of preference – geometrical
parameters (Level 1), technical specifications and operational design
parameters (Level 2), and window construction and system efficiency
parameters (Level 3). Furthermore, it should be noted that energy
performance is also influenced by the building shape and finding an
optimal shape should be of primary importance at the beginning of the
design process.

The sensitivity analysis of the energy model is useful to identify the
most relevant design parameters for performance-based design. The
parameters are grouped based on their nature to ascertain uncertainty
caused by a group of parameters. The group of parameters causing
maximum uncertainty are identified and ranked using the approach of
sensitivity analysis. The parameter groups should be focussed in the
order of their preference in a multi-LOD approach to allow more ac-
curate prediction of energy as the design progresses.
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