
Automated Guided Vehicle Systems,
State-Of-The-Art Control Algorithms and Techniques

M. De Rycka,∗, M. Versteyhea, F. Debrouwerea

aFaculty of Engineering Technology, KU Leuven,
Spoorwegstraat 12, 8200 Bruges, Belgium

Abstract

Automated Guided Vehicles (AGVs) form a large and important part of the logistic transport systems in today’s in-

dustry. They are used on a large scale, especially in Europe, for over a decade. Current employed AGV systems and

current systems offered by global manufacturers almost all operate under a form of centralized control: one central

controller controls the whole fleet of AGVs. The authors do see a trend towards decentralized systems where AGVs

make individual decisions favoring flexibility, robustness, and scalability of transportation. Promoted by the paradigm

shift of Industry 4.0 and future requirements, more research is conducted towards the decentralization of AGV-systems

in academia while global leading manufacturers start to take an active interest. That said, this implementation seems

still in infancy. Currently, literature is dominated by central as well as by decentral control techniques and algorithms.

For researchers in the field and for AGV developers, it is hard to find structure in the growing amount of algorithms

for various types of applications. This paper is, to this purpose, meant to provide a good overview of all AGV-related

control algorithms and techniques. Not only those that were used in the early stages of AGVs, but also the algorithms

and techniques used in the most recent AGV-systems, as well as the algorithms and techniques with high potential.

Keywords: AGV-systems, State-Of-The-Art, Control Techniques, Centralized, Decentralized, Potential

Future techniques

1. Introduction

Automated Guided Vehicles (AGVs) are mobile robots

which are extensively used in the industry to transport

goods from A to B. Currently, the market of AGVs is grow-

ing fast and is very dynamic. A market report published

by Grand View Research (2017) [1] forecasting the period

from 2018 to 2025 focuses on the potential growth oppor-

tunities of AGVs, stating that the future growth of AGV

∗Corresponding author

Email addresses: matthias.deryck@kuleuven.be (M. De

Ryck), mark.versteyhe@kuleuven.be (M. Versteyhe),

frederik.debrouwere@kuleuven.be (F. Debrouwere)

systems is (i) caused by the emergence of flexible manu-

facturing systems, (ii) the rising demand for customized

AGVs and (iii) the adoption of industrial automation by

SMEs. Current AGV-systems are well known and widely

implemented in manufacturing, medicine, and logistics. In

these systems, a fleet of AGVs is organized in a centralized

way. Tasks like motion planning and allocation of tasks are

done by a central entity, showed by Figure 1a, for all the

AGVs together.

Preprint submitted to Journal of Manufacturing Systems December 6, 2019



Driven by future requirements like flexibility, robust-

ness, and scalability, the current trend in AGV systems

is decentralization. The authors define decentralization as

the distribution of the total intelligence of a system to its

components: each device gets a part of the total intelli-

gence to be able to operate independently, striving for the

same global goals as depicted in Figure 1b.

(a) Central architecture (b) Decentral architecture

Figure 1: Central and decentral control architectures

The Grand View Research market report [1] states de-

centralization as one of the future technologies which will

gain great attention. The most important reason why this

trend is gaining attention, is the expansion of the AGV

fleet. In future systems, larger and more complex systems

will be needed to fulfill the transportation demand within

a factory. This will not be feasible with currently employed

systems because of memory, communication and computa-

tion limits. Academia and leading companies investigated

decentralization resulting in rich publications which [2, 3]

tried to review. This paper updates the state of the art

and dedicates special attention to recent advances in prac-

tical applicable decentralization.

The authors decompose the AGV control into five dis-

tinct core tasks. Every core task is criticized in a decentral

context. The remaining chapters are organized as follows.

Section 2 starts with the Industry 4.0 context and how we

see future AGVs fit in this context. In Section 3, a dis-

cussion on general decentralized control is provided as a

prelude to decentralized control specific for AGVs. The

main advantages and drawbacks of distributed control are

discussed and the different paradigms to introduce decen-

tralization in a system are described. In section 4, the

core tasks needed to control a whole AGV-system are de-

scribed. In the following sections 5 until 9, every core task

is deepened out referencing the current existing state-of-

the-art algorithms and techniques. To end each of these

sections, a conclusion is made regarding which algorithms

or techniques will be more prevalent in the future and

thus, which will be more suitable for decentralized con-

trol of AGV systems. We complete the paper with a brief

research discussion in Section 10 on how the AGV of the

future looks like and how it will be controlled. Finally, we

draw some general conclusions about every core AGV task

in Section 11.

2. AGVs in an Industry 4.0 context

Industry 4.0 represents the fourth industrial revolution

in manufacturing. The Industry 4.0 paradigm puts infor-

mation central. The paradigm creates value from informa-

tion extracted and refined from data. It is the paradigm

by choice for our factories of the future which enable mass

customization and allow further horizontal and vertical in-

tegration.

Figure 2: ISA 95 model [4]

With the possibility of free flow of data between elements

in the production or in the logistics ecosystem, there is no

need to rely on central architectures anymore to steer those

2



elements. As industry 4.0 models migrate from the typi-

cal automation pyramid ISA 95 to RAMI 4.0 (See Figure

2 and 3 respectively), members in a more complex sys-

tem may communicate directly with each other and with

their local environment on different levels. Intelligence can

be distributed among the members and new architectures

that generate value can be explored. Value here in terms

of performance, scalability, robustness, and flexibility. In

literature, the term ’Factory of the Future’ is used as well

to denote a factory reflecting these Industry 4.0 features.

Also in the factory of the future, transportation is preva-

lent. With the use of mobile robots, an efficient and dy-

namic transportation of goods can be achieved. These mo-

bile robots need to cope with the emerging requirements of

Industry 4.0 as well. The fleet needs to adapt to changing

circumstances, needs to be robust in any case, and needs

to be scalable to any transport demand at any time.

Figure 3: Axis 1 of the RAMI 4.0 model [4]

AGVs need to be intelligent, gathering useful information

to make smart decisions very dynamically. Besides trans-

port, the variety of tasks of AGVs will enlarge. In an

Industry 4.0 context AGVs will not stay homogeneous.

Using their intelligence and equipped with tools, they will

have more functions other than transportation only. AGVs

will be used more for ”Ad Hoc” solutions. This in the sense

that AGVs will be used for specific situations and will be

equipped with tools to perform specific tasks. We expect

a fleet of AGVs to be more heterogeneous, flexible, and

dynamic where each vehicle will have specific abilities and

will be able to operate in a flexible manufacturing system

in a ”plug-and-produce”-way. To realize the potential of

the Industry 4.0 paradigm, AGVs need a different control

architecture leaning next to big data, inter-connectivity,

and cloud computing, on decentralization. The total in-

telligence of a system will not be centered anymore in one

control unit but all devices will have their own intelligence

creating data for independent information retrieval. This

decentralization, and especially the adoption in general

AGV control, is the specific aspect the authors are in-

terested in. In the next section, this adoption in general

manufacturing systems is discussed.

3. Discussion on the adoption of a decentralized

control architecture

Decentralized control is one of the main features of

Industry 4.0 paradigm. Many research is already con-

ducted towards decentralized algorithms and techniques to

control manufacturing systems in a distributed way [5–7].

Some research is done to the benefits of this architecture

comparing to currently central and hierarchical structures.

Many researchers mention the future need for decentraliza-

tion [5, 8–17] recognizing the limits of the current central

architectures as not suitable to handle flexible manufac-

turing, custom products, and complicated product speci-

fications. [18] makes a comparison between current cen-

tral and decentral control architectures in manufacturing

and clarifies that centralized and hierarchical architectures

are not compatible with the needs of future systems and

that decentralization is the likely strategy to cope with

the modern conditions. They state that decentral con-

trol fits for dynamic environments as it quickly adapts to

changes. However, they also state the limitations of such a

decentralized architecture. The main drawback in decen-

tralized control is the increased effort needed to coordinate

3



all those independent entities as each of them tries to reach

their own goals. This will not necessarily lead to the global

optimum of the overall system. When adopting decen-

tralized control architectures in a manufacturing process,

there will always be a trade-off between optimality and

flexibility. For small systems, decentralized approaches

will be not as optimal as a centralized architecture but

can guarantee more robustness and flexibility. However,

because of the limitations of a central architecture, this

will be, for larger systems, also be far from optimal. And

this while the decentralized approaches can still guaran-

tee robustness and flexibility even for very large systems.

Table 1 compares both approaches.

Centralized Approaches Decentralized Approaches

Deeply rooted into the industry Hardly implemented in industry

Well-known algorithms Well-known algorithms

Access to global information Access to local information

Global optimum Sub-optimal

Small scaled systems Large scaled systems

Simple systems Complex systems

Not robust in dynamic situations Robust in dynamic situations

Table 1: Centralized vs. decentralized architecture

Different approaches to incorporate decentralization in

a control architecture are developed in the last years. [5,

19, 20] gives an overview of various novel organizational

principles, structures, and methods that can support coop-

erative behavior in future manufacturing. New approaches

like holonic, fractal, random, biological and multi-agent

manufacturing systems attempt to introduce a more de-

central control architecture in future manufacturing sys-

tems. [16] introduces ’Anarchic Manufacturing’ which in-

corporates the distributed control philosophy. This is an

extreme form of decentralization in which the decision-

making authority and autonomy is delegated to the lowest

level of entities in system elements with no central control

at all. These approaches are presented for general manu-

facturing purposes but can also be used in more specific

areas like self-driving cars, unmanned areal vehicles, and

of course automated guided vehicles.

Remark: This review paper has not as a purpose to re-

view different decentralization approaches with their pro’s

and cons. The authors see general distribution of intelli-

gence and computation as a way to overcome the limits

of central systems and to cope with the requirements of

Industry 4.0. So our purpose is to review the suitability

of control algorithms to be used in general decentralized

control architectures.

In the next sections, an overview of different algorithms

and techniques used to control AGVs will be reviewed in

the light of decentralized control architectures.

4. Core AGV Tasks

A complete AGV-system consists of multiple core tasks

to be able to operate in complex environments. If an e-

commerce warehouse is taken as a running example, then

these core tasks can be easily distinguished. In such an

e-commerce situation, there is a continuous stream of or-

ders which enters the logistical warehouse system (ERP1

or WMS2). An order can be seen as an object somewhere

in the warehouse that needs to be brought to the picking

station where the order can be sent to the customer. In

this paper, the authors divide the total AGV-system in

five core AGV-tasks shown by Figure 4.

Figure 4: Overview of the five core AGV tasks

1Enterprise Resource Planning
2Warehouse Management System

4



A first core AGV task is Task Allocation. A set of tasks

(orders) which has to be distributed to the fleet of AGVs

need to be allocated to a specific AGV optimally. The

easiest way to solve this is to allocate the task to the AGV

which is closest to the position of the ordered object. Once

a task is allocated, the next core AGV task is used to find

the shortest path to the destination. This task is named

Path Planning. It uses a representation of the environment

to search for a sequence of segments to reach the goal as

fast as possible. For Path Planning, it is important that

the AGV can navigate properly in its environment. Thus

Localization is also an important core AGV task. If a

Path Planning algorithm computes the shortest path for

an AGV, this does not mean that the AGV can follow

that path without any problems. An unforeseen object or

person can block the path or other AGVs may need some

segments of the path at the same time. To avoid collisions

or situations where multiple AGVs enter a life- or dead-

lock situation, there is another core AGV task named Mo-

tion Planning. This planner tries to avoid collisions with

other static or dynamic objects. It tries to avoid deadlock

situations and tries to limit the number of vehicles in a

particular area. Limiting the numbers of vehicles in an

area is called zone control. Once the collision-free path is

executed and the AGV reaches its destination, the object

can be loaded on the AGV. The exact same tasks are then

used to bring the loaded object to the picking station. Par-

allel with all these core AGV tasks, there is another core

task, Vehicle Management, which controls and monitors

the status of an AGV. Some management issues are bat-

tery lifetime, maintenance requirements, and error status

handling. A schematic overview of this generic AGV work-

flow can be seen in Figure 5.

In the following sections, every core AGV task will

be treated and relevant algorithms and techniques will

be described. To end each of the sections, a conclusion

is made regarding which algorithms or techniques will be

more prevalent in the future and thus, which will be more

suitable for decentralized control of AGV systems

Figure 5: Threads of a generic AGV work flow

5. Task Allocation

Task allocation is one of the most challenging AGV

tasks. It assigns a set of tasks to a set of robots, which

can be seen in Figure 6.

Figure 6: Task Allocation

This is a constrained optimization NP-hard problem [21]

in which the cost of the total assignment needs to be as low

as possible, which means that if there are a lot of tasks and

robots, the number of solutions will be enormous. So there

does not exist an efficient algorithm which can produce an

exact solution to the problem in a finite amount of time.

To solve these NP-hard problems, approximate optimiza-

tion techniques named heuristics [22] and meta-heuristics

[23] are used. A task in task allocation can be a particular

object that has to be picked up at a certain location and

5



has to be dropped off at another location in a factory. An-

other task can be a surveillance task in which a group of

AGVs must scan an area in the most efficient way. In the

following sections, some properties and solution methods

are described.

5.1. Desired properties

In task allocation for AGV-systems, the most impor-

tant properties [24] are (i) divisibility: the total work must

be divided efficiently. The purpose is to have a high usage

of every resource. Busy AGVs on one side and idle AGVs

on the other at the same time is undesirable. And (ii)

fault tolerance: the task allocation must operate correctly

no matter what failures are faced.

Further properties are scalability, flexibility, and respon-

siveness.

• Scalability is the way the system can be enlarged

without problems. The task allocation algorithms

must keep working with a bigger amount of AGVs

without reaching memory or computation limits.

• Flexibility means that the algorithm should, in any

case, continue operating by continuously adapting to

changes in the system.

• Task allocation should also be responsive, this means

that it must have high performance also in dynamic

environments.

To take all these desired properties into account, proper

algorithms are developed. Section 5.5 covers these algo-

rithms.

5.2. Taxonomy of tasks

Every application requires another kind of task allo-

cation. Gerkey and Mataric [25] have proposed a widely

accepted taxonomy for task allocation in multi-robot sys-

tems. They divide the tasks into the following categories:

• Single robot tasks (SR): Tasks which only need one

robot to be completed.

• Multiple robot tasks (MR): Task which needs more

than one robot to be completed.

• Single task robots (ST): Robot which can only per-

form one single task at a time.

• Multi-task robots (MT): Robots which can perform

more tasks simultaneously.

• Instantaneous assignment (IA): Tasks are indepen-

dent of each other and there is no planning for fu-

ture allocations. The available information about

the task only permits an instantaneous allocation.

• Time-Extended assignment (TA): Tasks are depen-

dent on each other. Future allocations can be planned

considering several constraints. See section 5.3 for

some dependency constraints.

A task allocation situation can be described by a triplet of

these categories. The most simple situation is the triplet:

SR-ST-IA. In which simple independent tasks, only requir-

ing a single robot, are executed by robots which can only

perform one task at a time. An extra division in task allo-

cation problems can be made between static and dynamic

allocation:

• Static task allocation: The tasks which are allocated

are completed by the robot to which the task was

initially allocated. Tasks cannot be re-assigned.

• Dynamic task allocation: The tasks can be re-assigned

if there is another robot which is better to suit the

task than the robot which was initially assigned to

the task.

Many types of tasks can occur. For this reason, a bunch of

algorithms is developed in past decades to meet all these

different kinds of tasks covered in Section 5.5.

5.3. Task Constraints

In some applications, tasks are independent of each

other and are assigned to a robot from the moment the

6



task is available. The only relevant information about the

task is a starting and an ending point. After the assign-

ment, the robot can directly execute the task knowing this

information. This can be the case in a warehouse environ-

ment where an order enters and the task for the AGV

is to get the ordered object and bring it to the picking

station. Knowing the basic information, the task can be

assigned to the robot which is closest to the task. This

is the simplest case. Real-world applications though set

several constraints [24, 26]:

• Temporal Constraints: Tasks can have a time win-

dow in which tasks can have a duration, minimum

starting time, and maximum ending time (deadline).

These are time constraints related to the specific

task.

• Precedence Constraints: There are also constraints

which cause that tasks are dependent on each other.

Tasks can be partial ordered, which means that some

tasks must be completed before or after another task.

Tasks can be coupled, which means that two or more

tasks must be executed at the same time. There can

also be incompatibility, in which tasks produce or

obsolete other tasks.

• Some further kind of constraints which can restrict

some assignments are mobility interferences. For in-

stance when a narrow aisle exists where only one

robot can pass on the way to the task.

• A last type of constraints is resource constraints.

These can prevent a task to be executed when re-

sources are empty. The AGV then has to be charged

before it can execute more tasks.

For the expression of all these types of constraints, rep-

resentations like Simple Temporal Networks (STNs) [27]

or Hierarchical Task Networks (HTNs) [28] can be used.

The presence of this variety of constraints has as a result

that task allocation in multi-robot systems can get quite

complex.

5.4. Optimization Objectives

In the allocation of robots to a set of tasks, there is

always a certain objective to be optimized [24]. There are

several optimization objectives which can be used.

First, there are several elements which can be optimized:

• Cost: Cost that it takes for a robot to execute a

task. This can be travel cost like time, distance, or

fuel consumption.

• Fitness: How well a robot can perform a task.

• Reward: Gain of completing a task.

• Priority: Urgency of completing a task.

• Utility: The subtraction of cost from reward or fit-

ness.

Second, there are some types of objectives possible:

• MinMax: Minimize the cost of the worst robot.

• Egalitarian: Maximize the utility of the worst robot.

• TotalSum: Minimize the sum of individual costs.

• Maximize the sum of individual utilities.

• Minimize the average cost per task.

• Maximize throughput.

Different solution approaches use different optimization

objectives to get to the global optimum. These solution

approaches will be discussed in the next section.

5.5. Solution Models

In the last decade, there has been done a lot of re-

search to solve the problem of multi-robot task alloca-

tion. It is a vast area because of the huge diversity of

tasks and task constraints. A lot of solution approaches

have been developed and are available in literature. This

7



makes structuring of task allocation algorithms rather dif-

ficult. In this review paper, the authors make two clear

separations in the state-of-the-art solution algorithms: (i)

optimization-based solutions and (ii) market-based solu-

tions. Each of these two solution methods are covered

in the next sections. The other two, behavior-based, and

field-based methods, have limited use and are only briefly

described for completeness. Figure 7 gives an overview.

Figure 7: Overview Task Allocation algorithms

As mentioned in Section 3, the whole AGV control can

be architectured in a more central or a more decentralized

way. In the following, the authors will describe the four

core task allocation solution approaches. Each approach

will have a less or more decentralized character which will

mark the approach less or more suitable in a decentral

context

5.5.1. Optimization-based solutions

In optimization-based solutions [29], an algorithm sear-

ches for an optimal solution in a solution space which max-

imizes a profit or minimizes a cost using global information

and considering all constraints. This is visualized in Fig-

ure 8. If the solution space is small, exact solutions can be

found. For a small number of tasks and robots, it is, for

example, feasible to generate a matrix with traveling costs

for each robot to get to each task. Taking the constraints

into account, it is possible to use an exact algorithm which

can find the optimal solution of task assignment in this

small solution space in a finite amount of time. If the

amount of tasks and robots increases significantly, the so-

lution space becomes too large. In this situation, no exact

solution methods can be used. These problems are called

NP-hard and no exact algorithms exist which can find the

optimal solution in a finite amount of time and approxi-

mate search algorithms like heuristics, meta-heuristics, or

hyper-heuristics need to be used.

Figure 8: Optimization principle

Exact algorithms. A first exact searching algorithm is Mixed-

Integer Linear Programming (MILP) [30], where the ob-

jective functions and constraints are formulated in integer

and linear equations and solved by a certain solver algo-

rithm. Another exact algorithm is Brute Force Search or

Exhaustive Search [31]. This algorithm evaluates every

possible solution and selects the best. The Branch and

Bound algorithm [32, 33] is also an exact algorithm. In

this algorithm, the set of possible solutions is represented

as a tree with the whole set of solutions at the root. The

algorithm explores branches of this tree which represents

subsets of solutions. For each branch, an upper and lower

bound is defined. The algorithm enumerates candidate

solutions of a branch if this branch can produce better so-

lutions than the solution already found. Otherwise, the

branch is discarded and no solutions in this branch will be

evaluated. Also, other tree-based algorithms [34, 35] can

be used to find an exact solution. As stated earlier, these

algorithms can only be used for small solution spaces. This

means a very small amount of robots and a small number

of tasks to allocate. If there are n robots and p tasks

8



to allocate, then there are n ∗ p possible allocations. This

number can increase very quickly, making exact algorithms

of little use for normal sized- and large-sized systems. And

certainly if also complex constraints are considered.

Heuristics. Heuristics like Random Search [36], or Hill-

Climbing [37] take a solution every time step during a fixed

amount of steps and compare it to the best solution already

found. The best solution yet found after the amount of

steps to execute is considered as the best solution. A more

recent heuristic approach is the nCAR algorithm [38]. This

nearest-neighbor based Clustering And Routing algorithm

is based on the known Vehicle Routing Problem (VRP).

Meta-heuristics. Heuristics only look for better solutions

when comparing. Using this technique, they can get stuck

in local optima. Therefore, meta-heuristics are used which

also temporarily allow worse solutions at some times to get

out of the local minimum. These are actually strategies to

guide a search process. Meta-heuristics can be divided into

trajectory-based and population-based methods:

• Trajectory-based methods are methods where a so-

lution space is searched and where the probability

of choosing a better solution above a worse one is

dependent on the moment of the trajectory in the

timespan of the algorithm. Examples are Simulated

Annealing [36, 39, 40], Iterative Local Search [41],

Variable Neighborhood Search [42], and Tabu Search

[36].

• Population-based methods are methods where pop-

ulations are used to search for the solution space.

Examples are Genetic Algorithms [43–45], Particle

Swarm Optimization [46–49], Memetic Algorithms

[50], and Ant Colony Optimization [51].

Hyper-heuristics. Hyper-heuristics [52] are used to auto-

mate the process of selecting, combining, adapting, or gen-

erating several heuristics to solve search problems. There

are a lot of heuristics which can be chosen to solve a prob-

lem. Each has their own weaknesses and strengths. Hyper-

heuristics try to automatically choose proper heuristics out

of a set of low-level heuristics at any given time dependent

on the current state of the problem.

These heuristics, meta-heuristics, and hyper-heuristics

can handle much larger solution spaces than exact algo-

rithms can do. But for very large solution spaces, it is

less likely to find the global optimum. The larger the so-

lution space gets and the more constraints exist, the more

difficult it gets to find this optimum.

Dynamic Programming. Dynamic programming [53] is an-

other method as a method to solve problems in general

which does not really fit into the above-mentioned struc-

ture. In dynamic programming, the total problem is di-

vided into subproblems of which a solution can be found

in a more simple way than the solution of the total prob-

lem. This is the case if the sub-problems can be recur-

sively nested into the global problem. The total complex

problem can be solved by using the solutions of the simpler

sub-problems. Results of sub-problems are stored in a kind

of table. When solving the total problem, these solutions

can be used when needed. In optimization, dynamic pro-

gramming simplifies a decision by breaking it down into

simpler decisions, which is called ’Divide and Conquer’.

Because of the division of the total problem, it seems that

Dynamic Programming is better able to find a more op-

timal solution than heuristics do. But still, for very large

fleets, it is hard to keep up good system performance.

Conclusion. In this section, the most widely used optimization-

based task allocation algorithms were covered. These al-

gorithms need to search a solution space for feasible solu-

tions. This is a global way of optimizing. The algorithms

need to have access to the global information to be able

to search for the optimal solution. Optimization-based

algorithms are widely used in centralized task allocation

9



algorithms and have great performance for small AGV sys-

tems. However, for real-life systems, the solution space

just gets too big causing the need for heuristics which only

find near-optimal solutions. And as the system gets larger,

it gets more difficult to find a good solution which approxi-

mates the global solution. When computation gets heavier

due to size and complexity, this also pushes the boundaries

on the computer’s performance, which is again a cause of

performance decrease. A second issue is the lack of robust-

ness.

5.5.2. Market-based solutions

In market-based solutions [29], an economic principle is

used to solve the task allocation problem. In this case, the

allocation is not done by executing an optimization process

using all available information. But a specific method of

auctions is used where each robot uses its local information

to calculate bids. The most basic approach of the principle

of an auction is the CNET protocol [54]. In this protocol,

an auctioneer announces one single task at a time to bid-

ders. Each bidder places a bid for the task-dependent on

the cost for the bidder to execute the task. The auction-

eer then evaluates all the bids, including its own bid, and

assigns the task to the robot with the highest bid. This

is called a greedy solution as the simplest best solution is

chosen. After a robot is assigned to a task, it can no longer

bid on another task. The auction process is visualized in

Figure 9.

Figure 9: Auction principle

This is the simplest market-based approach but there

are a lot of variants to this as reviewed in the following

parts.

Role of the auctioneer. First of all, the role of the auc-

tioneer can be played by a central computer, by a fixed

robot, or can be altered between robots based on the win-

ner, at random or via token passing [55]. This causes

that a market-based approach can be central or decentral-

ized from structure. The way of optimizing in all different

methods stays the same if all robots cooperate in the same

auction. This because the auction process stays the same.

All robots compute their bids and send them to a decision-

maker which chooses the best allocation based on all bids.

At which robot or computer this decision maker is situated

does not matter, the result of allocation will be the same.

Although, looking at robustness and flexibility, the role of

the auctioneer does have an effect. By using an altered

role, the robustness of the system increases as there is no

single point of failure. The task allocation process may

be altered between robots, making it robust and suitable

for decentralized control. Hence, market-based allocation

using a central computer may facilitate later deployment

to a full decentral control. This is also an important as-

pect to consider as it can be interesting for a company to

adapt gradually the current central architecture. As a last

remark, in really large fleets, it could also be possible to

have multiple auctioneers in parallel: Only AGVs within

a certain radius from the auctioneer, can bid on its tasks.

Auction principle. The way of offering tasks to robots can

differ. There can be one single item auctioned at a time.

This is called a sequential single-item auction and is used

in most of the algorithms like CNET [54], SIT-MASR [56],

CBAA [57], and OCA Alloc [58]. Also, a bundle of items

can be auctioned together. This is called a combined auc-

tion. In this last category, there are another two options:

• Parallel single-item auction: Robots can bid on a

bundle of tasks but with one bid for each task. The

10



task which received the highest bid is then allocated

to the robot which offered this highest bid and the

unallocated tasks are auctioned again. This is ap-

plied in the Prim Allocation [59] algorithm. This

can be seen in Figure 10a.

• Combinatorial auction: The robot can bid on a com-

bination of tasks in which it has one bid for a cluster

of tasks. This technique is used to prevent synergies.

The CBBA [57] and SET-MASR [56] algorithms use

this approach. This can be seen in Figure 10b.

Synergy: If there are two tasks and the cost for one

robot to go to each task separately is higher than if it does

the tasks in sequence (combination), then this is called a

positive synergy between these tasks. This is the situation

when both tasks are located near each other. A negative

synergy between tasks means that the tasks are located far

from each other and the cost for the robot to visit each task

separately is smaller than to visit the tasks in sequence.

(a) Parallel single-item auc-
tion

(b) Combinatorial auction

Figure 10: Auction principles

Combinatorial auctions are known to have solutions

near to the global optimum. But this has as a price that

they are computationally heavy because of the number

of possible task combinations which is exponential in the

number of tasks. Sequential single-item auctions are mostly

used because they are simple yet effective. [60]compares

sequential single-item auctions, parallel single-item auc-

tion and combinatorial single-item auctions: They state

that the coordination system based on sequential single-

item auctions is more suitable than the others as it com-

bines the advantages of combinatorial auctions as well as

parallel single-item auctions. They proved that the imple-

mentation of the coordination system based on sequential

single-item auctions results in no more bids than parallel

single-item auctions. On top of that, they notice that it

is much easier to implement than combinatorial auctions

since the central auctioneer receives exponentially less in-

formation and does not need to solve an NP-hard problem

and that it provides much better performance guarantees

than the coordination system based on parallel single-item

auctions. [61], the usefulness of sequential single-item auc-

tions is emphasized. [62] presents a distributed algorithm

compared to the widely used sequential single-item and

combinatorial auction methods. They conclude that their

algorithm can find the global solution in contrast to se-

quential single-item and combinatorial auction algorithms

which can only find local optimal solutions. However, they

also concluded that the computation complexity increases

dramatically as the scale of robots in the system and tasks

grows. And thus their algorithm only finds the global so-

lution for small and simple systems, which in the light of

future systems, makes the algorithm not relevant. As a

result, the authors believe that sequential-single-item auc-

tions will be the most suitable market-based algorithms

for future task allocation: they are simple, yet very ef-

fective and can consider synergies. Although they find

solutions further away from the global optimum than the

methods following the combinatorial principle, they are

not that computationally heavy and may consider more

complex constraints. In the next sections, methods will

be described which can increase the performance of these

single-item auctions which definitely makes it a good con-

sideration for task allocation in future systems.

Participation rules. The way robots are allowed in the

participation in the auction can alter. There can be a

method where a robot which won a bid is not allowed to

the auction anymore. Or it can be possible that no matter

how many tasks a robot is already assigned to, it can still

11



bid on tasks and participate in the auction. Looking at

flexibility, it will be important in the future that an AGV

can accept more tasks at once. Accepting task by task,

only accepting a task after executing the previous one is

far from flexible. This way of participating will provide the

AGV with a local list of tasks it needs to execute. This

makes it possible for AGVs to locally switch tasks with

neighboring AGVs or to reassign their tasks when having

an error status or when they need to charge. Another pos-

sibility is that AGVs can optimize the sequence in which

they execute the tasks. This as an extra local optimization

beside the auctions to increase overall performance. Hav-

ing these local smaller optimizations, heuristics or even

exact algorithms can be used.

Bid calculations. The way bids are calculated is very im-

portant. Bids can be calculated only using the cost for the

robot to perform the specific task. This simple bidding is

used in CNET, OCA Alloc [58], CBAA [57], and CBBA

[57]. But bids can also be calculated using the marginal

(extra) cost for the robot to perform the task considering

other tasks in its task list. This is used in the Prim Allo-

cation [59], SIT- and SET-MASR algorithms [56].

Marginal cost: If there are two tasks of which task

one lays on a distance of 5 m from the robot and task two

on a distance of 10 m from the robot and on a distance of

3 m from task one, see Figure 11.

Figure 11: Marginal cost calculation

The total cost for the robot to execute each task sepa-

rate is 15 m (5+10). But if the robot is already assigned

to task one (cost 5 m), then after executing this task, it

only takes the extra cost of 3 m to execute task 2. This ex-

tra cost is the marginal cost which is also used to prevent

synergies. In this situation, there is a positive synergy be-

tween the two tasks.

To have a good performance on task allocation, the

calculation of bids based on the marginal cost is the most

beneficial. In the previous section, the authors stated that

it is beneficial that AGVs accept more tasks at once to

have higher flexibility. This causes them to have a local

list of tasks they are supposed to execute. As AGVs will

have this list, which can be locally optimized, it is impor-

tant to also consider them in the calculation of a bid on a

next task. The possibility exists that an AGV computes

the lowest extra cost of inserting this new task into the

already present task sequence. It can then bid this extra

(marginal) cost which is more representative than bidding

the distance to the new task.

Constraints in market-based approaches. Market-based ap-

proaches also have to deal with constraints. Variations on

the standard mentioned algorithms exist which take these

constraints into account. A first variation on the sequen-

tial single-item auction algorithm is the TeSSI algorithm

[63]. A simple single-item auction where robots can bid

on more tasks at the same time is used. But while bid-

ding, each robot takes time constraints into account using

a Simple Temporal Network (STN). This network is an

individual schedule for each robot which uses it to find a

free place in this schedule for a new task before it bids on

it. Another distributed algorithm considering task dead-

line constraints is presented in [64]. A second variation on

the sequential single-item approach takes precedence con-

straints into account [65]. And a third variation combines

the previous two and considers both temporal and prece-

dence constraints [66]. A last variant on the sequential

single-item approach considers resource constraints [67].

12



The strength of market-based methods is that the to-

tal computation is distributed. This means that more

complex computations on each device are possible without

pushing computational limits. Thus it is possible to add

many constraints when computing bids on tasks or when

allocating the tasks. This may not be possible when work-

ing in a centralized architecture: more constraints mean

more effort for the central unit to do the optimization,

and thus a likely chance not finding the optimal solution

as central controllers are supposed to do. The authors do

see extra motivation here to move towards decentralized

control in very large and complex systems handling lots of

constraints.

Additional consensus phase. Some market-based algorithms

also add an extra consensus phase to the auction process

to better the quality of the assignments. This quality can

be poor when only using auctions as a task allocation al-

gorithm. A consensus in this sense is a further transfer

of tasks between robots after the tasks are assigned by

the auction. So there is a constant re-assignment of tasks

during the operation of the AGVs. The above mentioned

SIT-MASR [56] algorithm also uses consensus by exchang-

ing single tasks after the auction. A variant on this algo-

rithm is called SET-MASR [56]. In this algorithm, the

negotiation is done with a set of subtasks instead of single

tasks to improve the quality of solutions. An article which

proves the advantages and increase in solution quality of

task switching is [68]. Algorithms which also use consen-

sus are CBAA, CBBA [57], DMB [69], OCA Alloc [58],

and some more [70, 71].

When distributing the intelligence, there is a migra-

tion from making global optimization’s towards making

more local optimization’s. If AGVs will only local opti-

mize without considering neighboring AGVs’ intentions,

the global solution will be high sub-optimal. Hence, it is

very important in future AGV control, that AGVs mutu-

ally exchange information and try to strive for a global

goal together. Adding this consensus phase to the auction

process is thus, in the opinion of the authors, essentially

in future task allocation. In [68], there is proven that this

consensus phase definitely contributes to performance in

market-based allocation. Thus this is required when tend-

ing towards a decentralized architecture. The authors see

the sequential single-item auction in combination with a

consensus algorithm as a very suitable task allocation com-

bination in future large and complex AGV systems.

Other market-based approaches. Other market-based ap-

proaches are TraderBots [72], MURDOCH [73], and DynC-

NET [74]. Also a market-based approach for tasks which

requires cooperation among robots is presented in [75]. A

more recent auction-based task allocation algorithm [76],

does not only consider cost as an objective to minimize

but it also considers an even task distribution over a het-

erogeneous group of robots. [77] is a multi-agent-based

approach which uses the multi-agent paradigm to effectu-

ate the market-based approach for dynamic scheduling of

AGVs in manufacturing systems.

Conclusion. In general, market-based approaches are ro-

bust and scalable and accept a lot of flexibility and com-

plexity due to the distribution of computation. The op-

timization is done selfishly from the perspective of each

AGV. But if every AGV tries to optimize itself, then also

the global situation will be optimized. This will increase

when AGVs cooperate with their neighbors and exchange

tasks locally. Because of their decentralized nature, ro-

bustness, and the possibility to scale to large and very

complex systems without pushing the boundaries, the au-

thors see this market-based task allocation approaches the

most suitable for future task allocation. Being aware that

market-based approaches will never reach the global op-

timum as optimization-based algorithms do for small and

normal-sized systems, the authors see especially see scal-

ability, robustness, and flexibility of higher value than

13



reaching global optima. This is always the main trade-

off which has to be made when opting for decentralized

control.

5.5.3. Behavior-based solutions

In behavior-based solutions, robots use motivational

behaviors such as impatience and acquiescence. Using

these behaviors, robots can motivate the ability to per-

form a task or they can give up tasks they are not able

to perform. Algorithms for this type of solutions are Al-

liance [78, 79] and Vacancy Chains [80]. These algorithms

are seldom used in task allocation, we will not go further

into them.

5.5.4. Field-based solutions

A very specific type of solution is the field-based so-

lution [81]. It is not frequently used but can be added to

another solution method to improve solutions. The essence

of the algorithm is that a robot moves along a potential

field which consists of attracting fields emitted by the goal

and repelling fields which are emitted by obstacles and

other AGVs. The superposition of those fields generates a

total field of which the robot follows the gradient until it

reaches the goal. As these algorithms are not very popular

in task allocation, we will not go further into them.

5.6. Conclusion

In this section, the authors went through a lot of differ-

ent task allocation algorithms with different characteristics

and solution methods. A lot of these algorithms are stud-

ied well and are implemented in practice. Nowadays, a

lot of centralized approaches are implemented which make

use of optimization-based algorithms which uses all pos-

sible information to make an optimal solution. But in

the future, as many manufacturers may want to decentral-

ize their systems and introduce flexibility, robustness, and

scalability, more market-based solutions will be used. As

already states earlier, the interest of the authors goes to

the sequential single-item auction-based algorithms which

introduce consensus to have better quality assignments.

This is a combination of all the advantages of other algo-

rithms without being too complex. Because the compu-

tational effort of these algorithms is not that high, it is

possible to consider complex constraints in the optimiza-

tion. By altering the auctioneer, a very robust system

without a single point of failure can be created. AGVs

will have a local task list which they can locally optimize

using optimization-based algorithms which have high per-

formance on these small-scaled optimizations. AGVs can

use this optimized local task list to calculate the extra

cost of inserting a new task in the most optimal position

in the sequence. As an addition, tasks can be interchanged

between neighboring AGVs which further improves perfor-

mance. Table 2 gives an overview table of all task alloca-

tion algorithms. The table mentions the properties of each

algorithm and shows the suitability of using them in a de-

centralized control architecture for industrial AGVs. Also

here, Behavior- and Field-based approaches are not men-

tioned because of the little use in industrial AGV systems.

6. Localization

As for any vehicle moving inside, also in AGV con-

trol localization is one of the core tasks to consider. In

contrast to the other tasks, this task is mostly already de-

centralized: all the localization equipment and software

are onboard. Information about the location in the 2D-

map of the environment can be communicated to a central

computer or to neighboring devices for other control pur-

poses. As this core task is independent on the control

architecture, we will not discuss the suitability of each of

the localization options for a particular control architec-

ture. But for completeness of the paper, we will review the

existing localization methods and criticize them regarding

flexibility and robustness.

In the past decades, there has been a lot of improve-

ment in localization systems [82, 83]. There are some old

14



Task Allocation Algorithms

Algorithm Advantages Disadvantages

Optimization-based

Exact algorithms Finds optimal solution for very small fleets Only usable for very small fleets

Heuristics Finds approximate solution for small fleets Lack performance in large and complex fleets,

Meta-heuristics Finds approximate solution for medium-sized fleets Highly computational and time expensive,

Hyper-heuristics Finds approximate solution for medium-sized fleets Not flexible, not robust, not scalable

Dynamic programming Finds approximate solution for medium-sized fleets Not flexible, not robust, not scalable

Market-based

Central auctioneer Good bridge between central and decentral architectures Single point of failure

Floating auctioneer No single point of failure (robust) More complex algorithm to change auctioneer

Sequential single-item auction Simple algorithm, introduces flexibility and scalability High sub-optimal solutions

Parallel single-item auction Simple algorithm, introduces flexibility and scalability High sub-optimal solutions

Combinatorial auction Near-optimal solutions, considers synergies Computationally heavy

Restricted participation Robot only needs to care about one task Lacks flexibility, does not consider synergies

Non-restricted participation Robots can locally optimize a task list, consider synergies Robot needs ot care about more tasks at once

Simple bid calculation Simple calculation of bids Bid calculations does not represent the real costs

Marginal bid calculation Does represent the real costs, considers synergies None

Temporal constrained auctions Problem description lies closer to the real-world problem More complex computation

Precedence constrained auctions Problem description lies closer to the real-world problem More complex computation

Resource constrained auctions Problem description lies closer to the real-world problem More complex computation

Auction with consensus Increases performance More complex cooperation needed

Table 2: Overview table Task Allocation algorithms

school techniques still in use and some newer techniques

which will gain more attention in the future. Some of the

older and proven techniques are:

• Inductive localization

• Optical localization

• Magnetic localization

• Inertial localization

Some new techniques which are rapidly gaining attention

are:

• Laser localization

• GPS localization

• Natural localization

• Vision guided localization

Some localization methods make use of the physically present

circuit to obtain a location. The authors gave these meth-

ods the name ”physical path localization methods”. With

the term ”circuit”, we mean the layout of paths and in-

tersections on which the AGV is supposed to drive. Other

localization methods do not need a physically present cir-

cuit to localize themselves. The authors gave these meth-

ods the name ”virtual path localization methods”. Here,

the predefined circuit can be maintained virtually. All the

old localization methods are methods which use a physical

circuit. For future requirements like flexibility, it is not

efficient to have fixed physical paths which are difficult to

adapt. Future factories are dynamic and can change in

configuration. Virtual localization is much more flexible

as a change in the circuit can be done easily online in the

graphical design software. The authors prefer this kind

of localization for flexible AGVs in the future. Figure 12

15



gives an overview.

Figure 12: Overview Localization algorithms

6.1. Physical path localization

With physical path localization, the paths are present

as physical guidelines on the floor and the localization is

straightforward with a single sensor detecting the guide-

line. The predefined paths are fixed on the floor using tape

or embedded into the floor using a wire. The AGV does

not actually know its position inside the area map but just

stays on the track. Marks along the track [84] can tell the

AGV whether it has to take a special action like increasing

or decreasing speed or to rotate at a certain degree when

being in a curve. In what follows, different techniques

which use this physical path navigation are reviewed.

6.1.1. Inductive localization

This is the first type of localization used in the first

generation of AGVs [85, 86]. In this type of localization,

a wire is embedded into the floor running on electricity,

generating magnetic flux. The AGV has a sensor onboard

which consists of coils picking up the emitted magnetic

flux so a controller may adapt the speed of the wheels.

This is a proven technique especially in very small aisles

to stay on track accurately but it isn’t flexible.

6.1.2. Optical localization

In this type of localization, a color tape or a painted

line with high contrast with the ground color is placed

onto the floor [87]. The AGV has an optical sensor on-

board and the localization principle operates similarly to

inductive localization with the same benefits and disad-

vantages. Another disadvantage here is that the tape can

become dirty or can be damaged. Yet it is easier to adapt

than the above wire method. This option is also cheap

because of the tape and the only use of an optical sensor.

6.1.3. Magnetic tape localization

The physical guide path is marked with magnetic tape

that is placed onto the factory floor. Inside the vehicle,

there is a magnetic sensor that can detect the magnetic

field. The localization principle is similar to the above

mentioned optical localization with the same benefits and

disadvantages.

6.2. Virtual path localization

With virtual path localization, the paths are virtually

present inside the local map maintained by the AGV or in

the global map of the central unit. This makes it easily

adaptable and expandable. However, virtual localization

is more difficult because the AGV needs to know its exact

position into a 2D map. This in contrast to physical path

localization where the AGV only needs to know its position

on a 1D circuit. Knowing the location in the 2D map,

deviations from the virtual path can be calculated.

6.2.1. Magnetic spot localization

A grid or line of spots is embedded into the floor [88]

on specific (x,y)-coordinates in the area map. The spots

can be passive permanent magnets or transponders. In-

side the vehicle, there is a magnetic sensor that can detect

16



the spots. By detecting the spots, the AGV can deter-

mine its absolute position in the map. The location in

between the spots is gathered using relative positions us-

ing encoders on the wheels which calculates the traveled

distance (odometry). Due to the combination of absolute

and relative localization, this is a very accurate method.

A disadvantage is that this method is time-consuming to

install and to modify.

6.2.2. Laser localization

Laser localization [89] is currently the most accepted

method for AGV localization. A rotating laser is mounted

onto the vehicle. For localization, multiple fixed reference

points like reflective strips, are located in the operating

area on known coordinates. The coordinates of the re-

flectors are added to the global map. The emitted laser

beams are reflected and scanned by the AGV after which

the AGV can triangulate its absolute position based on

the coordinates of the reflectors. At least three landmarks

have to be visible to be able to navigate. This is a very

accurate, secure and reliable method and is now used as a

standard in a lot of AGV-systems. Disadvantages are the

high price and the effort to place all the reflectors in the

factory area.

6.2.3. GPS localization

In GPS localization [87], satellites with known posi-

tions into the global map emit signals which are detected

by the GPS-receiver. This receiver can then measure the

distance to each satellite. This info is used to determine

the absolute position of the receiver using trilateration. At

least four satellites have to be visible to be able to navigate.

For this technique, a clear line of sight to the sky is needed.

This is difficult to obtain in industrial environments. As

an alternative, a Local Positioning Radar (LPR) in the fac-

tory can be used instead of satellites. The disadvantage of

this LPR is that there is a precision of 10 cm, which is not

very accurate but may be improved using sensor fusion,

see Section 6.3.

6.2.4. Natural or contour localization

This type of localization uses a Light Detection And

Ranging (LiDAR) sensor to scan the whole environment

around the vehicle [87]. No fixed landmarks like reflec-

tors are needed. The AGV uses features in the existing

environment to navigate. This makes this type of local-

ization very flexible as no extra infrastructure is needed.

Unfortunately, the method is not that precise and robust

due to reflections and drift. Using the scanned map of

the environment, the vehicle can make a 2D map of its

surroundings with all visible features like walls and pil-

lars. When comparing this local map with the map of the

factory, the robot may infer its position into the map us-

ing Simultaneous Localization And Mapping (SLAM) [90].

Using SLAM, the robot explores the area while using laser

scans for updating a local 2D-map causing the system to

become a lot more flexible in dynamic environments. The

disadvantages are that the sensors are expensive and that

some transparent materials cannot be detected when using

lasers. Other sensors like sonar sensors can be used as an

alternative.

6.2.5. Vision guided localization

Vision-guided localization is similar to contour local-

ization. Instead of using a LiDAR, a stereo camera is used

to make images from which 3D-point-clouds can be built.

Each pixel of the camera is converted to a point in the

3D-space which is situated before the camera. This 3D-

point-cloud consists of points which represent features in

the area seen by the camera. This point-cloud can then be

projected onto a 2D-point-cloud which is a 2D projection

of these features. An occupancy grid system [91] can be

used to represent the local map of the environment. An

occupancy grid is a cell decomposed representation of the

environment, see Section 7.2.1. The whole area is divided

into a grid of small squares. Each square is denoted either

as ”Unvisited”, ”Occupied” or as ”Unoccupied”. Also,

the probability of occupation can be used. By project-

17



ing the 2D-point-cloud of the already seen features onto

the occupancy grid, the features seen by the camera are

translated into occupied cells. In this way, a map of the

environment can be constructed by moving around and

continuously projecting the seen 2D-point-cloud onto the

occupancy grid. Like in natural localization, the robot

also needs an initial map of its environment which can

be scanned by a person when exploring the total area us-

ing SLAM. A disadvantage of this method is that camera

images are sensitive to light conditions which frequently

appear in real-life environments.

6.3. Sensor fusion

In practice, the above localization methods are not im-

plemented standalone. Because of noisy sensor data and

drift, the uncertainty on the measured position is too large

to properly navigate a vehicle when using only one local-

ization type. For this reason, localization methods can be

combined with filters or other types of localization meth-

ods. The combination of different localization methods

and filtering is called sensor fusion [92]. Sensor fusion can

be divided into direct and indirect fusion. Direct fusion

combines sensor data of different homogeneous or hetero-

geneous sensors. Indirect fusion combines sensor data with

information on prior knowledge of the environment and in-

put.

• In direct fusion, different localization techniques are

combined. Two techniques which are not usable on

their own because of high uncertainties are odometry

and inertial localization. These are frequently com-

bined with other localization techniques to obtain

more accurate results. In odometry [87], the robot

calculates its new position by knowing its starting

position, the distance it already traveled, and the an-

gle it is rotated. By using odometry sensors on the

wheels, these distances and angles can be measured.

However, this technique cannot be used as a stand-

alone localization technique as it is far from accurate

because of the slip of the wheels on different surfaces

and other uncertainties. Because of this, odometry

is used to combine with other localization techniques

to gain more accurate measurements. Inertial local-

ization [83] adds a gyroscope which detects and cor-

rects the smallest change in the heading of the ve-

hicle. Combination of inertial localization and other

localization techniques will improve accuracy.

• An example of an indirect technique is a combina-

tion of a localization technique with some form of a

Kalman Filter [93, 94]. This filter uses a model of

the process to make a prediction of a next state using

the current state and the properties of the process.

This prediction is combined with the sensor mea-

surement of this next state to obtain a more accu-

rate estimation. The filter considers noise on sensor

measurement and on the transition from one state

to the next. The Kalman filter is a very commonly

used technique to improve accuracy in mobile local-

ization.

In practice, sensor fusion is always implemented to have an

accurate position estimation of the robot. Without this,

the measurements would be too noisy to properly navigate

a vehicle.

6.4. Conclusion

During the years, a variety of localization techniques

are developed. Flexible systems which are required for

the future cannot work with physical circuits which are

difficult to adapt. In the review, we only talked about

physical and virtual predefined paths. In current indus-

trial systems, navigating on predefined paths is mostly

used because of robustness-related issues. Although, it

is also possible for an AGV to move freely into a 2D area

without being fixed to a predefined circuit. But this is

not widely implemented in the industry. To localize freely

into the 2D area, also the virtual path navigation methods

18



can be used. For future AGV systems, virtual path local-

ization techniques are preferred due to the adaptability of

the circuit. For this reason, natural and vision-guided lo-

calization methods will gain a lot more attention in the

future. The disadvantage is that these methods are not

very accurate and can be disturbed by a lot of factors like

ambient light, vibrations, and uncertainties in measure-

ments. Hence, a combination of these techniques with the

very accurate and robust laser localization will be, in the

opinion of the author, the future of AGV localization. An-

other argument why natural- and vision-guided methods

are preferred, is because of the possibility to obtain addi-

tional information from the environment. Using a camera

or LiDAR, an AGV can perceive a lot more of its surround-

ings. It can for example track objects on the route which

can be static or dynamic. Also, object recognition can be

added. This to detect hazardous situations, persons, or

misplaced objects. [95] proposes a method where camera

and LiDAR information of different AGVs are gathered

and combined to create and update a global map of the

environment. In this way, each AGV can know what is

happening in the entire area. Table 3 compares all local-

ization methods.

7. Path Planning

A next core AGV task is path planning [96, 97]. We

interpret path planning as the static planning task of an

AGV whereas motion planning, which is going to be han-

dled in the next section, can be seen as dynamic path

planning. Static planning means that a basic collision-free

path is computed using known information. No dynamic

time-dependent elements are considered, only the known

map with obstacles is used. Using this map, the robot

knows its free configuration space and the obstacle space.

Path planning can thus be defined as the generation of an

obstacle-free path, connecting the start point with the goal

point, taking into account the geometric characteristics of

obstacles and the kinematic constraints of the robot. Path

planning consists of two steps:

• Representation of the free configuration space.

• Using a graph search algorithm to search for the

shortest path using this representation

Although path planning is used to generate shortest paths,

it is also frequently used in AGV-systems to calculate the

cost to reach a certain goal. This information is frequently

used in task allocation algorithms. In this section, several

methods to represent the environment and some search

algorithms to compute the shortest path using this repre-

sentation will be illustrated. An overview can be seen in

Figure 13.

Figure 13: Overview Path Planning algorithms

7.1. Desired properties

The goal of path planning is to generate a shortest path

from a start to an endpoint which minimizes an objective

function. This objective can be travel time, travel dis-

tance, fuel consumption, or combinations of them. Graph

search algorithms are used to find a solution which con-

nects the starting point and the goal point by minimizing

this objection function. A strong requirement for path

19



Localization methods

Method Advantages Disadvantages

Physical path localization

Inductive localization Accurate, simple algorithm Time expensive to install and modify

Optical localization Cheap, simple algorithm Circuit not easily adaptable, easily damaged

Magnetic tape localization Cheap, simple algorithm Circuit not easily adaptable, easily damaged

Virtual path localization

Magnetic spot localization Easily adaptable circuit, accurate Time expensive to install and modify, special infrastructure needed

Laser localization Easily adaptable circuit, very accurate Expensive sensors, special infrastructure needed

GPS localization Easily adaptable circuit Not quite accurate, special infrastructure needed

Natural or contour localization Easily adaptable circuit, additional

information acquisition from environment, Expensive sensors, not quite accurate, sensitive to reflecting material

no special infrastructure needed

Vision guided Easy adaptable circuit, cheap, additional

information acquisition from environment Not quite accurate, sensitive to light

no special infrastructure needed

Table 3: Overview table Localization algorithms

planning algorithms, is that they have to be complete. A

search algorithm is said to be complete if it finds a so-

lution or correctly reports that there is no solution, and

this in a finite amount of time. Incomplete planners, on

the other hand, does not always find a solution when one

exists. Another important property is time complexity.

Path planning will be calculated a lot of times and also

re-planning of paths will occur frequently. For this reason,

the time complexity has to be as small as possible.

7.2. Representation of the environment

A path planning algorithm has as purpose to compute

the shortest path. To do this, the algorithm first needs a

representation of the possible reachable states of the AGV

on the environmental map. In the current deployed in-

dustrial AGV systems, the paths where these AGVs can

move on are predetermined. Thus a circuit which consists

of nodes (intersections) and segments (paths between the

intersections) is defined and designed. This network of

nodes and segments is then used by a search algorithm to

search for the shortest path from point A to B. If such a

predefined circuit is not available, an algorithm is needed

which generates a representation of the configuration space

in such a way that possible paths are generated into the

full free configuration space. There are several algorithms

for this purpose. These algorithms are unfolded next.

7.2.1. Cell decomposition methods

In cell decomposition methods [98], the total environ-

mental map is decomposed into a grid of cells with a cer-

tain size. This can be seen in Figure 14.

Figure 14: Cell decomposition method

Each cell is either defined as occupied or non-occupied.

This is also called an occupancy grid. All the cells which

are marked as occupied represent obstacles like walls, ta-

bles, or other structures. In the unoccupied cells, the robot

can move. The occupancy can also be probabilistic. If a

robot defines a cell multiple times as occupied because of

what it perceives, the probability that the cell is occupied

in reality is larger. Using this technique a representation

20



of the total area is created, knowing in which cells the

robot can move (free configuration space) and in which

cells it cannot (obstacle space). This cell-based represen-

tation can be translated into a connectivity graph which

represents the adjacency relations between cells. A graph

search algorithm like an A*-algorithm can then be used to

find an optimal path between the cell where the robot is

situated and the goal cell. There are some different types

of cell decomposition methods:

Approximate decomposition. The size of all the cells is pre-

defined and fixed. A disadvantage is that the complexity

grows with the dimensions of the grid. And a smaller ob-

stacle than the size of a cell will occupy the whole cell.

Adaptive cell decomposition. A large cell size is chosen at

the beginning. If a cell is partially occupied by an obstacle,

the cell is divided into four equal parts. This is repeated

until each cell is either fully occupied or non-occupied.

This approach uses less memory but can result in diffi-

culties in dynamic environments where a robot constantly

needs to update its map when seeing other obstacles.

Exact cell decomposition. The map is decomposed into

cells which are based on the map and the locations and

shapes of the obstacles. No fixed size of the cells is pre-

defined. The cells take over the shapes of the obstacles so

the union of all the free cells represents exactly the free

configuration space.

7.2.2. Trajectory maps

In cell decomposition methods, the total area is decom-

posed into a grid of cells to represent the configuration

space. This can be seen in Figure 15. In this approach, an

algorithm is used to fill the total area with possible paths.

These paths can be generated in different ways:

Visibility graph. In this approach [99], a graph of possi-

ble paths to move on is constructed by connecting all the

vertices of the obstacles present in the area map. These

obstacles need to be represented as polygons with straight

lines. Using the generated graph of vertex connections,

the shortest path can then be calculated by using a sim-

ple graph search algorithm. One thing to mention here is

that if the robot will move on segments which are made

by connecting obstacle vertices, the robot will definitely

collide with those objects. This can be prevented by en-

larging the obstacles with the size of the robot itself, this

is called dilating. In this way, the robot has a graph of all

possible paths it can move on without the possibility to

collide with any object.

Figure 15: Trajectory map

Voronoi diagram. A Voronoi diagram [100] consists of a

graph of lines which are equidistant from the two nearest

obstacles. This guarantees that the paths to move on are

positioned as far as possible from every obstacle. Obstacles

here are also represented as polygons. Once the graph is

constructed, a start and endpoint are added and connected

to the graph and a graph search method is used to find an

optimal solution. The AGV can then move on the vertices

of the 2D-Voronoi diagram.

Probabilistic Road Maps (PRM). A PRM [101] uses ran-

dom sample points in the configuration space of the robot.

These sample points will act as path intersections. If these

random samples are in the free space, they are connected

to neighboring samples if the line between the two sam-

ples is collision-free. This can be the k-nearest neighbors

or neighbors within a certain distance. The process of con-

necting the samples is continued until the graph is dense

enough. After the graph is made, start and goal configu-

rations are added to the graph. A graph search algorithm

21



can now be used to connect the start point and the goal

point with the shortest path. When the number of sampled

points reaches infinity, a non-optimal path will certainly

be found when there exists one.

Rapidly exploring random trees (RRT). In the RRT [102]

algorithm, a tree is randomly expanded from the start

node. An edge is only added to the tree if it does not cause

a collision. Using this technique, an area can be rapidly

covered by a tree of paths where an AGV can move on.

An algorithm where two trees grow towards each other

can also be used. One starting from the start and one

starting from the goal, this is called bi-directional search.

This is used to fasten up the process. These two trees

will then be linked together. If the start and goal node is

connected to the tree, a graph search algorithm is used to

find the shortest path. If the number of expanded nodes

approaches infinity, a non-optimal path will certainly be

found when one exists.

7.2.3. Artificial potential fields

Using artificial potential fields [103], a robot finds a

path where it can move on by a superposition of all po-

tential fields the robot senses. There are repulsive fields

emitted by obstacles with a force inversely proportional

with the distance to the obstacle. There are also attrac-

tive forces which are emitted by goal states. By using this

method, the robot may get stuck into local minima.

7.3. Graph search algorithms

In the previous part, alternative representations of the

environment are given. These representations are actually

graphs with nodes and edges, which are further used by

a search algorithm to compute the shortest path. Here

the authors want to notice again that these generated rep-

resentations are only used in situations where predefined

paths are missing. But in all current industrial AGV sys-

tems, these AGVs move on predefined circuits. These cir-

cuits are used as a base to do path planning. Some of the

graph searching algorithms are unfolded next.

7.3.1. A*-algorithm

The A*-heuristic algorithm [104] is one of the most

popular classical graph search algorithms in calculating

the least-cost path on a weighted graph. This algorithm

uses a weighted graph with nodes as locations and edges

between these nodes containing the cost to go from one

node to another. Also, a list of unvisited nodes and a

list of visited nodes are maintained. The algorithm makes

use of a heuristic to find an optimal solution much faster,

this can be an estimated cost from a node to the goal

node. The algorithm starts from the initial start node and

works towards the goal by visiting and evaluating each

neighboring node in the unvisited list. It is an efficient

and complete algorithm but has high memory usage. A*

guarantees to find the optimal shortest path if there is one.

7.3.2. D* Lite-algorithm

D* Lite is an extension of A*. In contrast with A*, D*

Lite [104] works in the opposite direction which is from

the goal to the start. Also different is the use of an extra

parameter rhs which is introduced to give info about the

cost of one-step ahead. Also, a heuristic is used here but

one which estimates a cost to the start. This algorithm

is an incremental heuristic search algorithm which re-uses

trees from previous searches. This to speed up the search

process. The D* Lite-algorithm has good results in large

and complex areas. It plans shorter paths much faster than

A*-algorithms. It is less effective than A* in simple and

small areas. Whereas A* cannot do re-planning, D* Lite

can re-plan because it keeps previous information. Because

of this, D* Lite algorithm is the most widely used path

planning algorithm.

7.3.3. Other algorithms

The previously mentioned algorithms are the most com-

mon in path planning for AGVs. But there are more gen-

22



eral optimization algorithms which can be used. Some

which are already mentioned in the section about task

allocation like Tabu Search, Genetic Algorithm, Particle

Swarm Optimization, Ant colony algorithms, and Simu-

lated Annealing can be used. But the graph search al-

gorithms like A* and D* Lite, are the most common for

mobile robotics.

7.4. Conclusion

There are several methods to represent environments

and several search algorithms to find a shortest path given

the graph. Cell-based and generated trajectory map ap-

proaches are more used for environments when there are

no predefined paths and where a robot can move freely

into the free configuration space. In currently deployed

AGV systems which work centralized, the representation

of the environment is predetermined and graph-based (a

collection of nodes and edges). Using this graph-based cir-

cuits, a graph search algorithm is used to find the shortest

path from start to goal. Future decentralization requires

more flexible methods while ensuring predictable behav-

ior. If AGVs can move freely in the factory without fol-

lowing any predefined circuits, then the behavior of the

AGV will not be predictable for employees anymore. So

in the opinion of the authors, these predefined graphical-

designed graph-based circuits will still be used as a base

in future systems together with the more dynamic path

planning types. This so that the AGV can mainly move

on predefined fixed paths but can leave the path and move

freely when, for example, something is blocking the path.

The same graph searching algorithms to find the shortest

paths and to find costs to reach a given goal will be used

as they have proven their utility in current systems.

8. Motion Planning

Section 7 describes static path planning where a ba-

sic path is constructed only considering static obstacles

like walls and racks. But in reality, this static path is not

collision-free. During the execution of the path, the AGV

can face obstacles where the static path planner does not

know about. These obstacles can be unforeseen static ob-

stacles, people, and other moving AGVs. Obviously, also

collision with these features has to be prevented. Besides

collisions, also deadlocks [105] need to be prevented. A

deadlock is a situation where an AGV has no possible ac-

tions anymore. It can move forwards neither backward.

The modification of a static predetermined path to avoid

collisions and deadlocks is called motion planning [96].

Centralized motion planning is currently used in most

of the industrial AGV systems. Collision- and deadlock-

free trajectories are planned by the central controller for all

the robots simultaneously. Central motion planning makes

use of global information. The central unit knows all the

AGV positions, their goals, and the static paths they are

about to execute. An optimization process uses all this

information to search for a solution space for an optimal

solution. Although this central optimization approach is

very powerful as it can consider this global information, it

is constrained by the computational time requested for a

real-time motion of the robots, which increases with the

number of used AGVs. Also, the central unit acts as a sin-

gle point of failure which restricts robustness of the system.

In distributed motion planning, an AGV is self-responsible

for avoiding collisions and deadlocks. After a fixed pre-

defined path is calculated minimizing a certain cost, the

AGVs use their local information and perception to react

upon unforeseen circumstances while executing this path.

This is exactly how humans control their movement: we

can only consider what we see around us and act upon that

to avoid collisions or deadlocks. The AGV can, on top of

that, also coordinate with neighboring devices to obtain

more local information useful for motion planning. This

way of motion coordination is much more robust and scal-

able than centralized planners as an AGV locally computes

a plan using local information. In this way, the informa-

23



tion and intelligence is distributed which eliminates the

single point of failure and the limit of AGVs which can be

added to the system.

Remark: One of the properties of distributed control is

that a device only uses local information. However, in

motion planning, the AGVs also can get access to global

information generated by all AGVs independently. [95]

shows a method in which the perceptions of each AGV

are collected and combined into one shared cloud map of

the environment. AGVs can individually update this map

and retrieve useful information from it. In this way, it is

still possible to have access to global information which can

make distributed motion planning much more efficient and

robust. In the further sections, the authors divided this

motion planning into three parts:

• Collision Avoidance

• Deadlock Avoidance

• Zone Control

8.1. Collision avoidance

In collision avoidance, collisions with static or dynamic

objects which cross the trajectory of an AGV are avoided.

The most simple way to do this is to use a safety scanner

which keeps up a safety zone. When objects come into this

safety zone, the AGV slows down and finally stops. After

the path is cleared, the AGV continues its path. This is

widely used in the industry. More advanced methods can

be used which try to move around an object or plan an

alternative route. In the next sections, we cover central

collision avoidance algorithms as well as decentral algo-

rithms.

8.1.1. Centralized collision avoidance

To avoid collisions in the system, the central computer

uses global information to do an optimization. Using all

the available information like positions, goals, and pre-

sumed paths for each AGV, an optimizer can search the

solution space looking for an optimal solution which is a

collection of collision-free trajectories generated for each

AGV. When a particular solution is generated, time in-

tervals in which the AGV will occupy a segment can be

determined, and this for all AGVs. For each of these seg-

ments, there can be determined if two AGVs occupy the

same segment in the same time interval. If this is the

case, the found combination of generated trajectories is

discarded and a new combination is generated. Instead of

generating a totally new solution, a new feasible solution

without segment occupancy by two AGVs at the same time

can be found by modifying the trajectory of one of these

AGVs. Another totally different trajectory can be found

[43, 106], or one of the vehicles can be slowed down[107].

This process continues until the central controller finds a

set of collision-free trajectories for each AGV in the sys-

tem. To execute this searching process, the central unit

needs the positions of all AGVs. But as these change con-

tinuously, this causes the need for this process to repeat

frequently and consuming a lot of time.

In current industrial systems, this central collision avoid-

ance process is mostly included in the task allocation op-

timizations [43, 107, 108]. For a certain tasks-robots al-

location, the motion planner can output a feasible solu-

tion for all the paths which needs to be done to perform

the allocated tasks. This generated set of collision-free,

trajectories can be used to calculate the total traveled

time/distance of all the AGVs which can be used as a

fitness measure for the task allocation optimization. By

including this collision avoidance into the task allocation, a

heavy and complex optimization is obtained. This asks for

a lot of computing power and computation time. If some-

thing in the situation changes, for example, if an AGV

malfunctions, then this hard optimization needs to run

again.

It is obvious that this method is not scalable. If a lot of

24



AGVs are in the system, this becomes computationally too

expensive. A second drawback is the fact that these com-

putations are very time consuming causing a delay with

respect to the real situation. This can cause that the op-

timization does not respond to very dynamic occurrences

which limits flexibility. A third drawback of centralized

collision avoidance is that the central planner can only

consider collisions with other AGVs and with objects it

knows from the static environmental map it has. But it

cannot consider collisions with other dynamic objects like

humans or objects which are not on this map. For a flexible

and robust behavior, there is a need for more information

acquisition. If the central controller also needs to consider

all dynamic features, it will be probably overloaded. This

is a reason for the authors to prefer a more decentralized

collision avoidance in future systems so an AGV can react

upon these dynamic features locally using only local infor-

mation which is not that computational hard.

In the next section, decentralized collision avoidance is

presented. These algorithms act upon what they perceive

locally, and can thus better adapt to changing circum-

stances.

8.1.2. Decentralized collision avoidance

In decentralized collision avoidance, the AGV reacts

upon what it perceives locally to avoid collisions. If it

detects a possible collision on its path, it can decide to

slow down and to stop until the path is cleared. Or it

can try to move around the obstacle locally. Due to this

local reactive behavior, these algorithms are more suitable

than the computational-heavy and static central collision

avoidance controllers for future AGV systems.

Forward sensing. This is the most simple decentralized

collision avoidance method in which AGVs keep up a safety

zone using an on-board safety sensor which monitors every

object in front of the vehicle. When an object or person

comes into this zone, the AGV will first decrease speed

and can eventually come to a stop. When the object or

person is removed, the AGV resumes its movement. The

advantage of this method is that no environmental map is

needed for this method, only the onboard sensors can be

used to react upon dynamic obstacles. The algorithm will

not really cause the robot to avoid obstacles but rather

stop safely to not collide with anything. This should be

implemented on every AGV as a basic safety layer which

prevents colliding with obstacles in any case, also when

other collision avoidance algorithms would fail.

Re-planning using A* or D*. When the robot is executing

its trajectory and an unforeseen object crosses the path,

the calculated path can be re-planned [104]. The same

algorithms for initial path planning can be used. If A* is

used, a totally new path has to be calculated as A* does

not keep historical data. This new path is calculated using

the map, the goal position, and the new start position. As

computing this new path from scratch takes a long time,

using A* is not very flexible. A better alternative for re-

planning is the D* Lite algorithm. This algorithm does

keep historical data in its memory. The re-planning can

thus be done much faster and efficient which makes this al-

gorithm much more flexible and convenient for the job. For

this re-planning, a representation of the environment map

is used. This map also needs to contain dynamic obstacles.

Otherwise, the robot will only re-plan considering static

obstacles known by the map as this map is the only in-

formation source of this re-planning method. Cloud-based

maps in which all AGVs update the map from their own

perceptions in parallel [95], can be used.

Local deviation from the path. This technique [109] uses

local data to calculate a local deviation from the circuit.

It consists of four steps: a safety check, leaving the road

map, overtaking the obstacle, and return to the road map.

During the safety check, the AGV monitors if an object

is present on the robot’s path. If there is an obstacle, the

AGV builds a new segment which leaves the roadmap using

25



a lane-change maneuver curve. This curve is a polynomial

path which starts from the current position of the robot

and ends on a line parallel with the current path. It is

obtained considering maximum curvature, steering-rate, a

minimal deviation from the map and a safe distance to the

obstacle. Thus the kinematics and dynamics of the robot

are considered. To overtake the object, a line parallel to

the roadmap is maintained without decreasing the distance

to the road map. To return, another lane-changing curve

is calculated using the same technique as in leaving the

road map. This method does not need an environmental

map with obstacles, it can be implemented using only the

circuit on which it moves and the onboard sensors. This is

a very effective method in safely overtaking a static object

but is more difficult in overtaking dynamic objects.

Virtual force fields (VFF). The Virtual Force Fields [110]

method uses an occupancy grid representation as men-

tioned in Section 7.2.1. The occupied cells will repel the

robot away with repellent forces which are dependent on

the concentration of occupied cells. The force is inversely

proportional to the square of the distance between the

robot and the cell. The robot will move along the gradient

of the total field constructed by the superposition of all the

repellent force fields. Disadvantages of this method are the

difficulty with obstacles which are too close to each other,

because of the repellent forces on both sides, the robot

will not move in between. Even though there is a place

for the robot to move in between. This method does not

deal with kinematic and dynamic constraints. An environ-

mental map with obstacles is used. The same properties

are present as in re-planning using A* or D*-Lite algo-

rithms. The map should also contain dynamic features to

have flexible collision avoidance.

Vector field histogram (VFH). The VFH-method [111] solves

the problem in the previous section where the robot does

not move between obstacles which are to close to each

other. This approach also uses a 2D-histogram grid to

represent the environment. But here, the cartesian his-

togram grid is reduced to a 2D polar histogram which is

built around the position of the robot at the time. This

histogram shows the obstacle density seen from the robot

perspective. In each possible heading direction, an ob-

stacle density is calculated. The direction of the robot

is then chosen based on the least concentration of obsta-

cles. This algorithm also does not deal with kinematic and

dynamic constraints. For this reason, an alternative algo-

rithm (VFH+) [112] is proposed which employs a threshold

hysteresis to improve the shape of the trajectory. A cost

function is used to choose the best direction in a space of

possible directions provided by the polar histogram. This

method also considers the vehicle width by enlarging the

cells containing obstacles. This method can work with an

environmental map as well as with on-board sensors to

detect the obstacles in front of the robot.

Dynamic windows approach. The algorithm [113] makes

use of a solution space which consists of all feasible ve-

locity vectors which can be commanded to the robot. The

velocity vectors are actually arcs defined by a velocity vec-

tor (v, w), where v is a linear velocity and w an angular

velocity. A time interval of τ is defined which can be used

to calculate the forward and rotational displacement in

this time interval when commanding a particular velocity

vector to the robot. The solution space of feasible velocity

vectors is reduced with all the velocity arcs which are not

physically reachable by the AGV. This for example due

to kinematic or dynamic constraints (vmin, vmax, amin,

amax). Also, velocity arc vectors which cause collisions

with surrounding objects in the time interval are removed.

What remains is a solution space containing all velocity

arc vectors which are reachable by the AGV and which do

not tend to a collision. Once this solution space is defined,

an optimization algorithm can search for the best velocity

vector optimizing a certain objective. This vector can then

be commanded to the robot which results in a certain dis-

26



placement. When iterating this process every τ seconds, a

collision-free trajectory is followed by the robot. This algo-

rithm also deals with dynamic and kinematic constraints.

This method can work with an environmental map as well

as with on-board sensors to detect the obstacles in front

of the robot.

Optimal Reciprocal Collision Avoidance (ORCA). ORCA

[114] is a collision avoidance algorithm where each robot

knows its own position and velocity, and the position and

velocity range of other robots. Each robot calculates a

velocity space of velocity vectors (v, w) which will defi-

nitely cause collision within a certain time τ (similar to

Dynamic Window Approach). A Cartesian space is con-

structed which represents the total area where the robot

can get in a collision within time interval τ for each velocity

which would be commanded to the robot. The geometry

of this space is constructed using the geometry details of

the robots (for example radius), the position of the other

robots, and the τ -constant. Using all the velocities which

are not in this space, it will be certain that the robot does

not collide for at least the period τ . The robot creates

a boundary between allowable and non-allowable velocity

vectors to prevent choosing a vector which will cause a col-

lision. From the remaining velocity space, the velocity is

chosen which is the closest to a preferred velocity stated by

the motion planner and which does not exceeds maximum

velocities. By linearizing the constraints, this problem of

searching for an optimal speed can be done using linear

programming. Every time step, the robot senses the posi-

tions and velocities of other robots, compute its boundary

space, selects a new velocity outside this boundary using

linear programming, and applies the velocity to its actua-

tors. This is actually the opposite of the Dynamic Window

approach where feasible non-collision velocity vectors are

calculated instead of velocity vectors which cause a colli-

sion. This method is designed more specifically to avoid

collisions with other robots in a free-moving area. How-

ever, it can also be used to avoid other objects. This algo-

rithm also deals with dynamic and kinematic constraints.

This method can work with an environmental map as well

as with on-board sensors to detect the obstacles in front

of the robot.

Predictive models. This approach mimics human behav-

ior. Imagine being in a crowded metro station with hun-

dreds of people having their own goal in mind and search-

ing for the most optimal path through this bunch of peo-

ple. Although this is a very complex situation, almost

no collisions happen. But what actually are the steps we

take to fulfill this task? Every time step we perceive ev-

eryone around us and we try to predict where they are

going. This is possible as the probability that someone

makes an abrupt movement is very rare. Dependent on all

these predicted velocity directions of all those people, we

are going to adapt our path and thus adapt our own veloc-

ity direction or vector. An example of a predictive model

is a model for collision avoidance which uses deep rein-

forcement learning [115]. By perceiving the locations of

the surrounding moving elements time step by time step,

a reinforcement learning algorithm is going to predict the

appropriate action, which is a velocity vector. This ac-

tion can be chosen from an action space, which consists

of velocity vectors from speed zero to the maximum speed

and this in all directions. The robot has a value func-

tion which gives as output this velocity vector given the

sequence of perceptions as input, and this step by step.

This value function is learned by performing random ac-

tions and looking at the results of those actions. The robot

is rewarded when reaching its goal but punished when com-

ing too close to an obstacle. The coefficients of this value

function are learned by a deep learning network which is

trained using data retrieved from the previously described

ORCA method. A large number of trajectories generated

by this ORCA algorithm are used to train the network

using deep learning.

27



8.1.3. Conclusion

We saw that centralized collision avoidance is very com-

putationally heavy and is restricted to static objects. Con-

sidering also dynamic objects would make the optimization

process even more computationally heavy introducing de-

lays which result in an asynchronous response in compar-

ison with the real-world. Combining this central motion

planning in task allocation optimizations makes it even

more heavy and complex. This causes central motion plan-

ners to be highly ineffective when operating large fleets

with lots of constraints. Decentralized motion planning,

however, is much less computationally heavy. It mainly

considers its local environment and can have a reactive be-

havior upon these local perceptions. Collision-free paths

can be planned using on-board sensors, an environmental

map, or both. Most of the mentioned algorithms are de-

signed for robots which move freely into the area. This is

a feature which can cause discussion due to safety-related

issues. It can be very dynamic for an AGV to move freely

but due to safety-related issues, this can be an unwanted

behavior. When operating together with employees, it can

be preferable for the employees to be able to predict where

the AGV will move. When moving on fixed paths, this is

not a problem. But when moving freely, the future po-

sition of the robot is unpredictable. For safety reasons,

industrial AGV users prefer mostly that the AGV moves

on predefined circuits. This said, re-planning using D*-

Lite (using the circuit as a graph) and local deviations

from the path are very suitable algorithms to perform pre-

dictable collision avoidance. In re-planning, an AGV will

always stay on track, and in local deviation, the AGV will

locally leave the path to return to it behind the obsta-

cle. Using these algorithms gives a very good trade-off

between flexibility and safety/predictability in industrial

situations. And of course, in both central as decentral sys-

tems, the forward sensing should always be implemented

as a last safety measure. In Table 4, a comparison between

all collision avoidance methods is shown.

8.2. Deadlock Avoidance

In literature, there are several ways to prevent dead-

locks. First, the layout of the circuit where an AGV can

move on can be designed to reduce deadlocks. This option

is more related to the design of an AGV system. As the pa-

per only focuses on the control of AGVs, we will not cover

this part as we are not focused on design. Second, the envi-

ronment can be divided into several control zones in which

the maximum amount of AGVs can be kept. This is also

used to avoid collisions and is covered in the next section

8.3. And thirdly, some routing strategies can be developed

to prevent deadlocks. These are algorithms which incor-

porate traffic rules or consensus between vehicles to avoid

deadlocks. This is covered in the following sections. We

make a distinction between central and decentral deadlock

avoidance. Algorithms for both approaches are described

next.

8.2.1. Central deadlock avoidance

Central deadlock avoidance is considered into the large

optimization process together with task allocation and col-

lision avoidance as mentioned in Section 8.1.1. The way

this central deadlock avoidance can be included in the

optimization can be done in different ways. Petri nets

[116, 117] are a frequently used approach for deadlock

avoidance in central motion planning. A Petri net, or a

place/transition net, is a graphical tool to represent sys-

tems with concurrency. It is a directed bipartite graph of

nodes, transitions, and arcs. A node can be a condition or

a state of the system, and a transition can be an event that

may occur. The directed arcs describe the relationship be-

tween nodes and transitions. It clarifies which nodes are

pre- and/or postconditions for which transitions. These

nets can be used to model the AGV system layout and the

paths that the vehicles follow [118]. Li et al. [119] give a

review on the deadlock avoidance in automated manufac-

turing using Petri nets. Other algorithms use a strategy to

detect a cyclic-waiting situation [120], using a graph the-

28



Collision avoidance methods

Method Advantages Disadvantages

Centralized collision avoidance

General Optimal for small fleets Lack robustness, performance, scalability,

and flexibility for large fleets

Decentralized collision avoidance

Forward sensing Simple, robust, good for final safety check None

Re-planning using A* or D* Simple, fast Needs environmental map

Local deviation from the path Safe overtaking procedure Not for complex avoidance (overtaking dynamic objects)

Vector Field Histogram (VFH) Simple, effective More for free-navigation, difficulties with small distant objects

Dynamic Windows approach Simple, effective More for free-navigation

ORCA Simple, effective More for free-navigation

Predictive models Good performance in dense situations Too complex for simple/predictable collision avoidance,

takes a lot of time to train

Table 4: Overview table Collision Avoidance algorithms

ory [121], or using a matrix-based deadlock detection algo-

rithm [122]. All these central optimizing deadlock avoid-

ance controllers are very time consuming and complex al-

gorithms which lack robustness and flexibility. Because of

their working principle, they can only detect a deadlock a

few moments before it would occur, after which they at-

tempt to resolve it. In the future flexible systems, this is

not permissible. Deadlocks should be avoided instead of

detected and resolved. Because of these aforementioned

drawbacks, centralized deadlock avoidance is not suitable

for future AGV systems.

8.2.2. Decentral deadlock avoidance

In decentralized deadlock avoidance, AGVs try to avoid

deadlocks using their local information. So only what they

can observe, can be used to avoid deadlocks. This in con-

trast with centralized optimizers where the central unit has

access to all the positions and future planned segments for

each AGV. Thus also in this part of the AGV control, de-

central approaches are more suitable than the previously

reviewed central algorithms because of their decentralized

and local-perceiving nature. Markus et al. [123] proposes

such a distributed algorithm which consist of a collision

avoidance algorithm, a deadlock detection algorithm, and

a deadlock resolution algorithm. When the distance be-

tween two robots drops below a certain value, the robots

initiate a coordination link. One of the two robots is the

coordinator and one is the partner. This link is used to

detect and resolve deadlocks and to avoid collisions. The

link either permits the robot to move on or not. A sim-

ilar approach [124] makes use of a two-layer architecture

for path planning where the coordination among AGVs

is based on a negotiation of shared resources. For each

section on the static path, the AGV checks whether the

section is available or occupied by another AGV. If more

AGVs want the same segment, then an auction process is

initiated. The winner can move on the segment. In [125]

presumed collision-free trajectories are planned for each

AGV by a central computer like in section 8.1.1. These

presumed paths are exchanged with neighboring AGVs so

they know each AGV’s intentions. Each AGV then uses

the presumed trajectories of neighbors to locally compute

a collision-free trajectory according to a priority policy.

Dario et al. [126] proposes another decentralized deadlock

avoidance algorithm based on a shared resources protocol

and a re-planning strategy. The coordination is based on a

set of rules like in urban situations. The rules are used to

get access to local resources. Although these decentralized

algorithms incorporate good characteristics, they are too

29



rule-based. These rules need to be hard-coded into the al-

gorithms which prevent the algorithm to behave well in all

situations. In the opinion of the authors, there has to be

put more attention towards decentralized non-rule-based

motion planning in future AGV research. Deadlocks are

one of the main bottlenecks in AGV systems which cause

a lot of failures in the system. If a deadlock occurs, most

of the time the whole system gets blocked which causes

high time loss. For this reason, a good decentral deadlock

avoidance method which manages traffic efficiently inde-

pendent on the scale of the system is needed for future

AGV systems.

8.3. Zone Control

Zone control is the management of a particular zone

to prevent a limited amount of AGVs to be exceeded into

this zone. It is one of the most effective strategies to pre-

vent collisions with other AGVs. The use of zone-control

eases the avoidance of collisions and deadlocks. This tech-

nique divides the circuit where the AGVs can move on into

non-overlapping zones in which the maximum amount of

vehicles is limited. Vehicles which want to enter a full zone

have to wait or replan their route. Traditional techniques

are fixed zone strategies where the zone areas are fixed.

More new techniques make use of dynamic zone control

techniques in which the size and arrangement of zones can

vary. Li et al. [127] presents a traffic control scheme based

on a novel discrete-event zone-control model. In [128],

some zone design methods are covered and a dynamic zone

strategy is proposed. In [129], another dynamic zone con-

trol is proposed. The objective here is to maintain the

same workload for each vehicle. Zones are redesigned dur-

ing the operation to avoid differences in workload between

the zones. Fanti et al. [130] proposes another zone-based

control where the guide paths are subdivided into disjoint

zones representing intersections, straight lines or worksta-

tions. Only one vehicle can occupy a zone at a time and the

permission to enter a zone must be given by the control.

This zone control can definitely be a help to ease collision

avoidance and deadlock avoidance in general. They can

thus certainly be used in a distributed control of AGVs in

future systems.

8.4. Conclusion

Besides task allocation, motion planning is another

very complex core AGV task. It covers collision avoid-

ance, deadlock avoidance, and zone control. Centralized

approaches use global information for an optimization pro-

cess to do motion planning. Because they have access to all

the information, they can prevent collisions and deadlocks

by considering the whole movement of the fleet. They

take a snapshot of the current AGV configuration and

continuously optimize the allocation concerning the cur-

rent situation. This approach is widely used in today’s

industrial AGV systems. However, this approach incor-

porates no flexibility and is very time-consuming. More

flexible is when an AGV can react from the moment it

encounters a problem. This is exactly how humans pre-

vent collisions and deadlocks. By perceiving the local en-

vironment, we can act properly to changes at the moment.

This is what decentralized motion planners do. They per-

ceive their local surroundings and act upon them. The

authors believe that because of these properties, decen-

tralized motion planners will be used more frequently in

future industrial systems as these will become larger and

more complex. Besides, the authors like to mention that in

future AGV research, more attention should go to decen-

tral deadlock avoidance to manage traffic more efficient

with a performance independent of the size of the sys-

tem. Also interesting is that current algorithms are based

on a device-to-device principle. For future systems to be

robust and flexible, more research should focus on device-

to-infrastructure and infrastructure-to-infrastructure com-

munication to get access to more than local information.

By interacting with the environment, like humans ”com-

municate” with traffic lights, for example, traffic in AGV

30



control can be managed more robust in contrast to only

AGV-to-AGV communication. In the opinion of the au-

thors, this is definitely a new point of view in AGV motion

planning to consider in future research towards robust and

large-scaled AGV control.

9. Vehicle Management

Vehicle management is the simplest core AGV task in

that sense that it does not require complex algorithms or

techniques. It monitors battery status, error status, and

maintenance status. This status will cause constraints on

the possibility to perform tasks and thus need to be con-

sidered at the task allocation level. Using a centralized

control, the central controller takes all the vehicle man-

agement statuses into account. If it knows for example

that the battery life of a vehicle is not enough to execute

a certain task, it will give the vehicle another less energy-

asking task or it will send the AGV to the charging sta-

tion. When the central unit receives error statuses form an

AGV, it will not involve the AGV into the task allocation

optimization anymore. Instead, it will send the AGV to

maintenance. Using a distributed control, the AGV moni-

tors its own parameters. If it sees that its battery capacity

is low, it will, in a market-based approach for instance, not

bid on an energy-expensive task but will directly head to a

charging station. In general, the status of an AGV will af-

fect the bid calculation in decentralized auction processes

for task allocation. When an AGV is in error status, it can

decide to reassign its local tasks to neighboring AGVs so

that no tasks need to wait. The AVG acts independently

upon its own statuses in an intelligent way. Thus again for

flexibility reasons and for distribution of computation, the

authors put forward a distributed vehicle management to

be used in future AGV systems.

9.1. Resource Management

Error statuses or maintenance signals cannot be con-

trolled in that sense that they occur unexpectedly. For

the control algorithms, it is just a matter to be able to

address them well if they occur. For this reason, we will

not pay more attention to these features as this is a review

of AGV control. Battery management, on the other hand,

can definitely be controlled. It can have an impact on the

total performance and is thus, according to the authors, an

important and relevant vehicle management task in AGV

control. However, it seems that in literature, there is little

attention going to this battery management. In her survey,

Iris F.A Vis [3] states that battery management is hardly

addressed in AGV research. She states that including this

resource management into the decision making of an AGV

and into the routing of AGVs is a relevant thing to do in

future research because it can certainly have an impact

on the overall performance. Also, another review on the

design and control of AGV systems [2] endorses the same

statements that battery management is usually omitted in

research. However, McHaney [131] proved already earlier

that the performance of an AGV system is clearly influ-

enced by resource management. He distinguishes three

different types of charging schemes which are:

• Opportunity charging in which an AGV uses its idle

time to charge,

• Automatic charging in which an AGV runs until its

battery level drops below a certain limit,

• And combination charging which is a combination of

the previous two

Also, the way batteries can be recharged can differ. The

most common schemes for battery charging of AGVs are

battery swapping and automatic charging [132]. In battery

swapping, the AGV swaps its empty battery for a fully

charged one. In automatic charging, the AGV charges it-

self at a station while the battery stays inside the AGV.

Ebben (2001) [133] also saw the need for efficiently manag-

ing resources. In his paper, he suggested four heuristics for

routing the AGVs towards a battery station if its resources

drop below a certain threshold:

31



• Select the closest charging station

• Select the first station on the current route

• Select the furthest reachable battery station on the

current route

• Select the battery station that will cause minimum

delay considering both travel time and waiting time

in a queue

Qazi Shaheen Kabir et al. (2018) [132] made a comparison

between the different routing heuristics for battery man-

agement from Ebben. They conclude that the heuristic

of choosing the battery station which minimizes the total

travel time and waiting time when the battery level drops

between a certain threshold perform the best. In another

article, Quazi Shabeen Kabir et al. (2018) [134] propose a

method to increase manufacturing capacities through bat-

tery management. They investigate how the duration of

battery charging can be varied to increase the flexibility of

a manufacturing system. They conclude that a more fre-

quent charging of the battery increases the productivity of

a manufacturing system significantly.

If it comes to resource, and more specific, battery man-

agement in AGV systems, most of the articles are writ-

ten on how to manage the battery life cycle. Takehito

Kawakami et al. (2011) [135] wrote an article about the

battery life cycle management in which they analyze the

effect of the AGV operation modes (load, unload, move,

etc.) on the battery life and its deterioration. They pro-

pose a methodology for planning a battery strategy that

minimizes battery-related costs.

Because of the clear demand on research towards re-

source management in AGV systems, the authors of this

paper proposed a decentral resource management approach

[136] in which an AGV handles a more efficient charging

approach. In future research, we will build further on this.

9.2. Conclusion

The authors see resource management as the most rel-

evant part of vehicle management. Resource management

is hardly addressed in literature but is very relevant to

study as it can have a significant impact on the perfor-

mance of an AGV system. Literature reveals that resource

management decisions do have an impact on the system

performance, but is not conclusive on how to approach.

Continuing their decentralized preferences in AGV con-

trol, the authors also see the need for a distributed ve-

hicle management in future AGV control. As intelligent

systems, they need to care for their own resources and re-

sponds properly to their own statuses. The distributed

computation of decisions upon there resources will benefit

the flexibility and robustness of the system.

10. Discussion

In our paper, we clearly want to take some steps to-

wards Industry 4.0 if it comes to AGV control. The current

employed AGV fleets operate in a classical central and hi-

erarchical architecture where all AGVs act as slave devices

which are authorized by a fleet manager, which is further

mastered by an order managing system. We strive for a

more heterarchical architecture, where all AGVs have an

equal role and have the intelligence to operate as master

of their own actions. Recently published standards on In-

dustry 4.0 components [4] attempt to present a reference

architecture model for Industry 4.0 architectures. This

model consists of a three-axis map which shows how to

approach the issue of Industry 4.0 in a structured manner.

Our vision on how AGV fleets should operate in the future

maps perfectly onto this vision of this new standard. Due

to the decentralization of intelligence, the hierarchy will

fade which will result in participants interacting across all

the hierarchy levels. AGVs will not be seen as ”dumb” de-

vices anymore but will incorporate their own control while

communicating among each other and with all other de-

32



vices in the manufacturing system.

This said, the authors believe that decentralization of

control is the way to go to overcome the current present

limitations of centralized control and to provide control

architectures the ability to grow and improve. The au-

thors hereby do not claim that decentralization of control

directly implies a fully decentralized or anarchic control

architecture. The authors believe that there are a lot of

gradations in between full central and fully decentral con-

trol of which all of them should be considered and evalu-

ated. Users or manufacturers of AGVs should decide for

themselves to which level of decentralization they want to

migrate. Depending on the scale of the fleet, the demands

on the system, and the type of tasks the AGVs need to

fulfill, custom hybrid systems will arise which find a good

balance between central and decentral control. This re-

sults in an important research question for the future how

to gradually transform an operating central AGV system

into a more distributed system. Industrial AGV systems

are largely centralized while pushing the boundaries of this

architecture. As these centralized controllers are deeply

rooted into the industry, companies are not willing to rad-

ically change their total AGV control. Complete decen-

tralized architectures exist with proven performance but

are not attractive for companies because of the huge bar-

rier to radically change the complete architecture. Also,

the authors do not believe that the transition from dumb

devices to fully independent AGVs can be done in one sin-

gle step. Thus there is a need for research which comes

with methods to distribute control architectures gradually.

There is a need for a gradual transition which can migrate

from a central towards a more hybrid, and eventually to a

distributed architecture. For this reason, the authors di-

vided the total AGV control into five discrete core tasks.

This separation should make it easier to practically dis-

tribute each control task of the AGV gradually. This has

as effect that there can be decided which task should be

distributed and which task benefits to be more centralized.

The physics of the next generation AGVs does not need

large changes. All sensors and actuators which are now

present on standard AGVs are suitable to meet the future

Industry 4.0 requirements. One of the biggest challenges

related to the gradual change in control architecture will

be to communicate each device its intentions to other de-

vices to improve the global optimality and to avoid only

self-optimizing agents. Robustness and flexibility will re-

sult directly from the decentralized architecture as also the

ability to increase the complexity of the optimizations (e.g.

by considering uncertain environmental models [137, 138])

will do. But as we already spoke of a trade-off between

flexibility and optimality, the biggest challenge will be to

make the performance as good as possible by interconnect-

ing the whole system.

11. Conclusions

This paper covers the current and future-potential state-

of-the-art techniques and algorithms to control an AGV

system for a central and decentral architecture. We de-

composed the total AGV control into a set of five core

tasks and reviewed for each of those core tasks the avail-

able algorithms and techniques available in literature. The

review revealed that a lot of work is done to four out of the

five core tasks. A lot of central as well as decentral algo-

rithms and techniques are available in literature to control

an AGV fleet according to both approaches. Only the work

on vehicle management, though very relevant, is limited.

In the paper, we did not only review each algorithm, but

we also clarified which algorithms are suitable for future

decentralized AGV systems:

• Looking at task-allocation, we can ascertain that

optimization-based solutions which attempt to use

global information are not suitable to completely

manage the allocation of tasks because of the high

33



computational effort for large and complex AGV sys-

tems which harms the allocation performance. Market-

based approaches, on the other hand, are suitable

due to their distributed properties which directly re-

sult in flexibility, scalability, and robustness. These

market-based approaches alone will not have suffi-

cient performance: besides, consensus between AGVs

and an extra local optimization can definitely im-

prove performance making this combination a very

suitable task allocation method for future large and

complex AGV systems.

• For localization, more flexible methods which do not

use physical predefined circuits are preferable. The

virtual path localization methods will be used more

frequently in decentralized systems. The authors

see a combination of the very accurate laser local-

ization and the very flexible and information-rich

contour/vision-based localization as the way to go

for localization in the future.

• Regarding path planning, predefined graphical-designed

graph-based circuits will still be used together with

the more dynamic path planning types. This to en-

sure that the AGV moves on predefined fixed paths

for predictability, but that it can leave the path and

move freely to avoid something which is blocking the

path.

• For motion planning, the authors saw that current

algorithms are mostly based only on AGV-to-AGV

interaction. In our opinion, motion planning, and

especially deadlock avoidance, could be made more

robust for large-scaled systems when more AGV-to-

infrastructure and infrastructure-to-infrastructure in-

teraction would be involved in this control. This new

point of view in motion planning is definitely worthy

to study in the future.

In the practice, we see that current AGV systems al-

most all work fully centralized but also discern a clear

interest in decentralization as an element to meet future

requirements like flexibility, openness, scalability, and ro-

bustness. The industry 4.0 paradigm will push AGV man-

ufacturers to think about decentralization as an essential

element to deal with these requirements as systems will be-

come ever larger and more complex. The authors believe

that more decentralized and market-based techniques are

suited to introduce flexibility, robustness, and scalability

in the total system. The abundance of literature teaches

us that already a lot of algorithms exist to that effect in

lab environments but that a practical implementation of

distributed control still has a way to go.

Acknowledgments

This work is supported by the M-group, part of the KU

Leuven campus in Bruges.

References

[1] G. V. Research, Automated Guided Vehicles Market (2016)

255–270.

[2] T. Le-Anh, M. De Koster, A review of design and control of

automated guided vehicle systems, European Journal of Oper-

ational Research 171 (1) (2006) 1–23.

[3] I. F.A. Vis, Survey of research in the design and control of

automated guided vehicle systems, European Journal of Oper-

ational Research 170 (3) (2006) 677–709.

[4] DIN SPEC 91345, DIN SPEC 91345:2015-07: Reference Ar-

chitecture Model Industrie 4.0 (RAMI4.0) (2015).

[5] L. Monostori, P. Valckenaers, A. Dolgui, H. Panetto, M. Brdys,

B. C. Csáji, Cooperative control in production and logistics,

IFAC Proceedings Volumes (IFAC-PapersOnline) 19 (April)

(2014) 4246–4265.

[6] H. T. Dinh, R. R. S. V. Lon, T. Holvoet, Multi-Agent Route

Planning Using Delegate MAS, in: ICAPS Proceedings of

the 4th Workshop on Distributed and Multi-Agent Planning

(DMAP-2016), 2016, pp. 24–32.

[7] C. Blesing, D. Luensch, J. S. B, B. Korth, Concept of a Multi-

agent Based Decentralized Production System for the Auto-

motive Industry, in: Lecture Notes in Computer Science, 2018,

pp. 19–30.

[8] C. A. Parker, H. Zhang, Cooperative decision-making in de-

centralized multiple-robot systems: The best-of-N problem,

34



IEEE/ASME Transactions on Mechatronics 14 (2) (2009) 240–

251.

[9] C. Schwarz, J. Sauer, Towards decentralised AGV control with

negotiations, Frontiers in Artificial Intelligence and Applica-

tions 241 (2012) 270–281.

[10] R. Walenta, T. Schellekens, A. Ferrein, S. Schiffer, A de-

centralised system approach for controlling AGVs with ROS,

2017 IEEE AFRICON: Science, Technology and Innovation for

Africa, AFRICON 2017 (2017) 1436–1441.

[11] D. Weyns, T. Holvoet, K. Schelfthout, J. Wielemans, Decen-

tralized control of automatic guided vehicles : Applying multi-

agent systems in practice, 23rd ACM SIGPLAN Conference on

Object Oriented Programming Systems Languages and Appli-

cations,OOPSLA 2008, October 19, 2008 - October 23, 2008

(2008) 663–674.

[12] M. P. Fanti, A. M. Mangini, G. Pedroncelli, W. Ukovich, A

decentralized control strategy for the coordination of AGV

systems, Control Engineering Practice 70 (September 2016)

(2018) 86–97.

[13] I. Draganjac, D. Miklic, Z. Kovacic, G. Vasiljevic, S. Bogdan,

Decentralized Control of Multi-AGV Systems in Autonomous

Warehousing Applications, IEEE Transactions on Automation

Science and Engineering 13 (4) (2016) 1433–1447.

[14] F.-l. Optimization, Optimization over networks, 7th Edition,

Los Angeles, 2011.

[15] J. Xie, C.-C. Liu, Multi-agent systems and their applica-

tions, Journal of International Council on Electrical Engineer-

ing 7 (1) (2017) 188–197.

[16] A. Ma, A. Nassehi, C. Snider, Anarchic manufacturing, Inter-

national Journal of Production Research 57 (8) (2019) 2514–

2530.

[17] M. Bortolini, F. G. Galizia, C. Mora, Reconfigurable manufac-

turing systems: Literature review and research trend, Journal

of Manufacturing Systems 49 (July 2017) (2018) 93–106.

[18] H. Meissner, R. Ilsen, J. C. Aurich, Analysis of Control Ar-

chitectures in the Context of Industry 4.0, Procedia CIRP 62

(2017) 165–169.

[19] I. Baffo, G. Confessore, G. Stecca, A decentralized model for

flow shop production with flexible transportation system, Jour-

nal of Manufacturing Systems 32 (2013) 68–77.

[20] B. Esmaeilian, S. Behdad, B. Wang, The evolution and fu-

ture of manufacturing: A review, Journal of Manufacturing

Systems 39 (2016) 79–100.

[21] X. Jia, M. Q. Meng, A survey and analysis of task allocation

algorithms in multi-robot systems, 2013 IEEE International

Conference on Robotics and Biomimetics, ROBIO 2013 (2013)

2280–2285.

[22] N. Kokash, An introduction to heuristic algorithms, Depart-

ment of Informatics and Telecommunications (August) (2005)

1–8.

[23] S. Nesmachnow, An overview of metaheuristics: accurate and

efficient methods for optimisation, International Journal of

Metaheuristics 3 (4) (2014) 320.

[24] A. R. Mosteo, L. Montano, A survey of multi-robot task allo-

cation, 2010, pp. 1–27.

[25] B. P. Gerkey, M. J. Mataric, A formal analysis and taxonomy

of task allocation in multi-robot systems, International Journal

of Robotics Research 23 (9) (2004) 939–954.

[26] M. L. Gini, Multi-Robot Allocation of Tasks with Temporal

and Ordering Constraints, in: Proceedings of the Thirty-First

AAAI Conference on Artificial Intelligence (AAAI-17), 2017.

[27] T. Vidal, J. Bidot, Dynamic sequencing of tasks in simple tem-

poral networks with uncertainty, CP 2001 Workshop in Con-

straints and Uncertainty (2001) 1–10.

[28] L. Minglei, W. Hongwei, Q. Chao, A novel HTN planning ap-

proach for handling disruption during plan execution, Applied

Intelligence 46 (4) (2017) 800–809.

[29] A. Khamis, A. Hussein, A. Elmogy, Multi-Robot Task Allo-

cation: A Review of the State-of-the-Art, Cooperative Robots

and Sensor Networks 2 (2015) 31–51.

[30] N. Atay, B. Bayazit, Mixed-Integer Linear Programming Solu-

tion to Multi-Robot Task Allocation Problem, Tech. Rep. 314

(2006).

[31] A. Mohammad, O. Saleh, R. A. Abdeen, Occurrences Algo-

rithm for String Searching Based on Brute-force Algorithm,

Journal of Computer Science 2 (1) (2006) 82–85.

[32] O. Karasakal, L. Kandiller, N. E. Özdemirel, A branch and

bound algorithm for sector allocation of a naval task group,

Naval Research Logistics 58 (7) (2011) 655–669.

[33] W.-C. Yeh, An efficient branch-and-bound algorithm for the

two-machine bicriteria flowshop scheduling problem, Journal

of Manufacturing Systems 20 (2) (2002) 113–123.

[34] B. Coltin, M. Veloso, Mobile robot task allocation in hybrid

wireless sensor networks, IEEE/RSJ 2010 International Con-

ference on Intelligent Robots and Systems, IROS 2010 - Con-

ference Proceedings (2010) 2932–2937.

[35] S. Giordani, M. Lujak, F. Martinelli, A distributed algorithm

for the multi-robot task allocation problem (2010).

[36] W. Kmiecik, M. Wojcikowski, L. Koszalka, A. Kasprzak, Task

allocation in mesh connected processors with local search

meta-heuristic algorithms, Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics) 5991 LNAI (PART 2) (2010)

215–224.

[37] E. K. Burke, Y. Bykov, A late acceptance strategy in hill-

climbing for exam timetabling problems, in: Proceedings of

35



the Conference on the Practice and Theory of Automated

Timetabling (PATAT 2008), 2008, pp. 1–7.

[38] C. Sarkar, H. S. Paul, A. Pal, A Scalable Multi-Robot Task Al-

location Algorithm, in: Proceedings - IEEE International Con-

ference on Robotics and Automation, IEEE, 2018, pp. 5022–

5027.

[39] A. R. Mosteo, L. Montano, Simulated annealing for multi-

robot hierarchical task allocation with flexible constraints and

objective functions, IROS’06 workshop on Network Robot Sys-

tems: Toward intelligent robotic systems integrated with en-

vironments (2006) 1–8.

[40] M. Hamzeei, R. Z. Farahani, H. Rashidi-Bejgan, An exact and

a simulated annealing algorithm for simultaneously determin-

ing flow path and the location of P/D stations in bidirectional

path, Journal of Manufacturing Systems 32 (4) (2013) 648–654.

[41] H. J. Fraire Huacuja, J. J. Gonzalez Barbosa, P. Bouvry,

A. A. S. Pineda, J. E. Pecero, An iterative local search al-

gorithm for scheduling precedence-constrained applications on

heterogeneous machines (2010).

[42] J. Kratica, A. Savi, V. Filipovi, M. Milanovi, Solving the

task assignment problem with a variable neighborhood search,

Serdica Journal of Computing 4 (4) (2010) 435–446.

[43] C. Liu, A. Kroll, A centralized multi-robot task allocation for

industrial plant inspection by using A* and genetic algorithms

(2012).

[44] B. Sharda, A. Banerjee, Robust manufacturing system de-

sign using multi objective genetic algorithms, Petri nets and

Bayesian uncertainty representation, Journal of Manufacturing

Systems 32 (2) (2013) 315–324.

[45] S. Lee, H. G. Kahng, T. Cheong, S. B. Kim, Iterative two-stage

hybrid algorithm for the vehicle lifter location problem in semi-

conductor manufacturing, Journal of Manufacturing Systems

51 (January) (2019) 106–119.

[46] A. Klyne, K. Merrick, Task Allocation Using Particle Swarm

Optimisation and Anomaly Detection to Generate a Dynamic

Fitness Function Adam, Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics) 9457 (2015) 317–329.

[47] L. Brezocnik, I. Fister Jr., V. Podgorelec, Scrum Task Allo-

cation Based on Particle Swarm Optimization, Springer Inter-

national Publishing AG, part of Springer Nature 2018 10835

LNCS (2018) 38–49.

[48] L. Zhang, J. Sun, C. Guo, H. Zhang, A Multi-swarm Compet-

itive Algorithm Based on Dynamic Task Allocation Particle

Swarm Optimization, Arabian Journal for Science and Engi-

neering 43 (12) (2018) 8255–8274.

[49] C. Guan, Z. Zhang, S. Liu, J. Gong, Multi-objective particle

swarm optimization for multi-workshop facility layout prob-

lem, Journal of Manufacturing Systems 53 (2019) 32–48.

[50] C. Liu, A. Kroll, Memetic algorithms for optimal task alloca-

tion in multi-robot systems for inspection problems with co-

operative tasks (2014). doi:10.1007/s00500-014-1274-0.

[51] X. Li, Z. Liu, F. Tan, Multi-Robot Task Allocation Based

on Cloud Ant Colony Algorithm, Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial In-

telligence and Lecture Notes in Bioinformatics) 10637 LNCS

(2017) 3–10.

[52] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Özcan,

J. R. Woodward, A classification of hyper-heuristic ap-

proaches: Revisited, International Series in Operations Re-

search and Management Science 272 (2010) 453–477.

[53] P. R. Ć, S. M. Ć, Dynamic Programming Approach for the

Allocation of Limited Resources, Metalurgia International

XVII (11) (2012) 2–5.

[54] H. Liang, F. Kang, A novel task optimal allocation approach

based on Contract Net Protocol for Agent-oriented UUV

swarm system modeling, Optik 127 (8) (2016) 3928–3933.

[55] K. D. Demedeiros, Task Management Using Token Passing for

a Group of Cooperating Unmanned Undersea Vehicles (Jan-

uary) (2011).

[56] A. Viguria, I. Maza, A. Ollero, SET: An algorithm for dis-

tributed multirobot task allocation with dynamic negotiation

based on task subsets Antidio, IIEEE International Conference

on Robotics and Automation (2007) 3339–3344.

[57] H. L. Choi, L. Brunet, J. P. How, Consensus-based decentral-

ized auctions for robust task allocation, IEEE Transactions on

Robotics 25 (4) (2009) 912–926.

[58] P. A. Gao, Z. X. Cai, L. L. Yu, Evolutionary computation

approach to decentralized multi-robot task allocation, 5th In-

ternational Conference on Natural Computation, ICNC 2009

5 (2009) 415–419.

[59] M. Lagoudakis, M. Berhault, S. Koenig, P. Keskinocak,

A. Kleywegt, Simple auctions with performance guarantees

for multi-robot task allocation, 2004 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (IEEE

Cat. No.04CH37566) 1 (2004) 698–705.

[60] S. Koenig, C. Tovey, M. Lagoudakis, The power of sequential

single-item auctions for agent coordination, Proceedings of the

AAAI Conference on Artificial Intelligence (2006) 1625–1629.

[61] A. Farinelli, N. Boscolo, E. Zanotto, E. Pagello, Advanced

approaches for multi-robot coordination in logistic scenarios,

Robotics and Autonomous Systems 90 (2017) 34–44.

[62] F. Liu, S. Liang, X. Xian, Multi-robot task allocation based

on utility and distributed computing and centralized determi-

nation, in: Proceedings of the 2015 27th Chinese Control and

Decision Conference, CCDC 2015, 2015, pp. 3259–3264.

36

https://doi.org/10.1007/s00500-014-1274-0


[63] E. Nunes, M. Gini, Multi-Robot Auctions for Allocation of

Tasks with Temporal Constraints, AAAI Conference on Arti-

ficial Intelligence (2000) 2110–2116.

[64] L. Luo, N. Chakraborty, K. Sycara, Distributed Algorithms for

Multirobot Task Assignment with Task Deadline Constraints,

IEEE Transactions on Automation Science and Engineering

12 (3) (2015) 876–888.

[65] M. McIntire, E. Nunes, M. Gini, Iterated multi-robot auctions

for precedence-constrained task scheduling, in: Proceedings of

the International Joint Conference on Autonomous Agents and

Multiagent Systems, AAMAS, 2016, pp. 1078–1086.

[66] E. Nunes, M. McIntire, M. Gini, Decentralized multi-robot

allocation of tasks with temporal and precedence constraints,

Advanced Robotics 31 (22) (2017) 1193–1207.

[67] D.-H. Lee, Resource-based task allocation for multi-robot sys-

tems, Robotics and Autonomous Systems 103 (2018) 151–161.

[68] C. Sung, N. Ayanian, D. Rus, Improving the performance of

multi-robot systems by task switching, Proceedings - IEEE

International Conference on Robotics and Automation (2013)

2999–3006.

[69] S. Trigui, A. Koubaa, O. Cheikhrouhou, H. Youssef, H. Ben-

naceur, M. F. Sriti, Y. Javed, A distributed market-based algo-

rithm for the multi-robot assignment problem, Procedia Com-

puter Science 32 (2014) 1108–1114.

[70] M. P. Fanti, M. Franceschelli, A. M. Mangini, G. Pedroncelli,

W. Ukovich, Discrete consensus in networks with constrained

capacity, Proceedings of the IEEE Conference on Decision and

Control (2013) 2012–2017.

[71] N.˜Boucké, D.˜Weyns, T.˜Holvoet, K.˜Mertens, Decentral-

ized allocation of tasks with delayed commnencement, 2nd Eu-

ropean Workshop on Multi-Agent Systems, EUMAS (2004).

[72] M. B. Dias, TraderBots: A New Paradigm for Robust and

Efficient Multirobot Coordination in Dynamic Environments,

Tech. rep. (2004).

[73] B. P. Gerkey, M. J. Matarić, Sold!: Auction methods for mul-

tirobot coordination, IEEE Transactions on Robotics and Au-

tomation 18 (5) (2002) 758–768.

[74] D. Weyns, N. Bouck, K. Schelfthout, T. Holvoet, Dyncnet: A

protocol for flexible task assignment applied in an AGV trans-

portation system, CEUR Workshop Proceedings 223 (January)

(2006).

[75] A. Viguria, I. Maza, A. Ollero, S+T: An algorithm for dis-

tributed multirobot task allocation based on services for im-

proving robot cooperation, Proceedings - IEEE International

Conference on Robotics and Automation (2008) 3163–3168.

[76] Q. C. Ye, Y. Zhang, R. Dekker, Fair task allocation in trans-

portation, Omega (United Kingdom) 68 (2017) 1–16.

[77] R. Erol, C. Sahin, A. Baykasoglu, V. Kaplanoglu, A multi-

agent based approach to dynamic scheduling of machines and

automated guided vehicles in manufacturing systems, Applied

Soft Computing Journal 12 (6) (2012) 1720–1732.

[78] W. Pereira, G. S. Bastos, Robotics, Brazilian Conference on

Robotics Latin American Robotics Symposium 619 (2016)

210–227.

[79] W. P. N. D. Reis, G. S. Bastos, Multi-Robot Task Allocation

Approach Using ROS, Proceedings - 12th LARS Latin Amer-

ican Robotics Symposium and 3rd SBR Brazilian Robotics

Symposium, LARS-SBR 2015 - Part of the Robotics Confer-

ences 2015 (2016) 163–168.

[80] T. Dahl, M. Mataric, G. Sukhatme, Multi-robot task-

allocation through vacancy chains, IEEE International Con-

ference on Robotics & Automation 2 (2003) 12–17.

[81] D. Weyns, N. Boucké, T. Holvoet, Gradient field-based task

assignment in an AGV transportation system, Proceedings of

the fifth international joint conference on Autonomous agents

and multiagent systems - AAMAS ’06 (2006).

[82] G. J. Cawood, I. A. Gorlach, Navigation and locomotion of

a low-cost Automated Guided Cart, Proceedings of the 2015

Pattern Recognition Association of South Africa and Robotics

and Mechatronics International Conference, PRASA-RobMech

2015 (2015) 83–88.

[83] H. M. Barbera, J. P. C. Quinonero, M. A. Z. Izquierdo, A. G.

Skarmeta, i-Fork: a flexible AGV system using topological and

grid maps, in: IEEE International Conference on Robotics &

Automation, IEEE, 2003, pp. 2147–2152.

[84] S. Lu, C. Xu, R. Y. Zhong, L. Wang, A RFID-enabled posi-

tioning system in automated guided vehicle for smart factories,

Journal of Manufacturing Systems 44 (2017) 179–190.

[85] J. Szpytko, P. Hyla, Automated Guided Vehicles Navigating

Problem In Container Terminal, Logistics and Transport 2 (13)

(2011) 107–116.

[86] J. Song, Electromagnetic induction sensor of navigation system

for spraying robot, Advances in Intelligent and Soft Computing

112 (2011) 175–181.

[87] C. Feledy, S. Luttenberger, A State of the Art Map of the

AGVS Technology and a Guideline for How and Where to Use

It, Tech. rep., University of Lund, Lund (2017).

[88] S.-y. Lee, H.-w. Yang, Robotics and Computer-Integrated

Manufacturing Navigation of automated guided vehicles us-

ing magnet spot guidance method, Robotics and Computer

Integrated Manufacturing 28 (3) (2012) 425–436.

[89] U. Andersson, Laser Navigation System for Automatic Guided

Vehicles, Tech. rep., Lulea (2013).

[90] H. Durrant-whyte, T. Bailey, Simultaneous Localisation and

Mapping (SLAM): Part I The Essential Algorithms, IEEE

Robotics & Automation Magazine 13 (2) (2006) 99–110.

37



[91] A. M. Santana, K. R. Aires, R. M. Veras, A. A. Medeiros, An

approach for 2D visual occupancy grid map using monocular

vision, Electronic Notes in Theoretical Computer Science 281

(2011) 175–191.

[92] W. Elmenreich, An introduction to sensor fusion, Vienna Uni-

versity of Technology, Austria (2002) 1–28.

[93] G. Welch, G. Bishop, An Introduction to the Kalman Filter,

in: Siggraph Course. 8, 2006, pp. 1–16.

[94] S. W. Yoon, S. B. Park, J. S. Kim, Kalman filter sensor fusion

for Mecanum wheeled automated guided vehicle localization,

Journal of Sensors 2015 (2015) 1–8.

[95] E. Cardarelli, V. Digani, L. Sabattini, C. Secchi, C. Fantuzzi,

Cooperative cloud robotics architecture for the coordination of

multi-AGV systems in industrial warehouses, Mechatronics 45

(2017) 1–13.

[96] V. Kunchev, L. Jain, V. Ivancevic, A. Finn, Path Plan-

ning and Obstacle Avoidance for Autonomous Mobile Robots:

A Review, in: KES2006 10th International Conference on

Knowledge-Based & Intelligent Information & Engineering

Systems, 2006, pp. 537–544.

[97] S. G. Anavatti, S. L. Francis, M. Garratt, Path-planning mod-

ules for Autonomous Vehicles: Current status and challenges,

ICAMIMIA 2015 - International Conference on Advanced

Mechatronics, Intelligent Manufacture, and Industrial Au-

tomation, Proceeding - In conjunction with Industrial Mecha-

tronics and Automation Exhibition, IMAE (2016) 205–214.

[98] Ahmad Abbadi, Vaclav Prenosil, Safe Path Planning Using

Cell Decomposition Approximation, International Conference

Distance Learning, Simulation and Communication (May)

(2015).

[99] N. Tran, D. T. Nguyen, D. L. Vu, N. V. Truong, Global

path planning for autonomous robots using modified visibility-

graph, 2013 International Conference on Control, Automation

and Information Sciences, ICCAIS 2013 (2013) 317–321.

[100] S. M. Sabra, M. M. Soliman, The prevalence of impacted

mandibular wisdom with associated physical signs and micro-

bial infections among under graduate girls at Taif University,

KSA, World Applied Sciences Journal 21 (1) (2013) 21–29.

[101] M. T. Rantanen, M. Juhola, A configuration deactivation al-

gorithm for boosting probabilistic roadmap planning of robots,

International Journal of Automation and Computing 9 (2)

(2012) 155–164.

[102] R. Seif, M. A. Oskoei, Mobile Robot Path Planning by RRT*

in Dynamic Environments, International Journal of Intelligent

Systems and Applications 7 (5) (2015) 24–30.

[103] J. A. Herrera Ortiz, K. Rodrguez-Vázquez, M. A. Padilla Cas-

taeda, F. Arámbula Coso, Autonomous robot navigation based

on the evolutionary multi-objective optimization of potential

fields, Engineering Optimization 45 (1) (2013) 19–43.

[104] D. H. Kim, N. T. Hai, W. Y. Joe, A Guide to Selecting Path

Planning Algorithm for Automated Guided Vehicle (AGV),

Lecture Notes in Electrical Engineering 465 (2018) 587–596.

[105] K. M. R. L. Moorthy, W. H. Guan, Deadlock Prediction and

Avoidance in an AGV System, Ph.D. thesis (2000).

[106] S. C. Srivastava, A. K. Choudhary, Development of an intelli-

gent agent-based AGV controller for a flexible manufacturing

system, International Journal Advanced Manufacturing Tech-

nology 36 (2008) 780–797.

[107] D. K. Liu, A. K. Kulatunga, Simultaneous planning and

scheduling for multi-autonomous vehicles, Studies in Compu-

tational Intelligence 49 (2007) 437–464.

[108] K. Jose, D. K. Pratihar, Task allocation and collision-free path

planning of centralized multi-robots system for industrial plant

inspection using heuristic methods, Robotics and Autonomous

Systems 80 (2016) 34–42.

[109] V. Digani, F. Caramaschi, L. Sabattini, C. Secchi, C. Fantuzzi,

Obstacle avoidance for industrial AGVs, Proceedings - 2014

IEEE 10th International Conference on Intelligent Computer

Communication and Processing, ICCP 2014 (2014) 227–232.

[110] A. Winkler, J. Suchý, Dynamic collision avoidance of indus-

trial cooperating robots using virtual force fields, in: IFAC

Proceedings Volumes (IFAC-PapersOnline), Vol. 45, 2012, pp.

265–270.

[111] G. Sahin, M. Balcilar, E. Uslu, S. Yavuz, M. F. Amasyali,

Obstacle avoidance with Vector Field Histogram algorithm for

search and rescue robots, IEEE 22nd Signal Processing and

Communications Applications Conference (Siu) (2014) 766–

769.

[112] D. An, H. Wang, VPH: A new laser radar based obstacle

avoidance method for intelligent mobile robots, Proceedings

of the World Congress on Intelligent Control and Automation

(WCICA) 5 (2004) 4681–4685.

[113] Y. Kang, D. A. De Lima, A. C. Victorino, An approach of

human driving behavior correction based on Dynamic Win-

dow Approach, IEEE Intelligent Vehicles Symposium, Pro-

ceedings (Iv) (2014) 304–309.

[114] S. J. Guy, M. Lin, D. Manocha, Reciprocal n -body Collision

Avoidance, in: Robotics Research, star 70 Edition, Springer,

Berlin Heidelberg, 2011, pp. 1–16.

[115] Y. F. Chen, M. Liu, M. Everett, J. P. How, Decentralized

non-communicating multiagent collision avoidance with deep

reinforcement learning, Proceedings - IEEE International Con-

ference on Robotics and Automation (2017) 285–292.

[116] W. Hu, Y. Zhu, J. Lei, The Detection and Prevention of Dead-

lock in Petri Nets, Physics Procedia 22 (2011) 656–659.

[117] G. Mej́ıa, N. G. Odrey, An approach using petri nets and im-

38



proved heuristic search for manufacturing system scheduling,

Journal of Manufacturing Systems 24 (2) (2005) 79–92.

[118] M. P. Fanti, A deadlock avoidance strategy for AGV systems

modelled by coloured Petri nets, Proceedings - 6th Interna-

tional Workshop on Discrete Event Systems, WODES 2002

(2002) 61–66.

[119] Z. Li, N. Wu, M. Zhou, Deadlock control of automated manu-

facturing systems based on petri nets-a literature review, IEEE

Transactions on Systems, Man and Cybernetics Part C: Ap-

plications and Reviews 42 (4) (2012) 437–462.

[120] R. Lochana Moorthy, W. Hock-Guan, N. Wing-Cheong,

T. Chung-Piaw, Cyclic deadlock prediction and avoidance for

zone-controlled AGV system, International Journal of Produc-

tion Economics 83 (3) (2003) 309–324.

[121] J. W. Yoo, E. S. Sim, C. Cao, J. W. Park, An algorithm for

deadlock avoidance in an AGV System, International Journal

of Advanced Manufacturing Technology 26 (5-6) (2005) 659–

668.

[122] M. Lehmann, M. Grunow, H. O. Günther, Deadlock handling

for real-time control of AGVs at automated container termi-

nals, Container Terminals and Cargo Systems: Design, Oper-

ations Management, and Logistics Control Issues 657 (2007)

215–241.

[123] M. Jäger, B. Nebel, Decentralized collision avoidance, deadlock

detection, and deadlock resolution for multiple mobile robots,

IEEE International Conference on Intelligent Robots and Sys-

tems 3 (2001) 1213–1219.

[124] V. Digani, L. Sabattini, C. Secchi, C. Fantuzzi, Towards de-

centralized coordination of multi robot systems in industrial

environments: A hierarchical traffic control strategy, in: Pro-

ceedings - 2013 IEEE 9th International Conference on Intel-

ligent Computer Communication and Processing, ICCP 2013,

IEEE, 2013, pp. 209–215.

[125] G. Demesure, M. Defoort, A. Bekrar, D. Trentesaux, M. Dje-

mai, Decentralized Motion Planning and Scheduling of AGVs

in an FMS, IEEE Transactions on Industrial Informatics 14 (4)

(2018) 1744–1752.

[126] D. Marino, A. Fagiolini, L. Pallottino, Distributed Collision-

free Protocol for AGVs in Industrial Environments (2011).

[127] Q. Li, J. T. Udding, A. Pogromsky, Zone-control-based traffic

control of automated guided vehicles, Lecture Notes in Control

and Information Sciences 456 (2015) 53–60.

[128] Y. C. Ho, T. W. Liao, Zone design and control for vehicle

collision prevention and load balancing in a zone control AGV

system, Computers and Industrial Engineering 56 (1) (2009)

417–432.

[129] Y. C. Ho, Dynamic-zone strategy for vehicle-collision preven-

tion and load balancing in an AGV system with a single-loop

guide path, Computers in Industry 42 (2) (2000) 159–176.

[130] M. P. Fanti, Event-based controller to avoid deadlock and col-

lisions in zone-control AGVS, International Journal of Produc-

tion Research 40 (6) (2002) 1453–1478.

[131] R. W. McHaney, Modelling battery constraints in discrete

event automated guided vehicle simulations, International

Journal of Production Research 33 (11) (1995) 3023–3040.

[132] Q. S. Kabir, Y. Suzuki, Comparative analysis of different rout-

ing heuristics for the battery management of automated guided

vehicles, International Journal of Production Research 57 (2)

(2018) 624–641.

[133] M. Ebben, Logistic Control In Automated Transportation Net-

works, Ph.D. thesis (2001).

[134] Q. S. Kabir, Y. Suzuki, Increasing manufacturing flexibility

through battery management of automated guided vehicles,

Computers and Industrial Engineering 117 (January) (2018)

225–236.

[135] T. Kawakami, S. Takata, Battery Life Cycle Management

for Automatic Guided Vehicle Systems, Design for Innovative

Value Towards a Sustainable Society (2012) 403–408.

[136] M. De Ryck, M. Versteyhe, K. Shariatmadar, Resource Man-

agement in Decentralized Industrial Automated Guided Vehi-

cle Systems, Journal of Manufacturing Systems (2019).

[137] K. Shariatmadar, K. Driesen, M. De Ryck, F. Debrouwere,

M. Versteyhe, Linear programming under ε-contamination un-

certainty, in: International Conference Computational and

Mathematical Methods in Science and Engineering, 2019.

[138] K. Shariatmadar, K. Driesen, M. De Ryck, F. Debrouwere,

M. Versteyhe, Optimization under e-contamination uncer-

tainty, Computational and Mathematical Methods (2019) 1–

15.

39


	Introduction
	AGVs in an Industry 4.0 context
	Discussion on the adoption of a decentralized control architecture
	Core AGV Tasks
	Task Allocation
	Desired properties
	Taxonomy of tasks
	Task Constraints
	Optimization Objectives
	Solution Models
	Optimization-based solutions
	Market-based solutions
	Behavior-based solutions
	Field-based solutions

	Conclusion

	Localization
	Physical path localization
	Inductive localization
	Optical localization
	Magnetic tape localization

	Virtual path localization
	Magnetic spot localization
	Laser localization
	GPS localization
	Natural or contour localization
	Vision guided localization

	Sensor fusion
	Conclusion

	Path Planning
	Desired properties
	Representation of the environment
	Cell decomposition methods
	Trajectory maps
	Artificial potential fields

	Graph search algorithms
	A*-algorithm
	D* Lite-algorithm
	Other algorithms

	Conclusion

	Motion Planning
	Collision avoidance
	Centralized collision avoidance
	Decentralized collision avoidance
	Conclusion

	Deadlock Avoidance
	Central deadlock avoidance
	Decentral deadlock avoidance

	Zone Control
	Conclusion

	Vehicle Management
	Resource Management
	Conclusion

	Discussion
	Conclusions

