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Abstract

A growing share of intermittent renewable generation in the electric power
system is increasing the need for flexibility. At the same time, decreasing
battery prices are opening up new opportunities for energy storage. Battery
energy storage systems can be used for multiple applications in the power system,
such as storing an excess of renewable generated energy for later consumption,
wholesale market arbitrage or providing ancillary services to the grid operators.
Nevertheless, the return of investment in battery energy storage systems is often
still perceived too low and uncertain. Selecting the right application, combining
applications, and optimising the control and the size of a battery energy storage
system are important steps to reduce uncertainty and increase the return on
investment.

This dissertation addresses how to make optimal use of flexibility from battery
energy storage in electricity markets and the power system. The thesis provides
an overview of the different applications battery storage can be used for and
gives a quantitative estimation of the value battery storage can bring when
delivering these applications. The results show that providing reserves for
frequency control, i.e. supporting the stability of the grid frequency, is one
of the applications that has the highest value for a battery storage system.
Although arbitraging on short-term wholesale and imbalance markets have
theoretically a higher potential value, achieving this value requires a perfect
hindsight knowledge of the market prices, so that the practically achievable value
lies a lot lower. Finally, there can also be considerable value in battery storage
installed behind the meter, providing direct services to the electricity consumer,
such as storing locally generated solar energy or reducing peak consumption.

As battery storage systems have a limited energy content, they have to be
operated in a different way than traditional power plants. When for instance
used to provide symmetric frequency control, a battery energy storage system
needs to control its state of charge to ensure the battery is never empty nor full,
as this would mean the symmetric frequency control capacity is not available any
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ii ABSTRACT

more. This thesis presents a detailed, holistic framework to optimise such a state
of charge controller and determine the optimal size of a battery storage system
used for frequency reserves, taking degradation and regulatory requirements
into account. As a case study, the optimisation framework is applied to the
German frequency containment reserve market, providing some novel, relevant
insights into the economics and sizing of a battery energy storage system in this
market.

Consecutively, this thesis looks at combining multiple applications simulta-
neously with battery storage installed behind the meter at residential and
industrial consumers. The thesis presents optimised control strategies which
allow the use of battery storage for the combination of frequency reserves with
increasing self-consumption or with peak shaving. Stochastic optimisation is
used together with robust optimisation techniques, giving a safe and tractable
approximation to chance constraints, while dynamic programming is adopted
to combine the longer-term objective of peak shaving with the daily decision
making in the frequency reserve market. Case study results using real data
show that there are indeed synergies when combining frequency reserves with
increasing self-consumption or with peak shaving and the resulting controllers
are able to significantly increase the value of a battery energy storage system
compared to the use of the battery energy storage system for one application
only.

Finally, as battery storage is often connected to the distribution grid, this
dissertation discusses the impact of distribution grid constraints on the
aggregated flexibility from battery storage or from other flexible assets connected
to the low-voltage distribution grid. The thesis focusses on a regulatory
constraint which has been put in place in Belgium to prevent congestion of
the distribution grid, limiting the frequency control capacity these assets can
provide. A distributed optimisation algorithm is proposed to maximise the total
frequency control capacity from low-voltage grid connected flexible assets while
respecting these distribution grid constraints.



Beknopte samenvatting

Het groeiende aandeel van hernieuwbare energie, die niet continu beschikbaar
is, doet de nood aan flexibiliteit in het elektriciteitsnet toenemen. Tegelijkertijd
ontstaan er, door de dalende kost van batterijcellen, nieuwe mogelijkheden
voor de opslag van energie. In het elektriciteitsnet kunnen batterij-
energieopslagsystemen gebruikt worden voor verschillende toepassingen, zoals
het opslaan van een overschot aan hernieuwbare energie voor later verbruik,
prijsarbitrage op de groothandelsmarkt voor elektriciteit of het leveren van
ondersteunende diensten aan de netbeheerders. Desondanks wordt het
rendement van een investering in batterijopslag vaak nog als te laag en
onzeker ervaren. Het selecteren van de juiste toepassing, het combineren van
toepassingen, het optimaliseren van de aansturing en de dimensionering van een
batterijopslagsysteem zijn daarom belangrijke stappen om de onzekerheid te
verminderen en het rendement van een investering in batterijopslag te vergroten.

Dit proefschrift onderzoekt hoe de flexibiliteit van batterij-energieopslagsystemen
optimaal ingezet kan worden in de elektriciteitsmarkt en het elektriciteitsnet.
De thesis geeft een overzicht van de verschillende toepassingen waarvoor
batterijopslag gebruikt kan worden en maakt een kwantitatieve schatting van
de waarde die batterijopslagsystemen kunnen hebben bij het leveren van deze
toepassingen. De resultaten tonen aan dat het leveren van frequentiecontrole, het
ondersteunen van de frequentiestabiliteit van het net, één van de toepassingen
is die de meeste waarde kan bieden voor batterijopslag. Arbitrage op de korte-
termijn groothandels- en onbalansmarkt biedt theoretisch een grotere potentiële
waarde, maar omdat men de echte marktprijzen pas kent na de sluiting van de
markt, ligt de praktisch haalbare waarde een stuk lager. Ten slotte kan er ook
aanzienlijke waarde zitten in batterijopslag die achter de meter geïnstalleerd is
en directe diensten levert aan de elektriciteitsverbruiker, zoals de opslag van
lokaal gegenereerde zonne-energie of het verlagen van het piekverbruik.

Omdat batterij-energieopslagsystemen een beperkte energiecapaciteit hebben,
moeten ze op een andere manier aangestuurd worden dan traditionele
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energiecentrales. Indien bijvoorbeeld batterijopslag gebruikt wordt voor
frequentiecontrole, moet men de laadtoestand zo regelen dat de batterij nooit
volledig vol of leeg is, want dit zou betekenen dat de frequentiecontrolecapaciteit
niet meer beschikbaar is. Deze thesis gaat hier dieper op in en presenteert
een holistische manier om een dergelijke laadtoestandsregelaar te optimaliseren
en de optimale grootte van een batterijopslagsysteem dat gebruikt wordt voor
frequentiecontrolecapaciteit te bepalen, rekening houdend met degradatie en
regulatoire vereisten. Het toepassen van de ontwikkelde optimalisatietechniek op
de Duitse markt voor frequentiecontrole geeft enkele relevante nieuwe inzichten
in de waarde en de dimensionering van batterijsystemen in deze markt.

Vervolgens wordt er in deze thesis gefocust op het leveren van meerdere
toepassing tegelijkertijd door batterijopslag geïnstalleerd achter de meter,
bij residentiële en industriële elektriciteitsverbruikers. De thesis presenteert
geoptimaliseerde besturingsstrategieën die toelaten om batterijopslag gelijktijdig
te gebruiken voor de combinatie van frequentiecontrole met de opslag van
lokaal gegenereerde energie, of met het verminderen van het piekverbruik.
Hiervoor wordt stochastische optimalisatie gebruikt samen met robuuste
optimalisatietechnieken, die een veilige en oplosbare benadering vormen voor
stochastische beperkingen in het optimalisatieprobleem, terwijl dynamisch
programmeren gebruikt wordt om de dagelijkse beslissingsmomenten in de fre-
quentiecontrolemarkt te combineren met de langere tijdschaal die nodig is bij het
verminderen van het piekverbruik. Het toepassen van de ontwikkelde technieken
op reële data toont dat er inderdaad synergieën bestaan bij het combineren
van frequentiecontrole met de opslag van lokaal gegenereerde energie of met
het verminderen van het piekverbruik door eenzelfde batterijopslagsysteem. De
resultaten tonen ook dat de ontwikkelde batterijbesturingsstrategieën de waarde
van een batterijopslagsysteem aanzienlijk kunnen verhogen vergeleken met het
gebruik van het batterijopslagsysteem voor slechts één toepassing.

Aangezien batterijopslag meestal op het distributienet aangesloten wordt,
bespreekt dit proefschrift de impact van beperkingen van het distributienet
op de geaggregeerde flexibiliteit uit batterijopslag of andere bronnen van
flexibiliteit verbonden met het laagspanningsnet. De focus ligt op een
nieuwe regulatoire beperking die in België is ingevoerd om congestie in
het distributienet te voorkomen, waardoor de frequentiecontrolecapaciteit
die deze flexibiliteitsbronnen kunnen bieden wordt ingeperkt. De thesis
stelt het gebuikt van een gedistribueerd optimalisatie-algoritme voor om
de totale frequentiecontrolecapaciteit van flexibiliteitsbronnen aangesloten
op het laagspanningsnet te maximaliseren, rekening houdend met deze
distributienetbeperkingen.
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Abbreviations and Acronyms

AC Alternate Current.
ACE Area Control Error.
ADMM Alternating Direction Method of Multipliers.
aFRR automatic Frequency Restoration Reserve.

BESS Battery Energy Storage System.
BMS Battery Management System.
BRP Balance Responsible Party.

C-rate Rated power divided by the rated energy content of a battery
energy storage system.

CAISO California Independent System Operator.
CE Continental Europe.
CIM Continous Intraday Market.
CLT Central Limit Theorem.
CVaR Conditional Value-at-Risk.
CWE Central Western Europe.

DAM Day-Ahead Market.
DC Direct Current.
DoD Depth of Discharge.
DR Demand Response.
DSO Distribution System Operator.

ENTSO-E European Network of Transmission System Operators for
Electricity.

EV Electric Vehicle.

FCR Frequency Containment Reserve.
FSP Flexibility Service Provider.
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HVAC Heating, Ventilation and Air Conditioning.

iid independent and identically distributed.
IoT Internet of Things.

LPWAN Low Power Wide Area Networks.
LV Low Voltage.

mFRR manual Frequency Restoration Reserve.
MPC Model Predictive Control.

NGR Non-Generator Resource.
NMC Lithium Nickel-Manganese-Cobalt Oxide.
NPV Net Present Value.
NRMSE Normalized Root Mean Square Error.

PJM PJM Interconnection LLC, a regional transmission organisation
in the Northeast of the USA.

PV Photovoltaics.

RC Resistance-Capacitance.
REM Regulation Energy Management.
RMS Root Mean Square.
RoCoF Rate of Change of Frequency.
RR Replacement Reserve.

SAA Sample Average Approximation.
SEI Solid Electrolyte Interphase.
SoC State of Charge.
SOCP Second-Order Cone Problem.

ToU Time of Use.
TSO Transmission System Operator.

UK United Kingdom.
UPS Uninterruptable Power Supply.
USA United States of America.

WAP Weighted Average Price.



Terminology

Aggregator An entity in the electricity market that aggregates distributed
flexibility from consumers or prosumers with demand response capabilities
or storage assets.

Demand Response A change in the electricity consumption of a site to
achieve a new consumption profile, e.g. decreasing a consumption profile
at a time where there is not enough energy generation in the grid.

Distributed Energy Resources Small-scale energy assets, such as local PV
or wind generation or storage, connected to the low- or medium-voltage
distribution grid rather than to the high-voltage transmission grid.

Flexibility When used in the context of the electricity grid: the ability of
an asset to reduce or increase its power consumption or production on
request.

Load-Frequency Control All actions and processes, on all timelines, which
allow transmission system operators to maintain the stability of the power
system frequency and load balance (also shortened as Frequency Control).

Market Abritrage Buying/charging energy from the market at time periods
with low market prices and selling/discharging this energy at time periods
with high market prices.

Peak Shaving Actively reducing the peak consumption of an electricity
consumer or a part of the electricity grid.

Prosumer An electricity consumer who also produces electricity locally.

Self-Consumption Direct consumption of locally generated energy without
transporting this energy over the grid; storage of an excess of locally
generated energy for later consumption.

ix





Nomenclature

Variables and Parameters
C1 Capacitance. F
C Battery cell capacity. A h
Ck Capacity at the start of year k. Ah
∆Ck Capacity degradation in year k. Ah
Cp Heat Capacity. J/K
COP Coefficient of Performance.
cyclesmax Maximum number of cycles.
D Linear recharge controller matrix.
dki Element on the k-th row and i-th column of D.
dbp Deadband recharge controller.
DK(Ω,Ωr) Kantorovich distance between Ω and Ωr.
E Energy content. J
g(·) Objective function.
gapSAA Optimality gap due to SAA method.
I Current. A
kIP Number of iterations with binary variables in ADMM.
Kp Proportional gain P-controller.
m Parameter in binomial distribution.
od Overdelivery percentage.
pi,t FCR capacity of asset i at timestep t. W
pF Aggregated FCR capacity. W
pk Penalty in year k.
P Power. W
Q Battery cell throughput. Ah
Qic Cumulative throughput after cycle ic. Ah
Q Diagonal matrix of the forward deviations σfi .
r FCR capacity. W

xi



xii NOMENCLATURE

ri,t FCR capacity of site i at time step t. W
r Radius circle. m
R Resistance. Ω
Rk Resistance at the start of year k. Ω
R Diagonal matrix of the backward deviations σbi .
rev Discounted net reveneus. e
s Sample standard deviation.
Semergt Grid frequency emergency state indicator.
SoC Battery State of Charge.
SoC0 SoC setpoint of recharge controller.
t Time. s
∆t Length of one time step. s
tβ,ν β-percentile of the Student’s t-distribution with ν degrees of

freedom.
T Temperature. K
Tref Reference Temperature. K
ui Scaled dual variables in ADMM.
V Value function.
Ṽ rule Convex piecewise approximation of V rule.
V rule Value function using the rule-based controller.
V bat Battery cell terminal voltage. V
V C1 Voltage over capacitor C1. V
Vcutoff Battery cell cut-off voltage when charging. V
Vnom Nominal voltage. V
VOC Open-circuit voltage. V
W Whitening transformation matrix.
xi = (x0

i , x
1
i ) Geographical coordinates of an asset.

xbj Breakpoints of piecewise function.
z Binary variable.
zβ Z-score of the standard normal distribution evaluated at β.
α Parameter to define relative error of ADMM.
αcap, αres Capacity and resistance calendar ageing factors.
αj , βj Coefficients of piecewise linear function.
β Confidence bound.
βcap, βres Capacity and resistance cycle ageing factors.
γ Discount rate.
∆ Difference.
ε Probability of constraint violation.
η Efficiency.
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ηcoulomb Coulombic of Faraday efficiency.
λ Dual variable.
π(·) Control policy.
ρ Parameter in binomial distribution.
ρc Augmented Lagragian parameter for the circle constraints.
ρF Augmented Lagragian parameter for the FCP constraint.
σf , σb Forward and backward deviations.
Σx Covariance matrix of x.
Φ(z) Cumulative density function of the standard normal distribu-

tion.
ω A scenario from Ω.
b(m; ρ, n) Cumulative binomial probability function with parameters n

and ρ, evaluated at m.

Grid Frequency Variables
f(t) Grid frequency.
fnom Nominal Grid frequency.
∆f Relative grid frequency deviation.
∆fmax Frequency deviation at which maximum FCR capacity r need

to be activated.
∆fk Discretized relative grid frequency deviation, corrected for

battery effiency losses.
∆f0

k Discretized relative grid frequency deviation, not corrected for
battery effiency losses.

∆fdb Frequency deadband in which no FCR reaction is required.
∆fd Gid frequency deviation sample of one day.
∆fy Gid frequency deviation sample of one year.
f̃ Whitened frequency deviation profile with zero mean.
fr Generated frequency deviation samples.

Costs
ccell Cost of a battery cell. e
ccons Consumed electricity unit cost. e/kWh
celec Electricity unit cost. e/kWh
cFCR, c

FCR FCR unit price. e/MW
cinj Injected electricity unit price. e/kWh
cpeak Demand charge or peak power charge. e/MW
cp Weighting factor of penalty.
cDAMk Day-ahead market price at time step k. e/MWh
c̃DAMk Predicted day-ahead market price at time step k. e/MWh



xiv NOMENCLATURE

c(ω,ω′) Cost function for scenario reduction.
c̃(ω,ω′) New proposed cost function for scenario reduction.
ci(pi) Local cost function to provide FCR capacity pi. e
Celec Total electricity cost. e

Descriptive Indices
av Average.
bat Battery.
BESS Battery Energy Storage System.
c Charging.
cal Calendar.
ctrl Control.
cyc Cycle.
d Discharging.
dem Demand.
FCR Frequency containment reserve.
grid Grid.
init Initialisation.
inv Inverter.
max Maximum.
min Minimum.
nom Nominal.
peak Peak.
prod Production.
prof Net consumption profile.
ps Peak Shaving.
rated Rated.
rc Recharge.
req Required.
sc Self-consimption.
thr Threshold.
f Variables in the local optimisation in ADMM.
gs Variables in circle constraint s optimisation in ADMM.
h Variables in the FSP optimisation in ADMM.

Valued Indices
d Day d.
i General index.
(i) Index of a sorted set.
ic Cycle index.
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jr Reduced scenario index.
k Discrete timestep, k = 1, . . . , nt.
k Year k, k = 1, . . . , nk (in Chapter 3.
k Iteration numer (in Chapter 6.
t Time step.
trecharge Time step recharge controller.
tlead Lead time recharge controller.
tset Time step to set recharge controller.
v Consumption profile sample index.
vr Reduced consumption profile sample index.
w Frequency profile sample index.
wr Reduced frequency profile sample index.

Sets
Cs Set of points i that belong to circle constraint s.
D Set of frequency deviation profile samples of one day.
F Uncertainty set.
I Set containing all assets or points i.
P Set of frequency deviation profiles for penalty checking.
S Set containing all circle constraint sets Cs.
X Constraining set of x.
Y Set of frequency deviation profile samples of one year ∆fy.
Ω,Ωr Original and reduced set of scenarios ω.

Counts
nc Number of samples for constraint violation.
ncells Number of cells in the BESS.
ncheck Number of iterations before checking for penalties.
ncyc Number of cycles.
nd Number of days.
neval Number of samples for evaluation.
nL Number of samples to calculate lower bound on the SAA.
nR Number of generated frequency samples.
ns Number of industrial sites.
nsc Number of scenarios.
nscr Number of reduced scenarios.
nt Number of time steps.
nt,d Number of time steps in one day.
nt,y Number of time steps in one year.
nT Number of time steps in a bidding period.
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nU Number of samples to calculate upper bound on the SAA.
nv Number of consumption profile samples.
nvr Number of reduced consumption profile samples.
nw Number of frequency profile samples.
nwr Number of reduced frequency profile samples.
nX Cardinality of set X .

Notation
x A bold symbols: a vector with elements xi: x = (x0, x1, . . . , xnx)T .
·̂ Optimised value.
· Sample mean.
|·| Absolute value or cardinalty of a Set.
b·c The floor function.
[·]+ ≡ max(·, 0), the ramp function, element-wise on vectors.
E[·] Expected value operator.
E[·]+ ≡ E[max(·, 0)], the expected value of the ramp function.
f(·) General function.
Int Identity matrix of size nt.
std[·] Standard deviation.
sign(x) Sign function, returning 1 if x ≥ 0 and -1 otherwise.
diag(x) Diagonal matrix of x.
max(x) ≡ maxk(xk), the maximum element of the vector x.
Pr{x > 0}) Probability that x > 0.
1{x > x0} Indicator function, returning 1 if the value between brackets

is true and 0 otherwise.
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Chapter 1

Introduction

1.1 Context and Motivation

Providing an answer to climate change has repeatedly been identified as one of
the biggest challenges of the twenty-first century [1, 2]. In the Paris Agreement,
signed in April 2016, 195 state members of the United Nations agreed on the
common goal to keep the increase in global temperature due to climate change
well below 2 ◦C above pre-industrial levels, and pursue effort to limit the increase
to 1.5 ◦C [3]. To achieve this goal, a rapid reduction of global greenhouse gas
emissions, amongst which CO2 is the most prominent, is required.

The energy sector is one of the largest emitters of greenhouse gasses [4], and
therefore one of the principal sectors which will have to transform towards
near-zero greenhouse gas emissions. A widespread electrification of not only the
energy sector, but also of the transport sector, together with a decarbonisation
of electricity production, will be part of the solution needed to reach the goal
of the Paris Agreement [5].

In this context, the European Union has set itself the target to reduce greenhouse
gas emissions with 40 %, increase renewable energy to a share of 32 % of final
energy consumption and improve energy efficiency with at least 32.5 % by
2030 [6], and has a long-term vision for a climate-neutral economy by 2050 [7].

Apart from the objective of coming to a sustainable and climate-neutral energy
provision, achieving security of supply and affordability of energy for the end
user are of major concern to policy makers. These three goals have been the
main motivation for imposing new policies, which have initiated a large-scale

1
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transformation of the energy and power sector.

Besides, the advent of new technological developments are generating new
opportunities for end users in the electricity markets. Traditionally, the
electricity sector has operated in a top-down fashion, with producers generating
electricity in large power stations and transporting the electricity over the
power grid towards the end-consumer. Decreasing prices of distributed energy
resources however, have enabled the end-consumer to generate their own energy
and become an active participant in the market. Likewise, demand response
aggregators are coming up with new business models, facilitating the use of
demand side flexibility in electricity markets,1 allowing the previously passive
end user to take up a more active role in the electricity market.

Opportunities for Battery Energy Storage

In this changing energy landscape, a lot of opportunities are emerging for energy
storage in general and for battery energy storage systems (BESSs) specifically.
An increasing share of intermittent renewable generation, such as solar and wind,
increases the need for flexibility in the electricity grid, as total production and
total consumption need to be balanced at every moment in time. In addition,
an increase of renewable generation leads to a reduction of rotational inertia in
the grid, as most of these renewable resources are connected through a power
electronics based converter [9]. To ensure the stability of the grid, a reduction of
rotational inertia increases the need for fast-responding flexible assets which can
limit frequency deviations and may even provide virtual inertia to the grid. On
the other hand, due to their zero marginal cost of producing energy, renewable
energy resources are pushing the assets that traditionally provide flexibility
and inertia, such as gas-fired power plants, out of the market [10]. Besides,
these traditional flexible assets are not carbon neutral and therefore other ways
of balancing the grid will be needed. Battery energy storage is a promising
alternative and a likely part of the solution, as it provides fast-responding
flexibility which can help to stabilise and balance the grid and store renewable
energy [11].

Apart from grid balancing, battery energy storage can provide a range of other
services to different stakeholders, such as increasing self-consumption (storing
the excess of locally generated energy for later consumption), wholesale market
arbitrage or grid congestion management. Despite the fact that the cost of
battery storage, and specifically the cost of Li-ion battery storage, has been
decreasing faster than expected [12], the return of investment in battery storage

1Note that also other parties, such as a supplier or a grid operator, can take up the role of
an aggregator and facilitate the use of demand response flexibility [8].
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projects is often perceived too low and uncertain [13]. Therefore, being able to
accurately estimate the value of battery storage used for different application
and optimise the control and sizing is crucial to reduce uncertainty and increase
the return on investment.

One way to increase the return on investment is to use a battery storage system
to provide multiple applications simultaneously. Besides, this can reduce the
uncertainty on the revenues as the value of one application can act as a hedge
against a reduction in value of another application. Previous work indicates
that when battery storage installed behind the meter, i.e. at the customer’s
premises, can provide the largest amount of services and shows the largest
potential for combining applications [14]. In this position, battery storage
cannot only provide services directly to the customer, but could potentially also
offer services to grid operators or energy suppliers.

However, control of battery storage to provide multiple services is not
straightforward, as one has to ensure that using the battery for one service does
not jeopardize the use of the battery for the other services. Such a controller
will have to perform a continuous trade-off between the value of the multiple
services that can be provided, maximising the total value for the owner of the
battery system.

Within this context, this thesis focusses on the use of battery energy storage
systems in electricity markets. The thesis provides a general overview of the
services battery storage can provide and identifies which services can create
the most value. In addition, the focus is on the optimised control of behind-
the-meter battery storage systems to provide one or a combination of these
services, in an attempt to increase the value of the battery storage. Finally, this
thesis looks at the impact of distribution grid constraints on flexibility from
low-voltage grid connected battery storage systems.

1.2 Road Towards This Thesis

The usage of BESSs in the electricity grid and electricity markets has since long
been a key topic of academic research, but has recently also attracted attention
from industry. New, innovative business models and decreasing battery prices
have fuelled the interest from not only traditional energy utilities, but also energy
consumers and new players in the energy markets, such as demand response
aggregators. Many of these organisation are asking the question if and how
BESSs can be valuable to them. With their experience in this topic, academic
institutions can help the industry in answering this question, advancing BESSs
in electricity grids from a theoretical option to a commercially viable product.
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It is on this crossroad of academic research and commercial application
that this thesis was made possible. More specifically, the research project
which led to this thesis is the result of a cooperation between industry and
academics, between REstore (now Centrica Business Solutions Belgium), a
demand response aggregator, and the energy research group Electa2 at KU
Leuven and EnergyVille.

At the start of this research, the core business of REstore was the aggregation
of automatic demand response from flexible industrial processes. However,
given the developments of battery storage, REstore expected BESSs to provide
significant value for them as an aggregator and for their industrial clients when
installed at their site. Besides, REstore was interested to develop residential
demand response (DR) applications and believed residential battery storage
would be a key enabler for the residential DR market. However, at the time
experience with battery storage was limited and there were questions around
the optimal sizing and control, and around which applications that can provide
the most value for both the aggregator and the owner of the battery storage
system.

KU Leuven on the other hand had already extensive experience with research
on demand response, battery storage, smart grids and electricity markets. In
this regard, the research presented in this thesis has benefited from both the
knowledge and expertise at KU Leuven and the experience of being present as
an aggregator in the electricity markets from REstore.

A major focus of this thesis is the use of battery storage for primary frequency
control or frequency containment reserve (FCR), possibly in combination with
other applications. As shown in Chapter 2, this is due to the high value of
FCR for BESSs compared to other services, but also because it was, and to
some extent still is, one of the most important demand response applications
for REstore.

This focus did not only lead to the academic work presented in this thesis, but
also enabled REstore to put a first commercial BESS system, a 18 MW Tesla
Powerpack at the Terhills site,3 in the Belgian FCR market.

2Electa is the research group of electrical energy and robust control of industrial systems
within the Departement of Electrical Engineering (ESAT) at KU Leuven.

3https://www.terhills.com/news/large-scale-european-battery-project-offers-sustainable-
alternative-to-stabilize-power-grid/



RESEARCH QUESTIONS, CHALLENGES AND SCOPE 5

1.3 Research Questions, Challenges and Scope

This thesis addresses how to make optimal use of flexibility from battery storage
systems in electricity markets and the power grid. The thesis is written from
the perspective of a BESS owner or operator who tries to maximise value
from the battery, rather than from a grid operator who tries to operate the
grid in a safe and secure way or a policy maker who tries to maximise social
welfare. This perspective allows us to adopt a pragmatic view on battery storage
operation: observing the state of the market and the imposed regulations, the
BESS operator uses a battery for those applications that bring the most value.
Assuming the markets work in a correct way, this also means that the flexibility
and storage capability of the battery system will be used where it is the most
needed and thereby contributes to maximise social welfare.

The main research questions answered in this thesis are:

1. For which applications can battery storage systems be used in today’s
market conditions?

(a) Which of these applications are relevant for third party battery
owners and operators?

(b) What is the value of a battery in each of these applications and
which application can be expected to deliver the most value?

2. What is the value of a battery storage system delivering frequency control
reserves?

(a) How to optimise the battery control over its lifetime, while taking
the details of battery dynamics and degradation into account?

(b) What is the optimal size of a battery delivering frequency control?

3. How can a battery storage system combine multiple applications?

(a) How to design a controller that optimally combines multiple
applications?

(b) Does the value of the battery storage increases by combining multiple
applications?

4. What is the impact of distribution grid constraints on flexibility from
battery storage?

To limit the scope, the focus of the thesis is on the Central Western Europe
(CWE) electricity markets. Where specific numbers or a regulatory framework is
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used, we have taken Germany as a case study, since there is already a relatively
large amount of battery energy storage installed in Germany and its electricity
market is relatively mature with regard to participation of non-conventional
energy resources [15, 16]. Besides, the German electricity and ancillary services
markets are highly integrated with neighbouring countries, so that the results
can assumed to be representative for the entire CWE region.

When mentioning battery storage, we have implicitly assumed Li-ion battery
storage, as Li-ion is currently the most widely used battery technology for
battery energy storage [17]. However, most of the the battery models used in
the thesis can easily be parametrised to represent other types of battery storage,
so that the optimisation methods and controllers presented in this thesis are
generic towards other types of battery storage systems.

Where possible, real data has been used. All frequency data is actual measured
frequency data with a granularity of one second. The industrial consumption
profiles used in Chapters 2 and 5 were provided by REstore. The locational
data of the grid connection points used in Chapter 6 is publicly available data
from Enexis.

1.4 Outline and Contributions

Each of the following chapters of this thesis attempts to provide an answer
to one of the research questions presented above: Chapter 2 studies research
question 1, Chapter 3 deals with research question 2, while Chapters 4 and 5
treat research question 3, and Chapter 6 addresses research question 4.

Chapters 3, 4 and 6 of this thesis each consist of a published peer-reviewed
journal paper. Chapter 3 is published in Applied Energy, while Chapters 4, 5
and 6 are published in IEEE Transactions on Smart Grid. The paper-based
chapters all contain the author’s version of the final accepted paper. Changes
resulting from the publishing process, such as editing, corrections, structural
formatting, and other quality control mechanisms may not be reflected in the
version displayed in this dissertation. Small changes have been made to the
nomenclature so that it is consistent across the chapters.

The main contributions of the chapters of this thesis can be summarised as
follows:

Chapter 2 – Battery Storage in Electricity Markets – gives an
descriptive overview of the different services battery storage can provide, and,
where possible, gives a quantitative estimation of the value of a BESS providing
these services. By comparing the value of the different services, the chapter
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shows that FCR is the application which brings the highest value for BESSs.
One of the main contributions of this chapter are the insights provided by the
quantitative comparison of the different services that can be provided by battery
storage.

Chapter 3 – Battery Storage Used for Frequency Reserves – performs
an in-depth techno-economic analysis of a BESS providing FCR. The main
contributions of the chapter include the presented holistic framework for the
investment analysis, sizing and optimal control design of a BESS providing
frequency reserves, while complying with regulatory requirements. The chapter
presents a novel, data-driven stochastic optimisation algorithm. A case study
applying the method to the German market gives new insights in the economics
of BESSs providing FCR.

Chapter 4 – Combining Self-Consumption and Frequency Control
Applications with a Battery – focusses on the control of a behind-the-meter
BESS used for both self-consumption and FCR simultaneously. The chapter
presents a novel, optimised controller using stochastic and robust optimisation
techniques, maximising the expected profit from combining self-consumption
and FCR applications.

Chapter 5 – Combining Self-Consumption and Peak Shaving with
Battery Storage Systems – extends the optimisation framework proposed in
Chapter 4 to allow a BESS to deliver the combination of FCR and peak shaving.
The method is extended using dynamic programming to link the daily decision
making in FCR with the longer-term peak shaving objective. The method also
allows to aggregate frequency control capacity over multiple BESSs installed at
different sites while performing peak shaving.

Chapter 6 – Impact of Distribution Grid Constraints on Low-Voltage
Grid Connected Flexibility – analysis the impact of distribution grid
constraints on the FCR capacity that can be provided by flexible assets connected
to the low-voltage distribution grid. More specifically, the chapter deals with
a regulation that has been put in place in Belgium in 2018, imposing specific
constraints on low-voltage grid connected assets providing FCR, in order to
prevent congestion in the distribution grid.

Figure 1.1 gives an overview of the various optimisations and BESS controllers
presented in this thesis and how they relate to each other. Chapter 3 presents
a global optimisation of an FCR controller and discusses the optimal sizing
of a BESS operated with an optimised controller in the German FCR market.
Chapter 4 presents a stochastic and robust optimisation method to optimise
a controller that is able to combine self-consumption with frequency control.
Chapter 5 extends this method to also combine peak shaving with frequency
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Optimising BESS size:
Chapter 3

Optimising BESS controller:
Global optimisation
in Chapter 3 (yearly)

Stochastic & robust optimisation
in Chapters 4 & 5 (daily)
Distributed optimisation

in Chapter 6 (daily)

BESS energy &
power capacity

Controller
performance

Real-time BESS controller:
FCR controller in Chapter 3
Self-consumption & frequency

control in Chapter 4
Peak-shaving & frequency

control in Chapter 5

Optimised BESS
controller parameters

Current
BESS state

Distribution
grid constraints:

Chapter 6

Figure 1.1: Relationship between the various optimisations and controllers
presented in this thesis.

control. The optimisations take the current state of the BESS into account to
optimise and update the controller parameters on a daily basis (Chapters 4 &
Chapter 5) and on a yearly basis (Chapter 3). Chapter 6 presents a distributed
optimisation to take distribution grid constraints into account.



Chapter 2

Battery Storage in Electricity
Markets

2.1 Introduction

Stationary BESSs can be used for a large number of different applications in the
electrical power grid. As each application has specific requirements and creates
a different value to a different party, this chapter gives a high-level overview of
the different applications of a BESS in the European power grid and electricity
markets.

The chapter starts with classifying the applications into three groups: ancillary
services, wholesale electricity market applications and consumer applications.
Then, each of the individual applications is described in more detail and, where
possible, a quantitative estimation of the value of the application provided by a
BESS is performed. Finally, the value estimations of the different applications
are compared. The results of this analysis motivates the selection of the
applications that are studied in more detail in the following chapters. To limit
the scope of the chapter, the value estimation is performed for Germany as a
case study.

9
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2.2 Overview of Battery Energy Storage Applica-
tions

There are multiple applications for BESSs in the electricity markets and power
grid and the definition of the applications can vary from one country to another.
In general, one can divide most of these applications into one of the three
following categories, depending for which player in the electricity market the
application creates value.

• Ancillary services: services provided to the grid operators – the
transmission system operator (TSO) or the distribution system operator
(DSO) – for the operation of the transmission or distribution grid.

• Wholesale electricity market applications: providing market
arbitrage by storing energy when electricity prices are low and selling
when prices are high. Usually, the energy supplier benefits from these
applications, although larger consumers might have direct exposure to
these markets and can therefore also benefit from these applications.

• Consumer applications: applications where the electricity consumer
(which can be a residential, commercial or industrial consumer) benefits
directly from using a BESS, such as peak-shaving or storing excess
photovoltaic (PV) generation for later consumption.

The specific details of a particular application depends highly on the structure
of the market, which varies from one regulatory region to another. There
are not only large differences between the electricity markets in e.g. Europe
and North America [18], but also between different European regions the
markets vary significantly [19]. However, in Europe, TSOs are working towards
more integrated European electricity markets with unified products [20] by
implementing the regulations from the European Commission on the electricity
transmission system operation (SO GL) [21] and electricity balancing (EB) [22].

As the focus of this thesis is on European wholesale electricity and ancillary
services markets, rather than North American markets, we will follow the
terminology used by the European network of transmission system operators
for electricity (ENTSO-E) [23] as closely as possible.

The applications which a BESS can provide depend on the location of the BESS
in the grid: a large, utility-scale BESS connected directly to the transmission
grid will be able to provide ancillary services to the TSO, but not to the
DSO or to the consumer. A BESS installed behind the meter, i.e. at the
consumer’s premises, can provide consumer applications, but cannot access
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wholesale electricity and ancillary services markets, unless provided via a third
party.1

Application Creates value for Stand-
alone

Behind
the

meter

Frequency containment reserve
(FCR)

TSO Yes Indirect*

Automatic frequency
restoration reserve (aFRR)
Manual frequency restoration
reserve (mFRR)
Replacement reserve (RR)
Synthetic Inertia
Black start
Voltage control

TSO or DSO Yes Indirect*Congestion management &
network investment deferral

Day-ahead market arbitrage
Producer/supplier,
large consumers Yes Indirect*Intraday market arbitrage

Imbalance price arbitrage &
portfolio balancing

Self-consumption

Consumer/
prosumer No Yes

Peak shaving
Time of use bill management
Power quality improvements
Uninterruptible power supply
(UPS)
* A third party will be needed to enable behind-the-meter BESSs to participate in these
markets.

Table 2.1: Non-exhaustive overview of the potential services battery storage
could provide, the parties they can create value for and if the service can be
delivered from a battery installed behind the meter or stand-alone.

1Very large consumers sometimes act as their own electricity supplier and therefore do not
need a third party to provide them access to the wholesale market.
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Figure 2.1: Load-frequency control services as defined by ENTSO-E [24].

Table 2.1 gives an overview of the most important applications a BESS can be
used for, organised according to the three categories defined above. The table
also shows if the application can be provided by a stand-alone BESS, or by a
BESS installed behind the meter.

First the ancillary services are listed. The traditional ancillary services for load-
frequency control: frequency containment reserve FCR, automatic frequency
restoration reserve (aFRR), manual frequency restoration reserve (mFRR) and
replacement reserve (RR), are used by the TSO to maintain the balance between
generation and demand in the grid on various timescales. Figure 2.1 shows the
order in which the load-frequency control services are activated to restore the
balance in the grid after a frequency deviation occurs. Inertia is automatically
provided by synchronous generators, and therefore not actively procured by
TSOs, but BESSs could also provide synthetic inertia to the grid. Black start
capability is used by the TSO to be able to recover the electric grid after a
shutdown. The other ancillary services listen in Table 2.1: voltage control,
congestion management and network investment deferral, can be used by both
the TSO and the DSO, although a BESS can only be used by the DSO when
the BESS is connected to the distribution grid.

After the ancillary services, the table lists the applications in the wholesale
electricity market, including portfolio balancing and imbalance price arbitrage.
Finally, the most important consumer applications are given. As mentioned
before, only BESSs installed behind the meter, at the consumer’s premises, can
provide these applications.
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2.3 Description and Value Estimation of Battery
Energy Storage Applications

Each of the following subsections discusses one of the applications listed in
Table 2.1 in more detail. Each subsection first describes the application and
then performs a quantitative estimation of the revenues a BESS can obtain by
delivering the application, when possible.

An accurate, fully detailed analysis of the value of a certain application can
quickly become very complex as a lot of elements, such as battery degradation,
control strategy and forecasts of stochastic variables have to be taken into
account. As the purpose of this chapter is to provide a high-level overview and
comparison of the applications, such a detailed estimation is considered out
of scope. The value estimations presented here will therefore be limited to a
high-level assessment without consideration of all the detailed costs and battery
degradation. Nevertheless, we always provide a value estimation without any
hindsight assumptions, as this can result in an unrealistically high estimation
of the value. Estimating the value of applications that require an in-depth
case-by-case analysis, such as network investment deferral or UPS, will therefore
also be considered out of scope for this chapter.

To be able to compare the value of the different applications, the value will be
estimated for a 1 C BESS, with the C-rate defined as the rated power capacity
divided by the rated energy capacity: C-rate = Prated/Erated. A 1 MWh, 1 C
BESS will thus have a rated power capacity of 1 MW. We will assume the BESS
has a round trip efficiency of η = 90 %, with the charging efficiency equal to the
discharging efficiency ηc = ηd =

√
0.9. Where applicable, we estimate the value

of a BESS at 500 equivalent cycles per year, as using more cycles would result
in a too fast degradation. The number of equivalent cycles can be calculated as
follows [25]:

cycles = ηc
∑nt
k=1 P

c
k∆t

Erated
, (2.1)

with ηc the charging efficiency, P ck the battery charging power at time step k
and ∆t the number of time steps per hour.

Finally, to limit the scope of the chapter, the value estimation will be performed
for Germany only.
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2.3.1 Frequency Containment Reserve (FCR)

Description

Frequency containment reserve (also referred to as primary frequency control)
is traditionally the fastest actively procured reserve used to maintain the
active power balance between generation and consumption in the electrical grid.
Any deviation of the power balance between generation and consumption will
result in a deviation of the grid frequency f from the nominal frequency fnom
(fnom = 50 Hz in Europe). If there is more consumption than generation in the
grid, the frequency of the grid will decrease due to fact that the synchronous
generators, which generate the grid frequency, will start to slow down. If, on
the other hand, there is more generation than consumption, the frequency of
the grid will increase as the synchronous generators will start to speed up. The
total rotational inertia of the synchronous generators in the grid determines
the rate at which the frequency of the grid will change in response to a change
in the power balance. If the grid frequency increases or decreases too much,
the generators will disconnect, the grid becomes unstable and might eventually
collapse. Therefore, it is of uttermost importance that the balance between
generation and consumption is kept stable at any moment in time.

When a frequency deviation occurs, the FCR will be automatically triggered
to counteract the mismatch in generation and consumption and stabilise the
frequency to a steady state value, as shown in Figure 2.1. The other reserves,
described below, will then ensure the grid frequency returns to its nominal value.
From a system control perspective, FCR acts as proportional (P) controller,
i.e. adjusting the power output proportionally to the frequency deviation,
stabilising the frequency deviation to a steady state value. The other reserves
(and specifically aFFR) then act as an integral control, where the power output
is adjusted proportionally to the integral of the grid frequency deviation, which
is on its turn proportional to the system imbalance. Together they make up a
PI-controller, controlling the frequency of the grid towards its nominal value at
all times. As the grid frequency is equal across an entire AC-connected electricity
grid, the total required FCR capacity of the interconnected Continental Europe
(CE) transmission grid is shared by all TSOs operating a part of this grid.

In many European countries, the TSO procures its required amount of FCR
capacity in a public auction or tender in which tertiary parties, such as
BESS operators, can offer a certain amount of FCR capacity at a certain
price. The TSOs of Austria, Belgium, France, Germany, the Netherlands and
Switzerland acquire their required FCR capacity through a common tender on
the Regelleistung platform [26], thereby creating one large FCR market with a
high liquidity. On the Regelleistung platform, one can bid a symmetric FCR
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capacity r at a capacity price cFCR. When accepted, the FCR capacity r should
be available symmetrically (i.e. both for power increase and power decrease)
during the entire contracted period. During this period, one has to adjust the
power for FCR PFCR(t) continuously, so that the FCR power is proportional
to the relative grid frequency deviations ∆f(t) = (f(t)− fnom) /∆fmax and
the entire FCR capacity r is reached when |f(t)− fnom| reaches a predefined
maximum value ∆fmax (200 mHz in the CE synchronous region). There is also
a small deadband ∆fdb in which no FCR reaction is required:

PFCR(t) = r∆f(t) = r


[
f(t)−fnom

∆fmax , 0
]

if −∆fdb ≤ f(t)−fnom
∆fmax ≤ 0,[

0, f(t)−fnom
∆fmax

]
if 0 ≤ f(t)−fnom

∆fmax ≤ ∆fdb,
f(t)−fnom

∆fmax otherwise.

Failure to meet these requirements will results in penalties charged by the TSO
which can cancel out all revenues made from FCR or can, in case delivery is
consistently insufficient, even lead to exclusion from further participation in the
market [27].

As a BESS has a limited energy content, ensuring the FCR capacity r is available
during the entire contracted period is not straightforward. A BESS can become
empty or full due to efficiency losses or the frequency signal which has a non-
zero energy content over short time periods. If a BESS is empty or full, it
cannot discharge or charge any more and no longer provide a symmetric FCR
service. To avoid this, a State of Charge (SoC) management strategy or recharge
controller is needed that controls the SoC of the BESS so it is never empty nor
full while providing FCR. Managing the SoC can be done by offsetting the FCR
delivery with the recharge power, creating a non-zero baseline against which
the BESS provides the required FCR capacity. A certain power capacity P rcmax
for recharging, will have to be reserved for this, which cannot be used for FCR
at the same time. The FCR capacity r will thus be limited by the maximum
power capacity of the battery Pmax, minus the recharge power capacity [28]:

r ≤ Pmax − P rcmax. (2.2)

Value Estimation

It is clear from (2.2) that the recharge controller will have to be designed
carefully, as more power capacity for recharging P rcmax will mean that less FCR
capacity r can be sold to the TSO, while on the other hand the power capacity
for recharging P rcmax should be sufficient to ensure the SoC of the BESS is never
empty nor full.
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(a) Historic FCR price evolution on the international bidding platform
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(b) Yearly revenues of a 1 C BESS following (2.3) and assuming the weighted average
price shown above.

Figure 2.2: FCR price evolution and value estimation of a 1 C BESS participating
in the international FCR market organised on Regelleistung.

A detailed analysis of the design of the recharge controller and how to determine
r and P rcmax is out of scope of this paragraph, but will be discussed in more
detail in Chapters 3 and 4.
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Here, we will limit ourselves to the regulatory requirements currently applicable
in Germany, which states that the power reserved for SoC management has to
be least a quarter of the FCR capacity [29]:

P rcmax ≥ 0.25r ⇔ r ≤ 0.8Pmax. (2.3)

Figure 2.2a shows the evolution of the historic FCR price cFCR on the
Regelleistung bidding platform. As the FCR tenders were organised as a
pay-as-bid market until the 1st of July 2019, the figure shows both the marginal
price as the weighted average price (WAP) of all accepted bids, as well as the
yearly moving average of both. It is clear from the figure that FCR prices have
been decreasing, from a maximum yearly moving average WAP of 23.3e/MW/h
by May 2015 to 11.5e/MW/h by July 2019, a trend which can partially be
explained by the introduction of BESSs in the FCR market [30].

Figure 2.2b shows the yearly revenues per MWh a 1 C BESS could have obtained
on Regelleistung given the historical weighted average FCR prices of Figure 2.2a
and using the maximum FCR capacity from (2.3):

valueFCR = r · cFCR · 24 · 365
Erated

= 0.8Prated · cFCR · 24 · 365
Erated

= 0.8cFCR · 24 · 365,

for a battery with a C-rate = Prated/Erated = 1. Due to the decrease in FCR
market prices, the yearly revenues have decreased from above 150 000e/MWh
in 2015 to 80 500e/MWh between July 2018 and June 2019.

2.3.2 Automatic Frequency Restoration Reserve (aFRR)

Description

The automatic frequency restoration reserve (or secondary frequency control),
is used to restore the frequency to the nominal value after a frequency deviation
has been stabilised by the FCR. Where FCR acts as a proportional controller,
aFRR acts as an integral controller to grid frequency deviations. As indicated
in Figure 2.1, the required response is slower and the duration of activation
longer than for FCR. In North America, frequency regulation is a service
comparable to aFRR, as it serves the same purpose from a high-level grid
operating perspective [31].
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Using aFRR, each TSO tries to reduce its area control error (ACE), which is the
difference between the scheduled and the measured power balance within the
control area of the TSO, corrected for the effect of a frequency bias. This reserve
is activated in an automatic way by sending a continuous activation signal to the
assets participating in aFRR. These assets should react automatically within
the required reaction time.

In many European countries, aFRR is procured in public aFRR tenders.
However, contrary to the FCR tenders, aFRR markets have often only been open
for traditional power plants. It is only recently that aFRR markets have been
starting to open up for non-conventional assets such as BESSs. For instance in
Germany, where the TSOs have published some first guidelines on providing
aFRR with BESSs [32] or in Belgium, where the TSO has conducted pilot
projects on aFRR with decentralised flexibility resources [33] and foresees to
open up the market for all technologies in 2020.

Usually, aFRR is procured in an asymmetric way, with separate tenders for
positive and negative reserves. Apart from a capacity payment for reserving
the power capacity, assets in aFRR also get paid an activation payment when
they are activated.

Value Estimation

Since the required maximum duration of activation of aFRR is longer than
for FCR, a BESS will need to have a larger energy content per unit of aFRR
capacity to be able to sustain these long activations. As current aFFR markets
are dominated by traditional power plants, which are not energy constrained,
most aFRR markets do not specify any minimum energy requirements and it is
implicitly assumed any participating asset can deliver the aFRR capacity for
the entire bidding period [34].

In Germany, aFRR is tendered daily in 4-hourly blocks [26]. For energy
constrained assets to participate in aFRR, there is the explicit requirement
to have an energy capacity large enough to deliver at least one hour of the
marketable aFRR capacity. Besides, the assets have to be able to deliver
the service continuously for four hours. However, it is allowed to use energy
management measures, such as buying and selling on the intraday market for
recharging and SoC management [32].

To estimate the value of a BESS in aFRR, we assume the BESS participates
in the aFRR market continuously, and therefore needs a recharge power that
is able to completely compensate for the aFRR capacity sold on the market.
In this way, the BESS can be activated at full power for an unlimited amount
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Figure 2.3: The highest revenues from activation payments in aFRR can be
found at a lower activation price, when the asset is activated a lot. At higher
activation prices, the assets gets activated less with reduced revenues as a
consequence [26]. The dots correspond to the activation prices used here for
the value estimation.

of time, as it can compensate for the required aFRR capacity by executing
transactions on the intraday market. This means that a 1 MWh, 1 C BESS can
only sell 0.5 MW aFRR capacity in the market, albeit in a symmetrical way.

As explained above, an asset in aFRR gets paid a remuneration for the capacity
made available and a remuneration when the assets is activated. In this
analysis, we use the market prices from the German aFRR market platform
Regelleistung [26], from July 2018, the start of the daily bidding.2 The weighted
average capacity price during this period is 1.78/eMW/h for positive aFRR
and 0.76e/MW/h for negative aFRR.

The remuneration for activation is dependent on the total energy the asset has
2We did however exclude the period between October 15, 2018 and July 31, 2019, as during

this period the clearing mechanism of aFRR capacity included the activation bid prices, while
currently the aFRR capacity market is cleared using only the capacity bid prices.
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to deliver. In the German aFRR market, the assets are activated in merit order,
activating the ones with the cheapest activation price first. The number of
activations will therefore depend on the activation price of the bid. Figure 2.3
shows the historical activated energy and corresponding revenues in function of
the activation price in the German aFRR market, for both positive and negative
reserves. From Figure 2.3b, it can be seen that the activation payments can
be very high, especially for positive aFRR. However, this comes with a high
amount of energy that needs to be delivered (Figure 2.3a). If a BESS would
need to deliver this energy, this would result in a very fast degradation of the
BESS.

Here, we limit the BESS to 500 cycles per year. As we assume a 1 C BESS
can only deliver 0.5 MW of aFRR capacity per MWh of energy capacity, this
corresponds to a maximum energy throughput of ηc · 500/0.5 = 1024 MWh
throughput per MWh of energy capacity, following (2.1). Dividing this
throughput optimally between positive and negative aFRR, one obtains the
activation prices and corresponding activation revenues indicated by the red
and black dots in Figure 2.3:

valueaFRR,act,pos ≈ 94 900 EUR/MW

valueaFRR,act,neg ≈ 18 600 EUR/MW

As the activation revenues from positive aFRR are generally much higher than
for negative, it is beneficial to devote almost all energy throughput to positive
aFRR.

Putting everything together, the revenues of a 1 MWh, 1 C BESS with 500
cycles in the German aFRR market can be estimated by adding up the positive
and negative capacity payments and the activation payments:

valueaFRR,cap = 0.5 MW/MWh · (1.78e/MW/h + 0.76e/MW/h) · 24 · 365

= 11 125e/y,

valueaFRR,act = 0.5 MW/MWh · (94 900e/MW/y + 18 600e/MW/y)

= 56 750e/y,

valueaFRR = valueaFRR,cap + valueaFRR,act = 67 875e/y.
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2.3.3 Manual Frequency Restoration Reserve (mFRR)

Description

The manual frequency restoration reserve (or tertiary frequency control) serves
the same purpose as aFRR, with the difference that these reserves are manually
activated instead of automatically. The mFRR will only be activated when
a severe imbalance occurs which cannot be restored using aFRR alone. The
number of activations of mFRR will therefore be less than the number of
activations in aFRR, which is called upon almost continuously. One has more
time to react and ramp up to full power in mFRR than in aFRR, so that slower
assets are also able to provide mFRR.

Comparably to aFRR, mFRR is procured in an asymmetric way, with separate
tenders for positive and negative reserves. Assets in mFRR also get paid a
capacity payment for reserving the power capacity, and an activation payment
when they are activated.

Due to its manual activation procedure, mFRR has been one of the first ancillary
services for which TSOs have been contracting demand response flexibility.
Today, mFRR is procured in different products, with features designed for a
specific type of flexibility. For instance, the German TSOs procures mFRR
via their standard mFRR product (Minutenreserveleistung), but has also a
specific mFRR product for interruptible loads. Similarly, Elia, the Belgian TSO,
has an ‘R3-flex’ product with some features that are attractive for demand
response assets, e.g. a maximum number of activations per month, next to an
‘R3-standard’ product product.3

Value Estimation

Comparably to aFRR, the duration of activation for an asset in mFRR is longer
than for FCR and a BESS participating in mFRR will need to have an energy
content large enough to provide the maximum duration of activation.

The energy requirements for mFRR in the German markets are the same as for
aFRR: there is an explicit requirement to have an energy capacity large enough
to deliver the marketable mFRR capacity for at least one hour. The assets also
have to be able to deliver the service continuously for the entire bidding period

3As a part of the ongoing harmonisation of ancillary service products on an European
level, Elia foresees to phase out the distinction between the R3-standard and the R3-flex
product in the near future.
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of four hours, but this can be achieved with the help of energy management
measures.
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Figure 2.4: As mFRR is much less called upon than aFRR, the activated energy
in mFRR is a lot lower, with lower activation payments as a consequence [26].

To compute the marketable mFRR capacity of a BESS, we use the same
assumptions as for aFRR, meaning that a 1 MWh, 1 C BESS can only sell
0.5 MW of symmetric mFRR capacity in the market. With the recent historical
weighted average capacity prices around 0.27e/MW/h for positive mFRR and
around 0.45e/MW/h for negative mFRR [26], the total capacity payments for
a 1 MWh, 1 C BESS amount up to 6300e over one year.

Assets in mFRR are activated in merit order. Figure 2.4 shows the historical
activated energy and corresponding revenues in function of the activation price
in the German mFRR market, for both positive and negative mFRR.

Comparing Figure 2.4a to Figure 2.3a shows that the activated energy in mFRR
is a lot lower than in aFRR. Degradation due to a high amount of cycles will
therefore not be an issue in mFRR, contrary to aFRR, hence we assume a BESS
is able to capture the maximum activation revenues shown in Figure 2.4b:

valuemFRR,act,pos ≈ 22 800 EUR/MW,

valuemFRR,act,neg ≈ 4500 EUR/MW.
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Nevertheless, the reduced activated energy means that these activation payments
are much lower than for aFRR.

Combining capacity and activation payments, the revenues of a 1 MWh, 1 C
BESS in the German mFRR market can be estimated to be around 16 800e
over one year:

valuemFRR,cap = 0.5 MW/MWh · (0.27e/MW/h + 0.45e/MW/h) · 24 · 365

= 3153e/y,

valuemFRR,act = 0.5 MW/MWh · (22 800e/MW/y + 4500e/MW/y)

= 13 650e/y,

valuemFRR = valuemFRR,cap + valuemFRR,act = 16 803e/y.

2.3.4 Replacement Reserve (RR)

Description

Replacement reserves are used to free up the automatic and manual frequency
restoration reserves so that these are ready to support an additional imbalance
event. The replacement reserves are thus only used in case the imbalance
event lasts considerably longer than usual and are therefore rarely activated.
Activating replacement reserves is a manual process, comparable to mFRR.
Not all European TSOs are actively procuring RR [35], as it is not strictly
required by the system operation guideline (SO GL) regulation of the European
Commission [21]. TSOs that do not actively procure RR instead use mFRR
capacity to function both as frequency restoration reserve and as replacement
reserve.

Value Estimation

The product characteristics of the replacement reserve products of the TSOs
that actively procure replacement reserves are very comparable to the product
characteristics of the mFRR products, but usually with a longer time to ramp
up to full capacity.

The German TSOs do not actively procure RR, but instead use mFRR capacity
to function both as manual restoration reserves and as replacement reserves. To
estimate the value of a BESS delivering RR in this chapter, we will therefore use
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data from RTE, the French TSO, who does procure both mFRR and RR. The
prices for the RR capacity procured by RTE in 2019 where around 63 % of the
prices of the mFRR capacity procured by RTE. As an hypothetical estimation of
the value of RR on the Germany market, we will therefore assume the revenues
of delivering RR are 63 % of the revenues of mFRR:

valueRR = 0.63valuemFRR = 10 586e/y.

2.3.5 Inertia

Description

Inertia in the electrical grid is the resistance of the power system against sudden
frequency changes, which would lead to stability issues. Traditionally, the
inertia in the electrical grid originates from the rotational inertia that is an
inherent mechanical property of synchronous generators and motors. When a
power imbalance occurs, the rotational inertia of these machines prevent the
grid frequency to change instantaneously, by momentarily compensating for the
power imbalance, and thereby limiting the rate of change of frequency (RoCoF).

As the share of asynchronous generation increases, which is the case with an
increase of PV and wind generation as they are connected to the grid via power
electronics based inverters, the share of synchronous generators and therefore
the inertia in the grid decreases. This on its turn increases the RoCoF and
reduces the stability of the grid [36].

However, with the correct control methods, it is possible for some assets that
have a power electrics based interface with the grid, like BESSs, to mimic the
inertial response of synchronous generators, providing synthetic inertia to the
grid [37]. As the inertial response of a synchronous machine is a power change
proportional to the RoCoF, an asset providing a certain amount of synthetic
inertia Hsyn should also adjust its power proportional to the RoCoF [38]:

∆Pinertia(t) = −Hsyn
df(t)
dt

ft.

The synthetic inertia should not be confused with fast frequency response
products. The purpose of synthetic inertia is to mimic the inertial response of
synchronous machines, adjusting the power output proportionally to the RoCoF.
With fast frequency response products on the other hand, one has to responde
to frequency deviations rather than to the RoCoF [38]. In this regard, fast
frequency response products are similar to traditional FCR products, however
with a faster required response time. In power systems with reduced inertia,
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fast frequency response products help to reduce the frequency deviations better
than traditional FCR, but will not help to reduce the RoCoF of the system.

Value Estimation

Currently, synthetic inertia is not actively procured by European TSOs as the
inertia of the grid is still provided by synchronous machines. However, it is
recognised that in systems with a larger share of renewable energy generation
there will be a need for synthetic inertia in the future [39]. Estimating the
value of a BESS procured to deliver synthetic inertia therefore requires a more
in-depth analysis of a potential synthetic inertia market and is considered out
of scope for this chapter.

2.3.6 Black Start

Description

Traditional electricity generation units are not able to start up completely
by themselves, but need external power which they normally obtain from the
electricity grid. However, in case of a partial or total shut down or black out
of the grid, it is not possible for a generator to obtain the necessary start-up
power from the grid. To be able to restore the grid in such a situation, some
generation units have to be capable to start without relying on external power.

Black start is the capability of production units to start up without relying
on the external power grid. This can for instance be achieved by having the
required power delivered by a smaller, auxiliary diesel or gas-fired generator.
When a black out occurs, the production units with black start capability are
able to re-energise parts of the grid, enabling other production units without
black start capability to also start up and so gradually recover the grid.

The TSO procures black start capabilities from selected production units, which
get paid to recover the investment costs needed to equip a production unit with
black start capabilities. As the technical requirements for the black start service
are rather stringent, the black start service is currently only being procured from
traditional power plants. Nevertheless, there are some TSOs investigating the
use of non-conventional energy resources for black start services, with Imperial
Irrigation District, a utility from southern California, having demonstrated an
emergency black start with a BESS [40].
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Value Estimation

Since black start provision by a BESS is still in an early demonstration phase,
there are no commercial examples of third party BESSs providing black start
capabilities to a TSO yet. Besides, the TSO procures black start capabilities
from traditional production units usually through tenders in which the offer is
evaluated on a technical and economical perspective in a case-by-case analysis,
rather than through a liquid market.

The commercial value of a BESS providing black start services can therefore
not be estimated without performing an in-depth analysis, which is considered
out of scope for this chapter.

2.3.7 Voltage Control

Description

Both the TSO and the DSO have to ensure the voltage of the grid remains
within a predefined tolerance band around the nominal voltage of the grid.
Contrary to the frequency, the voltage is not equal over the grid, but varies with
the location in the grid. Therefore, the amount of voltage control capability
required by the system operator depends on the location in the grid.

In the high voltage grid, operated by the TSO, voltage control can be achieved
by adjusting the reactive power consumption or injection of an asset directly
connected to the point in the grid where the voltage has to be controlled. In
the low voltage grid, operated by the DSO, voltage control can be achieved by
adjusting both active and reactive power of an asset, although reactive power
will have less effect and incur more active power losses than in the high voltage
grid.

BESSs can provide voltage control services, as they are connected via an inverter
which can be controlled to inject or consume both active and reactive power
into and from the grid.

Value Estimation

As the purchase of voltage control services by the grid operators varies with
location, a real liquid market for voltage control does not exist. The use of
active voltage control by DSOs is still in a demonstration stage with various
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pilot projects being carried out around the world, but a mature commercial
market for voltage control in the distribution grid does not yet exist.

Similarly to the black start service, estimating a quantitative value for voltage
control delivery by a BESS is considered out of scope for this chapter.

2.3.8 Congestion Management & Network Investment Defer-
ral

Description

Congestion in the grid occurs when the transfer of active power over the grid
exceeds the transfer capability of the grid [41]. When congestion occurs on a
part of the grid, the grid operator has two options: to limit the active power
transfer or to increase the transfer capacity of the grid. The first option has an
impact on the users of the grid, as they need to adjust their power consumption,
while the second option involves a severe long-term investment from the grid
operator.

Typically, the periods for which congestion occurs are limited in time and
investing in an increase of grid capacity to cover only these few moments is
not cost effective. A BESS could then be used to manage active power at
the congestion point during these moments, ensuring the power throughput
stays below the transfer capability and deferring or even eliminating completely
the need for investments to upgrade the grid. Congestion management can
be used by both TSOs and DSOs, depending on which part of the grid the
congestion occurs and the BESS is connected to. Active congestion management
performed by the TSOs within its control area is sometimes also referred to as
redispatch [42].

Value Estimation

Comparably to voltage control, the value of congestion management depends
on the geographical location of the BESS in the grid. A BESS which is not
connected to the congested part of the grid cannot reduce the congestion in the
congested part of the grid. Previous work in the literature has estimated that
the use of BESSs for congestion management and network investment deferral
can reduce the total cost of the DSO by 28 % [43] and therefore would present
a positive business case, although the value depends highly on the degree of
congestion of the network. In these use cases however, the BESS is owned and
operated by the DSO as being part of the grid.
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Another option to avoid congestion in a part of the grid would be for a grid
operator to buy flexibility on that specific location from third party flexibility
providers through local energy markets and local flexibility markets. However,
such market places are still a topic of active research [44], with ongoing pilot
projects to demonstrate the effectiveness of such markets [45]. Besides, concerns
on the possibility of strategic bidding and locational market power that can occur
with market-based congestion management results in some actors advocating
against market-based congestion management [46].

Since market-based congestion management is currently still under discussion,
estimation the value requires an in-depth study, taking assumption on the
possible market design, the product features, the grid topology and the costs of
other assets, amongst others. As this is beyond the scope of this chapter, we
will exclude the value of congestion management from the comparison with the
other services.

2.3.9 Day-Ahead Market Arbitrage

Description

On the day-ahead market (DAM), producers, suppliers and large consumers
can trade energy for the next day. Typically, the energy is traded in hourly
blocks (or half hourly blocks in the UK). Producers place offer bids, consisting
of a certain capacity at a certain price for a specific hour the next day while
suppliers place demand bids. All bids have to submitted before market closing
time, after which the market clearing algorithm calculates the accepted bids
and prices for each hour of the next day.

Historically, the DAMs in Europe have been cleared by placing the offer and
demand bids in merit order with the intersection of the offer and demand
curves determining the clearing price. In the current European DAMs the
concept of merit order still exists, however, the implementation of the flow-
based market coupling has significantly increased complexity of the market
clearing algorithm [47].

BESSs can provide DAM arbitrage as they are able to store energy, charging
at times when the day-ahead price is low and discharging at times when the
day-ahead price is high. For this application, the BESS needs to have access to
the DAM, which can be provided by a supplier or a balance responsible party
(BRP). Often, large consumers which are directly connected to the transmission
grid also have access to the DAM, and would therefore also be able to use a
BESS for DAM arbitrage.
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Recently, the products in some European DAMs have been expanded to include
more advanced products, such as linked block orders, exclusive block orders and
loop blocks [48, 49]. Loop blocks are especially interesting for BESSs, as they
allow to couple the sale of a volume of energy at a certain time period with the
purchase of a volume of energy at another point in time. This avoids the risk
of selling a volume of energy with the BESS without having the possibility to
charge the BESS first.

Value Estimation

To estimate the value of a BESS in the day-ahead market, we propose a simple
optimisation problem, minimising the cost of charging and discharging against
the DAM prices cDAMk , k = 1, . . . , nt, thereby maximising DAM arbitrage profits.
When the DAM bids have to be placed, the cleared prices are not yet known.
Therefore, we will assume here the BESS has access to a prediction of the DAM
prices c̃DAMk , and optimises its (dis)charging schedule against these predicted
prices c̃DAMk .

Let 0 ≤ P ck and P dk ≤ 0 be the battery charging and discharging power
respectively, at time step k, with duration ∆t. The optimisation problem can
then be formulated as follows:

min
nt∑
k=1

c̃DAMk (P ck + P dk )∆t (2.4a)

s.t. 0 ≤ P ck ≤ P batmax, k = 1, . . . , nt, (2.4b)

P batmin ≤ P dk ≤ 0, k = 1, . . . , nt, (2.4c)

0 = P ckP
d
k , k = 1, . . . , nt, (2.4d)

Ebatmin ≤ Ek ≤ Ebatmax, k = 1, . . . , nt, (2.4e)

Ek+1 = Ek + (ηcP ck + 1
ηd
P dk )∆t, k = 1, . . . , nt, (2.4f)

ηc
nt∑
k=1

P ck ≤ cyclesmax
365 · 24
nt∆t

. (2.4g)

Constraints (2.4b) and (2.4c) limit the charging and discharging power to the
maximum P batmax = P batrated and minimum P batmin = −P batrated power of the battery,
respectively. Constraint (2.4d) is an integer constraint, denoting that the battery
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cannot charge and discharge at the same time. Constraint (2.4e) limits the
energy content of the battery to the maximum Ebatmax = Ebatrated and minimum
Ebatmin = 0 energy content, while constraint (2.4f) relates the battery power to
the battery energy content, taking into account a constant battery charging ηc
and discharging ηd efficiency. Finally, constraint (2.4g) limits the amount of
equivalent cycles over one year, using (2.1).

After solving (2.4) with the predicted prices c̃DAMk , the resulting value of the
BESS in the DAM can be calculated by multiplying the battery charging and
discharging power schedule with the actual day-ahead prices cDAMk :

valueDAM =
nt∑
k=1

cDAMk (P ck + P dk )∆t. (2.5)

For this analysis, we used the DAM prices of Germany from January 2016 to
July 2019 [50]. As the German DAM is traded in blocks of one hour, ∆t = 1 h.
In reality, one has to place a DAM bid every day and therefore the problem (2.4)
should be executed daily. Constraint (2.4g) may then be overly conservative, as
on days with highly volatile prices and it would be beneficial to run more cycles,
and compensate for this on days with less price volatility by running less cycles.
In this analysis however, we run (2.4) over the entire horizon of DAM prices
(from January 2016 to July 2019), and scale valueDAM from (2.5) to represent
the value over one year.

We assume one is able to predict the DAM prices cDAMk with an additive error
εDAM which follows a normal distribution with zero bias and standard deviation
σDAM :

c̃DAMk = cDAMk + εDAM , εDAM ∼ N (0, σ2
DAM ) . (2.6)

Figure 2.5 shows the average value valueDAM of a 1 MW, 1 MWh BESS in
the German DAM over one year, in function of the normalized root mean
square error (NRMSE) of the predicted DAM prices c̃DAMk (in this case here
NRMSE = σDAM/cDAM ). A NRMSE of 0 corresponds to the perfect hindsight
value, where one is able to predict the future prices perfectly. From the figure,
it can be clearly seen that with a higher error on the predicted prices, a lower
value on the DAM can be achieved.

The figure shows the curve for multiple maximum cycles per year cyclesmax/y.
It can be easily understood that with a maximum of 300 cycles per year the
value of the BESS is less than with a maximum of 500 cycles per year, although
the difference between the two curves decreases with an increased prediction
error. However, it is interesting to note that at a maximum of 1000 cycles per
year, the value of the BESS is only higher when the error on the predicted prices
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Figure 2.5: Average value of a 1 MW, 1 MWh BESS on the Germany DAM
per year, in function of the NRMSE of the predicted DAM prices, and for a
maximum of 300, 500 and 1000 cycles per year.

is low. When the predicted prices have a higher error, it is actually beneficial
to limit the maximum amount of cycles to 500, even if the BESS can support
up to a 1000 cycles. This can be explained by the fact that with a high number
of cycles, when solving (2.4) with the predicted prices, the BESS will try to
leverage all arbitraging possibilities on the predicted prices, also when this will
only result in a small expected profit. When the actual prices are then different
from the predicted prices, this small expected profit can quickly become a loss.
It is therefore beneficial to limit the amount of cycles, as the BESS will then
only perform arbitrage when the expected profit of a cycle is large enough. A
more accurate, but also more involved way of achieving this would be to take the
uncertainty on the predicted prices into account in the optimisation problem.

Current state-of-the-art day-ahead market forecasters using artificial neural
networks are able to obtain a NRMSE of around 22 % [51], corresponding to a
value of 7100e/y in Figure 2.5.

Usage of more the advanced products when bidding in the day ahead market,
such as the loop blocks mentioned above, will allow one to reduce the risk on
trading with losses, and therefore will increase the value on the day ahead
market when the prices are uncertain. A detailed analysis of advanced trading
strategies leveraging the capabilities of these product is out of scope of this
chapter, however, it is clear that this value can never be more than the perfect
hindsight value corresponding to a NRMSE of 0 in Figure 2.5.
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2.3.10 Intraday Market Arbitrage

Description

After the day-ahead market is closed, it is still possible to buy and sell energy
on the continous intraday market (CIM), which is cleared on a continuous basis,
rather than only at closure [52]. This means that once a buy bid can be matched
to a sell offer, both bids are cleared before market closure. The cleared market
price of a specific energy block can therefore vary as long as the market is open
for trading that energy block.

Depending on the country, the CIM allows to trade in blocks of 1 hour, 30
minutes or 15 minutes and closes between 1 hour and 5 minutes before delivery.
Recently, the CIM of various countries in Europe have been linked to create a
cross-border intraday market with implicit continuous allocation of cross-border
transmission capacity [53].

Similarly to the DAM, a BESS can perform arbitrage on the CIM, by charging
when intraday prices are low and discharging when intraday prices are high.
Besides, a BESS could also provide arbitraging between the DAM and the CIM,
for instance by buying a volume of energy on an hour with high day-ahead
prices, and selling this energy back when prices on the CIM are lower on a later
time period.

Value Estimation

In the German CIM, energy is traded in hourly and a quarter-hourly blocks,
which can be traded up to 5 minutes before the delivery period in the same
TSO area [54].

The highest and lowest price traded and a weighted average trade price
are publicly available [55] for the hourly and quarter-hourly blocks of the
German CIM. One can obtain the most value when performing arbitrage on
the highest and lowest traded prices. However, it is very unlikely one is always
able to trade at these prices because it requires perfect hindsight knowledge of
all bids placed in the market.

As using the highest and lowest traded prices results in the maximum achievable
value of a BESS performing CIM arbitrage, we use these prices to calculate an
upper bound. To calculate a lower bound, we use the weighted average trade
prices, assuming one is definitely able to trade at the weighted average trade
prices.
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Figure 2.6: Value of a 1 MW, 1 MWh BESS performing arbitrage on the
Germany CIM over one year, in function of the average number of cycles.
The maximum achievable value is given using the highest and lowest traded
prices, while using the weighted average trade prices gives a lower bound on
the value.

Figure 2.6 shows the value of a 1 MW, 1 MWh BESS performing arbitrage on
the quarter-hourly German CIM for one year in function of the number of
cycles. The value is calculated using (2.4), but with the highest (for discharging)
and lowest (for charging), or weighted average CIM prices, instead of the day-
ahead prices. There is large difference between the maximum achievable value
using the highest and lowest traded prices, and arbitraging using the weighted
average prices. A good trading algorithm can therefore be expected to create
considerably more value than the lower bound of Figure 2.6, but it can be
assumed that the value corresponding to the highest and lowest traded prices
will never be achieved in practice.

2.3.11 Imbalance Price Arbitrage & Portfolio Balancing

Description

The imbalance of a BRP is equal to the difference between the sum of all
its produced energy, including purchases on future, day-ahead and intraday
markets, and the sum of all consumed energy, including all sales on future,
day-ahead and intraday markets. If a BRP has an imbalance during a settlement
period, the TSO will charge the BRP an imbalance price. These imbalance
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prices vary per settlement period and depend on the amount of imbalance in
the system and the amount of reserves the TSO had to activate to maintain
the balance in its control area. In some TSO control areas, the imbalance price
for a positive imbalance is different from the imbalance price for a negative
imbalance, although there is a trend on European level to work with a single
imbalance price.

A BRP can use a BESS for portfolio balancing, minimising its exposure to these
imbalance prices by charging the BESS when the portfolio of the BRP has a
positive imbalance and discharging when the portfolio has a negative imbalance.
In this way, the BESS will try to balance the portfolio of the BRP in such a
way that imbalance is minimised, avoiding possible high imbalance charges.

As the imbalance prices vary over time, one can also use a BESS to perform
imbalance price arbitrage, by charging the BESS when imbalance prices are low
and discharging when imbalance prices are high.4

An additional difficulty of performing arbitrage on imbalance prices is that the
imbalance prices for a settlement period are only calculated by the TSOs after
the settlement period. A BRP that wants to perform imbalance price arbitrage
will therefore have to predict the imbalance prices of both the future and the
current settlement periods using the available data at that moment in time.5

Value Estimation

Both portfolio balancing and arbitraging are ways to create value with a BESS
on the imbalance prices. The objective of portfolio balancing is not to maximise
revenues, but rather to minimise the risk of having to pay high imbalance
costs. When performing arbitrage however, the objective is clearly to maximise
revenues by minimising imbalance costs (although it would be possible to take
a risk metric into account here as well). Therefore, to compare the value of a
BESS arbitraging on imbalance prices with the other applications, we focus on
imbalance price arbitrage rather than portfolio balancing.

Most TSOs, such as the Belgian TSO Elia or the British TSO National Grid,
publish a first non-validated estimation of the imbalance price of a settlement
period during the current or the next settlement period. In Germany however,
the imbalance prices are only published once a month, 20 workdays after the

4In some countries there exists a balancing obligation, meaning that the BRP is not allowed
to make its portfolio go in imbalance on purpose. However, when the imbalance caused by a
BRP helps to reduce the general imbalance in the system, this is often tolerated.

5Some TSOs such as Elia now publish non-validated estimations of the current imbalance
price in real time.
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Figure 2.7: Value of a 1 MW, 1 MWh BESS performing arbitrage on the German
imbalance prices over one year, in function of the average number of cycles.
The maximum value is given using the perfect hindsight prices while a lower
bound is given by the MPC with a simple imbalance price forecaster.

end of the month in which they occur. This makes it harder to predict future
imbalance prices, as no short-term historical data is available.

It is clear that with a better forecast of the imbalance prices, higher revenues can
be obtained. The theoretically maximum achievable revenues can be calculated
by using the actual imbalance prices in (2.4). To obtain a lower bound on the
imbalance revenues, we created a simple forecast of the imbalance prices, using
a linear regression with L1 regularization from a set of available data points
that can be correlated to the actual German imbalance price.

For the regression we used information from the day-ahead and intraday markets,
the marginal prices of the activated aFRR and mFRR reserves, the activated
aFRR and mFRR volumes and the ACE of the last settlement price period.
We ran the regression model for the current and the future 20 quarters. For the
control of the battery, we used a model predictive control (MPC) approach [56],
where we run the optimisation (2.4) with the 21 forecasted imbalance prices, and
only execute the first upcoming quarter hour of the battery power resulting from
the optimisation. For the next quarter hour, we generate a new forecast using
the latest available information, and repeat the process for every consecutive
quarter hour. We use two years of data for training the regression and evaluate
the performance on the imbalance prices of 2018.

The value of a 1 MW, 1 MWh BESS performing arbitrage on the German
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imbalance prices of 2018 is shown in Figure 2.7 in function of the maximum
number of cycles per year. The figure gives an upper bound on the value of
the BESS using the perfect hindsight imbalance price information, and a lower
bound using the MPC with the linear regression as a simple imbalance price
forecaster.

As with the CIM, the maximum value in the German imbalance market is pretty
high, however, in practice this value is unachievable as one does not know the
imbalance prices upfront. Nevertheless, a good imbalance price forecaster in
combination with a good control algorithm should be able to create considerably
more value than the lower bound shown in Figure 2.7.

2.3.12 Increasing Self-Consumption

Description

When an electricity consumer has locally installed electricity generation such as
PV, the consumer is also referred to as a prosumer. Depending on the tariff,
the energy exported to the grid will be measured separately from the energy
imported from the grid. Due to grid costs, taxes and levies, the electricity price
paid for the imported energy is usually higher than the electricity price the
prosumer receives for the exported energy. It is therefore beneficial for the
prosumer to consume the generated electricity locally instead of exporting the
energy to the grid. However, not all locally generated electricity can always
be consumed directly. This is for instance the case with residential PV, where
most of the electricity is generated during the day but most of the residential
electricity consumption occurs in the evening and in the morning.

Using a BESS, a prosumer can store the excess generated production for later
consumption which would otherwise be exported to the grid. In this way, the
prosumer increases the self-consumption of the locally generated energy, and
saves the difference between the import and export electricity price per unit
of electrical energy stored in the BESS. As this application aims to adjust the
prosumers’ metered imported and exported energy, this application can only be
provided by a BESS installed behind-the-meter, i.e. at the prosumers’ premises.

Value Estimation

The value of a BESS increasing self-consumption depends on the actual
consumption profile of the prosumer, the production profile of the locally
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Figure 2.8: Value of a residential 1 C BESS performing self-consumption in
function of the energy capacity of the BESS.

installed generation asset and the difference between the import and export
prices.

As the electricity import price of residential consumers is usually higher than
the import price of large commercial or industrial consumers, self-consumption
is an application with a high potential for residential electricity prosumers,
which usually have rooftop PV.

To estimate the value of self-consumption for residential prosumers with PV,
we run a Monte Carlo simulation with multiple residential consumption profiles,
generated using the model from [57], and PV production profiles generated from
the model presented in [58]. The consumption profiles are scaled so that, on
average, they consume 3500 kWh/y, while the PV profiles are scaled to represent
a system of 4.0 kWp.

We use the average import price for households in Germany of 30.43 ce/kWh [59]
and the latest German feed-in tariff for residential PV systems of 10.18 ce/kWh [60].

Figure 2.8 shows the average value due to a decrease in electricity costs of
a residential 1 C BESS used for self-consumption of rooftop PV. The graph
shows the value of the BESS in function of the energy capacity. The larger
energy capacity of the BESS, the higher the value, as the BESS can store
more generated PV energy. However, saturation of the value occurs for larger
BESS, meaning that the value per kWh of energy capacity actually reduces
with larger BESS. Commercially available residential BESS have a size between
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5.0 kWh and 13.0 kWh, which gives a value between 250 and 340e/y, or between
52e/kWh/y to 25e/kWh/y, according to Figure 2.8.

2.3.13 Peak Shaving

Description

Grid tariffs charged to commercial and industrial electricity consumers consist
not only of an energy component (in e/kWh), but also of a peak demand charge
cpeak (in e/kW), proportional to the highest measured consumption peak over
a certain time period, usually a month or a year [61]. With this tariff structure,
a BESS can reduce network costs by discharging at the moments when the
site is consuming its maximum power and charging when the site is consuming
less, thereby reducing the site’s metered peak consumption, and therefore also
reduce the charged grid fees.

Beside a proportional peak demand charge, often, a large reduction on total
grid fees is given to large consumers who have a very flat profile, expressed
by the profile duration (equal to the total energy consumption divided by the
maximum consumption peak). For example in Germany, if the profile duration
of a consumption site is above 7000 h, the site can get a reductions up to 80 %
of the total grid fees [62]. Also in France, similar reductions are give to large
electricity consumers [63]. A BESS installed at such a site can help the site to
increase its profile duration by reducing the maximum consumption peak, so
that the site reaches the threshold needed to obtain the reduction.

Value Estimation

As demand charges are usually charged to larger industrial or commercial
consumers but not to residential consumers, we simulate a BESS performing
peak shaving on 64 industrial consumption profiles, varying from large, industrial
sites such as metal melters to smaller wood pulp processing companies and cold
stores.

We employ a simple, rule base BESS control strategy for peak shaving: optimise
a threshold value based on historical data, have the BESS discharge when the
consumption profile goes above this threshold value, and charge otherwise. This
is an effective controller which can easily be employed in real life, however, it
is not an optimal controller, as an optimal peak shaving controller will know
at which moment exactly the consumption peak occurs and only then starts
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to discharge. However, such an optimal controller requires perfect hindsight
knowledge of the consumption profile which is not available in practice.
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Figure 2.9: Value created of energy capacity of a 1 C BESS when performing
peak shaving on 64 industrial and commercial consumption profiles. The power
capacity of the BESS is chosen to be 10 % of the peak power of the consumption
profile.

In Germany, the grid tariffs of large consumers have a demand charge component
proportional to the maximum power consumption peak per month or per year.
The exact value of the demand charge depends on the distribution grid the site
is connected to. Here, we use the demand charges of Westnetz, a large DSO in
the west of Germany, which charges a demand charge of 74.27e/kW/y on the
maximum power peak over one year [64].

Figure 2.9 shows the value due to a reduction in demand charges per MWh of
a 1 C BESS, for the 64 industrial sites. As the size of the profiles varied a lot,
we dimensioned the size of a BESS at a consumption site so that it equals 10 %
of maximum site power.

From the figure, it is clear that there is a large difference in the value of a BESS
for peak shaving amongst the various sites. For some sites, the BESS is able
to reduce the peak power significantly, and therefore create considerable value.
For other sites, the BESS can only reduce the peak power slightly and therefore
does not create much value.
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2.3.14 Time of Use Bill Management

Description

Smaller industrial, commercial and residential consumers usually have a flat rate
or a time of use (ToU) electricity tariff [65]. With ToU tariffs, the electricity
price is higher during specific, predefined hours of the day. The objective of the
ToU tariffs is to shift electricity demand to hours where there is typically less
consumption or wholesale prices are lower. Examples are peak/off-peak tariffs
such as the economy 7 tariff in the UK or typical day/night tariffs which offers
consumers a lower price during the night.

A BESS performing ToU bill management provides direct value to the consumer,
by discharging the BESS when there is consumption during peak hours, and
charging the BESS during off-peak hours. This service can only be provided
by a BESS installed behind the meter. As the tariffs and peak/off-peak hours
are known before hand, there is no need for price forecasting, simplifying the
control of the BESS significantly.

Value Estimation

One of the most occurring time of use tariffs is the day and night tariff for
residential consumers. In this scheme, the consumers are charged less during
the night and in the weekends than during the day. A BESS can then simply
charge during the night hours and discharge during the day hours to reduce the
electricity costs of the consumer.

In Germany, a day and night tariff scheme exists, however, the difference
between the day and the night tariff has been decreasing during the latest years.
To estimate the value of a BESS in the day and night tariff, we assume an
electricity costs of 30 ce/kWh during the day and 25 ce/kWh during the night
periods. In Germany, the day periods typically run from 6h00 to 22h00 on
weekdays.

To estimate the value of a BESS arbitraging between day and night tariffs, we
perform a Monte Carlo simulation with residential demand profiles, generated
in the same way as described in Section 2.3.12.

Figure 2.10 shows the value due to a reduction in energy costs when charging
a BESS during the night tariff and discharging while consuming during the
day tariff, in function of the energy capacity of the BESS. Because the small
difference between day and night tariff (5 ce/kWh), the value of the BESS in
arbitraging between the day and night tariff is rather low.
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Figure 2.10: Value of a residential 1 C BESS charging during the night tariff
and discharging when consuming during the day tariff.

2.3.15 Power Quality Improvements

Description

Power quality is an overarching concept to denote the quality of the voltage
and current waveforms. A good power quality means a steady power supply,
a steady frequency and root mean square (RMS) voltage and the absence of
transients, harmonics, voltage dips or phase imbalances.

Sometimes, highly sensitive loads such as special production processes require
a power quality which is higher than the power quality from the grid, and
therefore need measures to increase power quality. At places with a weaker grid
the power quality might be too low, and measures are needed to increase power
quality.

As a BESS is connect to the grid via an inverter, it can to increase power
quality [66, 67] by performing phase balancing [68], absorbing harmonics or
performing voltage control, for instance.

Value Estimation

A BESS can be used for power quality improvements due to the presence of
an inverter, rather than the ability to actually store energy, power quality
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improvements can usually be added on top of other services. The value of
providing power quality improvement however is very dependent on the specific
case, and should be analysed on a case-by-case basis. Estimation the value of a
BESS for power quality improvements is therefore considered out of scope of
this chapter.

2.3.16 Uninterruptible Power Supply

Description

An uninterruptable power supply (UPS) is used to provide emergency power in
case of failure from the main power supply. Depending on the amount of time
needed to overcome a possible power failure, a UPS can consist, amongst others,
out of a super capacitor, a BESS, a diesel generator, or a combination of these.

A BESS is used as a UPS to provide power during very short interruptions to
interruptions of a couple of hours. For longer durations, diesels generators are
normally used.

Value Estimation

A UPS is used for emergency situations only. Using a BESS to serve as a UPS
is thus an application to mitigate risk rather than an application to create pure
value by decreasing costs or obtaining revenues. It is thus not straightforward
to put a general value on a BESS used as a UPS which can be compared to the
value of the other applications described in this chapter. Therefore, we will also
consider this out of scope of this chapter.

2.4 Quantitative Comparison of the Applications

The previous section describes the most important applications of battery energy
storage systems, following the classification of Table 2.1. Where possible, the
previous section also provides a quantitative estimation of the value of the
application in the German market. These value estimations are combined in
Figure 2.11, per MWh of usable energy capacity of a 1 C BESS and a maximum
of 500 equivalent cycles per year.

In the figure, the red bars corresponding to the CIM and imbalance market
applications, where the value depends highly on the accuracy of the price
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Figure 2.11: Estimation of the value per year of a 1 C BESS in Germany used
for different applications, per MWh and with a maximum of 500 cycles per year,
as derived in Section 2.3. The dash-dotted line gives the yearly cost of a BESS
with a lifetime of 10 years at a price of 500e/kWh as an indicative reference of
profitability.

forecaster, show the lower bound on the value, derived using simple price
forecasters, while the top of the error bars show the maximum achievable value
if one had perfect hindsight knowledge. As stated in Section 2.3, this maximum
value is not achievable in practice, but with good price forecasters, one should
be able to outperform the lower bound. The red bar corresponding to the DAM
application shows the value of a price forecaster with a NRMSE of 22 %, which
is achievable by current day-ahead price forecasters [51], while the error bars
give the maximum and minimum value from Figure 2.5.

For the residential self-consumption and ToU applications, for which the value
depends highly on the size of the BESS, the red bars correspond to a BESS of
6 kWh, while the error bars denote the value range of BESSs between 5 kWh
and 15 kWh. For the peak shaving application, the red bar is the average value
for all 64 industrial sites analysed in Section 2.3.13, while the error bars give
the minimum and maximum value of the 64 sites.

Finally, the red bars for the ancillary services applications (FCR, aFRR, mFRR
and RR) correspond to the value as derived before.
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The figure shows that, although there is a high theoretical value in the CIM
and imbalance market, FCR is the application which has probably the highest
achievable value in practice, despite falling prices in FCR markets. The total
value of aFRR is also considerably high, due to the high amount of activation
payments one is able to obtain when setting the right activation price. The value
of mFRR and RR is much lower due to the higher energy capacity requirements
and lower market prices of these applications. It is important to note that the
cost of recharging is not incorporated in this value estimation, and this cost is
expected to be higher for aFRR than for FCR due to the longer duration of
activations in aFRR.

With regard to the behind-the-meter consumer applications, both self-
consumption and peak shaving can create considerable value, but the value
depends highly on the size of the BESS, the specific consumption profile, and
the electricity tariff of the consumer.

Finally, as an indicative reference for the profitability of a BESS, the dashed
line in the figure gives the yearly revenues needed to pay the investment back in
a BESS over 10 years, at an investment cost of 500e/kWh. It can be seen that
both FCR and aFRR can be profitably applications, as well as peak shaving, and
self-consumption, although the latter only barely and in a few cases. Intraday
and imbalance market arbitrage can also be profitable if one is able to obtain
more value than our proposed lower bound by developing better price forecasts
and trading strategies.

Aggregation

Aggregating BESSs in a pool with other flexible assets that are not limited in
energy content but might have other constraints such as a maximum number of
activations or a limited ramp up speed, can help to achieve the energy capacity
requirements of the ancillary services used for load-frequency control (FCR,
aFRR, mFRR and RR) and therefore has the potential to increase the total
power capacity that can be offered in the market.

However, these additional assets also need to be compensated for their
capabilities, representing additional costs that need to be taken into account.
These costs can be the actual cost of activating such assets, for instance when
this represents additional consumption of fuel, or opportunity costs these assets
can obtain when using their flexibility stand-alone for other ancillary services
or electricity markets.

When aggregating a BESS with assets that have a slower reaction time,
increasing the power capacity that can be offered in the load-frequency control
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market is not straightforward. One has to make sure the offered capacity can
always be activated, even if the other asset is used to recharge the BESS. For
example when aggregating a BESS for use in the FCR market with a slower
asset that can only ramp up to 20 % of its capacity in 30 seconds, one can only
increase the total FCR capacity with 20 % of the capacity of the slower asset,
otherwise the FCR capacity cannot always be delivered in time. Nevertheless,
such slower assets can be used effectively to decrease the recharging costs or to
reduce the amount of cycles and therefore the degradation of BESS.

Assets that are faster but limited in number of activations do not have this
issue and can be used to help the BESS manage its SoC in case of rare but long
activations that would for which the BESS would otherwise not have enough
energy content.

Future Outlook

A further increase of intermittent renewable generation will not only lead to a
reduction of the inertia of the grid, but it is generally expected that it will also
lead to an increased volatility on the wholesale energy market prices [69,70]. An
increase in price volatility would result in increased profits for BESSs performing
arbitrage on these markets, improving the business case for BESSs in short-term
wholesale markets.

As stated before, an increase of renewable generation will also lead to a decrease
of rotational inertia in the grid. To compensate for this, faster FCR (fast
frequency response), or even synthetic inertia will need to be procured by the
TSOs. As traditional power plants are unable to provided such fast response,
the prices of these fast frequency response products will be set by fast flexible
energy resources such as BESSs. It is hard to predict if these prices will be
higher or lower compared to the current FCR price, as these prices should be
high enough to pay back the investments in BESSs, but a low marginal costs of
providing frequency reserves with BESSs can easily put a downward pressure
on the prices from the moment when there is too much capacity in the market.

It is likely that, when local energy and flexibility markets will be implemented
in practice, voltage control and congestion management will become important
revenue streams for BESSs, especially if they are situated in the specific locations
in the grid that face a high congestion.

Finally, other resources of flexibility can present considerable competition to
BESSs in all of the applications mentioned above. Important examples of such
resources are demand response flexibility and electric vehicles (EVs). Demand
response from industrial loads is already today an important source of flexibility.
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However, certain limitations, for instance on reaction time, availability or
number of activations, make that stand-alone demand response can only be
used for a limited number of applications and can actually be complementary
with BESSs when aggregated together, as elaborated above.

With increasing sales of EVs, they will represent an important source of flexibility
in the electric grid. Despite that their flexibility originates from batteries, they
do have other constraints that stationary BESSs do not have. Electric vehicles
need to be charged at a certain time when the owner of the EV wants to leave, and
vehicle to grid applications, where the battery of the EV is discharged into the
grid, reduces the lifetime of the battery cells and is therefore not always desired.
Nevertheless, aggregating power from EVs that are charging will represent
considerable amount of flexibility and can therefore be used for wholesale
market arbitraging or to provide ancillary services (albeit asymmetrically in
case vehicle to grid is not allowed).

2.5 Conclusion

In this chapter we have given an overview of the possible applications of
battery energy storage systems in the European power grid and electricity
markets. We have classified the applications into three main groups, according
to whom the application creates value: ancillary services that create value for
the grid operators, wholesale electricity market applications for the suppliers
and consumer applications for the electricity consumers.

We have given a general description of each of the applications, and where
possible tried to obtain a quantitative estimation of the value of the applications,
per MWh of a 1 C BESS in the German market. The analysis shows that there
is a lot of theoretical value in the short-term wholesale electricity market
applications (arbitraging on the intraday and imbalance markets). However,
the practically achievable value lies a lot lower as one does not have perfect
hindsight of the actual prices.

Taking this into account, two ancillary services for load-frequency control: FCR
and aFRR can provide the most value in practice, and are able to pay back
the investment in a BESS at an investment cost of 500e/kWh. Of these
two ancillary services, FCR can still provide more value than aFRR, despite
decreasing FCR market prices in the past years. On the consumer side, self-
consumption and peak shaving are two applications which can also provide
considerable value, depending on the actual size of the BESS and the specific
consumption profile. Yet, these applications alone are unlikely to pay back for
the investment into a BESS.
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The analysis performed in this chapter looks at the use of a BESS for one
application only. However, if a BESS is able to combine multiple applications,
it might be possible to increase the total value created by the BESS, combining
the value streams of the respective applications. Control of a BESS providing
multiple applications is a lot more complex, as the different objectives, which
are often conflicting, have to be delivered by one BESS.

The following chapter will perform an in-depth study on the delivery of FCR
with a BESS, as we have seen this is the application which can provide the
most value. We will then develop control strategies to combine FCR with
self-consumption in Chapter 4, and with peak shaving in Chapter 5, the two
services which create the most value behind the meter.
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Abstract:

Optimal investment in battery energy storage systems, taking into account
degradation, sizing and control, is crucial for the deployment of battery storage,
of which providing frequency control is one of the major applications. In
this paper, we present a holistic, data-driven framework to determine the
optimal investment, size and controller of a battery storage system providing
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frequency control. We optimised the controller towards minimum degradation
and electricity costs over its lifetime, while ensuring the delivery of frequency
control services compliant with regulatory requirements. We adopted a detailed
battery model, considering the dynamics and degradation when exposed to
actual frequency data. Further, we used a stochastic optimisation objective
while constraining the probability on unavailability to deliver the frequency
control service. Through a thorough analysis, we were able to decrease the
amount of data needed and thereby decrease the execution time while keeping
the approximation error within limits. Using the proposed framework, we
performed a techno-economic analysis of a battery providing 1 MW capacity
in the German primary frequency control market. Results showed that a
battery rated at 1.6 MW, 1.6 MWh has the highest net present value, yet this
configuration is only profitable if costs are low enough or in case future frequency
control prices do not decline too much. It transpires that calendar ageing drives
battery degradation, whereas cycle ageing has less impact.

3.1 Introduction

Lithium-ion BESSs are being installed around the world at an increasing rate.
An important application of BESSs is to provide frequency control or frequency
regulation services. In multiple markets around the world, such as the market
operated by PJM, in the United Kingdom (UK) or other energy markets in
Europe, it is possible for third-party BESS operators to sell frequency control
capacity to the TSO.

In future power systems, increased penetration of renewable generation and
reduced inertia of large synchronous generators are expected to increase the
need for fast frequency control reserves [71]. To mitigate this, battery energy
storage systems are expected to play an important role as they are able to
reduce volatility of the frequency of the grid, as has been shown in [72], due to
their rapid response time which cannot be matched by conventional generation
assets.

Optimal investment, sizing and control are crucial for the deployment of BESSs
to provide the required frequency control services. However, performing a correct
techno-economic analysis of a BESS is challenging, as there are a large number
of non-linearities, parameters and uncertainties that need to be considered.
Examples of these include the nonlinear dynamics and degradation of a battery
cell, parameters of the control strategy (which is specific to each market) and
uncertainties in the activation profile. In this paper, we present an optimisation
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framework that considers these elements in detail, while still being able to
compute in a reasonable amount of time. The framework determines the control
strategy that minimises degradation while ensuring a delivery of the service
compliant with the requirements of the TSO. Further, the framework allows to
perform a techno-economic analysis, to calculate the investment case of a BESS
over its lifetime and to determine its optimal size.

3.1.1 Frequency Containment Reserve

In general, frequency control is divided into three distinct services: primary,
secondary and tertiary frequency control. In this paper, we will focus on the
primary frequency control service, or FCR, as defined by ENTSO-E [24], as it
requires the fastest reaction time and least amount of energy content, making it
very appropriate for a BESS. However, the framework presented in this paper
can also be applied to secondary and tertiary frequency control services.

When providing FCR with an asset, the asset has to regulate its power output
proportional to the deviation of the grid frequency from the nominal frequency
(50 Hz in Europe). The maximum contracted reserve capacity should be
activated when this frequency deviation reaches a predefined maximum value
(200 mHz in the Continental Europe (CE) synchronous region) and within a
predefined time interval (30 s in the CE region).

When having sold FCR capacity to the TSO in European FCR markets, one is
required to deliver the service continuously during the contracted period. This
is a problem for energy-constrained assets such as a BESS, because when a
BESS is completely charged or discharged, it can no longer provide a symmetric
service and faces penalties that are usually high (and can lead to exclusion from
the market). Therefore, an appropriate SoC controller or recharge controller
has to be in place, which maintains the SoC of the BESS within limits, ensuring
the contracted FCR capacity is always available to be activated.

Note that this penalty mechanism as such does not exist in pay-for-performance
frequency regulation markets in the United States of America (USA), where
one is paid according to a performance metric rather than penalised in case
one does not deliver properly. Hence, the design requirements of the recharge
controller in these pay-for-performance markets will also be different.

3.1.2 Related Works and Contributions

In the literature, quite a number of studies have been conducted on the use of
a BESS for frequency control services, concentrating on different parts of the
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problem and using models with various degrees of detail. However, to the best
of our knowledge, there is currently no work consolidating all elements with
sufficient detail into one model.

The main focus of the work in [73–79] is on the operational control strategy,
including the recharge controller, of a BESS providing frequency control. This
control strategy should be designed carefully, as it has an important impact
on the required energy content and on the lifetime of the BESS, as shown
in [73, 74, 80]. Specifically, in [80], it was shown that it is important for the
short-term operational control strategy to consider the long-term degradation
for maximal revenues over the lifetime of the BESS, a conclusion that was also
made in [72].

Rule-based recharge controllers, of which the parameters can be tuned, were
proposed in [73–75,81,82] to provide FCR services to the German market. More
complex optimisation frameworks were proposed in [76], [77] and [78], albeit
applied only to pay-for-performance frequency regulation markets. Dynamic
programming was used in [76] and [77], but the results were operational control
strategies that are computationally demanding and not feasible to calculate
over the entire lifetime of the BESS, which is needed for investment analysis.
In [78], a control strategy that considers a more complex degradation model was
optimised using a subgradient method. It was shown that a simple, rule-based
controller can achieve a constant worst-case optimality gap with regard to a
perfect-hindsight solution in pay-for-performance regulation markets.

A BESS is combined with a power-to-heat system to provide FCR services to
the German market using a rule-based control strategy in [81]. The combination
of a BESS with a wind power plant to provide frequency control services
was investigated in [83], where they conducted an economic optimisation to
determine the optimal size of the BESS.

A techno-economic analysis of a BESS performing frequency control with Li-ion
battery cells was performed in [84] for the German market, in [82] for the UK
market and in [85] for the US market (Texas) but with a vanadium redox flow
battery. Battery degradation was considered in both [82] and [84], but not
in [85]. The operational control strategy was optimised in [82] via a grid search
and in [85] using a nonlinear solver, but not in [84].

In [73–78,81–84], a simple, linear charge-counting battery model with constant
efficiencies, energy and power capacities was used. In [80], the efficiency losses
were not considered. Only in [79] and [85] dynamic battery cell models were
used, and it was argued that it is necessary to use accurate battery models
when performing economic assessments. This was confirmed in [86], where they
showed how the efficiency varies with the (dis)charging power when providing
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frequency control.

In each of these previous works, the focus was on a specific part of the problem:
some works focussed on the design of the controller, but did not (or only to
a limited extent) consider the dynamics or the degradation of the BESS or
the stochastic nature of the FCR signal. Other works focussed on the battery
model or on the degradation of the BESS, but did not optimise the controller.
In other works, a techno-economic analysis was performed, but without a
dynamic battery model or an optimised controller. Hence, there is a clear need
for a holistic approach, that allows conducting a complete techno-economic
assessment of a BESS providing FCR using detailed models and an optimised
FCR controller while considering the stochasticity in a correct way.

Therefore, in this work, we consolidated the results of previous works and
appended to them the following contributions:

• We present an all-encompassing framework for the investment analysis,
sizing and control design of a BESS providing frequency control, featuring
a dynamic BESS model, a semi-empirical degradation model and
an optimised FCR controller that complies with current regulatory
requirements.

• We propose a stochastic, data-driven optimisation algorithm that uses
detailed historical frequency data and that allows constraining the
probability on unavailability to a small value with high confidence.

• We apply the framework to the German FCR market and analyse the
results, which provides new insights into the economics and sizing of a
BESS in this market.

The remainder of the paper is organised as follows: Section 3.2 elaborates
the used models and the FCR controller. Section 3.3 presents the proposed
optimisation algorithm. In Section 3.4, we discuss the application of the
optimisation framework to the German FCR market and present the analysis
of the results. Finally, the paper is concluded in Section 3.5.

3.2 BESS Model and FCR Controller

In this section, we elaborate the different parts of the BESS model and the
FCR controller that we use in the optimisation. Figure 3.1 gives an overview of
all models used and their interaction. All parts in this figure will be discussed
in this section one by one, except for the optimiser, which is discussed in
Section 3.3.
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Figure 3.1: Overview of the different models used in this study and their
interaction.
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Figure 3.2: First-order RC model of a battery cell.

3.2.1 Battery Cell Model

Various types of battery cell models exist, each with its own level of detail and
computational complexity. The most detailed cell models are the electrochemical
models, such as the dualfoil model [87], which try to capture in detail the
various electrochemical processes that occur in the cells. These are typically
the most accurate cell models, but require a large number of parameters and
are computationally very demanding. Alternative analytical models, such as
the kinetic battery model (KiBaM), are discussed in [88].

Lumped battery cell models or equivalent circuit battery cell models are often
used because they require only a limited number of parameters, which provides a
lower risk of overfitting compared to more complex models, while still attaining
a good accuracy. Among the equivalent circuit models, resistance-capacitance
(RC) models of various orders are popular because of their simplicity and
familiarity to the electrical engineering community. In [89], Hu et al. made
a comparison of 12 distinct equivalent circuit models for Li-ion battery cells.
They showed that, of the 12 equivalent circuit models, the first-order RC model,
shown in Figure 3.2, had the best performance, both on training and on unseen
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validation datasets. More specifically, as shown in [79], when providing frequency
control, a purely resistive-based battery cell model already produces good results,
with the main differences between the model and the measurements due to the
absence of a capacitive element in the model.

As a compromise between accuracy and model complexity, we have used a first-
order RC model in our BESS model, minimising the chances of overfitting. This
RC model allows to capture the dynamics of the battery cells accurately, such
as the variation in charging and discharging efficiencies with the current [90],
which is neglected in simpler bi-linear battery models.

The parameters to be determined in this model are the ohmic resistances
R0 and R1, the capacitance C1 and the open circuit voltage VOC(SoC) as a
function of the state of charge. In this study, we modelled the Sanyo UR18650E
battery cell [91], a commercially available lithium-ion Nickel-Manganese-Cobalt
(NMC) cell with a graphite anode, which is one of the most common Li-ion cell
chemistries in commercial grid storage battery systems. We used the results
of Schmalstieg et al. [92, 93], who created a detailed degradation model of this
specific battery cell and provided enough information to determine the required
parameters of the first-order RC model.

Figure 3.3a shows the open-circuit voltage curve VOC(SoC) of the cell. We
determined the remaining parameters from the battery cell voltage response
to a pulse power test, shown in 3.3b, using a least squares fit. The voltage
response of the fitted RC model is also shown in 3.3b. Table 3.1 summarises the
values of the fitted parameters of the RC model, together with some other key
parameters of the battery cell. The cut-off voltage when charging Vcutoff,charge
and discharging Vcutoff,discharge, which are the cell terminal voltages at which
(dis)charging is stopped, was obtained from the Sanyo UR18650E datasheet [91].
The heat capacity Cp of the cell, needed for the heating, ventilation and air
conditioning (HVAC) model, was retrieved from [94].

Parameter Value Parameter Value
Nominal capacity C 2.05 Ah Vcutoff,charge 4.2 V
Nominal resistance R0 0.0334 Ω Vcutoff,discharge 2.75 V
Nominal resistance R1 0.0114 Ω Nominal voltage Vnom 3.6 V
Nominal capacitance C1 1867.0 F Heat capacity Cp 40.05 J/K
Coulombic efficiency
ηcoulomb

99 % Rated energy capacity
Erated

7.38 Wh

Table 3.1: Parameters of the first-order RC model, fitted on the pulse power
test profile as shown in Figure 3.3b
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Figure 3.3: (a) Open-circuit voltage curve in the function of the SoC of the
considered Li-ion NMC battery cell and (b) pulse power test and least-squares
fit of the first-order RC model response, both from [92].

3.2.2 Degradation Model

Accurately quantifying the ageing or degradation of battery cells is important
because degradation represents a capital loss of the battery investment costs.
Unfortunately, degradation of battery cells is complex and not always well
understood. Degradation originates from the interaction of various processes,
complicating the identification of the root causes. Vetter et al. [95] gave a
detailed qualitative overview of the various degradation processes in Li-ion
batteries. Formation of the solid electrolyte interphase (SEI) on the anode is
considered one of the most important sources of degradation. The SEI is a
protective layer between the electrolyte and the anode, formed by decomposition
of the electrolyte and accompanied by the irreversible consumption of lithium
ions and a rise in impedance.

Generally, battery degradation can be attributed to two factors: calendar ageing
due to storage over time and cycle ageing due to repetitively charging and
discharging of the battery cells. Barré et al. [96] identified five different types
of battery ageing models, ranging from detailed electrochemical models, such
as extensions of the dualfoil model [97] and [98], to general statistical models.

Empirical degradation models are often used due to their lower computational
complexity. These models result from experiments in which ageing of the cells
is observed when these are exposed to various stress factors. For instance, a
cell is stored at a certain SoC level or cycled with a certain depth of discharge
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(DoD) and the degradation is checked periodically. A mathematical function,
such as a polynomial or an exponential, is then used to describe the relationship
between the applied stress factors and the observed degradation.

In their work [92], [93], Schmalstieg et al. described the ageing of the Sanyo
UR18650E battery cell in detail. They described both capacity degradation
and resistance growth when the cells were stored at various SoC levels and
temperatures (calendar ageing), and when the cells were cycled around different
SoC levels at various depths of discharge (cycle ageing). This results in an
empirical model that correlates the SoC level and temperature during storage
to the calendar capacity degradation and resistance growth with a t0.75 time
dependency, and the DoD and average SoC during cycling with the throughput
Q (in ampere hour) as follows:

C = 1− αcap(SoCcalav , T )t0.75 − βcap(SoCcycav , DoD)
√
Q, (3.1a)

R = 1 + αres(SoCcalav , T )t0.75 + βres(SoCcycav , DoD)Q. (3.1b)

Here, αcap(SoCcalav , T ) and αres(SoCcalav , T ) are the calendar ageing factors of
capacity degradation and resistance growth, respectively, which are a function
of the average state of charge during storage SoCcalav and the temperature T
at which the cell is stored. The cycle ageing factors βcap(SoCcycav , DoD) and
βres(SoCcycav , DoD) on the other hand, are a function of the average state of
charge SoCcycav during the cycle and the depth of discharge (in percent) DoD.
The capacity degradation due to cycling has a square root dependency on the
throughput Q, whereas the resistance growth shows a linear dependency on Q.

When performing frequency control the battery is cycled according to a stochastic
profile rather than cycled repetitively with a constant depth of discharge.
This makes the extraction of clearly defined cycles from the SoC profile not
straightforward. Therefore, we employed a rainflow counting algorithm [99],
originating from material fatigue stress analysis to determine the cycles when
materials are subject to an arbitrary load profile, but is also often used for cycle
life assessment of batteries (e.g. in [78], [100] and [101]). The rainflow counting
algorithm takes as input the state of charge profile over time SoC ∈ Rnt , with
nt being the number of time steps. We adapted the original algorithm slightly to
return, besides the DoD of a cycle, also the average state of charge of a cycle and
the cumulative throughput Qic after each cycle ic = 1, . . . , ncyc. The algorithm
that implements the Rainflow(SoC) function is detailed in Appendix A:

SoCcyc
av ,DoD,Q = Rainflow(SoC), (3.2)

where SoCcyc
av ,DoD,Q ∈ Rncyc , with ncyc being the number of cycles detected

by the rainflow counting algorithm. We can calculate the capacity degradation
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after each cycle ic by integrating (3.1a) over the throughput Q as follows:

Ccycic
= Ccycic−1 −

∫ Qic

Qic−1

∂βcap(SoCcycav,ic
, DoDic)

√
Q

∂Q
dQ

= Ccycic−1 − βcap(SoC
cyc
av,ic

, DoDic) · (
√
Qic −

√
Qic−1). (3.3)

An analogue reasoning is followed for the resistance growth due to cycling. To
model calendar ageing, we determine the SoCcalav in αcap and αres from (3.1) to
be the average SoC of the entire profile SoC.

In the remainder of the paper, we simulate the model for various operational
years k = 1, . . . , nk and use the index k to denote the remaining capacity of the
cell at the start of year k by Ck and the resistances by Rk0 and Rk1 .

3.2.3 From a Battery Cell Model to a BESS Model

With the dynamic and degradation model of the battery cell determined, this
section elaborates on how we used the cell model to simulate the behaviour of
an entire BESS containing ncells cells. We did not model a battery management
system (BMS), as we assumed that the BMS succeeds in balancing the cells
in the battery pack perfectly and consumes a negligible amount of power. We
also assumed that variations in cell characteristics are averaged out, allowing
to simulate only one cell in detail, namely, the average cell, thereby drastically
decreasing the simulation time. It is then straightforward to extrapolate the
simulated power and SoC of the average cell proportionally to the required
number of cells in the BESS.

Two other elements of the battery pack that cannot be neglected are the direct
current (DC)/alternate current (AC) inverter and the HVAC system.

Inverter Model

Typically, the time constant of an inverter and its control system is an order
smaller than the time constant needed for FCR. Therefore, we assumed that the
inverter does not influence the dynamics of the BESS and can deliver any power
required within one simulation time step, as long as this is possible within the
capacity limits of the battery cell and the inverter.

The efficiency of an inverter is typically high, except at low power levels.
Nevertheless, this can have considerable impact when performing frequency
control, as the required power is often low and rarely reaches its maximum.
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Figure 3.4: One-way efficiency of the inverter in function of its operating power
relative to the rated power of the inverter P invrated, based on the SMA STP60-10
model [102].

We modelled the efficiency of the inverter using the efficiency curve shown in
Figure 3.4, taken from a commercial three-phase inverter (the SMA STP60-
10 [102]) which can be configured to deliver up to 2.5 MW of power. We assumed
the same efficiency curve for both consuming from and injecting into the grid.
As the inverter is the gateway between the battery cells and the grid, the
rated power of the inverter also determines the maximum power of the BESS:
P invrated = PBESSmax .

HVAC Model

To determine the power consumption of the HVAC system, we employed a first-
order thermal model of the battery cell, following [103]. From the first-order RC
model of Figure 3.3, the Joule losses in the resistances Rk0 and Rk1 are dissipated
as heat, thereby increasing the temperature of the cell T . This temperature is
controlled by the HVAC system towards the reference temperature Tref = 25 ◦C.
The thermal model of a system with ncells battery cells is governed by the
following equation:

Tt+1 = Tt + (Rk0 +Rk1)It2ncells − COP · PHVACt

Cpncells
∆t, (3.4)

with Cp being the heat capacity of the cell; It, the current in one cell at time step
t; COP , the coefficient of performance, which we assumed to be COP = 2.5;
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and PHVACt , the instantaneous power of the HVAC system. The Joule losses are
equal to (Rk0 +Rk1)It2ncells and COP · PHVACt is the amount of heat removed
by the HVAC system. To prevent an unrealistically high HVAC power, we
limited the power PHVACt to 2 % of the maximum power of the battery pack
PBESSmax .

BESS Model

Putting together the cell model, the HVAC model and the inverter model, one
obtains the following discretised model, which describes the dynamics of a BESS
consisting of ncells battery cells required to deliver a certain power to

P batt = ηinv(P gridt ) max(P gridt , 0) + 1
ηinv(P gridt )

min(P gridt , 0)− PHVACt ,

(3.4a)

It = 1
2Rk0

(
− VOC(SoCt)− V C1

t

+
√(

VOC(SoCt) + V C1
t

)2
+ 4Rk0P batt /ncells

)
(3.4b)

V C1
t+1 = V C1

t e∆t/(Rk1C1) + (1− e∆t/(Rk1C1))Rk1It, (3.4c)

SoCt+1 = SoCt + ηcoulomb max(It, 0) ∆t
Ck

+ 1
ηcoulomb

min(It, 0) ∆t
Ck

. (3.4d)

The first equation calculates the required battery cell power P batt from the
requested grid power P gridt and the HVAC power PHVACt , which results from
(3.4), while considering the inverter efficiency ηinv(P gridt ), which is dependent
on P gridt according to Figure 3.4. Here, P gridt > 0 when consuming from the
grid and P gridt < 0 when injecting into the grid and P batt > 0 when charging
and P batt < 0 when discharging the battery cells.

Equation (3.4b) translates the battery power divided by the number of cells
P batt /ncells into the battery cell current It, considering the voltage drop over
the resistance Rk0 and capacitor V C1

t . Equation (3.4c) represents the discretised
dynamics of the parallel RC circuit C1, R

k
1 , whereas Equation (3.4d) represents

the dynamics of the SoC of the battery, with Ck being the remaining capacity
of the battery, ηcoulomb the coulombic efficiency and ∆t the duration of one
time step. The BESS stops charging and discharging when the terminal voltage
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Figure 3.5: (a) Available energy and (b) round-trip efficiency η when charging
and discharging at constant power until the cut-off voltage is reached, using
the BESS model with 100 battery cells, inverter rated at 2100 W and a 42 W
HVAC system.

V batt = VOC(SoCt) + V C1
t + Rk0It reaches Vcutoff,discharge and Vcutoff,charge,

respectively.

Energy and Power Capacity of a BESS

The capacity of a battery cell is usually expressed in ampere hour (Ah), whereas
the energy capacity of a commercial BESS is usually expressed in kilowatt hour
(kWh). Although the energy content of the cell is rated at 7.35 Wh, the actual
energy that can be charged or discharged is dependent on the (dis)charging
current. A higher current will induce greater losses in the resistive elements and
thus provide less usable energy. Moreover, the voltage drop over the resistive
elements will mean that the cutoff voltage Vcutoff,discharge will be reached earlier
and discharging will stop before the SoC reaches 0 %. An analogue reasoning
holds when charging the battery cell.

This effect is quantified in Figure 3.5a, which shows the available energy capacity
of the simulated BESS system containing ncells = 100 battery cells, an inverter
rated at P invrated = 2100 W and a 42 W HVAC system when charging at constant
power until the terminal voltage V bat reaches Vcutoff,charge and subsequently
discharging at constant power until V bat reaches Vcutoff,discharge. As can be
seen in the figure, the available energy capacity of the BESS decreases with
an increase in power, due to an increase in losses, and reaches the cut-off
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voltages earlier. Figure 3.5b shows the round-trip efficiency of the same BESS
in the function of the (dis)charging power, in line with the experimental results
from [86]. Because of an increase in resistive losses in the battery cells, the
round-trip efficiency of the BESS decreases with an increase in power. However,
at low power, the efficiency of the BESS decreases as well. This decrease is
due to the low efficiency of the inverter at low power rates (as shown in Figure
3.4) rather than to efficiency losses in the battery cells themselves. At higher
power rates, the efficiency of the inverter has less impact as it is rather high
and nearly constant.

Finally, in battery cells, the rate-capacity effect [104] (also described by Peukert’s
law [105]) also limits the available capacity of the cell when discharged at higher
currents. We did not explicitly model the rate-capacity effect, as it has been
shown that it does not hold when operating the cell at variable currents [106],
which is the case when performing frequency control services.

3.2.4 FCR Controller

When providing frequency containment reserves, one has to adjust its power
for FCR proportionally to the relative deviation of the frequency of the grid
from the nominal frequency: PFCRt = r∆ft = r(ft − fnom)/∆fmax, so that
the contracted FCR capacity r is reached at a maximum predefined frequency
deviation ∆fmax.

As explained in Section 3.1.1, a recharge controller π(SoC) that controls the
SoC is necessary when participating in FCR markets with energy-constrained
assets. In the literature, different versions of such recharge controllers have been
proposed, ranging from simple rule-based controllers in [73], [74], [75], [82], [107]
and [108], to moving average filters in [109], [110] and linear state-feedback
controllers optimised using robust optimisation in [111].

In this study, we adopted a simple, discretised P-controller f(·) with a
deadband dbp and a proportional gain Kp that controls the SoC back to a
setpoint SoC0, shown in Figure 3.6. The output of the proportional error
is discretised in steps of 100 kW, kept constant for a time period trecharge
and determined upfront with a lead time tlead to be compliant with the
requirements of the German FCR market (see Section 3.4.1): P rct = f(SoCtset),
with tset = bt/trechargectrecharge − tlead. As the recharge power cannot be
used as FCR capacity at the same time, the maximum recharge power P rcmax
is limited to the maximum power of the battery minus the FCR capacity:
|P rct | ≤ P rcmax ≤ PBESSmax − r.

Besides specifically reserving recharge power, we also implemented overdelivery
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Figure 3.6: Example of a possible recharge controller function P rct = f(SoCtset)
of a 1.6 MW/1.6 MWh BESS delivering r = 1 MW of FCR capacity, with
Kp = 2, SoC0 = 0.45 and dbp = 0.2. The dotted line represents a linear
P-controller, whereas the black line is the version discretised to multiples of
100 kW, as implemented in this study.

as a way to recharge the battery. When overdelivering, the BESS delivers
more power than required (in absolute value). In our controller, we perform
overdelivery only when this is beneficial to get the SoC back to the setpoint:

P odt =
{
odr∆ft if sign(SoCt − SoC0) = −sign(∆ft),
0 otherwise,

(3.5)

with od being the percentage of overdelivery. The total power at the grid P gridt

is then the sum of the power for FCR PFCRt = r∆ft, the recharging power P rct
and the power for overdelivery P odt , for every time step t :

P gridt = r∆ft + P rct + P odt , (3.6)

which is limited by the maximum power |P gridt | ≤ PBESSmax of the BESS. This
controller can be seen as an extension of the rule-based controllers proposed
in [73], [74], [75], [82], [107] and [108], and as a special case of the ones in [109],
[110] and [111].

Figure 3.7 shows an example of the grid power P gridt of a battery delivering
r = 1 MW of FCR capacity, according to (3.6). The figure also shows the



64 BATTERY STORAGE USED FOR FREQUENCY RESERVES

0 5 10 15 20

Time [h]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
P

ow
er

[M
W

]

P gridt P recht

Figure 3.7: Example of the grid power P gridt and recharge power P rct of
a 1.6 MW/1.6 MWh BESS delivering r = 1 MW of FCR capacity, with the
recharge controller from Figure 3.6.

corresponding recharge power P rct according to the recharge controller from
Figure 3.6.

3.3 Optimisation Framework

The FCR controller of the BESS discussed in the previous section has four
parameters (i.e., the deadband dbp, the setpoint SoC0, the proportional gain Kp

and the amount of overdelivery od), which can be chosen independently. These
parameters determine how the battery will be used, how fast it degrades and
how much the electricity costs will be. For instance, increasing the deadband
dbp reduces the throughput but increases the width of the SoC distribution
and, thus, the DoD of the cycles, whereas increasing the overdelivery parameter
od increases the throughput but reduces the probability on penalties due to
unavailability of the BESS.

To determine the value of these parameters, we defined the following optimisation
problem, which maximises the revenues from providing r FCR capacity taking
into the electricity costs Ckelec and the degradation ∆Ck, while constraining the



OPTIMISATION FRAMEWORK 65

probability on penalties pk:

min
x ∈ X

− E[ckFCR]r + E[Ckelec(x,∆f)] + E[∆Ck(x,∆f)]
100 %− 80 % ccell, (3.7a)

s.t. Pr{pk(x,∆f) > 0} ≤ εreq, (3.7b)

with x = (Kp, SoC0, od, dbp) ∈ X being the decision variables constrained to the
admissible set X ⊂ R4 and ∆f = (∆f0,∆f1, . . . ,∆fnt,y ) being the stochastic
frequency deviation of length nt,y = 365× 24× 3600/∆t, covering one year. As
the frequency of the grid and, thus ,the required battery power are unknown
upfront, a probabilistic approach is required. The optimisation is to be executed
each year k = 1, . . . , nk the BESS is operational in FCR, allowing the adjustment
of the controller parameters as the battery degrades, for instance, decreasing
the deadband dbp when less energy capacity is remaining.

The objective function is a compromise between three factors: the revenues from
delivering FCR with a capacity r at an expected price E[ckFCR], the electricity
costs Ckelec and the degradation of the battery ∆Ck. Whereas the first two are
easily expressed in monetary value, we assign a value to the last one, which
is equal to the cost of replacing the battery cells ccell times the incremental
degradation ∆Ck = Ck − Ck+1 from (3.1a), divided by (100 %− 80 %), as the
battery’s end of life is assumed to be reached when C = 80 %. We employ
the expected value operator E[·] over the electricity costs and the degradation
as both are dependent on the actual frequency deviation profile ∆f , which is
stochastic by nature. The optimisation is constrained by a chance constraint
(3.7b), forcing the probability of incurring penalties pk(x,∆f) to be less than
or equal to εreq. The functions are indexed with k to denote their dependence
on the remaining battery capacity Ck and resistances Rk0 , Rk1 at the start of
year k.

It is interesting to note that the optimisation problem (3.7) is part of the family
of dynamic programming problems [112]. Indeed, (3.7) is actually a policy
search over the policies parametrised by x, with the last term of (3.7a) being a
heuristic approximation of the value function V (Ck+1) of the next state Ck+1.

In the next subsections, we will elaborate first on how we approximate the
expected value operators in the objective function, then on how we deal with
the chance constraint on the penalty and, finally, on the global optimisation
algorithm we employ to solve (3.7).
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3.3.1 Expected Value Approximation

The objective function (3.7a) consists of the sum of three expected value
operators. The first one, the expected FCR price E[ckFCR] during year k, is
independent of the decision variables x and can thus be evaluated before the
start of the optimisation routine.

The second and third expected value operators, however, do depend on the
decision variables x and will thus have to be approximated when evaluated during
optimisation. A general approach is to use a sample average approximation
(SAA) [113] of the expected value by taking the empirical mean over independent
and identically distributed (iid) samples of the stochastic variable, i.e. the
frequency deviation profile ∆f . Let ∆fy ∈ Y ⊂ Rnt,y be a frequency deviation
profile sample with the length of one year, with |Y| = nY , then:

E[Ckelec(x,∆f)] ≈ 1
nY

∑
∆fy∈Y

Ckelec(x,∆fy), (3.8a)

E[∆Ck(x,∆f)] ≈ 1
nY

∑
∆fy∈Y

(
∆Ccal,k(x,∆fy) + ∆Ccyc,k(x,∆fy)

)
. (3.8b)

Following (3.1a), the incremental degradation of the battery ∆Ck in (3.8b) has
been written down directly as the sum of calendar degradation ∆Ccal,k and
cycle degradation ∆Ccyc,k.

SAA Using Frequency Samples of One Day

Problem (3.7) optimises one year of operation of the BESS and thus needs
various frequency samples of one year ∆fy ∈ Rnt,y for an accurate SAA (3.8).
As simulating multiple samples of one year of frequency data generally takes
too long to employ during each step of an optimisation algorithm, we used nD
iid frequency samples of one day ∆fd ∈ D ⊂ Rnt,d , nt,d = nt,y/365 instead of
one year in (3.8) during the optimisation. The electricity costs of one year in
(3.8a) can then be retrieved by linear extrapolation of the electricity costs of
one day: Ckelec(x,∆fy) ≈ 365Ckelec(x,∆fd).

However, simple linear extrapolation does not work in (3.8b) as the degradation
∆Ck is a nonlinear function of ∆f . Therefore, we approximated ∆Ck
as follows. Concatenate all samples of one day ∆f id ∈ D into ∆fD =
(∆f1

d ,∆f2
d , . . . ,∆f

nD
d ) ∈ RnDnt,d and simulate the BESS model (3.5) to receive

the corresponding SoCD ∈ RnDnt,d . Using the rainflow counting algorithm
(3.2), one receives the corresponding SoCcycav,ic

, DoDic , Qic = Rainflow(SoCD)
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Figure 3.8: Boxplot of the relative error when approximating the SAA of (3.7a)
with frequency samples of one day ∆fd and using (3.9), compared to the SAA
using frequency samples of one year ∆fy. The 99 % confidence intervals of the
error using samples of one day ∆fd and of the SAA using samples of one year
∆fd are shown.

of each cycle ic = 1, . . . , ncyc. As this accounts for only nD days out of the 365
in a complete year, we obtained an approximation of the degradation due to
cycling by scaling the throughput with 365/nD. To approximate the calendar
ageing, we used the empirical mean over SoCD as SoCcalav in (3.1a):

E[∆Ccyc,k(x,∆f)] ≈ ∆Ccyc,kD (x,∆fD)

= −
ncyc∑
ic=1

βcap(SoCcycav,ic
, DoDic) ·

(√
365
nD

Qic −
√

365
nD

Qic−1

)
, (3.9a)

E[∆Ccal,k(x,∆f)] ≈ ∆Ccal,kD (x,∆fD)

= −αcap(SoCD, T )
(

(365(k + 1))0.75 − (365k)0.75
)
. (3.9b)

To illustrate the quality of this approximation, Figure 3.8 shows a boxplot of the
relative error of the SAA in (3.7a) using samples of one day ∆fd as explained
in the paragraph above, compared to the SAA in (3.7a) using samples of one
year ∆fy, for various numbers of samples of one day nD. One can see that
the SAA using ∆fd converges towards the expected value of the SAA using



68 BATTERY STORAGE USED FOR FREQUENCY RESERVES

0 50 100 150 200 250 300

Number of days sampled nD[−]

0.0

0.5

1.0

1.5

2.0

2.5
S

A
A

-o
p

ti
m

al
it

y
g
ap

[%
]

Figure 3.9: Boxplot of the 99 %-confidence optimality gap due to the SAA
approximation of (3.7) for various sample sizes nD used in the optimisation. For
each sample size, the problem was solved 25 times with different sample sets D.

∆fy, for nD →∞. The expected value of the SAA using ∆fd has a negligible
bias of around 0.3 %. The figure also shows the 99 % Monte Carlo confidence
intervals of the expected value when using samples of one day and when using
four samples of one year of frequency data, which equals 4×365 = 1460 samples
of one day.

Evaluation of SAA Solution Quality

To estimate the amount of samples nD needed, we evaluated the SAA quality
of a candidate solution x̂ obtained by the optimisation algorithm presented
further, for various sample sizes nD. To evaluate the SAA quality of x̂, we
used the approach of Mak et al. [114]. Let g(x,∆fy) be the value of objective
function (3.7a) evaluated at x with frequency sample ∆fy and define

GinY = 1
nY

∑
∆fy∈Yi

g(x̂,∆fy)− min
x∈X

1
nY

∑
∆fy∈Yi

g(x,∆fy), (3.10)

with Yi, |Yi| = nY being a set of iid frequency samples of one year, then
E[GnY ] ≥ gapSAA(x̂) is the optimality gap due to the SAA method at x̂.
Therefore, by sampling ng batches Y0, . . . ,Yng and calculating GinY , i =
1, . . . , ng, we can obtain a 100(1−β)% confidence bound on the SAA optimality
gap from 1/ng

∑ng
i GinY + s(GnY )tβ,ng−1/

√
ng, with tβ,ng−1 being the β-
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percentile of the Student’s t-distribution with ng − 1 degrees of freedom and
s(GnY ) being the sample standard deviation of GinY .

Figure 3.9 shows this 99 %-confidence SAA optimality gap for various sample
sizes nD used in the optimisation routine. The resulting solutions x̂ were
evaluated using (3.10) with nY = 3, i.e. sampling three years out of the four
years of available data with replacement, and ng = 20. For each sample size nD,
the optimisation was performed 25 times to obtain a view on the statistics of the
SAA optimisation gap. As can be seen in the figure, the SAA optimality gap
decreased quickly to be < 1 % and followed a 1/nD trend, which is as expected
when using an SAA.

Note that the actual optimality gap at x̂ consists of two parts: the optimality
gap due to the SAA gapSAA(x̂) discussed here and an optimality gap due to
the heuristic optimisation algorithm elaborated in Section 3.3.3, whose global
optimality cannot be proven.

3.3.2 Chance Constraint Approximation

The optimisation problem (3.7) is constrained by a chance constraint (3.7b),
which limits the probability of penalties due to bad delivery of the frequency
control service to be below a threshold εreq. Generally, chance constraints are
dealt with by one of the following two methods: The first method is to use an
analytical reformulation of (3.7b), which is not possible in our case owing to
the unavailability of a closed mathematical form of the BESS model. Moreover,
a realistic stochastic model of ∆f using analytical distributions is difficult to
set up as it concerns a very high-dimensional multivariate stochastic variable.

A second method is to use Monte Carlo sampling to approximate the value
of the probability of (3.7b). Scenario methods [115] provide explicit bounds
on the number of samples one needs to constrain. However, these are only
valid for convex optimisation problems. Statistical learning theory [116, 117]
is applicable to non-convex control design; however, it requires a very large
number of samples [118] and the method uses the Vapnik–Chervonenkis (VC)
dimension [119], which is very difficult to compute for general functions and
can be infinite.

As neither method is practically applicable to our model, the most we can do
is to perform an a posteriori evaluation of a candidate solution x̂ in (3.7b)
using the classical Monte Carlo approach as follows. Consider nc iid frequency
samples ∆f i, and let m =

∑nc
i 1{pk(x̂,∆f i) > 0} be the total number of

constraint violations, i.e. the number of times a frequency sample induces a
penalty. A 100(1− β)% confidence upper bound to the probability of (3.7b) is
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then given by [120]:

Pr{pk(x̂,∆f) > 0} ≤ sup
ρ∈[0,1]

{ρ : b(m; ρ, nc) ≥ β} ≤ εreq, (3.11)

with b(m; ρ, nc) being the cumulative binomial probability function with
parameters nc and ρ, evaluated at m. As b(m; ρ, nc) is continuous and
monotonically decreasing in ρ ∈ (0, 1), the supremum supρ∈[0,1] can easily
be calculated by, e.g. a line search along ρ.

Expression (3.11) also defines the maximum number of samples with a penalty
mmax one can allow to ensure that (3.7b) is true with a confidence of 100(1−β)%.
For instance, if one requires εreq ≤ ρ ≤ 0.005, β = 0.001, and one uses nc = 10000
samples, then m ≤ mmax = 29.

3.3.3 Optimisation Algorithm

Even with the approximations explained above, the optimisation problem (3.7)
is non-convex and a closed mathematical form of (3.7) is not readily available,
resulting in an intractable problem. However, given a parameter vector x and
a frequency sample ∆f i, one can simulate the BESS model (3.5) with the FCR
controller (3.6) and calculate the corresponding degradation using (3.1) and
penalties pk quite efficiently. This allowed us to employ a global optimisation
algorithm that only requires function evaluations to find an approximate solution,
without, however, providing any optimality guarantees.

To solve (3.7), we propose the use of the differential evolution algorithm [121],
which belongs to the family of genetic algorithms. This has the advantage
of being gradient free, which is required as the objective and constraints are
non-differentiable. Although other gradient-free global optimisation algorithms
can also be applied, we found that the differential evolution converges relatively
fast and consistent towards a good suboptimal solution.

As constraints cannot be enforced directly in these types of global optimisation
algorithms, we incorporated the constraint (3.7b) into the objective with an if-
condition, returning a term proportional to the maximum penalty of a frequency
dataset used for penalty checking P ⊂ Rnt,d , |P| = nP , if there is indeed a
penalty detected in this frequency set. The optimisation objective can then be
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written down as

gk(x,D,P) =



−E[ckFCR]r

+ 365
nD

∑
∆fd∈D

Ckelec(x,∆fd)

+ (3.9a) + (3.9b)
100 %− 80 % ccell

if max
∆f∈P

pk(x,∆f) ≤ 0

cp max
∆f∈P

pk(x,∆f) otherwise,
(3.12)

with cp being a weighting factor.

The optimisation objective thus depends on two sets of frequency samples:
D,P ⊂ Rnt,d ; the former consists of iid samples for the SAA of (3.7a), whereas
the latter is a set of samples used to check the violation of the penalty constraint.
From Figure 3.9, we can observe that selecting nD = 50 results in an SAA
optimality gap of < 1%. The set P can be thought of as a worst-case frequency
dataset containing extreme samples that the BESS should be able to provide
without incurring penalties. This set will be generated during the optimisation
algorithm, which is shown in Algorithm 1.

Steps 8 to 15 in Algorithm 1 show the procedure used to create set P: for a
given point xi, draw nc iid samples and calculate the upper bound on constraint
violation using (3.11). If this upper bound is higher than the required εreq, one
cannot ensure that (3.7b) is satisfied with confidence β for the current most
optimal point xi. We know from (3.11) that there can be maximum mmax

samples with a penalty pk > 0 given nc. Thus, in steps 11 and 12, we add the
∆f (j∗)

d sample that gives the j∗th-largest penalty, with j∗ = nc −mmax, to P
as this is the sample with the largest penalty of all samples that are actually
not allowed to have a penalty at all. If the upper bound (3.11) is smaller than
or equal to εreq, the optimisation continues with the same P as before and one
is guaranteed that (3.7b) is satisfied with confidence 100(1− β)% at xi.

As evaluating the penalty pk on nc samples is computationally expensive owing
to the large number of samples required for small εreq, we only check this after
ncheck iterations. If no penalties are found, ncheck is updated according to an
exponential update rule in step 15.

In step 7, the differential evolution performs one optimisation step, in which
it updates each member of its population and returns the population member
with the lowest objective value gk(x,D,P). In this study, we used a population
size of 60 members, chose the best member to be mutated and used a binomial
crossover scheme. The differential evolution stops if the standard deviation of
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Algorithm 1 Optimisation algorithm
1: C0 ← Cinit, R0

0 ← Rinit0 , R0
1 ← Rinit1 , k ← 0.

2: D ← {∆f1
d , . . . ,∆f

nD
d } iid frequency samples.

3: while Ck ≥ 0.8Cinit and εk−1 ≤ εreq, do
4: i← 0,xi ← xinit,P ← ∅, ncheck ← ninitcheck.
5: while not(StoppingCriterion), do
6: i← i+ 1.
7: xi ← DifferentialEvolutionStep with gk(x,D,P), according

to [121].
8: if i = ncheck then
9: m←

∑nc
j 1{pk(xi,∆f jd) > 0}, with ∆f1

d , . . . ,∆f
nc
d ∈ Rnt,d

drawn iid.
10: if supρ∈[0,1]{ρ : b(m; ρ, nc) ≥ β} > εreq then
11: Sort ∆f jd , so that pk(xi,∆f (1)

d ) ≤ pk(xi,∆f (2)
d ) ≤ . . . ≤

pk(xi,∆f (nc)
d ).

12: P ← P ∪∆f (j∗)
d , with j∗ = nc −mmax.

13: ncheck ← ninitcheck.
14: else
15: ncheck ← ncheck + ncheck/2.
16: εk ← supρ∈[0,1]{ρ : b(m′; ρ, n′c) ≥ β}, with n′c > nc.
17: Get SoCy by simulating the BESS model (3.5),(3.6) with xi, ∀∆fy ∈ Y .

18: Ck+1 ← Ck+1, Rk+1
0 ← Rk+1

0 , Rk+1
1 ← Rk+1

1 , using (3.1)–(3.3) with
SoCy,∀y = 1 . . . nY .

19: k ← k + 1.
20: kmax ← k − 1.

the objective values of the population is smaller than 5 · 10−4 times the mean
of the objective values of the population.

When converged to an optimal value x̂, we check the actual probability on
a penalty in step 16 on a broader set n′c > nc of iid samples and calculate
the empirical mean of the capacity degradation Ck+1 and resistance growth
Rk+1

0 , Rk+1
1 over all available years in the dataset Y , which serves as the capacity

and resistance for year k + 1. The algorithm stops when the battery capacity
reaches 80 % of its initial capacity or when it is unable to provide the service,
with the probability on a penalty being smaller than required (i.e. εk > εreq).
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3.3.4 Total Revenues and Costs

Algorithm 1, gives a solution to optimisation problem (3.7) for each year k the
BESS is able to deliver FCR services. To then calculate the total expected
revenues and costs of the BESS over its lifetime, we use the resulting optimised
control variables x̂k and expected capacity degradation Ck+1 of the optimisation
routine defined by Algorithm 1. The expected electricity costs of year k can
then be estimated by taking the empirical mean over all frequency samples of
one year ĉkelec = Ckelec(x̂k,∆fy). The FCR revenues of year k are simply the
product of r and E[ckFCR], except for the last year kmax − 1. To evaluate the
proportion of year kmax − 1 the battery is still able to provide the service, we
perform a linear interpolation. The total discounted net revenues of the BESS
can then be calculated as

rev =
kmax∑
k=1

E[ckFCR]r − ĉkelec
(1 + γ)k ·max

(
min

(
0.8− Ck−1

Ck − Ck−1 ,
εreq − εk−1

εk − εk−1 , 1
)
, 0
)
,

(3.13)
with kmax as determined by step 20 of the optimisation algorithm and γ being
an appropriate discount rate. As long as the battery is not degraded in year
k (Ck > 0.8), and is able to provide the FCR services with a probability on a
penalty smaller than required (εk > εreq), the second term in the equation will
equal to one and the FCR revenues of the entire year are taken into account.
If this is not the case, the minimum in the second term is taken between the
linear interpolation of the degradation and the linear interpolation of the εreq
metric in case both occur during the same year k.

3.4 Case Study: BESSs in German FCR

In this section, we discuss the application of the proposed optimisation algorithm
to the German FCR market, which is currently the largest FCR market in
Europe and has a considerable amount of BESS capacity participating. In
Germany, FCR is auctioned through the common platform Regelleistung [26]
shared by the four German TSOs (TenneT, Amprion, 50Hertz and TransnetBW).
Starting from 2012, TSOs of neighbouring countries have been coupling their
primary frequency control markets to the Regelleistung platform, which currently
manages the joint tendering of FCR volume for the German, Swiss, Austrian,
Belgian, French and Dutch TSOs.

On Regelleistung, each week, a week-ahead auction1 is organised, where the bids
are placed in merit order and the market clears on the price of the bid, where

1As from 1 July 2019, the Regelleistung FCR market changed to a daily auctioning.
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the cumulative sum of the bid volumes equals the tendering volume, subject to
certain cross-border constraints. The market is a pay-as-bid market,2 which
means that each selected participant is awarded its bid price rather than the
marginal clearing price. However, the bidcurves are generally relatively flat,
meaning that participants are fairly good in forecasting the marginal price.

In the case study, we applied all relevant regulations as they are currently
imposed. We used real, measured frequency data from the CE region together
with the detailed BESS model elaborated in Section 3.2 to obtain results that
are practically relevant in real applications.

3.4.1 Data and Regulatory Requirements

Regulation in Germany on battery storage in frequency control reserve is one
of the most detailed of the entire ENTSO-E region. Specific requirements for
batteries are given in [28, 29] and will be discussed shortly in the following
paragraph.

BESS in German FCR

When providing FCR in Germany, one is restricted to the degrees of freedom
described in [28]. The maximum frequency deviation at which all FCR power
should be active is ∆fmax = 200 mHz and should be reached after 30 s. There
is a 10 mHz deadband in which no delivery is required.

Overdelivery is allowed, but only up to 20 %, limiting the parameter od ∈
[0.0, 0.2]. Recharging the battery is allowed by reserving BESS power capacity
that cannot be sold as FCR power. One also has to compensate the recharging
power with other assets or by buying/selling the power on the intraday markets.
The latter option presents the additional constraints that the recharging power
should be constant for 15 minutes, corresponding to the intraday trading blocks,
and be decided upon with a lead time of at least 5 min, as the German intraday
market closes 5 minutes before delivery. Moreover, as the granularity on the
intraday market is 100 kW, the recharge power has to be constrained to multiples
of 100 kW [54].

2At the time of writing this paper, the FCR market on Regelleistung was still a pay-as-bid
market. However, this has changed as from 1 July 2019, where the market has changed to a
marginal pricing or pay-as-cleared
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When providing FCR with any energy-constrained asset in Germany, one has to
comply with the 30-minutes criterion [29].3 This criterion states that, except in
emergency states, the battery should always reserve enough energy to be able to
provide 30 minutes of FCR power in both the positive and the negative direction.
An emergency state is reached if |∆f | > 200 mHz, |∆f | > 100 mHz for longer
than 5 minutes or |∆f | > 50 mHz for longer than 15 minutes. This also implies
that, in case 10 mHz < |∆f | ≤ 50 mHz, the battery should be able to deliver for
an infinite amount of time. This is only possible if the recharge power is able to
compensate for the required delivery, resulting in the additional requirement
that P rcmax ≥ 0.25r, the power sold as FCR capacity, or r ≤ 0.80PBESSmax .

When prequalifying the battery to participate in the Germany FCR market, one
has to perform a Doppelhöckertest [29], which is used to determine the available
energy capacity of the battery at the FCR power r one wants to prequalify.
The test starts at full SoC and consists of two times a discharge period of 15
minutes at the FCR power r followed by a rest period of 15 minutes. After this,
the BESS has to discharge further at FCR power r until the battery is empty.
The total discharged energy is used to monitor the 30-minutes criterion defined
above.

Electricity Costs

BESSs in Germany are exempt from many grid costs and other levies that
typically apply to the regular consumer. An overview of all elements making
up cost of the electricity is given in Table 3.2. The battery is exempted from
network charges and electricity tax, and pays the EEG (Renewable Energy
Resources Act) and KWK (combined heat and power) levies only on the losses
incurred in the BESS. We assumed that the battery buys and sells its recharge
power on the intraday market, whereas the remaining energy is settled on the
imbalance price. All other costs and levies only have to be paid on the energy
consumed from the grid. We assumed electricity costs rise with inflation.

FCR Price

Figure 3.10 shows the yearly averaged historical FCR prices published on the
Regelleistung platform [26]. The figure shows both the yearly averaged marginal

3At the time of writing the paper, the 30-minutes criterion was still in place. On 15 May
2019 however, the Germany regulator changed this to a 15-minutes criterion, in line with
European legislations. The principle stays the same, but delivery in emergency states is only
required for 15 minutes instead of 30 minutes as before. This means less energy capacity is
required from the BESS to deliver a same amount of FCR capacity.
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Cost Element Amount Applicable Regulation and
Law

Recharge power Intraday
market Applicable [28]

FCR power Imbalance
market Applicable –

Network charges – Exempted EnWG §118
Abs. 6 [122]

Electricity tax 2.05 ce/kWh Exempted StromStG §5
Abs. 4 [123]

EEG levy 6.88 ce/kWh Exempted
except for losses EEG §61k [124]

KWK levy 0.4438 ce/kWh Exempted
except for losses

KWKG
§27b [125]

StromNEV
§19-Levy 0.370 ce/kWh Applicable StromNEV §19

[62]

Concession Fee 0.11-
2.39 ce/kWh Applicable KAV §1-2 [126]

Offshore liability
levy 0.037 ce/kWh Applicable EnWG

§17(f) [122]
Interruptible load
levy 0.011 ce/kWh Applicable AblaV §1 [127]

Table 3.2: Elements making up the cost of electricity for a grid-connected
stand-alone battery in Germany.

price and the weighted average accepted bid price (WAP). As the FCR volume
auctioned on the Regelleistung platform is much larger than that of a single
regular-sized BESS, we assume the BESS operates as a price-taker in the FCR
market. We assume a bidding strategy that is able to capture the WAP rather
than the marginal price. In the literature, the FCR price of the German market
is forecasted to decrease in the coming years, mainly due to an increase of
BESSs in the market that can provide the service at lower costs [84]. Various
predictions can be found, varying from a value of 1630e/MW/week [30] to below
1000e/MW/week [84,128] in 2035. We adopted two exponentially decreasing
scenarios, a moderate and a low scenario, both shown in Figure 3.10, which
correspond to the forecasts from [30,84,128].
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Figure 3.10: Historical marginal and weighted average price (WAP) in the
German FCR market averaged per year [26]. As from 2017, a moderate and a
low WAP forecast scenario are shown (nominal value).

3.4.2 Optimisation Setup

In optimizing and evaluating the model, we used four years (2014-2017) of
frequency, intraday and imbalance market data (nY = 4). We split these data
into samples of one day, starting from each quarter hour in the dataset, which
resulted in 140 256 samples of one day. We discretised the model with a time
step ∆t = 10 s. The parameters of the battery cell are as given in Table 3.1. To
determine the number of cells of a BESS with a certain rated energy capacity
EBESSrated , we used the rated energy capacity of one cell Erated, given in Table
3.1, which is equal to the nominal capacity C times the nominal voltage Vnom.
Although the actual energy capacity varies with the rated power of the BESS,
as explained in Section 3.2.3, this approach accounts for an easy one-to-one
relation of energy capacity to the number of cells, rather than relying on more
complex relationships. For example, a BESS rated at EBESSrated = 1 MWh would
then contain 1 000 000 Wh/7.38 Wh = 135 501 cells.

This also means that, when executing the Doppelhöckertest [29], which is used
to determine the energy boundaries for the 30-minutes criterion, the actual
energy discharged will differ from the rated energy capacity EBESSrated . Therefore,
in our model, we simulated the Doppelhöckertest to determine the maximum
and minimum state of charge boundaries SoCmax,k30min and SoCmin,k30min, and used
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these to determine the penalty metric pk:

pk = 1
nt

nt∑
t

(
1{SoCt > SoCmax,k30min}+ 1{SoCt < SoCmin,k30min}

)
Semergt , (3.14)

where Semergt is 0 if t is in an emergency state and 1 otherwise, and nt denotes
the number of time steps in the sample. The dependency of SoCmax,k30min and
SoCmin,k30min on the year k is due to the degradation in capacity Ck and growth
of resistances Rk0 , Rk1 , which also changes the actual energy capacity one can
discharge during the Doppelhöckertest. Furthermore, we require εreq = 0.005
and β = 0.001, giving a very small probability on penalties. To achieve this, we
set nc = 10000 and n′c = 50000. Finally, we have chosen nD = 50, which gives a
good compromise between SAA error and number of samples (see Figure 3.9).

With this configuration, Algorithm 1 needs, on average, 202 iterations per year
k, which takes around 24 minutes when run on a 2.83 GHz Intel Core 2 Quad
Processor (Q9550) with 10 GB of RAM. To speed up the execution time, one
can run the algorithm in parallel for different battery configurations.

3.4.3 Results and Discussion

The goal is to determine the optimal BESS power and energy capacity to provide
r = 1 MW of FCR capacity, the minimum bid size on Regelleistung, during its
lifetime. For another bid size that is a multiple of 1 MW, the results can be
scaled proportionally.

To determine the optimal BESS sizing, we ran the optimisation algorithm
repeatedly for a BESS with a rated energy capacity varying between 1.0 MWh
and 2.5 MWh, and with a varying C-rate. The C-rate is defined as the rated
power divided by the rated energy capacity: C-rate = PBESSmax /EBESSrated . The
results are shown in Figure 3.11 for C-rates of 0.6 C, 0.7 C, 1.0 C and 1.5 C.

Figure 3.11a shows the total revenues minus the electricity costs in the FCR
market according to (3.13), with γ = 1.7 % to adjust for inflation [129], over
the operational lifetime of the BESS, using the FCR prices of the moderate
scenario of Figure 3.10, whereas Figure 3.11b shows the total inflation-adjusted
net revenues using the low scenario. The figure also shows a couple of lines
indicating the potential cost of a BESS, so that the net present value (NPV),
which equals the discounted net revenues (3.13) minus the investment costs:
NPV = rev − costBESS , can be read on the y-axis by taking the difference
between the revenue and the cost lines. Table 3.3 shows the NPV with the
moderate FCR price scenario for the various BESS energy capacities, C-rates
and battery costs costBESS . As can be seen in the table and in Figure 3.11, a
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(a) Moderate German FCR price scenario.
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(b) Low German FCR price scenario.

Figure 3.11: Total revenues over the lifetime of a BESS providing FCR services
to the German market minus the electricity costs (3.13), optimised according
to Algorithm 1, in the function of the rated energy capacity EBESSrated and the
C-rate. Indicative lines of battery costs in euro per kilowatt hour (/ekWh)
are also plotted. Revenues were adjusted for the expected inflation, assumed
at γ = 1.7 % [129]. The point with the highest NPV, at an energy capacity of
1.6 MWh and C-rate ≥ 1.0 C, is denoted on both figures by “Max NPV”.
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1.6 MWh battery with a power rating higher than 1.6 MW results in the highest
NPV4 and would thus be the optimal BESS sizing for the German FCR market
(only at a cost of 300e/kWh, the 1.7 MWh/1.0 C battery has a slightly higher
NPV and would be the better choice).

Figure 3.11 shows that a BESS with a lower C-rate (0.7 C and 0.6 C) can
only obtain revenues by participating in the German FCR market with a
relatively high rated energy capacity. This is due to the requirement that
PBESSmax ≥ 1.25r ≥ 1.25 MW. For a 0.6 C BESS, this means a minimum energy
capacity of 2.09 MWh is needed.

For a BESS with a higher C-rate (1.0 C and 1.5 C), one needs at least 1.3 MWh
to be able to participate with a 1 MW FCR capacity in the German market.
This is due to the 30-minutes criterion, which obliges to reserve at least 1 MWh
of energy capacity for emergency states. A battery with a rated energy capacity
of 1.6 MWh has much larger revenues and NPV than those of a battery rated
at 1.5 MWh, whose revenues are already much higher than those of a battery
rated at 1.4 MWh and 1.3 MWh. This occurs because, in this part of the graph
(between 1.3 MWh and 1.6 MWh, C-rate ≥ 1.0 C), the revenues of a BESS are
limited by the years the BESS can provide the FCR service without violating the
penalty constraint (3.11). In this range, a BESS with a larger energy capacity
will be able to satisfy the penalty constraint for a longer period of time and
therefore obtain more revenues.

A battery with an energy capacity larger than 1.6 MWh will also see larger
revenues; however, the slope of the increase in revenues with larger energy
capacity is smaller than the slope between 1.3 MWh and 1.6 MWh. In this
part of the graph, the operational lifetime of the BESS in the FCR market is
not limited by the penalty constraint, but rather by the end-of-life criterion
(C = 80 %). The BESS will be able to provide FCR while respecting (3.11)
its entire lifetime until it is degraded completely. The degradation curve of
three 1.0 C batteries is shown in Figure 3.12. As can be seen in the figure,
a larger energy capacity reduces degradation, as the DoD of the cycles will
be smaller and, therefore, extends the lifetime of the BESS. However, the
additional revenues do not outweigh the costs of installing additional energy
capacity, resulting in a lower NPV with additional energy capacity, as can be
seen in Table 3.3. It is also interesting to note that, in this part of the graph, the

4This value is calculated complying with the 30-minutes criterion, which was active at
the time of writing the paper. As from 15 May 2019, this has been changed to a 15-minutes
criterion. Applying the 15-minutes criterion to Figure 3.11 would result in a shift of the 1.0 C
and 1.5 C lines to the left, with the 1.0 C line going to 0 at an energy capacity < 1.25 MWh
due to the requirement that the recharge power has to be able to compensate a 50 mHz
activation. This will mean that a BESS with a higher C-rate will and a lower energy capacity
than a 1.0 C, 1.6 MWh BESS will have an high NPV that what is depicted here.
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Figure 3.12: Total capacity degradation of a 1.0 C BESS with a rated energy
capacity of 1.6 MWh, 2.0 MWh and 2.4 MWh delivering r = 1 MW of FCR
power in Germany. The calendar degradation ∆Ccal and the degradation due
to cycling ∆Ccyc of the 1.6 MWh/1.6 MW BESS are also shown.

power capacity has almost no impact on the total revenues. This occurs because
the BESS has to provide 1 MW of FCR capacity and a BESS with a power
capacity of 1.6 MW has enough recharging power to provide the FCR service
over its entire lifetime. A larger power capacity only results in a larger available
recharging power, which is already sufficient to provide the FCR service, with
no impact on the total revenues.

The point at 1.6 MWh (denoted in Figure 3.11 with “Max NPV”) is where the
two parts with the different slopes meet, which explains why this point has
the highest NPV: a BESS with 1.6 MWh and a C-rate ≥ 1.0 C has the smallest
amount of energy capacity that is able to provide the FCR while respecting the
penalty constraint (3.11) until it is degraded to its end-of-life criterion. The
payback period of a BESS with this configuration is shown in Table 3.4, for the
different costs costsBESS and for the moderate and low Germany FCR price
scenarios.

The electricity costs of a BESS are very low (in the moderate scenario, between
0.94 % and 2.97 % of total FCR revenues, or between 135e and 2575e per
year), as BESSs are exempted from many of the electricity cost elements in
Germany (see Table 3.2). Therefore, the total net revenues are governed by the
revenues of selling the FCR capacity on the market. As degradation is the main
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FCR price scenario
costBESS Moderate Low
500e/kWh 7.1 years –
400e/kWh 5.3 years 7.3 years
300e/kWh 3.6 years 4.7 years

Table 3.4: Payback period of a 1.6 MWh/1.6 MW BESS.

limitation to the amount of time a BESS can participate in the FCR market,
it is interesting to take a closer look at the calendar and cycle degradation of
a 1.6 MWh/1.6 MW BESS, both shown in Figure 3.12. The BESS reaches its
end-of-life criterion (C = 80 %) after 10.8 years of service. As can be seen in
the figure, most of the degradation is actually due to calendar degradation.
Although there are plenty of cycles, these often have a low DoD and, thus, have
a limited effect on the total degradation.

3.5 Conclusions

In this paper, we have proposed a holistic, data-driven optimisation framework
for the investment analysis, sizing and control design of a battery energy storage
system participating in frequency control markets. To control the state of
charge of a battery storage system performing frequency control, we used a
parametrised recharge controller compliant with regulatory requirements, which
we optimised to minimise degradation over the lifetime of the battery storage
system using real frequency data.

As the required activation profile when providing frequency control is stochastic,
we formulated a probabilistic optimisation problem that allows the probability
of being unavailable to be constrained to a small value with high confidence. We
solved the problem by adopting a global evolutionary optimisation algorithm
that only requires function evaluations, which allows the use of a battery energy
storage model of which a closed mathematical form is not directly available, but
can only be simulated. This approach allowed us to use a battery energy storage
model that is more detailed than usually seen in the literature, featuring a
dynamic RC battery cell model, a semi-empirical degradation model, an inverter
model and an HVAC model.

Finally, we performed a techno-economic analysis of a battery in the German
primary frequency control (frequency containment reserve) market, using the
proposed framework. We considered all relevant regulations and used real



84 BATTERY STORAGE USED FOR FREQUENCY RESERVES

frequency data, so that the results are applicable to a real case. We found that
a battery storage system rated at 1.6 MW/1.6 MWh provides the highest net
present value and can deliver 1.0 MW of frequency control capacity for 10.8
years, after which it is degraded to 80 %, which is the end-of-life criterion. Most
of the observed degradation was due to calendar degradation, as the cycles
performed in frequency control had a limited depth of discharge.

It is worth mentioning that the developed optimisation framework can easily
be applied to other countries by incorporating the regulations specific to that
country. Interesting future work would be to apply the developed framework
to various countries and compare the impact of different regulations on the
investment case of the battery system.

Although all models used in the framework are each separately validated by
experiments, validating the combination of all models on a battery system
providing frequency control would also be relevant future work. Other future
work may consist of extending the dynamic program (3.7) to incorporate a
broader class of policies, different approximations of the value function or more
decisions such as buying additional battery cells for the battery system or using
the battery for other services could increase the total value of the battery system.
Finally, it would also be interesting to investigate the combination of frequency
control with other revenue streams, such as day-ahead or imbalance market
arbitraging.
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Abstract:

Optimally combining frequency control with self-consumption can increase
revenues from battery storage systems installed behind the meter. This
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work presents an optimised control strategy that allows a battery to be used
simultaneously for self-consumption and primary frequency control. Therein, it
addresses two stochastic problems: the delivery of primary frequency control
with a battery and the use of the battery for self-consumption.

We propose a linear recharging policy to regulate the state of charge of the
battery while providing primary frequency control. Formulating this as a
chance-constrained problem, we can ensure that the risk of battery constraint
violations stays below a predefined probability. We use robust optimisation as
a safe approximation to the chance-constraints, which allows to make the risk
of constraint violation arbitrarily low, while keeping the problem tractable
and offering maximum reserve capacity. Simulations with real frequency
measurements prove the effectiveness of the designed recharging strategy.

We adopt a rule-based policy for self-consumption, which is optimised using
stochastic programming. This policy allows to reserve more energy and power
of the battery on moments when expected consumption or production is higher,
while using other moments for recharging from primary frequency control. We
show that optimally combining the two services significantly increases value
from batteries.

4.1 Introduction

Battery energy storage systems installed behind the meter have been increasingly
popular at both residential and industrial consumers. This trend is mostly driven
by decreasing prices, technological advancements and regulatory incentives.
Increasing self-consumption from local generation by storing excess electricity
generation for later use, is one of the major applications for installing behind-
the-meter battery storage systems. For instance, in 2016, up to 46% of installed
PV systems smaller than 30 kWp were equipped with a battery storage system
in Germany [130].

In many cases however, the cost of a BESS remains high and the return on
investment from solely self-consumption is too low [131]. Adding supplementary
services to be delivered by the same BESS can lead to additional revenue streams
and increase the return on investment.

A service for which BESSs are deemed to be very appropriate is primary
frequency control [132] (also referred to as frequency containment reserve (FCR)
or frequency response) due to their fast ramp rate [76]. Besides, frequency
control has been identified as one of the highest value services for BESSs [133].
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Complementary between primary frequency control and self-consumption can
be expected, as primary frequency control is a service where power capacity
is offered, while revenues from self-consumption are more driven by energy
capacity.

When participating in primary frequency control, one has to regulate his
power consumption or injection to react proportionally on deviations of the
grid frequency from the nominal frequency. The maximum contracted reserve
capacity has to be activated when the frequency deviation is at a maximum,
predefined value and within a predefined time limit. In the continental Europe
(CE) synchronous area, this maximum is at a deviation of 200 mHz and has to
be reached within 30s [24].

In liberalised ancillary services markets, the TSO buys reserve capacity for
frequency control from tertiary parties, who get paid for the power capacity
they sell. In this work, we assume an end-consumer is able to offer this service
to the TSO, possibly through an intermediary, for example an aggregator.

When participating in primary frequency control, an asset has to be able to
deliver the contracted power and follow the frequency signal during the entire
contracted period. If the asset fails to do so, it is unavailable to provide the
frequency control service and faces penalties charged by the TSO. As these
penalties are usually high and the TSO expects an optimal service, in this work,
we to constrain the risk of unavailability when delivering primary frequency
control.

Being continuously available can be an issue when using energy-constrained
assets such as a BESS. Over limited time periods, the frequency signal has a non-
zero energy content and after having provided the service for a while, a BESS
can be empty or full. In addition, efficiency losses in battery systems decrease
their energy content or SoC when being charged and discharged continuously.
Therefore, a controller, or recharging strategy, has to be in place to control the
SoC to be within limits, ensuring that the reserve capacity remains available
during the contracted period.

Different strategies can be used: overdelivery (i.e. delivering more power than
required), utilizing the deadband of the frequency signal (typically 10 or 20
mHz) to recharge or using a specific recharge controller that offsets the frequency
control power for recharging. A comparison of these methods is made in [134],
in which they conclude that overdelivery and deadband utilisation alone is not
sufficient to maintain the SoC within limits and an additional recharge controller
is unavoidable. However, when using part of the BESS power for recharging,
this part cannot be sold as a reserve capacity at the same time. One will thus
have to optimise one’s battery asset, maximizing the reserve capacity while
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minimizing the risk of unavailability.

The same is true when using the battery for the combination of frequency control
and self-consumption. The BESS power used for self-consumption cannot be
sold as reserve capacity for frequency control. One faces a trade-off between
the two objectives which we incorporate into our optimisation model. We see
that complementarity between the two services occurs and show in a case study
that optimally combining both services increases revenues from the BESS by
25% compared to offering solely frequency control.

The remainder of the paper is organised as follows: in section 4.2, related
literature is reviewed and the main contributions of this paper are identified.
The general problem treated in this paper is formulated in section 4.3. As
it concerns a highly intractable problem, we treat the problem of providing
solely frequency control first in section 4.4. In section 4.5, the objective of
self-consumption is added, using a rule-based controller, optimised through
stochastic optimisation. With the mathematical framework defined, section 4.6
presents some simulations and results. Finally the paper is concluded and some
suggestions for future work are given.

4.2 Background and Related Work

4.2.1 Background on Frequency Control

While in Europe, liberalised markets exist for primary frequency control, this is
not the case in North America, where primary frequency control is traditionally
delivered by generator governors or frequency responsive loads and is imposed
as a requirement on large generators while no compensation is given for this
service [31].

Markets do exist for regulation services, which is part of secondary frequency
control, allowing third parties to offer their resources as regulation capacity. Here,
the asset has to follow a centrally dispatched signal to correct for the ACE of
the respective control area. Compensation is not only based on offered capacity,
but also on actual performance, rewarding assets that are able to perform better
in following the regulation signal. Moreover, the California Independent System
Operator (CAISO) has implemented a program for non-generator resources
(NGRs) with regulation energy management (REM) allowing for NGRs with
limited energy content such as battery storage systems to competitively bid
into the regulation market [135]. PJM has implemented a high pass filter over
its regulation signal in order to remove most of the energy content, making it
more suitable for energy constrained resources such as BESSs [136].
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In the European context, some research has been conducted to create zero-
mean frequency control signal [137], but so far this has not been commercially
implemented by any TSO.

While the approach presented in this paper can be applied to any type of
frequency or regulation signal, the focus is on primary frequency control as
defined by European TSOs, as they impose the strictest rules by requiring a
100 % availability and near perfect delivery.

4.2.2 Related Work

From previous work on the provision of primary frequency control with a
BESS, we identify two distinct approaches. A first approach is to design a
heuristic recharging strategy with simulations over historical frequency data
for empirical optimisation of the heuristic. For instance, Oudalev et al. [107]
design a rule-based recharge controller that acts when the SoC leaves the range
(SoCmax, SoCmin). They use auxiliary resistors to consume additional power
when the battery cannot provide enough, which we want to avoid in this work.
The heuristic recharging strategy presented in [109] is based on the moving
average of the frequency signal, corrected for efficiency losses. The goal is to
create a power profile with zero-mean, so that the battery does not get charged
or discharged over time. A variant on this strategy is presented in [110] and
evaluated to give a higher return on investment when compared to the strategies
from [107, 109]. A rule-based control policy for fast energy storage unit in
combination with a slower unit that is able to capture the energy content of
the regulating signal is presented in [138]. While these heuristic strategies give
good results, they do not ensure any form of optimality.

A second approach tries to overcome this by using more formal methods that
can ensure optimality within the adopted framework. For instance, in [139], a
fuzzy control logic is used for primary frequency control and energy arbitrage
in the Italian energy market. Zhang et al. [76] use dynamic programming to
calculate an optimal recharging policy, recharging only when the frequency is
in the deadband. Dynamic programming is also used for combining energy
arbitrage and frequency regulation in the PJM regulatory zone [77]. However,
both papers assume the reserve capacity a given parameter and are not able to
optimise over this capacity itself.

The combination of primary frequency control provision and minimisation of PV
and load curtailment by a battery storage system is considered in [140], where
a MPC is proposed to compute the allocation of the storage system for the two
objectives. Although they model uncertainty in PV and consumption forecasts,
they do not take this into account in the MPC controller. Combination of
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self-consumption and primary frequency control is studied in [141], however
they use a heuristic controller that is only able to provide primary frequency
control through pooling with a combined heat and power plant. Peak shaving
and frequency regulation are combined in [142]. By using the fast regulation
signal from PJM, they are able to avoid the issue of limited energy content
when offering frequency control services, which we want to overcome in this
paper.

Using BESSs connected to the distribution grid for frequency control might
cause voltage problems or jeopardise the reliability of the distribution grid,
when several BESSs are connected to the same feeder [143]. A potential solution
can be a local voltage droop controller, which is shown to be effective in to
avoid distribution grid constraint violations while having very limited impact
on the performance of the service to be delivered [144]. In the remainder of this
paper however, we will assume that the BESS providing frequency control are
sufficiently dispersed over various feeders and do not endanger the reliability of
the distribution grid.

Finally, it is worth mentioning that lately, there has been some commercial
interest in the combination of self-consumption and frequency control with
residential battery storage systems in Germany. More specifically, both
companies Caterva [145] and Sonnen [146] have presented a concept to combine
self-consumption from PV with frequency control with a residential battery
storage system. In both cases, the company acts as the intermediary party,
operating a part of the storage systems for frequency control and offering the
aggregated frequency control capacity to the TSO.

In this paper, we complement previous work by elaborating a controller that
co-optimises self-consumption, the reserve capacity and a recharge controller
for primary frequency control. The main contributions can be summarised as
follows:

• We propose an optimised controller to maximise reserve capacity, which is
able to provide more reserve capacity compared to the heuristic methods
proposed in the literature.

• Building further on the work of Vrettos et al. [147], we extend their robust
optimisation approach towards a BESS application, and propose a new
uncertainty set that provides explicit probability guarantees on battery
constraint violation when providing frequency control.

• By co-optimizing self-consumption and frequency control, our approach is
able to obtain more value than by using the BESS completely for only
one of the objectives.
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4.3 Problem formulation

We consider a simple, discrete battery model subject to a stochastic demand
and production profile Pprof = Pdem − Pprod and normalised frequency
deviations ∆f . We model the BESS with constant charging and discharging
efficiencies ηc, ηd. The battery has an effectively usable energy capacity in the
range (Emin, Emax) in which it is assumed to be able to provide the power
range (Pmin, Pmax).

The price for electricity injection into the grid is assumed smaller than the
price for electricity consumption cinj < ccons, as this is imperative to make
self-consumption financially interesting. The price for primary frequency control
cFCR is assumed to be known, while the capacity r is a variable to be optimised.

The objective of the problem is to minimise expected electricity consumption
costs and maximise profits from primary frequency control, while keeping
the BESS within its energy and power constraints. This results in following
stochastic optimisation program:

min E[(ccons[Pgrid]+ − cinj [−Pgrid]+)∆t]− cFCRr (4.1a)

s.t. Pgrid = Pprof + Pbat, (4.1b)

Pbat = Pctrl + r∆f , (4.1c)

Emin ≤ Ebat ≤ Emax, (4.1d)

Pmin + r ≤ Pctrl ≤ Pmax − r, (4.1e)

Ebatk+1 = Ebatk + (ηc[P batk ]+ − 1
ηd

[−P batk ]+)∆t. (4.1f)

Here, E[·] denotes the expected value operator and [·]+ ≡ max(·, 0), operating
element-wise on vectors. The power vector Pgrid is the power that is actually put
on the grid, consisting of the battery power Pbat and the demand profile Pprof .
The BESS power consist of two parts. One part is due to the frequency control
and thus equal to the capacity times the frequency deviations r∆f . A second
part Pctrl is dedicated to control the battery state of charge when providing
frequency control, while optimizing the self-consumption. Self-discharge losses,
not incorporated here, can be added by subtracting them from the energy
equation (4.1d).

To account correctly for the energy content of the battery (4.1d), we assume
that all power values are kept constant over one time step ∆t. However, this is
not possible when providing primary frequency control, as the BESS typically
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has to react within seconds to the real frequency control signal. Therefore, we
define the discrete normalised frequency deviations ∆fk as the average value
over one time step:

∆fk = 1
∆t

∫ k∆t

(k−1)∆t

(f(t)− fnom)
∆fmax

dt,

with f(t) the real frequency, fnom the nominal value and ∆fmax the maximum
frequency deviation on which on a has to react (for instance 200 mHz in the CE
region). To ensure that the instantaneous reserve capacity r is always available,
we have added it explicitly to the hard power constraints in (4.1e).

As both the power profile Pprof and the frequency deviations ∆f are stochastic
variables that are gradually revealed over time, problem (4.1) is a multi-stage
stochastic program. This means that the “here and now” decision of the
control power Pctrl can be relaxed to a “wait and see” decision and depend
on the past realisations of the power profile and frequency deviations P ctrlk =
πk(P prof1 , . . . , P profk ,∆f1, . . . ,∆fk) [120]. This is not true for the frequency
control capacity r, as this value should be contracted with the TSO before the
actual delivery takes place and one is not allowed to change this capacity during
the delivery period.

Problem (4.1) is a multi-stage non-linear stochastic program, which quickly
becomes computationally intractable. To simplify, we propose to split the
control power into two separate parts: a part for self consumption Psc and
a part for recharging after frequency control activations Prc. Each is then
depending on only one source of uncertainty:

Pctrl = Psc(Pprof ) + Prc(∆f)

We can now look at (4.1) as the combination of two distinct sub-problems:
providing frequency control with a BESS and optimizing self-consumption.
These sub-problems can then be put together, according to (4.1), for joint
optimisation, which is expected to yield a better solution than the simple
addition of the two objectives.

4.4 Primary Frequency Control

In this section we will try to approximately solve problem (4.1), without the
objective of self consumption (i.e. Pprof = 0). The focus will be on the
determination of the maximum frequency capacity r the BESS can provided
and the recharging policy Prc(∆f) needed to keep the risk of unavailability as
low as possible.
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4.4.1 Recharging Policy

The goal is to design a controller that ensures that the energy constraints (4.1d)
are not violated when providing frequency control. The typical control problem
is to design a control policy which is a function of the current and past states
of the system, here P bat,rck = πk(Ebat1 , . . . , Ebatk ). To come to a problem that
can be solved efficiently, we will restrict ourselves to a linear policy. When
writing this policy as an linear policy on the disturbance ∆f instead of the
state, the problem becomes tractable [148]. The restriction to a disturbance
feedback policy is not a limitation as it has been shown that a linear policy on
the disturbance is as at least as general as an linear state feedback policy [149].
We can thus write the recharging policy as:

P rck =
k−1∑
i=1

dki∆fi, Prc = D∆f , (4.2)

with dki the coefficients of the recharge strategy, contained in the lower triangular
matrix D ∈ Rnt×nt with zeros on the diagonal. Note that we only sum up to
k − 1 in (4.2) so that there is no interference of the recharging power with the
instantaneous frequency deviation ∆f(t).

One can interpret this recharging policy as a filter applied to the frequency
control signal that creates a zero-mean signal, comparable to [109, 110]. In
this case, the recharge policy represents a change in the baseline on which the
battery will perform the required frequency control activations.

An aggregator can also pool the BESS together with another flexibility resource
that is able to compensate for the recharging policy [150]. Together they are
able to follow the frequency signal exactly.

4.4.2 Battery Efficiency

Using the linear recharging policy (4.2), problem (4.1) results in a mixed-integer
stochastic program, which is known for its high computational complexity [151].
Therefore, we will use a heuristic approximation to turn (4.1) into a linear
stochastic program. The integer variables in (4.1) arise purely because of the
efficiencies ηc, ηd. By assuming an ideal battery and setting ηc = ηd = 1
in (4.1f), the integer variables are removed and (4.1) becomes a linear problem.

As setting ηc = ηd = 1 can be quite a coarse approximation, we instead apply
the efficiencies to the frequency deviations:

∆fk = 1
∆t

∫ k∆t

(k−1)∆t

(
ηc
[ ∆f(t)

∆fmax

]+
− 1
ηd

[
− ∆f(t)

∆fmax

]+)
dt, (4.3)
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which is exact if sign(∆fk) = sign(P bat,rck ). By transforming the resulting
disturbance feedback policy to an equivalent state feedback policy, it is possible
to react appropriately to the impact of the efficiency. Detailed simulations with
real frequency data presented in section 4.6 demonstrate the validity of this
approximation.

4.4.3 Chance-Constraints and Robust Optimisation

When applying the linear recharging policy from (4.2), the power and energy
content of the BESS are fully determined by the frequency deviations. The
frequency deviation vector ∆f is a multivariate stochastic variable in Rnt . This
means that constraints (4.1d), (4.1e) are actually probabilistic constraints, or
so-called chance-constraints [152], and one has to constrain the probability of
violation to be at maximum ε ∈ (0, 1):

Pr{aTi ∆f ≤ bi} ≥ 1− ε, i = 1, . . . , nc. (4.4)

Here, nc = 4nt is the total number of constraints in (4.1d), (4.1e) and (ai, bi)
are defined to represent one constraint of (4.1d), (4.1e).

As breaching these constraints means that the frequency control service cannot
be delivered, we want to make sure that the risk that this happens is as small
as possible. Therefore, the goal is to get ε on the order of 10−4 or 10−5.

Several approaches to solve a chance-constrained problem exist. A popular
approach is to use Monte Carlo sampling to approximate the real value of
the probability in (4.4). Explicit bounds on the number of samples are given
in [115, 153] and are on the order of O(nδ/ε), with nδ the dimension of the
uncertainty. This would lead to a sample size on the order of 106 for ε = 10−4,
which is not feasible if one considers a horizon of one day or more as we intend
in this paper. Generating additional samples would require complete knowledge
of the multivariate distribution of ∆f , which is never completely possible when
working with observed data.

Analytic reformulation of (4.4) into a second-order cone constraint is possible if
one assumes a Gaussian distribution [154], which is not the case when considering
∆f .

One can also use a safe, convex approximation of (4.4). The conditional value-
at-risk (CVaR) [155] is typically used as it is the tightest convex approximation
to (4.4):

CVaR1−ε
i (aTi ∆f − bi) ≡ min

β

{
β + 1

ε
E[aTi ∆f − bi − β]+

}
≤ 0, (4.5)
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where E[·]+ ≡ E[max(·, 0)]. Despite its convexity, the CVaR risk measure
is difficult to evaluate as the evaluation of E[·]+ requires multidimensional
integration over the max(·, 0) operator. A sample average approximation of
(4.5) requires complete knowledge of the multivariate distribution and a large
amount of samples to be accurate at small ε [120].

Finally, the paradigm of robust optimisation [148] can be used to construct safe,
tractable approximations to chance-constraints. The concept is to design an
uncertainty set F of frequency deviations ∆f ∈ F , against which the constraint
has to be satisfied at all times:

aTi ∆f ≤ bi, ∀∆f ∈ F , i = 1, . . . , nc.

This is equivalent to following worst-case formation:

max
∆f∈F

aTi ∆f ≤ bi, i = 1, . . . , nc. (4.6)

By correct design of F , the solution of (4.6) can ensure that the probability in
(4.4) is bigger than or equal to the (1− ε) required, while retaining a tractable
problem.

Different uncertainty sets are proposed in literature (see e.g. [148, 156, 157])
of which their robust counterparts are shown to be upper bounds on the
CVaR measure (4.5) [158]. Clearly, one is looking for the uncertainty set that
provides the tightest upper bound. The robust counterparts of five types of
tractable uncertainty sets are compared to the actual value of the CVaR measure
in [159] and it is shown that for small ε, the uncertainty set based on forward
and backward deviations provides the tightest bound to (4.5). Furthermore,
the robust counterpart is second-order cone representable and thus efficiently
solvable by commercial solvers.

Unfortunately, the probability guarantee is only applicable to independent
variables with zero mean, which is not the case when considering ∆f . However,
by applying a whitening transformation [160], one can obtain independent
variables with zero mean:

f̃ = W (∆f −∆f), (4.7)

where ∆f is the mean of ∆f , and WTW = Σ−1
∆f the Cholensky decomposition

of the inverse of the covariance matrix Σ∆f of ∆f .
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The forward and backward deviations allow to include distributional asymmetry
in the uncertainty set. They are defined for the stochastic variable f̃i as:

σfi(f̃i) = sup
θ>0

√
2 ln E[exp(θf̃i)]/θ2,

σbi(f̃i) = sup
θ>0

√
2 ln E[exp(−θf̃i)]/θ2,

with θ ∈ R. The superior over θ can be found by applying a line search and
approximating the expected value by its empirical average over the sampled
data. Define also Q = diag(σf1, . . . , σfnt) and R = diag(σb1, . . . , σbnt). The
uncertainty set Fε becomes then:

Fε = {f : ∃β,θ ∈ Rnt+ , f = β − θ,

‖Q−1β +R−1θ‖2 ≤
√
−2 ln ε}

Following [158] and using (4.7) to obtain independent variables f̃ from ∆f ,
the CVaR1−ε in (4.5) is bounded by the worst-case of the constraint over the
uncertainty set Fε:

CVaR1−ε
i ≤ aTi ∆f + max

f̃∈Fε
aTi W

−1f̃ − bi ≤ 0.

Finally, this can be reformulated as a second-order cone constraint [159]:

aTi ∆f +
√
−2 ln ε‖ui‖2 ≤ bi, i = 1, . . . , nc, (4.8)

where ui = max(QaTi W−1,−RaTi W−1), with the maximum taken element-
wise. Note that ε in (4.8) is under the logarithm, so that small values can easily
be used.

4.4.4 Equivalent State Feedback Policy

The recharging strategy of (4.2) is a disturbance feedback policy calculated
with the efficiencies incorporated in the frequency signal (4.3) and not in the
battery model. This policy will therefore not be directly usable on a real battery
system. However, by reformulating the policy as an equivalent state feedback
policy it becomes practically usable. As efficiency losses are included in the
state of charge of the battery, a state feedback policy can react on efficiency
losses appropriately.

Following [149], an equivalent state feedback policy can be calculated as:
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Prc = (Int + 1
r
D)−1 1

r
D∆Ebat, (4.9)

with ∆Ebatk =
(
Ebatk − Ebatk−1

)
/∆t. In this form, the recharge power depends

linearly on the past states, rather than on the past disturbances.

4.5 Self-Consumption

In this section we will add the second part of the problem (4.1), i.e. finding a
policy Psc(Pprof ) that allows to optimise self-consumption, while keeping in
mind that a part of the battery has to be reserved for providing the primary
frequency control.

4.5.1 Self-Consumption Policy

The objective of self-consumption is to minimise the expected value of the total
cost of electricity for the end-consumer. When facing constant consumption
and production prices, a simple, rule-based control policy has proven to be very
effective for this objective. The basic concept is to charge when there is more
production than consumption and the battery is not full, and to discharge when
there is more consumption than production and the battery is not empty.

To ensure sufficient energy and power of the BESS remains available for frequency
control, we adapt the energy and power limits between which the battery can
perform self-consumption to be smaller than the actual limits of the battery
(Escmax,k ≤ Emax, E

sc
min,k ≥ Emin) and (P scmax,k ≤ Pmax, P

sc
min,k ≥ Pmin). By

making these limits dependent on the time k, they can be shaped towards
the expected amount of generation or consumption. The control policy for
self-consumption becomes then:

P sck =



min(−P profk , P scmax,k), if

P
prof
k < 0,

Esck < Escmax,k,

max(−P profk , P scmin,k), if

P
prof
k > 0,

Esck > Escmin,k,

0, otherwise.

(4.10)

This policy allows one to capture the most value from self-consumption while
ensuring the capacity needed to deliver the frequency control is always available.
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Notice that, when using this policy in combination with the frequency control
policy described previously, one is actually dividing the battery into two virtual
batteries with varying energy and power capacities: one for self-consumption
and one for frequency control. Therefore, an estimation of the energy content
of the virtual battery for self-consumption Esc should be available. This can
be obtained by integrating P sc, taking into account efficiency losses and other
non-linearities as much as possible. Alternatively, one can keep track of the
energy content due to frequency control EFCR by integrating the corresponding
power set-points P rc + r∆f and subtracting it from the measured state of
charge: Esc = Ebat − EFCR.

4.5.2 Stochastic Optimisation

Optimizing the self-consumption is a stochastic program in which the objective
contains the expected value of the consumption and injection power vector:

min E[(cconsPcons + cinjPinj)∆t]. (4.11)

A closed-form of this expected value is not readily available. Therefore, we will
approximate the expected value by the SAA [120]. By using various scenarios
j = 1, . . . , nsc of the profile P j

prof , the empirical average of the objective will
approximate the true expected value (4.11).

By splitting the power for self-consumption into a part for charging and a part
for discharging Psc = Psc,c +Psc,d, the efficiency can be accounted for correctly.
As long as ccons > cinj , there is a cost for consuming energy and an optimal
solution will always set P sc,ck · P sc,dk = 0,∀k.
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Together with the constraints imposed by the rule-based charging policy in
(4.10), one gets a linear program that can be solved efficiently:

min 1
nsc

nsc∑
j=1

(cconsP j
cons∆t+ cinjP

j
inj∆t) ,

s.t. P j
cons + P j

inj = P j
prof + P j

sc,c + P j
sc,d,

0 ≤ P j
sc,c,P

j
cons,

P j
sc,d,P

j
inj ≤ 0,

Esc
min ≤ Ej

sc ≤ Esc
max,

P j
sc,c ≤ P sc

max,

P sc
min ≤ P

j
sc,d,

Emin ≤ Esc
min ≤ Esc

max ≤ Emax,

Pmin ≤ P sc
min ≤ P sc

max ≤ Pmax,

Esck+1,j = Esck,j + (ηcP sc,ck,j + 1
ηd
P sc,dk,j )∆t,

(4.12)

for all j = 1, . . . , nsc and k = 1, . . . , nt. Here, we assume the scenarios or
samples P j

prof are independent and identically distributed (iid). sampled with
different probability distributions can be used by adding appropriate weights to
each sample.

This problem can be combined with the chance-constrained problem of section 4.4
for providing frequency control, by adjusting the limits on energy content and
BESS power in bi of (4.8) to (Emax − Esc

max,E
sc
min − Emin) and (Pmax −

P sc
max, Pmin − P sc

min). The complete second-order cone program, combining
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frequency control and self-consumption (4.12) becomes then:

min 1
nsc

nsc∑
j=1

(cconsP j
cons∆t+ cinjP

j
inj∆t)− cFCRr

s.t. P j
cons + P j

inj = P j
prof + P j

sc,c + P j
sc,d,

0 ≤ P j
sc,c,P

j
cons,

P j
sc,d,P

j
inj ≤ 0,

Esc
min ≤ Ej

sc ≤ Esc
max,

P j
sc,c ≤ P sc

max,

P sc
min ≤ P

j
sc,d,

Emin ≤ Esc
min ≤ Esc

max ≤ Emax,

Pmin ≤ P sc
min ≤ P sc

max ≤ Pmax,

Esck+1,j = Esck,j + (ηcP sc,ck,j + 1
ηd
P sc,dk,j )∆t,

√
−2 ln ε‖ui‖2 ≤ bi − aTi ∆f ,

QaTi W
−1 ≤ ui,

−RaTi W−1 ≤ ui,

for all j = 1, . . . , nsc, k = 1, . . . , nt and i = 1, . . . nc. If we define constraint
matrix A = [DT | − DT |(D + rInt)TGT | − (D + rInt)TGT ]T , with G a lower
triangular matrix with ∆t as elements, and vector b = [Pmax−P sc

max
T−r|Pmin−

P sc
min

T + r|Emax −Esc
max

T |Esc
min

T − Emin]T , then aTi is the i-th row of A and
bi the i-th element of b.

4.5.3 Scenario Reduction

Although the objective of the SAA problem (4.12) converges to the true
value (4.11) for nsc → ∞, the rate of convergence is on the order of
Op(n−1/2

sc ) [120]. A considerably large number of samples will thus be needed
for sufficient accuracy. To limit the size of the problem and keep it tractable,
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scenario reduction techniques can be applied. We will use the backward scenario
reduction of single scenarios of Dupačová et al. [161] based on the Kantorovich
distance, since it has shown the best performance in our case.

4.5.4 Evaluation of the Solution Quality

As the objective of the SAA problem (4.12) is an approximation to the true
objective value (4.11), it would be instructive to have an estimation on how close
the approximation is to the true value. Mak et al. [114] provide a statistical
method for calculating an upper and lower bound to the true objective value
and the optimality gap of the SAA problem.

Let x̂ be the optimal variables of the SAA problem, and P j
prof , j = 1, ..., nU

iid profile samples, possibly different from the ones used in the SAA problem.
Define g(x̂,P j

prof ) as the objective of (4.12) evaluated at x̂ with P j
prof . An

approximate 100(1− β)% confidence upper bound follows from the central limit
theorem (CLT) on the average ḡnU = 1/nU

∑nU
j=1 g(x̂,P j

prof ) of the nU samples.

An 100(1− β)% confidence lower bound can be estimated by solving the SAA
problem (4.12) to optimality nL times: ĝ1

nsc , . . . , ĝ
nL
nsc . The average ḡnL =

1/nL
∑nL
i=1 ĝ

i
nsc of the samples ĝinsc follows a t-distribution with nL − 1 degrees

of freedom. Finally, an 100(1− 2β)% confidence upper bound to the optimality
gap at x̂ can be expressed as:

gapSAA(x̂) = ḡnU − ḡnL + zβ
snU√
nU

+ tβ,nL−1
snL√
nL

, (4.13)

with zβ = Φ−1(1 − β), where Φ(z) is the cumulative density function of the
standard normal distribution. Here, snU is the sample standard deviation of the
nU upper bound objective values g(x̂,P j

prof ), tβ,nL−1 the β-critical value of the
t-distribution with nL − 1 degrees of freedom and snL the standard deviation
of the lower bound samples ĝinsc .

4.6 Simulation and Results

In this section we will present simulations and results of the mathematical
program defined above. With the presented framework, we are able to draw
some interesting conclusions about batteries providing frequency control and
self-consumption. We will focus first on the robust optimisation framework
for frequency control only and then add the stochastic optimisation for self-
consumption.
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In the simulations we consider a time horizon of one day, discretised in time
steps of 15 minutes, so nt = 96. A time horizon of one day is motivated by the
daily cyclicality of consumption and PV production profiles. The time step of 15
minutes seems appropriate for the recharging policy when providing frequency
control, as the regulations set by ENTSO-E state that a frequency deviation
should be resolved within 15 minutes in the CE-region [24]. The charging and
discharging efficiencies are chosen to be ηc = ηd =

√
0.90, corresponding to a

round trip efficiency of 90%.

All optimisations are performed using the YALMIP [162] toolbox with Gurobi
7.0.2 [163] in MATLAB.

4.6.1 Primary Frequency Control

To assess the performance of primary frequency control, we use locally measured
frequency data in the CE synchronous region with a resolution of 1 second
over a period of three years (2014 - 2016). Missing data points are linearly
interpolated up to 60 seconds. Days with remaining missing data points are
removed from the data set, retaining 1091 complete days or samples. To test
the performance of the approach on out-of-sample data points, we select 70% of
this data set randomly as training data, used to calculate σfi and σbi, leaving
30% for validation. The maximum frequency deviation on which the battery has
to react ∆fmax in (4.3) is set to 200 mHz as required in the CE synchronous
region [24].

Robust Optimisation

Consider a residential battery configuration of 10 kWh and 7 kW, with an initial
charge of 5 kWh. Running the robust optimisation as elaborated in section
4.4.3, with the chance of violating the battery constraints ε = 10−4, gives a
maximum reserve capacity of 6.37 kW. According to (4.1e) only 0.63 kW is to
be used for recharging. This reserve capacity is somewhat higher than what we
found in literature, e.g. [109] gives a maximum reserve capacity of 4.66 kW for
the same battery configuration.

Figure 4.1 shows the corresponding energy and recharging power profiles for
each frequency profile in the dataset. One can see that for both the training
and the validation data, the energy content and recharging power stay well
below the limits. Having chosen a small value of ε this makes sense, as the
battery should be able to withstand more extreme frequency profiles that are
not presented in the data sets. Using the uncertainty set Fε in (4.6), it is
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Figure 4.1: Energy content and recharging power of the battery, for the frequency
data in the training set (top) and the validation set (bottom), discretised
according to (4.3) The dashed lines show the maximum and minimum cases,
according to (4.6). The dotted lines show the maximum and minimum recharging
power that is allowed, following (4.1e). Each line represents a frequency sample
of one day.

possible to calculate the maximum and minimum energy content and recharging
power of the battery, shown by the dashed lines. One can see that they do not
breach but do approach the boundary conditions of the battery, as expected.

Equivalent State Feedback

The results presented in figure 4.1 use an ideal battery model without losses
but with the efficiencies η included into the frequency disturbances, as in (4.3).
To evaluate the performance of the state feedback controller of (4.9) we have
calculated the maximum probability of constraint violation:

maxi Pr{ai∆f > bi} (4.14)
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Figure 4.2: Maximum probability of constraint violation with the equivalent
state feedback controller (4.9), for various values of ε and round trip efficiencies
η, calculated with nR = 106 samples. The solid black line denotes the maximum
allowed probability.

with the state feedback controller on a battery with a round-trip efficiency η < 1
for various values of ε and η as follows.

To obtain the frequency signal ∆fok that is not corrected for efficiency losses, we
use (4.3) with ηc = ηd = 1. By then applying the whitening transformation (4.7)
on ∆fo, we obtain independent variables with zero mean f̃ok , from which we
can generate new frequency samples ∆fr by resampling f̃ok with replacement
nR times and applying the inverse of the whitening transformation. Using the
state feedback controller (4.9) with ∆fr gives then a Monte Carlo estimate of
(4.14) with nR samples.

Figure 4.2 shows the resulting 99% confidence upper bound (calculated according
to p.217 in [120]) of the maximum probability of constraint violation (4.14) for
various values of ε and η with nR = 106 Monte Carlo samples. One can see
that the actual probabilities stay well below the maximum allowed ε, for all
evaluated values of ε while the effect of η is minimal.

Maximum Reserve Capacity

When offering primary frequency control, it is the reserve capacity r that is
creating value for the BESS. Using the BESS solely for frequency control, the
reserve capacity depends on the (C-rate) of the BESS, defined as the maximum
power divided by the maximum energy content, and the energy capacity of the
BESS.
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Figure 4.3: Primary frequency control capacity r per kWh of battery capacity
in function of the C-rate of the battery, for various values of ε and a round trip
efficiency η = 90%.

Figure 4.3 shows the maximum reserve capacity r per kWh in function of the
C-rate, for various values of ε. As one can see, the relative reserve capacity
is a concave function of the C-rate. Increasing the C-rate of a battery while
keeping the energy content constant will thus increase the reserve capacity one
can offer with this battery. This is an interesting result, as the main cost driver
for batteries is the energy content, rather than the maximum power capacity.

The reserve capacity increases with the C-rate up to a maximum point, at which
it is limited solely by the energy content of the battery. Increasing the maximum
power of the battery beyond this point will not have any effect on the reserve
capacity one can offer. The recharge policy is at its maximum, immediately
compensating for the effect of the past frequency deviation. An increase in
battery power will not have an effect any more on the recharge policy, thus not
be able to increase the reserve capacity.

As could be expected, increasing the probability of battery constraint violation ε
also increases the amount of reserve capacity one can offer with the same battery.
However, this also means an increased risk of unavailability and penalties. If
the battery is part of a pool of an aggregator, a higher ε can be chosen if the
pool can be used as back-up when the BESS constraints are reached.
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Figure 4.4: Energy content and battery power for self-consumption of 500
scenarios. The dashed black lines denote the limits (Esc

min,E
sc
max) and

(P sc
min,P

sc
max) from the rule-based charging policy.

4.6.2 Combination with Self-Consumption

To asses the performance for the combination of frequency control and self-
consumption we consider the same battery configuration as before. Residential
demand profiles are generated from the CREST demand model [57] for a weekday
in March. PV profiles are generated from the model presented in [58] and scaled
to represent a PV system of 4.0 kWp. We assume cFCR = 14.71e/MW/h,
which was the average price for primary frequency control on Regelleistung in
2016 [26], ccons = 28.73 ce/kWh, corresponding to the average consumption
price in Germany in 2016 [164], and cinj = 12.20 ce/kWh, the current Germany
feed-in tariff for residential PV [165].

Selection of Number of Scenarios

Calculating the optimality gap using (4.13) with nU = 105, nL = 10 and
β = 0.005 for various numbers of scenarios nsc, we find that overall, the
optimality gap decreases rapidly to a small value (≤ 3% if nsc ≥ 250) and as
from about 1000 scenarios, the optimality gap can be expected to be less than
1%.

When using the scenario reduction method from section 4.5.3, an optimality
gap smaller than 1% can be reached from about 500 reduced scenarios.
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Self-Consumption and Frequency Control

Combining primary frequency control with self-consumption with 500 scenarios
from the scenario reduction gives an optimal reserve capacity of 5.65 kW.
The remaining power (1.35 kW) is used for maximizing self-consumption and
recharging for frequency control. Figure 4.4 shows the BESS energy and power
profiles for self-consumption of 500 scenarios. The dashed black lines denote
the limits (Esc

min,E
sc
max) and (P sc

min,P
sc
max) from the rule-based charging policy

(4.10).

At moments when production is expected to be high, during noon, the controller
reserves power and energy in the battery to charge for the self-consumption
objective, which can be discharged at times when expected consumption is
higher, mainly in the evening. Less power is reserved during the night, as less
consumption is expected at these times.

The expected value of self-consumption during this day is 0.81e, while from
frequency control with r = 5.65 kW capacity at 14.71e/MW/h, revenues are
2.00e. In total, this gives a value of 2.81e. When using the BESS only for
self-consumption, the expected value is only 0.94e. When using the BESS only
for frequency control, the reserve capacity is a bit higher: r = 6.37 kW, and
total revenues are 2.25e. The revenues of the combined optimisation are thus
more about 3 times higher compared to the case of only self-consumption and
25 % higher compared to solely frequency control.1

Figure 4.5 shows the total revenues and the break-down into a part from
self-consumption and a part from frequency control, for varying R1 prices. A
trade-off between frequency control and self-consumption is clearly visible, as
with increasing reserve capacity prices a larger part of the battery is reserved for
frequency control and consequently, revenues from self-consumption decrease.

4.7 Conclusion

In this paper, we have presented a framework for stochastic co-optimisation of
primary frequency control and self-consumption with a battery energy storage

1At the time of writing this paper, in 2017, the FCR prices where around 14.71e/MW/h.
Current FCR prices have decreased to 11.5e/MWh and using the BESS only for frequency
control would result in 1.76e of revenues. Rerunning the optimisation with this lower FCR
price, gives and optimal FCR capacity of 5.58 kW with 1.54e of FCR revenues and 0.83e
of revenues from self-consumption revenues. Together, this gives a total of 2.38e, which is
35 % higher compared to only doing frequency control, and 2.5 times the value of only doing
self-consumption. This analysis shows how combining these applications can be used as an
effective hedge against changing market prices
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Figure 4.5: Revenues from combined frequency control and self-consumption in
function of the reserve capacity price for the simulated day in March.

system.

Using robust optimisation as a safe, tractable approximation to chance-
constraints, we have design a linear recharging strategy that allows one to
make the risk of unavailability arbitrarily small, while keeping the problem
efficiently solvable. Simulations with real frequency data show the performance
of the recharging controller when converted to an equivalent state feedback
controller.

We have adopted a rule-based controlled to maximizing self-consumption, which
allows to reserve more energy and battery power on moments when expected
consumption or production is higher, while using other moments for recharging
from primary frequency control. A sample average approximation is used to
estimate the expected value of self-consumption and perform the trade-off
between self-consumption and primary frequency control.

We have performed a case study on a residential battery system. The results
show that there is a clear complementary in combining frequency control with
self-consumption. Our co-optimisation adds 25% of value compared to the use
for frequency control alone, while increasing value times 3 when compared to
self-consumption alone.

Interesting future work is to look into non-linear recharging policies for frequency
control, e.g. by direct policy search. Incorporating a more accurate battery
model, where efficiencies and power limits can be dependent on the state
of charge will represent reality better. One could also incorporate the costs
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of energy when providing frequency control into the model in a stochastic
manner, in analogy to the way we treated self-consumption. While this paper
only considers self-consumption and frequency control, other services, such
as peak shaving, time of use tariff optimisation or voltage control could also
be incorporate into the optimisation model. Finally, validation of the battery
control strategies on a real battery system should be performed.
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Abstract:

Combining revenue streams by providing multiple services with battery storage
systems increases profitability and enhances the investment case. In this work,
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we present a novel optimisation and control framework that enables a storage
system to optimally combine the provision of primary frequency control services
with peak shaving of a consumption profile.

We adopt a dynamic programming framework to connect the daily bidding in
frequency control markets with the longer term peak shaving objective: reducing
the maximum consumption peak over an entire billing period. The framework
also allows to aggregate frequency control capacity of multiple batteries installed
at different sites, creating synergies when the consumption profile peaks occur
on different times.

Using a case study of two batteries at two industrial sites, we show that the
presented approach increases net profit of the batteries significantly compared
to using the batteries for only peak shaving or frequency control.

5.1 Introduction

Battery energy storage systems installed behind the meter at the consumer’s
premises can be used for a variety of different services [166]. Often, the purpose
of such a BESS is to decrease the energy costs of the consumer by optimising
the charging schedule of the BESS towards their energy tariff. In case the
consumer faces peak demand charges, usually a part of grid tariffs, performing
peak shaving with the BESS, i.e. reducing the consumer’s power consumption
peak, is an effective way to decrease energy costs [167].

A BESS installed behind the meter can also be used to provide ancillary services,
such as frequency control, to the TSO. Especially primary frequency control
(of frequency containment reserves) and frequency regulation services are seen
to be a good match for a BESS, as the service provides a relatively high
remuneration [133], requires only a short duration of activation and a fast
response, all of which a BESS can provide without problems [76].

By using the BESS for both energy tariff optimisation and frequency control
service, one can combine both revenue streams, increase profitability and build
a stronger business case for the investment in the BESS. However, having a
BESS providing both services concurrently is not straightforward from a control
and optimisation perspective. One faces a trade-off, as using the BESS more
for frequency control will decrease its peak shaving potential, which can be
optimised.
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5.1.1 Frequency Control with a BESS

The focus of this paper will be on primary frequency control services or frequency
containment reserves, as defined by ENTSO-E [24], as it are mainly FCR
markets that have been opening up for third parties in Europe. Nevertheless,
the presented methodology could also be applied to other types of frequency
control and frequency regulation.

When participating in FCR, one sells a certain amount of symmetric FCR
capacity r to the TSO which has to be available during the entire contracted
period. In FCR, one has to adjust its power PFCR proportionally to deviations
of the grid frequency f(t) from the nominal grid frequency fnom (50 Hz in
Europe), so that the sold FCR capacity r is reached when the frequency
deviation is at a predefined maximum ∆fmax (= 200 mHz in the Continental
Europe synchronous region): PFCR(t) = r∆f(t) = r(f(t)− fnom)/∆fmax. In
line with the recent changes in the German FCR market Regelleistung [26, 168],
we assume a daily bidding process with daily auctions.

When delivering FCR with a BESS for a while, the battery can become full
or empty at which point it is unable to provide the symmetric FCR service
any further. Therefore, a SoC control strategy, or recharge controller, which
manages the SoC to ensure the BESS can delivery the FCR capacity for the
entire contract period, is necessary [134].

5.1.2 Peak Shaving

Grid tariffs for commercial and industrial consumers usually consist of an energy
charge (in e/kWh) and a demand charge cpeak (in e/kW), where the latter
is a charge proportional to the highest metered consumption peak during the
billing period [61]. Such demand charges are typically used to recover the
capacity-based costs of the network infrastructure, and are foreseen to become
increasingly important with a growing share of distributed generation [169].
With this tariff structure, a BESS can reduce network costs by discharging at
the moments when the site is consuming its maximum power and charging when
the site is consuming less, thereby reducing the site’s metered consumption
peak.

In practice, the highest metered consumption corresponds to the highest n-
minute averaged power of the site, as usually energy meters with an n-minute
resolution are used for settlement. In this work, we consider demand charges
proportional to the maximum quarter-hourly average power over one month,
corresponding the German network tariff structure [170].
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5.1.3 Related Literature

Work in [171–174] shows the ability and estimates the value of BESSs performing
peak shaving. Other work [107,110,175] has been devoted to BESSs providing
frequency control services and the design of a recharge controller.

Few authors however have looked at the combination of both services. Braeuer
et al. [176] perform a high-level economic analysis of BESSs combining peak
shaving with frequency control. A similar approach is followed in [177], but
with the peak shaving objective formulated as a hard network constraint, rather
than implicitly through a demand charge. Both papers indicate a significant
added value in combining both services, however they assume perfect hindsight
of the stochastic variables and do not develop a controller able to deliver the
combination of services in day-to-day operation.

This work fills this gap by presenting an operational control framework that
enables a BESS to successfully combine peak shaving with frequency control
services. The presented method extends our previous work on frequency
control with BESSs [111], by adding the peak shaving objective using dynamic
programming and a customised stochastic optimisation objective. The main
contributions of this paper are:

• A novel stochastic optimisation and control framework that is able to
optimally combine frequency control with peak shaving objectives using a
BESS.

• A methodology which can be applied to efficiently aggregate frequency
control capacity of multiple BESSs at different sites.

• A case study of two real industrial sites which shows that the presented
approach increases value of the BESS compared to using the BESS for
only a single objective.

5.2 Optimisation and Control Framework

In this section, we describe the optimisation and control framework to combine
peak shaving and frequency control with a BESS at a particular site, of which
Figure 5.1 shows a schematic overview. In an FCR market with daily auctions,
one has to decide every day d on the FCR capacity rd one wants to sell. In the
proposed framework, we make this decision through a stochastic optimisation
problem (5.13). The results of this optimisation are then used in the real-time
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Figure 5.1: Overview of the dynamic programming-based optimisation and
control framework to combine peak shaving and frequency control with a BESS.

FCR and peak shaving controllers. The observed peak power P peakd at the end
of day d is used in the optimisation of the next day d+ 1.

We start this section by describing the optimisation and control of a BESS
for frequency control only during one day. Subsequently, we explain how we
add the peak shaving objective in the optimisation problem and propose a
real-time peak shaving controller. Finally, we elaborate how we extend the peak
shaving objective from one day towards the required timescale of one month
using dynamic programming and value function approximations Ṽd+1(P peakd ).

We employ a BESS model with constant charging and discharging efficiencies
ηc, ηd, discretised with time step ∆t:

Emin ≤ Ebatk ≤ Emax, Pmin ≤ P batk ≤ Pmax, (5.1a)

Ebatk+1 = Ebatk + (ηc[P batk ]+ − 1
ηd

[−P batk ]+)∆t, (5.1b)

where P batk , Ebatk are the power and energy content of the BESS at time step k
respectively.

5.2.1 Frequency Control Framework

The frequency control framework we use in this paper is an extension of the
robust optimisation presented in our previous work [111], which we will shortly
summarise here. For detailed information, the reader is referred to the original
paper.
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The goal here is to define both the amount of frequency control capacity r the
BESS can provide during one day and the power of the recharge controller
P rc ∈ Rnt that ensures the BESS stays within its SoC boundaries when
delivering the FCR service. As the frequency deviation profile ∆f ∈ Rnt is
inherently stochastic, the energy Ebat and recharge power P rc(∆f), which
are dependent on the frequency profile, are also stochastic. The optimisation,
maximising revenues from providing frequency control capacity r at a price
cFCR, can then be formulated as a chance-constrained problem:

min − cFCRr (5.2a)

s.t. P bat = P rc + r∆f , (5.2b)

1− ε ≤ Pr{Emin ≤ Ebat}, (5.2c)

1− ε ≤ Pr{Ebat ≤ Emax}, (5.2d)

1− ε ≤ Pr{Pmin + r ≤ P rc}, (5.2e)

1− ε ≤ Pr{P rc ≤ Pmax − r}, (5.2f)

Ebatk+1 = Ebatk + (ηc[P batk ]+ − 1
ηd

[−P batk ]+)∆t. (5.2g)

We solve (5.2) using robust optimisation [148], as it generates a safe
approximation to (5.2c)-(5.2f) while allowing to make ε arbitrary small and
retaining a tractable and efficiently solvable second-order cone problem (SOCP).
To achieve this, a couple of reformulations are needed.

Battery Efficiency

To avoid the integer variables resulting from the [·]+ operators in (5.2g), we
set the efficiencies in the constraint (5.2g) itself to ηc = ηd = 1. In turn, we
incorporate the efficiencies into the frequency deviations when discretising them:

∆fk = 1
∆t

∫ k∆t

(k−1)∆t

(
ηc
[
∆f(t)

]+ − 1
ηd
[
−∆f(t)

]+)
dt. (5.3)

In our previous work [111], we showed that this approximation does not lead to
violations of the constraints when ηc, ηd < 1.
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Recharge Controller

The recharge power Prc in (5.2) has to ensure the probabilities of (5.2c)-(5.2f)
are satisfied. As the frequency deviations ∆f are gradually revealed over
time, we can have Prc be dependent on the nrc past frequency deviations:
P rck = πk(∆f[k−nrc]+ , . . . ,∆fk−1), with πk a policy at time step k. As an
optimisation over functions πk is generally intractable, we limit ourselves to a
linear policy:

P rck =
k−1∑

i=[k−nrc]+
dki∆fi, P rc = D∆f , (5.4)

with dki the coefficients of the recharge strategy, contained in the lower triangular
matrix D ∈ Rnt×nt .

As this recharging policy will be calculated with the efficiencies incorporated in
the frequency signal (5.3) and not in the battery model itself, the policy will
not be directly applicable to a real battery system with ηc, ηd < 1. However,
following [149], such a linear disturbance feedback policy can be transformed
into an equivalent state-feedback policy:

P rc = (Int + 1
r
D)−1 1

r
D∆Ebat, (5.5)

with ∆Ebatk = (Ebatk − Ebatk−1)/∆t. In this form, the recharge power reacts on
the past states, which include the effect of the actual efficiency losses and other
non-linearities of the BESS.

Robust Reformulation

With the adaptations described above, we can use robust optimisation to create
a safe approximation of the chance constraints (5.2c)-(5.2f). The idea is to
design an uncertainty set of frequency deviations ∆f ∈ Fε, against which each
of the constraints (5.2c)-(5.2f) have to be satisfied at all times:

max
∆f∈Fε

aTi ∆f ≤ bi, i = 1, . . . , nc, (5.6)

with (ai, bi) defined to represent one constraint and nc = 4nt the total number
of constraints in (5.2c)-(5.2f).

Chen et al. show in [159] that an asymmetric uncertainty set based on
forward σfk(∆fk) and backward σbk(∆fk) deviations, which can be estimated
from samples of ∆fk, provides the tightest bound for small ε. With
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Q = diag(σf1, . . . , σfnt) and R = diag(σb1, . . . , σbnt), we can reformulate the
constraints (5.6) into the following second-order cone constraints:

aTi ∆f +
√
−2 ln ε‖ui‖2 ≤ bi, i = 1, . . . , nc, (5.7)

where ui = max(QaTi W−1,−RaTi W−1), with the maximum taken element-
wise and WTW = Σ−1

∆f the Cholensky decomposition of the inverse of the
covariance matrix Σ∆f of ∆f . We refer to our previous work [111] or Section
4.4.3 for the details on the derivation of (5.7).

With these reformulations, (5.2) becomes a tractable second-order cone problem,
which can be readily solved by various commercial and non-commercial solvers.

5.2.2 Combining Peak Shaving and Frequency Control

When adding the peak shaving objective to the optimisation (5.2), one has to
ensure the chance constraints (5.2c)-(5.2f) are still satisfied. To achieve this,
we split the BESS into two virtual batteries: one for peak shaving and one for
frequency control. By constraining the virtual battery for frequency control to
(5.7), it is ensured (5.2c)-(5.2f) are satisfied. Besides, by intelligently shaping
virtual battery boundaries, one can obtain synergies. For instance, one can
reserve less recharge power and hence more power for peak shaving at the
moments when consumption peaks are expected, and compensate for this at
the moments where consumption is expected to be low.

For a specific FCR capacity r and recharge policy D, equation (5.6) allows
to calculate the minimum and maximum power (P FCR

min ,P FCR
max ) and energy

(EFCR
min ,EFCR

max ) capacity needed to perform frequency control at any time step
k. The remaining power and energy capacity of the BESS can then be used to
perform peak shaving:

P ps
min = Pmin − P FCR

min , P ps
max = Pmax − P FCR

max , (5.8a)

Eps
min = Emin −EFCR

min , Eps
max = Emax −EFCR

max . (5.8b)

Let P ps and Eps be the power and energy profile of the part of the BESS
used for peak shaving and P prof the consumption profile of the site. The
combined optimisation, maximising frequency control revenues and minimising
the expected maximum power consumption of the site, can then be formulated
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as:

min E[cpeakP peak + Celec]− cFCRr, (5.9a)

s.t. P peak = max(P grid0 , . . . , P gridnt ), (5.9b)

P grid = P prof + P ps + (D + rInt)∆f , (5.9c)

Celec = celec (P ps + (D + rInt) ∆f) ∆t, (5.9d)

Pmin ≤ P ps
min ≤ P

ps ≤ P ps
max ≤ Pmax, (5.9e)

Emin ≤ Eps
min ≤ E

ps ≤ Eps
max ≤ Emax, (5.9f)

(5.1b), (5.7), (5.8), (5.9g)

with celec the per unit energy cost.

5.2.3 Stochastic Optimisation

The expected value operator in the objective (5.9a) depends on the stochastic
consumption profile P prof and frequency deviation profile ∆f and thus concerns
an nt-dimensional integration, which is intractable in practice. To approximate
the expected value operator, one can use a SAA [120] by taking the empirical
mean over iid samples or scenarios of the stochastic variables. With P prof

j , ∆fj
the j-th iid consumption profile and frequency deviation sample respectively,
j = 1, . . . , nsc, and pj = 1/nsc the probability of scenario j, one can approximate
the expected value operator as follows:

E[−P peak + Celec] ≈
nsc∑
j=1

pj

(
cpeakP peakj + Celecj

)
, (5.10a)

where:

P peakj = max
(
P prof
j + P ps

j + (D + rInt) ∆fj
)
, (5.10b)

Celecj = celec
(
P ps
j + (D + rInt) ∆fj

)
∆t. (5.10c)

Interference Peak Shaving and Frequency Control

In case a positive frequency control power is required (∆fk,j > 0) when the
consumption of the site is high, this could increase the peak consumption P peak
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of the site. Using (5.10) in the optimisation problem (5.9) would then result
in a peak shaving power P psk,j which completely compensates for the frequency
control power: P psk,j = −r∆fk,j . This means that in practice, no frequency
control power has been delivered to the grid.

To prevent this interference in the optimisation, the peak shaving power P ps
j

should be independent of the required frequency control power r∆fj . We achieve
this by sampling the frequency profile ∆f separately from the consumption
profile P prof and have each peak shaving power scenario P ps

j dealing with all
frequency deviation samples. Let v = 1, . . . , nv and w = 1, . . . , nw be the index
of the consumption profile samples P prof

v and frequency deviation samples
∆fw, respectively, then:

P peakj = max
(
P prof
v + P ps

v + (D + rInt) ∆fw
)
, (5.11a)

Celecj = celec (P ps
v + (D + rInt) ∆fw) , (5.11b)

pj = pprofv p∆f
w , (5.11c)

j := vnw + w, v = 1, . . . , nv, w = 1, . . . , nw.

Here, j = 1, . . . nsc, with nsc = nwnv, is the index used in the SAA objective
(5.10a), pprofv the probability of the consumption profile scenario w and p∆f

w

the probability of the frequency deviation scenario v. With this approach,
each battery peak shaving power scenario P ps

v is able to reduce the peak of the
corresponding consumption profile P prof

v , but also has to deal with all frequency
deviation profiles ∆fw in the optimisation.

Scenario Reduction

As the SAA objective (5.10a) converges to the true value with a rate of
O(1/nsc) [120], a high number of scenarios are needed to reach an acceptable
accuracy. To reduce the number of scenarios and increase computational
efficiency, we employ the fast forward selection algorithm presented by Heitsch
and Römisch [178]. The original fast forwards selection algorithm is a heuristic
to minimise the Kantorovich distance DK(Ω,Ωr) between an original set of
scenarios Ω and a new, reduced set of scenarios Ωr ⊂ Ω:

DK(Ω,Ωr) =
∑

ω∈Ω\Ωr

pω min
ω′∈Ωr

c(ω,ω′), (5.12)

with pω the probability of scenario ω and the cost function c(ω,ω′) =
‖ω − ω′‖2 [179].
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Figure 5.2: (a) When reducing 1500 idd consumption profile samples to nvr
scenarios, the generic cost function c(ω,ω′) introduces a significant bias in
E[P peak] which the proposed cost function c̃(ω,ω′) is able to eliminate. (b) The
proposed cost function c̃(ω,ω′) also reduces the SAA optimality gap when
solving problem (5.9) with nvr = nwr reduced scenarios.

Figure 5.2a shows the expected peak power E[Ppeak] during one day when
reducing the number of scenarios using the generic cost function c(ω,ω′) in
the fast forward selection algorithm. As one can see, the method introduces
a significant bias when reducing to less than 600 scenarios. It has been noted
previously in the literature [180] that using a cost function that is better able
to capture the effect of adding a scenario on the objective of the problem can
improve performance. As our objective function (5.10a) involves the maximum
value of a scenario, we propose the following cost function in (5.12):

c̃(ω,ω′) = |max(ω)−max(ω′)| .

As the dashed line in Figure 5.2a shows, this new cost function is able to
eliminate the bias on E[Ppeak] almost completely.

To prevent the interference between peak shaving and frequency control
objectives discussed above, we separately sample the consumption profiles P prof

v

and frequency deviations ∆fw and reduce them to P prof
vr with probability

pvr , vr = 1, . . . , nvr and ∆fwr with probability pwr , wr = 1, . . . , nwr ,
respectively. We then combine the reduced scenarios as in (5.11), so that
in total nscr = nvrnwr and pjr = pvrpwr in (5.10a).
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Finally, Figure 5.2b shows the optimality gap of (5.10) due to the SAA, calculated
according to [114], when reducing 1500 iid consumption and frequency deviation
samples to nvr and nwr scenarios. The proposed cost function c̃(ω,ω′) decreases
the SAA optimality gap with around 50 % for a same number of reduced
scenarios, increasing computational efficiency.

5.2.4 Non-Anticipative Peak Shaving Controller

When solving the stochastic optimisation problem (5.9) as described in the
paragraphs above, one actually solves a two-stage stochastic problem. In a
first stage, one decides on the FCR capacity r, the recharge policy D and
the peak shaving boundaries (Eps

min,E
ps
max,P

ps
min,P

ps
max). In the second stage,

one optimises the peak shaving power P ps
vr with complete (perfect hindsight)

knowledge of the consumption profile P prof
vr . In reality however, the consumption

profile is only gradually revealed over time. Hence, the second stage solution
is not usable in practice and a non-anticipative, potentially suboptimal, peak
shaving control algorithm will be required.

Examples of such controllers vary from simple, rule-based controllers [171]
to model predictive control [172] and more complex dynamic programming
methods [174]. The optimisation and control framework proposed in this paper
allows the use of any of these control algorithms. However, to limit the scope
of this paper we restrict ourselves to a rather simple, parametrised rule-based
peak shaving policy.

Algorithm 2 shows the proposed rule-based peak shaving controller. The
controller discharges the battery every time k the grid power P̂ gridk surpasses
a threshold Pthr and recharges the battery every time P̂ gridk goes below this
threshold.

The battery power due to the frequency control (D + rInt)∆f can induce
additional power peaks, which we want to avoid as much as possible without
hampering the actual FCR delivery. Therefore, in step 5, we compute a statistic
of the FCR power to be delivered: the average FCR power PFCRk plus a factor
zσ times the standard deviation of the FCR power sPFCRk , which we add to the
consumption profile P profk to obtain a modified grid power profile P̂ gridk , which
is compared with the threshold Pthr in step 6.

Steps 8 and 10 ensure that P ps,Eps stay within the peak shaving boundaries
(Eps

min,E
ps
max), (P ps

min,P
ps
max). Finally, step 13 updates the threshold Pthr if the

battery was unable to keep the modified grid power P̂ gridk below the threshold
Pthr.
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Algorithm 2 Rule-based peak shaving controller
Parameters: P initthr , zσ.
Input: r,D,Eps

max,E
ps
min,P

ps
max,P

ps
min.

1: Pthr ← P initthr .
2: P FCR ← (D + rInt)∆f .
3: sP

FCR ← std
[
(D + rInt)∆f

]
.

4: for each time step k = 1 . . . nt do
5: P̂ gridk ← P profk + PFCRk + zσs

PFCR
k .

6: P psk ← Pthr − P̂ gridk .
7: if P psk < 0 then . Discharge Battery
8: P psk ← max(P psk , P psmin,k, ηd(E

ps
min,k+1 − E

ps
k )∆t),

9: else . Charge Battery
10: P psk ← min(P psk , P psmax,k,

1
ηc

(Epsmax,k+1 − E
ps
k )∆t).

11: Epsk+1 ← Epsk+1 + ηc [P psk ]+ − 1
ηd

[−P psk ]+.
12: if P̂ gridk + P psk > Pthr then . Threshold Surpassed
13: Pthr ← P̂ gridk + P psk .

Algorithm 2 has two parameters that can be freely chosen: P initthr and zσ, which
and be used to adapt the controller to a specific configuration. For a particular
value of these parameters, the performance of the controller can be evaluated by
simulating the controller for a large number of iid consumption and frequency
samples neval � nsc, calculating the objective (5.10a) and taking the empirical
average over all scenarios. To find the optimum values P̂ initthr , ẑσ, we then use a
simple grid search.

5.2.5 Dynamic Programming Framework

The optimisation (5.9) considered so far deals with the daily decision making
required in the FCR market. However, peak demand charges look at the highest
peak over an entire billing period, here one month. To deal with these different
time scales, we adopt a dynamic programming framework. Starting at the end
of the month, we calculate the value of the objective Vd(P peakd−1 ) for each day
d = 1, . . . , nd of the month in function of the peak power P peakd−1 observed until
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the end of the previous day d− 1. The daily optimisation becomes then:

Vd(P peakd−1 ) = min E[Vd+1(P peakd ) + Celecd ]− cFCRd rd, (5.13a)

s.t. P peakd = max(P grid0,d , . . . , P gridnt,d
, P peakd−1 ), (5.13b)

P grid
d = P prof

d + P ps
d + (Dd + rdInt) ∆fd, (5.13c)

(5.9e) - (5.9g), (5.13d)

and Celecd as in (5.10c). The peak power P peakd after day d is the maximum
of P grid

d , the grid power of day d, and P peakd−1 . The expected value operator in
(5.13a) can be approximated using the SAA (5.10) and the scenario reduction
techniques explained in section 5.2.3. The final value function Vnd+1 used in
the objective of day nd, the last day of the billing period is:

Vnd+1(P peaknd
) = cpeakP

peak
nd

. (5.14)

With the final value function Vnd+1 defined, we can calculate Vd(P peakd−1 ) for
each day d by solving (5.13) recursively. However, this value function would
assume the perfect hindsight solution of the second stage peak shaving problem
(see section 5.2.4) and not take into account the suboptimality of a practical,
non-anticipative controller. Therefore, when solving (5.13), we will instead
use V ruled+1 , the value of the objective (5.13a) at day d+ 1 evaluated using the
rule-based peak shaving controller of Algorithm 2.

All elements of the dynamic programming control scheme are combined in
Figure 5.1. At the start of day d, the peak power P peakd−1 is known and used
as an input into the stochastic optimisation (5.13), which uses Ṽ ruled+1 (P peakd ), a
convex approximation of the value function of the next day, evaluated with the
rule-based controller. Solving (5.13) gives the FCR capacity rd and recharge
controller Dd, used in the FCR recharge controller (5.5), and the peak shaving
boundaries (Eps

min,d,E
ps
max,d,P

ps
min,d,P

ps
max,d) from (5.8) used in the peak shaving

controller of Algorithm 2.

Value Function Approximation

To solve (5.13) efficiently, we need a representation of the value function
V ruled+1 (P peakd ) that does not jeopardise the tractability of the optimisation
problem. As the minimisation in (5.13) is convex, the value function Vd+1
is a convex function of P peakd . However, the value function V ruled+1 (P peakd ) is
not necessarily convex, as shown in Figure 5.3, owing to the non-convex peak
shaving controller from Algorithm 2.
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Figure 5.3: Example of Vd+1(P peakd ), the value function of the optimisation
(5.13), V ruled+1 (P peakd ), the value function with the rule-based controller, and
Ṽ ruled+1 (P peakd ), the convex piecewise linear approximation hereof.

Therefore, we approximate V ruled+1 by a convex piecewise linear function
Ṽ ruled+1 (P peakd ), by a least-squares fit over the range [0,max(Pprob)]:

Ṽ d+1
rule (P peakd ) = max

j

(
α̂jP

peak
d + β̂j

)
, (5.15)

where:

α̂j , β̂j = arg min
αj ,βj

ni∑
i

(
yi − V ruled+1 (xi)

)2
, (5.16a)

s.t. yi = αjxi + βj , ∀i : xbj ≤ xi ≤ xbj+1,

αjx
b
j+1 + βj = αj+1x

b
j + βj+1, (5.16b)

αj ≤ αj+1, ∀j = 1 . . . , nj , (5.16c)

with nj the number of pieces in the piecewise linear approximation, separated
by the breakpoints xbj . Equation (5.16b) ensure the resulting piecewise function
is continuous on the breakpoints xbj , while (5.16c) ensures convexity. The points
xi, i = 1, . . . , ni on which the interpolation is performed are equally spread over
the entire interpolation range [0,max(Pprob)]. An example of Ṽ d+1

rule is also shown
in Figure 5.3. To reduce the number of pieces nj and thereby the constraints in
(5.13), one can prune the pieces of which αj and βj are approximately equal.
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5.3 Aggregating Multiple Sites

When multiple batteries are installed at different sites of which the shape
of the consumption profiles are complementary, there can be added value in
aggregating their frequency control capacity. For example, if one site has a
high consumption peak in the morning and another site in the afternoon, the
battery at the first site can do peak shaving in the morning while the battery
at the second site delivers the frequency control capacity, and vice versa in the
evening.

The framework for peak shaving and frequency control proposed in section 5.2
can easily be extended to incorporate multiple sites. As peak tariffs are charged
to each site separately, the peak shaving objective for multiple sites is simply the
sum of the peak shaving objectives of the individual sites: min

∑ns
i cpeakP

peak
i +

Celeci , with ns the number of sites. With regard to frequency control, the
aggregated FCR capacity r can be split into ns FCR capacity vectors ri =
(r1,i, . . . , rnt,i)T , i = 1, . . . , ns, so that the local FCR capacity can vary over
time. Each site will also have its individual recharging controller Di. Finally,
the individual FCR capacities have to add up to the aggregated FCR capacity
r at every time step k:

r =
ns∑
i

rk,i, ∀k = 1, . . . , nt. (5.17)

The dynamic programming-based control scheme of Figure 5.1 can also be used
for multiple site. Because the problem is linked by (5.17), the value function of
day d is a function of P peaki,d−1, i = 1, . . . , ns, the peak power after day d − 1 of



SIMULATION AND RESULTS 127

every site i. The stochastic optimisation of (5.13) becomes then:

Vd(P peak0,d−1, . . . , P
peak
ns,d−1)

= min E[Ṽ ruled+1 (P peak0,d , . . . P peakns,d
) +

ns∑
i=1

Celeci,d ]− cFCRd rd,

s.t. P peaki,d ≥ P profk,i,d + P psk,i,d +
k−1∑
l

di,dkl ∆f l + rk,i,d∆fk,

k = 1, . . . , nk, i = 1, . . . , ns, (5.18)

P peaki,d ≥ P peaki,d−1, i = 1, . . . , ns,

rd =
ns∑
i=1

rk,i,d, k = 1, . . . , nk,

(5.9e) - (5.9g), i = 1, . . . , ns,

As the dimension of the state (P peak0,d−1, . . . , P
peak
ns,d−1) of the dynamic program

(5.18) is equal to the number of sites to be aggregated, the computational
effort needed to solve the dynamic program increases with the number of sites
considered [181]. This can partly be mitigated by solving (5.18) for multiple
states in parallel. More efficient sampling of the value function, using Latin
hypercube sampling [182] or orthogonal arrays [183] can further reduce the
required computational effort when aggregating a larger number of sites, and
interesting future work consists of analysing which of these methods show the
best performance for the proposed problem.

5.4 Simulation and Results

In this section we present a case study, applying the previously presented
methodology to two 1 MW, 1 MWh batteries at two industrial sites: a pumping
station (site 1) and a cold store (site 2), to perform peak shaving at the sites
while delivering an aggregated FCR capacity. We use real consumption data
from actual industrial sites and real grid frequency measurements from the CE
synchronous area. The 5th and 95th percentiles of the consumption profiles
are depicted by the grey shades in Figures 5.4c and 5.4d. The average profiles
are also shown. The profiles are somewhat complementary: site 1 has a high
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peak around 7am and some lower peaks in the day while site 2 has the highest
consumption overnight.

We assume the efficiencies at ηc = ηd =
√

90 %. We discretise each day into
time steps of 15 minutes, so ∆t = 900 s and nt = 96. In the second-order cone
constraint (5.7), we set ε = 5 · 10−3 and calculate σfk and σbk using four year
of CE frequency data. In the stochastic optimisation (5.13), we draw 1500 iid
scenarios which we reduce to nvr = nwr = 50 to obtain an SAA optimality
gap < 2.5 %, following Figure 5.2b. We set cFCR = 12e/MW/h, cpeak =
13 000e/MWpeak/month and celec = 45e/MWh.

5.4.1 Combining Peak Shaving and Frequency Control

Figure 5.4 shows how the stochastic optimisation (5.18) succeeds in aggregating
FCR capacity of the two batteries while performing peak shaving at the two sites.
The two coloured areas in Figures 5.4a and 5.4b represent the FCR capacity
of the sites ri, which add up to form a constant aggregated FCR capacity
r = 0.88 MW. However, at times when consumption at site 1 is expected to
be high, mainly during the day, this battery delivers less FCR capacity and
has more power for peak shaving available while at site 2, which has a higher
consumption at night, one can see the opposite behaviour.

The coloured lines in Figures 5.4a and 5.4b show the actual peak shaving power
scenarios P ps

i for different daily consumption profiles P prof
i when using the

rule-based peak shaving controller of Algorithm 2. The effect of this peak
shaving power on the original profiles is depicted by the coloured profiles of
Figures 5.4c and 5.4d. It is clear that the peak shaving power of the battery at
site 1 is able to decrease the peak consumption. At site 2 it is more difficult
to reduce the peak, as the energy content needed during to shave the peak in
the first hours of the day can be more than the energy content of the battery.
This explains the peak of the 95th percentile around 5am-6am. Nevertheless,
the averaged profile with peak shaving is lower during these hours, indicating
that in many scenarios the consumption power can still be reduced.

5.4.2 Dynamic Programming Framework

We will now look at the evolution of the decision making over time in the
dynamic programming scheme. Figure 5.5a shows the evolution of the value
function of the dynamic program (5.18) applied to the two sites, from the last
day to the first day of the month. The figure shows this evolution for various
values of P peaki,d−1, the sum of the maximum power observed so far at the two
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Figure 5.4: Aggregating two batteries at two sites performing peak shaving and
frequency control. Each line in (a) & (b) shows the battery peak shaving power
for a specific scenario, while (c) & (d) show the average (solid lines) and the 5th

- 95th percentiles (shaded areas) of the grid power with and without the peak
shaving from (a) & (b). The coloured area in (a) & (b) is the FCR capacity ri
of each site, which aggregated forms a constant capacity of 0.88 MW.
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Figure 5.5: Evolution of (a) the value function and (b) FCR capacity rd in
function of the days left until the end of the month, for various peak powers
P peaki,d−1 observed up to that day (here equal at the two sites: P peak1,d−1 = P peak2,d−1).

sites. Figure 5.5b shows the evolution of the corresponding aggregated FCR
capacity rd, also from the last to the first day of the month.

Analysing both figures, we can draw some insightful conclusions. From Figure
5.5b, it turns out that a higher value of P peaki,d−1 results in a higher FCR capacity.
In case a high value of P peaki,d−1 has been observed, there is a low probability that
the consumption profile will be even higher and therefore, a larger share of the
battery will be allocated for FCR. At a very high power peak P peaki,d−1 = 1.15, the
batteries will provide their maximum FCR capacity (1.80 MW) over the entire
month. The linear decrease of the value function Vd in Figure 5.5a is thus solely
due to the accumulation of FCR revenues.

Even in case P peaki,d−1 is low, the FCR capacity increases when more days remain
until the end of the peak shaving period (one month). The longer the remaining
period, the higher the probability on a high consumption peak which cannot
be shaved successfully by the battery. Therefore, it is better not to lose the
potential value from FCR and already use a major part of the battery for FCR.
The value function of a low P peaki,d−1 will then decrease due to the FCR revenues, at
almost the same rate as the value function of a high P peaki,d−1. When the remaining
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Figure 5.6: Example of peak shaving during one month at site 1. Figure (a)
shows that, with the peak shaving power of the battery, the site is able to reduce
its peak power with 110 kW. Figure (b) shows the corresponding actual Eps

and available Eps
max −E

ps
min energy content of the battery for peak shaving.

period shortens and P peaki,d−1 has been rather low, there is less probability a high
peak will occur in the remaining period, and the FCR capacity will be reduced
as a larger share of the battery will be assigned for peak shaving trying to
maintaining P peaki,d−1 low. The value function decreases as the probability of
a low peak over the entire month increases. Figure 5.6b, showing the peak
shaving boundaries (Emax,ps, Emin,ps) over an entire month corresponding to
the consumption profile of Figure 5.6a, also depicts this evolution. From the
second half of the month, less capacity is used for FCR while the available energy
for peak shaving becomes larger, trying to maintain the peak consumption at
the level seen so far.
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Finally, we note that the value functions V ruled of the rule-base peak shaving
controller in Figure 5.5a are very close to the value functions V d from the
optimisation. Except when there are few days remaining and P peaki,d−1 is low, a
state which does not occur in practice, the difference becomes larger. Hence, we
can conclude that using perfect hindsight in the second stage of the stochastic
optimisation is in practice a good approximation to the actual rule-based peak
shaving controller.

5.4.3 Monthly Costs and Revenues

The performance of the entire control scheme can be evaluated in Table 5.1, which
compares various costs components of the two sites for various cases: without
batteries, with batteries performing peak shaving only, batteries performing
FCR only and batteries combining FCR with peak shaving. The table gives
the average of various consumption and frequency scenarios of one month. The
“Peak Power" column gives the expected peak consumption power during one
month of the two sites combined, while the “Average FCR Capacity" shows the
averaged FCR capacity over the entire month and the “Total Net Profits" is the
difference of the peak costs in the “Without Batteries" scenario and the peak
and electricity costs minus the FCR revenues of the other scenarios.

Scenario
Peak
Power
[MW]

Peak
Costs
[ke]

Average FCR
Capacity
[MW]

FCR
Revenues

[ke]

Elec.
Costs
[e]

Total Net
Profits
[ke]

Without
Batteries 1.91 24.9 – – – –

Only Peak
Shaving 1.35 17.5 – – 197 7.2

Only FCR 2.09 27.3 1.80 15.6 118 13.1
FCR &
Peak
Shaving
Combined

1.96 25.5 1.76 15.2 177 14.4

Table 5.1: Expected Monthly Costs and Revenues of the Two Sites
With and Without Batteries.

When only performing peak shaving, the batteries are able to reduce the power
peak with 560 kW, which results in a decrease of peak power costs of 7200e.
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When only performing frequency control, the batteries together provide the
maximum FCR capacity of 1.80 MW during the entire month, which gives a
revenue of 15 600e. However, this also leads to an increase in peak power to
2.09 MW, reducing the net profits to 13 100e. However, when combining FCR
and peak shaving using the proposed methodology, the batteries are able to
maintain the peak power at 1.96 MW, while still providing 1.76 MW of FCR
capacity on average, resulting in a net profit of 14 400e/month. In all scenarios,
the additional electricity costs Celec of the batteries are negligible.

5.5 Conclusion

In this paper, we have proposed a novel stochastic optimisation and control
framework that is able to optimally combine peak shaving and frequency control
objectives with a battery system installed behind the meter. The framework
also allows to aggregate frequency control capacity of multiple batteries at
different sites, thereby leveraging potential synergies.

In a case study on two 1 MW, 1 MWh batteries at two industrial sites, we
show that combining peak shaving with frequency control using the proposed
optimisation framework leads to an expected monthly profit of 14 400e, which
is two times the profit in case they would only perform peak shaving and around
10 % more than only performing frequency control.
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Abstract:

Providing frequency control services with flexible assets connected to the low-
voltage distribution grid, amongst which residential battery storage or electrical
hot water boilers, can lead to congestion problems and voltage issues in the
distribution grid. In order to mitigate these problems, a new regulation has
been put in place in Belgium, imposing a specific constraint: in any circle with
a radius of 100 m, there can be at maximum 10 connection points providing
frequency control at any time. This paper presents an impact analysis and a
coordination strategy of a flexibility service provider (FSP) that operates a pool
of assets and is exposed to this new regulatory constraint. Results show that
at 5 % participation, only 90 % of total control capacity can be used, with a
large difference between neighbourhoods with different population densities. A
distributed optimization framework to coordinate the assets arises naturally,
in which the assets are able to keep their local cost functions private and only
have to communicate with neighbouring assets that are geographically close,
and with the FSP. Analysis of the proposed distributed optimization algorithm
shows a clear trade-off between optimality gap, owing to the mixed-integer
nature of the problem, and iterations to convergence.

6.1 Introduction

In recent years, ancillary services markets in Europe have been opening up
for third party participants and non-conventional energy resources, such as
battery storage or industrial demand response. The primary frequency control
or frequency containment reserve market [24], where one is able to sell power
capacity for primary frequency control to the transmission system operator, is
one of the markets that have seen an increased participation of these new, flexible
energy resources. This evolution has also fuelled interest in using flexibility
from flexible residential energy resources such as domestic hot water heaters,
which are connected to the low-voltage distribution grid.

As these assets are not able to participate in the FCR market by themselves,
a new party, the flexibility service provider (FSP) is needed that facilitates
the access of these assets to the FCR market, both in a technical and in an
administrative way. The flexible FCR capacity of each of these assets is an order
of magnitude smaller than the bid granularity in the FCR markets (e.g. 1 MW
in Belgium [184]). Therefore, the FSP will have to put various flexibility assets
together in a pool large enough to participate in the FCR market. Thereby, the
FSP has to make sure that its pool of assets can provide a constant FCR capacity
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for the duration of the bid (e.g. one week in Germany on the international
Regelleistung bidding platform [26]).

As these new, flexible energy resources are connected to the distribution grid
rather than directly to the transmission grid, the distribution system operator
also becomes a stakeholder. The DSO has to make sure that the distribution
grid remains within its operational constraints when these assets perform the
FCR service. This is challenging, as the distribution grid has historically not
been designed for these kinds of demand response actions.

In [143], it is shown that when some of these assets are located in the same
area and are activated synchronously, which is usually the case when providing
FCR, this can lead to congestion problems in the low-voltage distribution grid.
Congestion in the distribution grid occurs when the transfer of active power
over the grid exceeds the transfer capability of the grid, which is limited by
the operational grid constraints: voltage limits, thermal limits of cables and
transformers, the interface with the TSO and protection equipment [41].

Performing a detailed grid study on the impact of using each of these assets
for FCR is too time-consuming, costly and requires detailed grid information,
which is often not available. Therefore, various solutions to distribution grid
congestion have been proposed in the literature, such as voltage regulation with
active and reactive power control [25,185,186]. A local voltage droop controller
is presented in [144], which is shown to be effective in avoiding distribution grid
constraint violations while having very limited impact on the performance of
the service to be delivered.

However, straightforward power curtailment cannot be applied to the FCR
service, as this would result in non-delivery of the service to the TSO and hence
into penalties for the FSP. Controlling the reactive power output of the grid-
connected inverters could also reduce voltage issues [187]. However, this results
in increased resistive losses as injecting additional reactive power increases the
current through the cables [186]. An optimal control minimizing these losses is
rather complex and requires additional control logic to be installed [187].

As these methods have their drawbacks, the DSO is looking at new regulations
that are easily enforceable to avoid distribution grid problems with assets
providing FCR.

The remainder of the paper is organized as follows: Section 6.2 explains the
new 2018 Belgian regulation on providing FCR with low-voltage grid connected
assets and motivates the distributed optimization architecture proposed in this
paper. Section 6.3 describes an algorithm to construct the relevant constraints
imposed by these new regulation. Section 6.4 then formulates the central
optimization problem and the distributed optimization algorithm for an FSP
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that is exposed to this regulation. Section 6.5 evaluates the impact of the new
regulation and the performance of the distributed optimization. Finally, the
paper is concluded in Section 6.6.

6.2 FCR with Low-Voltage Connected Assets in
Belgium

Recently, the Belgian federation of electrical and gas network operators,
Synergrid [188], has proposed a standard agreement contract between DSOs
and FSPs that want to exploit flexibility on the low-voltage distribution grid
for FCR services [189]. The agreement presents some constraints by which the
FSP should comply in order to prevent congestion issues in the distribution grid
when using the flexibility for FCR. The proposed constraints in the document
are easily enforceable and do not require complicated assessments such as a
detailed power flow calculation.

The two constraints imposed by Synergrid in the agreement contract are the
following:

1. The maximum flexible power capacity used for FCR at one low-voltage
connection point is 5 kW.

2. Within any circle with a radius of 100 m, there can be a maximum of 10
low-voltage connection points in the pool of the FSP providing flexibility
for FCR at the same time.

The first constraint is straightforward and does not require further explanation.
The second constraint is slightly more complicated and creates some room for
optimization by the FSP. If, for instance, the FSP has 20 assets in its pool that
are all located within a circle with radius of 100 m, the FSP can choose which
of the 20 assets should provide the FCR capacity at each moment in time. It
would then be beneficial to select the assets that can provide the cheapest FCR
capacity at each moment in time. Besides, when assets are located in multiple
circles it is not straightforward to select which assets should deliver FCR at
minimal costs, as each circle imposes its constraint and all of them should be
respected.

To find the cheapest FCR capacity, one has to define the cost of providing FCR
capacity with a flexibility asset. This cost can include both the actual marginal
cost of providing the flexibility (e.g. degradation cost of a battery providing
frequency control) and the opportunity costs of using the same flexibility for
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other purposes (e.g. using the battery to store locally generated PV energy).
Optimizing in this way can lead to increased revenues for all parties, as synergies
exist by combining flexibility for different objectives such as frequency control
and electricity tariff optimization [111,190].

6.2.1 A Distributed Optimization Framework for the FSP

As the flexible capacity from one asset connected to the distribution grid is
usually rather small (and explicitly limited to 5 kW by the first constraint of
Synergrid), there need to be a large number of assets in the pool of an FSP.
This also means that, in case the entire optimization is performed centrally by
the FSP, it can quickly become intractable due to the high number of variables
and constraints [191].

A well-studied approach to mitigate this intractability is to distribute the
optimization problem amongst the various assets in the FSP pool. This has the
advantage that each asset only has to solve a small, local optimization problem.
Besides, the assets can implement their constraints and cost functions locally,
keeping this information private from the other assets and from the FSP, which
is favourable from a confidentiality point of view [192]. Finally, a distributed
optimization architecture arises naturally here, as the second constraint imposed
by Synergrid, limiting the number of active assets in each circle of 100 m, results
in a multitude of constraints, each including only neighbouring assets which are
geographically close together.

In the literature, various architectures of distributed demand response
aggregation have been proposed. A non-iterative, distributed approach is
presented in [193], in which the assets calculate their local costs in a distributed
way for each possible value of the dual variables. However, this works only in
case the problem is completely decomposable in time, which is not the case here.
Dual decomposition is used in [194] to aggregate demand response resources
while maintaining user confidentiality. The alternating direction method of
multipliers (ADMM), comparable to the distributed method proposed in this
paper, is used in [195] to optimize electrical vehicle charging while taking into
account maximum power constraints of the grid.

Figure 6.1 shows the distributed optimization architecture proposed in this
paper, tailored to the problem of the FSP providing FCR while respecting the
Synergrid constraints. Each asset performs a local optimization, maximizing
their FCR revenues while taking into account their local costs and constraints.
The assets share circle constraints with neighbouring assets that are within
200 m distance, corresponding to the circles in Synergrid’s second constraint
and illustrated by the red circles in the figure.
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FSP

Figure 6.1: Proposed distributed optimization architecture. Each house
represent a local flexibility asset and is constraint by circles with a radius
of 100 m, here drawn in red. The assets communicate with the FSP and with
circle constraint agents, represented by the red computers.

As the assets do not know nor can control the FCR capacity of the neighbouring
assets, they cannot enforce the Synergrid’s second constraint in the local
optimization. Therefore, each circle constraint is assigned a circle constraint
agent, illustrated by the red computers in Figure 6.1, that ensures there are not
more than 10 assets delivering FCR at the same inside the particular circle. As
one asset can be constrained by multiple circle constraints and each circle is
managed by only one circle constraint agent, an asset communicates with all
circle constraint agents of all circles it belongs to. In this way, it is ensured the
asset respects all circle constraints they belong to. The assets also communicate
with the FSP, which coordinates the assets to make sure the sum of the local
FCR capacities is constant over the duration of the bidding period.

With this architecture, no entity has a global view on the central optimization
problem, which is distributed amongst all relevant entities, each solving only a
small, local part of the problem.

A peer-to-peer architecture, such as presented in [196], can also be achieved
with the distributed optimization algorithm proposed in this paper. In such
a peer-to-peer architecture, each asset would have a local implementation of
all circle constraint agents of the circles constraining the asset. This eliminates
the need for circle constraint agents as distinct entities, as each agent would
already be implemented locally in the assets constrained by the respective circle.
Instead of communicating with the circle constraint agents, an asset will then
only have to communicate with neighbouring assets with which it shares a circle
constraint, which are at maximum 200 m away.

Transforming the communication with the FSP into a peer-to-peer architecture,
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thereby eliminating the FSP as a singly point of failure, is a bit more challenging,
but can be achieved following the approaches presented in [196, 197]. In this
case, copies of the calculation performed by the FSP have to be implemented
locally in some or in all nodes. These nodes can then take the role of the FSP,
coordinating the assets towards a constant FCR capacity for the duration of
the bid. To avoid communication between all nodes (all-to-all communication)
at every iteration, peer-to-peer communication can be achieved with a gossiping
algorithm [196] or the distributed ADMM (D-ADMM) [197].

The distributed or the peer-to-peer architecture fits perfectly with recently
proposed device-to-device communication architectures [198] and the internet
of things (IoT) paradigm [199]. Low power wide area networks (LPWAN) [200]
seem to be ideal candidates for this type of communication, as they have low
hardware cost, low power consumption and a range largely surpassing the
required 200 m.

The main contributions of this paper can be summarized as follows:

• We propose an algorithm to determine all relevant circles according to
the new regulatory requirement from Synergrid, which is, to the best of
our knowledge, the first time distribution grid constraints are explicitly
imposed on demand response flexibility.

• We analyse the impact of these constraints on the total amount of FCR
capacity that can be offered with a pool of assets connected to the
distribution grid, using real data from a DSO.

• We describe the mixed-integer optimization problem of an FSP operating
a pool of low-voltage grid connected assets providing FCR and present the
use of a distributed optimization to solve the problem in a scalable way
while keeping costs and constraints of the participating assets confidential.

6.3 Construction of Circle Constraints

To be able to implement the optimization problem of the FSP as a mathematical
program, we have to translate Synergrid’s second constraint into a closed
mathematical expression. Therefore, we have to be able to find all circles with
a radius of 100 m that contain at least one connection point. Below, we explain
how we can find these circles.

We assume the geographical location of all assets or points I = {1, . . . , nI} in the
FSP pool is given by their two-dimensional coordinates xi = (x0

i , x
1
i ), i ∈ I in a

two-dimensional Cartesian coordinate system, such that a vector xi : ‖xi‖22 = 1
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Figure 6.2: Illustration of equations (6.2) for the construction of the two unique
circles with radius r passing through points xi and xj .

has a length of 1 meter. In practice, both the DSO and the FSP should know
the geographical location of the participating assets, as the connection points
are part of the distribution grid, and the FSP should have a bilateral contract
with the owner of the asset allowing the FSP to use the asset for FCR services.

The goal is to find all sets of points Cs ⊂ I, of which the smallest circle containing
all points in the set has a radius r smaller than or equal to 100 m, and which is
not a subset of any other such set of points:

Cs = {i ∈ I | ∃c ∈ R2 : ∀i, ‖xi − c‖2 ≤ 100} (6.1)

and Cs * Cs′ , s′ = {1, . . . , s− 1, s+ 1, . . . nS},

with nS the total number of sets Cs. The last requirement avoids adding trivial
sets of points: for instance, if there is a circle with radius r ≤ 100 m containing
points {1, 2, 3}, then there are also circles with radii r ≤ 100 m containing only
points {1, 2}, {2, 3} and {1, 3}. However, the constraints that would be imposed
by these last three sets of points are already incorporated by the constraint
defined by the set {1, 2, 3}. Hence, the smaller sets can be discarded.

A naive construction methodology for Cs would be to check the smallest
circumscribed circle of all possible combinations of points. However, this
would quickly become intractable for a rather limited number of points nI , as
the number of possible combinations increases exponentially with O(2nI ).

To overcome this, we have developed Algorithm 3, which has complexity O(n4
I).

The algorithm is based on the idea that the smallest circumscribed circle of a
set of points has at least two points on the boundary of that circle [201]. Thus,
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by finding all circles with radius 100 m that have at least two points on their
boundary, one obtains all circles to be considered when creating the sets Cs.

Given a radius r and two distinct points xi,xj , one can define two unique circles
with centre points c1

ij , c
2
ij as illustrated by Figure 6.2. These centre points can

be found using the following equations, resulting from the relations defined in
Figure 6.2,:

dij =

√
r2 −

(
‖xi − xj‖2

2

)2
, (6.2a)

∆0
ij =

x0
i − x0

j

‖xi − xj‖2
, ∆1

ij =
−(x1

i − x1
j )

‖xi − xj‖2
, (6.2b)

c1
ij =

(
x0
i + x0

j

2 + dij∆1
ij ,
x1
i + x1

j

2 + dij∆0
ij

)
, (6.2c)

c2
ij =

(
x0
i + x0

j

2 − dij∆1
ij ,
x1
i + x1

j

2 − dij∆0
ij

)
. (6.2d)

Here, dij gives the distance between the centre points and the midpoint mij

between xi,xj along the mirror line, the line with all points at equal distance
from both points xi,xj . The direction of the mirror line is given by the
normalized vector

(
∆1
ij ,∆0

ij

)
. The centre points are then found by starting

from the midpoint mij =
(
(x0
i + x0

j )/2, (x1
i + x1

j )/2
)
between xi,xj and going

with distance dij along the mirror line in the positive and the negative direction,
as elaborated in equations (6.2c) and (6.2d).

Algorithm 3 shows how to construct the set S = {C1, . . . , CnS} containing all
sets Cs defined by (6.1). The iteration over every asset in step 1 creates the
local set Si = {Cs ∈ S|i ∈ Cs} containing the circle sets Cs in which asset i is
contained. By executing this iteration in parallel at every asset i, the algorithm
can be executed in a fully distributed fashion.

The iterations in step 3 finds then all neighbouring points j that are less than or
equal to 200 m apart from each other, as points that are farther from each other
can never be in the same circle with radius 100 m. This limits the combinations
to be considered at each point i to the points that are in the neighbourhood of
i, speeding up up the algorithm significantly.

Step 8 calculates the centre points of the two circles with radius 100 m determined
by points i, j. Then, steps 9 and 10 determine all points from I that are enclosed
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Algorithm 3 Construction of sets within circles of r ≤ 100 m
1: for each point i ∈ I, do (in parallel)
2: Si ← ∅
3: Ii ← {j ∈ I | ‖xi − xj‖2 ≤ 200}
4: if Ii = ∅ then
5: Si ← {i}
6: else
7: for each j ∈ Ii, do
8: Calculate c1ij , c2ij from xi and xj using (6.2).
9: C1 ← {n ∈ Ii | ‖xn − c1

ij‖ ≤ 100}
10: C2 ← {n ∈ Ii | ‖xn − c2

ij‖ ≤ 100}
11: for each Cs ∈ Si, do
12: if Cs ⊂ C1 or Cs ⊂ C2 then
13: Si ← Si \ Cs
14: if C1 * Cs,∀Cs ∈ Si then
15: Si ← Si ∪ C1

16: if C2 * Cs,∀Cs ∈ Si then
17: Si ← Si ∪ C2

18: S =
⋃
i∈I
Si

by these circles. This gives two potential sets of points C1, C2, for which it has
to be checked if there does not already exist a set Cs ∈ Si that is a subset of C1

or C2, in which case Cs is removed from Si. Finally, if the sets C1, C2 are not in
itself a subset of any Cs ∈ Si, they are added to Si. These last two operations
are performed to eliminate trivial sets, explained above. Finally, In step 18,
the set S = {C1, . . . , CnS} is created by taking the union over all subsets Si.
However, when using the distributed optimization algorithm presented further
this step is not required as in the local optimization problem (6.6) each asset i
only needs the information of the subset Si.

An example of the results of the algorithm, applied to a neighbourhood in the
city of Breda, is given in Figure 6.3. As one can see, the closer the points are
together, the more circles can be drawn and thus more constraints have to be
applied.
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Figure 6.3: Example of the circles with more than 10 assets (|Cs| > 10) in
the Zandberg neighbourhood in the city of Breda. The black dots are all
the connection points in the neighbourhood, obtained from [202], while the
green stars denote the randomly selected connection points participating in
the pool of the FSP, corresponding to 5 % of all connection points. Map data
© OpenStreetMap contributors

6.4 Distributed Optimization of a Pool of Assets

This section first formulates the centralized optimization to be performed
by an FSP that wants to sell FCR capacity to the TSO over the duration
of one bidding period nT with a pool of flexible assets connected to the
distribution grid. Subsequently, this section elaborates the proposed distributed
optimization algorithm, solving the problem according to the distributed
architecture presented in Figure 6.1.

6.4.1 Central Optimization Problem

The objective of the optimization problem to be performed by the FSP is to
maximize revenues from selling FCR capacity pF provided by a pool of assets,
minus the costs of using these asset for primary frequency control.
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In European FCR markets, the FSP only gets paid a capacity fee (and no
activation fee) when providing FCR to the TSO [26]. Therefore, the revenues
for providing FCR are given by cF pFnT , with cF the unit price to provide FCR
per time step t ∈ T = {1, . . . , nT }, nT the number of time steps in the bidding
period, and pF the aggregated FCR capacity the FSP is able to sell to the
TSO. As the FCR price cF and the amount of FCR capacity sold on the market
pF should be constant over the entire bidding period [184], cF and pF do not
depend on the time t.

We define pi = (pi,0, . . . , pi,nT )T as the vector containing the FCR capacities in
kW provided by asset i at every time step t of the bidding period. As the FSP
sells the aggregate of these local FCR capacities to the TSO, the sum of the
local FCR capacities over all assets should equal to the total FCR capacity sold
pF for every time step:

∑
i∈I pi,t = pF ,∀t ∈ T .

We define also ci : RnT 7→ R ∪ {+∞} as the local cost ci(pi) of asset i to
provide the FCR capacity vector pi. As explained in Section II, this cost
function can include both the actual marginal cost of controlling the asset and
the opportunity costs of using the flexibility for other purposes. Such a cost
function can also be viewed as the negative of a utility function, used in previous
work [193, 203]. We allow ci(pi) to take on the value +∞ when the point pi
is infeasible for the asset (e.g. a 2 kW battery cannot provide 5 kW frequency
control capacity). To ensure a global optimum can be found, we assume ci(pi)
to be convex.

The complete optimization problem to be solved by the FSP can then be
formulated as a mixed-integer optimization program:

min
pi, zi, pF

∑
i∈I

ci(pi)− cF pFnT (6.3a)

s.t. 0 ≤ pi,t ≤ 5zi,t, ∀t ∈ T ,∀i ∈ I, (6.3b)∑
i∈I

pi,t = pF , ∀t ∈ T , (6.3c)

∑
i∈Cs

zi,t ≤ 10, ∀t ∈ T ,∀Cs ∈ S, (6.3d)

zi ∈ {0, 1}nT , ∀i ∈ I. (6.3e)

Here zi = (zi,0, . . . , zi,nT )T is a vector of binary variables zi,t which gives
1 if asset i is providing FCR capacity at time step t and 0 otherwise.
Constraint (6.3b) represents the first constraint of Synergrid, limiting the
FCR capacity to 5 kW in case the asset is delivering FCR capacity (i.e. zi,t = 1).
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Constraint (6.3c) represents the requirement that the sum of the local FCR
capacities should equal the total FCR capacity the FSP sells to the TSO, at each
time step. Constraint (6.3d) represents the requirement to have maximum 10
assets providing FCR capacity in each circle of 100 m. Finally, (6.3e) constraints
zi to a binary variable of dimension nT .

Problem (6.3) is a mixed-integer optimization with a convex continuous
relaxation, for which various solution methods exists that are able to find
the global optimum, e.g. branch-and-bound [204], the extended cutting plane
method [205] or the branch-and-cut method [206].

However, as this problem contains nT nI binary variables, the complexity
increases quickly with a growing number of assets. Therefore, we create a
distributed version of the optimization problem (6.3), in which the assets only
have to communicate with the FSP and the applicable circle constraint agents
(or with their local neighbours in a peer-to-peer architecture, as explained in
Section 6.2.1).

When participating in the FCR market, the FSP has to bid in the FCR capacity
pF at a certain capacity price cFCR. The TSO then selects the cheapest bids
in merit order, until the required FCR capacity is reached. As the market is
a pay-as-bid market, the FSP only gets paid his bid price cFCR and not the
clearing price [26]. The FSP will thus first have to decide on the price cF , which
should be high enough to obtain as much revenues as possible, but not too high
as then the bid might not be accepted. With the bid price cF decided, the FSP
can use (6.3) to optimize the FCR capacity of its pool of assets.

6.4.2 Distributed Optimization

One can identify three parts in problem (6.3): a local optimization to maximize
the local FCR revenues minus the local costs; the global problem of the FSP,
who tries to obtain a constant FCR capacity from all assets over the bidding
period nT ; and the local circle constraints imposed by Synergrid.

These three parts give a natural way to distribute the optimization problem
into three subproblems. The first subproblem is the local optimization per asset
to maximize fi(pfi , z

f
i ), the local FCR revenues minus the local cost, equal

to the objective (6.3a) constrained to (6.3b). The second subproblem is the
optimization performed by the FSP, minimizing h(phi∈I), the indicator function
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corresponding to (6.3c):

h(phi∈I) =


0, if ∃pF :

∑
i∈I

phi,t = pF ,∀t ∈ T .

+∞, otherwise.

The third subproblem is an optimization per circle constraint s, minimizing
gs
(
zgsi∈Cs

)
, s = 1, . . . nS , with gs the indicator function of one constraint from

(6.3d) - (6.3e) (i.e. with only the set Cs corresponding to circle constraint s).

To distribute the optimization problem, we use the alternating direction method
of multipliers (ADMM) because of its superior convergence properties [207]
while being able to keep the cost functions local. However, as (6.3) is a mixed-
integer problem and hence non-convex, ADMM nor other comparable distributed
algorithms are guaranteed to converge to the global optimum [208]. Nevertheless,
we observe in Section 6.5 that the proposed distributed algorithm is able to
converge to a suboptimal but feasible point in a finite number of iterations.

To be able to distribute the problem using the ADMM methodology, each
subproblem needs its own copy of the optimization variables pi, zi. Therefore,
in the notation above and in what follows, we used the superscript f to denote
the variables used in the local optimization of fi(pfi , z

f
i ), the superscript h

to denote the variables used in the optimization of h(phi∈I) performed by the
FSP and the superscript gs to denote the variables used in the optimization
of gs

(
zgsi∈Cs

)
performed by the circle constraint agent s managing the circle

constraint Cs. This notation allows us to rewrite problem (6.3) as a consensus
problem over the three subproblems:

min
(pf
i
,zf
i
,pgs
i
,

zgs
i
,phi )i∈I

∑
i∈I

fi(pfi , z
f
i ) +

∑
Cs∈S

gs
(
zgsi∈Cs

)
+ h

(
phi∈I

)

s.t. zfi = zgsi , ∀i ∈ Cs, s = 1, . . . , nS , (6.4a)

pfi = phi , ∀i ∈ I. (6.4b)

Of every local binary vector zfi , there is one copy per circle constraint zgsi
applicable to asset i amongst which consensus has to be formed. The same
holds for the local FCR capacity vector pfi , of which there is a copy in the FSP
objective phi .
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To distribute (6.4) using ADMM, one has to form the augmented Lagrangian
Lp of (6.4):

Lp =
∑
i∈I

fi(pfi , z
f
i ) +

∑
Cs∈S

gs
(
zgsi∈Cs

)
+ h

(
phi∈I

)
+
∑
Cs∈S

∑
i∈Cs

(ρF /2)‖zfi − z
gs
i + ugsi ‖22 (6.5)

+
∑
i∈I

(ρc/2)‖pfi − phi + uhi ‖22.

To keep the notation concise, we have used the scaled form of the augmented
Lagrangian [207], with ugsi and uhi the scaled dual variables corresponding
to (6.4a) and (6.4b) respectively and ρF , ρc > 0 the augmented Lagrangian
parameters for the FSP constraint and the circle constraint, respectively.

Note that this expression is slightly different from the traditional augmented
Lagrangian, that only employs one value for rho: ρ = ρF = ρc. However, by
allowing ρF 6= ρc, we are able to fine-tune the ADMM convergence as we are
able to steer the convergence of the primal or dual residuals of the circle and
the FSP constraints separately.

The proposed distributed optimization algorithm, shown in full in Algorithm 4,
consists of the alternating partial minimization of the augmented Lagrangian
(6.5). First, an optimization is performed by the local agents minimizing fi,
followed by the circle constraint agents minimizing gs and the FSP minimizing
h. We will now discuss the three subproblems in detail.

Local Optimization

In the first step of each iteration k, (step 8 or 10 in Algorithm 4), the augmented
Lagragian is minimized for each asset i ∈ I over the FCR capacity pfi and binary
zfi variables, while keeping the other variables constant. The local optimization,
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Algorithm 4 Distributed ADMM optimization
1: zgsi ,u

gs
i ← 0, ∀i ∈ Cs, s = 1, . . . , nS .

2: phi ,u
h
i ← 0, ∀i ∈ I.

3: k ← 0.
4: while ∃Cs ∈ S, t ∈ T :

∑
i∈Cs z

f
i,t > 10, zfi,t ∈ {0, 1}

5: and ‖
∑
i∈I(pfi − phi )‖ > α‖

∑
i∈I p

f
i ‖ do

6: for each i ∈ I do (in parallel)
7: if (k mod kIP ) = 0 then
8: pfi , z

f
i ← p̂fi , ẑ

f
i , using (6.6) with zfi,t ∈ {0, 1}.

9: else
10: pfi , z

f
i ← p̂fi , ẑ

f
i , using (6.6).

11: Send zfi to all circle constraint agents s : Cs ∈ Si
and pfi to the FSP.

12: for each Cs ∈ S do (in parallel)
13: zgsi ← ẑgsi , ∀i ∈ Cs, using (6.7).
14: ugsi ← ugsi + pfi − z

gs
i , ∀i ∈ Cs.

15: Send zgsi ,u
gs
i to all assets i ∈ Cs.

16: phi ← p̂hi , ∀i ∈ I, using (6.8).
17: uhi ← uhi + pfi − phi , ∀i ∈ I.
18: Send phi ,uhi to all assets i ∈ I.
19: k ← k + 1.

to be executed in parallel at each asset i, can then be formulated as:

p̂fi , ẑ
f
i = arg min

pfi , z
f
i

ci(pfi ) +
∑
Cs∈Si

ρF
2 ‖z

f
i − z

gs
i + ugsi ‖22

+ ρc
2 ‖p

f
i − p

h
i + uhi ‖22 − cFCR

∑
t∈T

pfi,t (6.6a)

s.t. 0 ≤pfi,t ≤ 5zfi,t, ∀t ∈ T , (6.6b)

zfi ∈ [0, 1]nT . (6.6c)

This optimization problem incorporates the local optimization fi, given by the
part of the objective (6.3a) applicable to asset i constrained to (6.3b), together
with the quadratic penalty terms of the augmented Lagragian (6.5) which are
applicable to asset i. As this optimization only considers the variables of asset i
and does not need variables of other assets, it succeeds in keeping all information
about cost and local constraints private.
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In (6.6), we have relaxed the binary constraint (6.3e) to be continuous, thereby
avoiding oscillatory behaviour between this binary variable zfi,t and the binary
variables from (6.7), zgsi,t. However, with zfi,t continuous, the local asset i does
not know if it actually can provide any FCR capacity. Therefore, every kIP
iterations, problem (6.6) is solved with zgsi,t constrained to an integer variable
(step 8).

When asset i finishes its local optimization, in step 11, the FCR capacity
variables p̂fi are sent to the FSP for the optimization of h. The binary variables
ẑfi are sent to the circle constraint agents s : Cs ∈ Si of all circle constraints of
which asset i is part of.

As shown in steps 1-2 of algorithm 4, we initialize the algorithm by setting
zgsi = phi = 0. However, with ρF , ρc > 0 this results in a couple of initial
iterations needed to raise pfi from 0 towards their economical value. These initial
iterations can be avoided by setting ρF = ρc = 0 in the first iteration, thereby
warm-starting the algorithm, as this means solving the optimization problem
(6.3) without applying constraints (6.3c), (6.3d). This immediately results
in using all assets at maximum FCR capacity pfi,t = 5 if this is economically
interesting, i.e. if cFCR

∑
t∈T pi,t > ci(pi).

Circle Constraint Optimization

Having received all locally optimized binary variables zfi , i ∈ Cs, in step 13
each circle constraint agent s optimizes (6.5) over its copy of these variables
zgsi∈Cs , to respect the circle constraints (6.3d)-(6.3e), corresponding to the partial
optimization of the augmented Lagrangian (6.5). This optimization is also
separable and can thus be executed for every circle constraint s in parallel. The
optimization problem of one such circle constraint agent s results in a quadratic
mixed-integer program:

ẑgsi∈Cs = arg min
zgsi∈Cs

∑
i∈Cs

(ρc/2)‖zfi − z
gs
i + ugsi ‖22

s.t.
∑
i∈Cs

zgsi,t ≤ 10, ∀t ∈ T ,

zgsi ∈ {0, 1}nT , ∀i ∈ Cs.

(6.7)

Note that this problem is actually the Euclidean projection of (zfi + ugsi ) on
the feasible set defined by constraints (6.3d)-(6.3e).
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As (6.7) is a quadratic mixed-integer problem, it can be hard to solve. However,
as there is no coupling in time, the problem can be separated into nT distinct
subproblems, each containing only one binary variable zti,t, which can be solved
very efficiently.

Having obtained the optimal ẑgsi , the scaled dual variables of each point of each
circle constraint ugsi are updated in step 14. Both updates are sent back to the
corresponding assets i in step 15 for use in the next iteration k + 1.

FSP Optimization

The FSP tries to obtain a constant FCR capacity pF from all assets over
the bidding period nT . At iteration k, the FSP gathers all locally optimized
variables pfi from all assets i ∈ I and minimizes the augmented Lagrangian
(6.5) over its copy of the local FCR capacity variables phi , i ∈ I:

p̂hi∈I = arg min
pF ,p

h
i∈I

∑
i∈I

(ρF /2)‖pfi − phi + uhi ‖22

s.t.
∑
i∈I

phi,t = pF , ∀t ∈ T .
(6.8)

This problem is independent of (6.7), and can thus be executed in parallel to
(6.7).

As with the circle constraints, when having obtained the optimal phi , the scaled
dual variables uhi are updated in step 17. Finally, in step 18, both phi and uhi
are sent back to the corresponding assets i.

When asset i has received both phi ,uhi from the FSP and zgsi ,u
gs
i from all circle

constraint agents s : Cs ∈ Si, it can start its next iteration k+ 1 by solving (6.6)
with the updated parameters phi ,uhi , z

gs
i ,u

gs
i , until convergence is reached.

The algorithm converges when the local variables pfi , z
f
i reach a feasible

operating point, as denoted by the while-conditions in steps 4 and 5. The
condition in step 4 evaluates the circle constraints (6.3d) with zfi,t binary, and
can thus only be checked every kIP iterations. The condition in step 5 evaluates
if the total local FCR capacity

∑
i∈I p

f
i,t is close enough to the aggregated FCR

capacity pF =
∑
i∈I p

h
i,t, with α a parameter denoting the relative error between

the norm of the difference
∑
i∈I(pfi −phi ) over every time step t, relative to the

norm of the total local FCR capacity
∑
i∈I p

f
i .
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(a) 5% Participation (b) 15% Participation

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Figure 6.4: Usable proportion of total available LV grid connected FCR capacity
in different neighbourhoods in the city of Breda, taking into account the circle
constraints imposed by Synergrid, in case 5% and 15% of all LV connection
points are able to participate in FCR.

6.5 Case Study: Distributed Assets in Breda

In this section, we evaluate the impact of the circle constraints on the portfolio
capacity an FSP can provide with low-voltage connected, distributed assets
providing FCR and the performance of the proposed distributed ADMM
algorithm.

We present a case study using actual data of the low-voltage connection points
in the city of Breda, a middle-sized municipality in the South of the Netherlands
with 183 765 inhabitants [209] and 86 868 low voltage (LV) connection points.
The geographic location of the connection points in the municipality is provided
by Enexis, the local distribution grid operator, with an accuracy up to 1 m and
can be freely accessed online [202]. We used the municipality of Breda as a case
study rather than a Belgian municipality as accurate data on the location of
LV connection points was not available for a Belgian municipality.
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Figure 6.5: (a) Usable proportion of total available FCR capacity and (b) total
FCR capacity in function of the participation rate in the averaged city centre,
residential, rural neighbourhood and of the entire municipality.

6.5.1 Impact of Circle Constraints on Usable FCR Capacity

The circle constraints imposed by Synergrid will reduce the amount of FCR
capacity that can be used by the FSP. Figure 6.4 shows the maximal proportion
of the total available FCR capacity that can be used in an FSP pool per
neighbourhood in Breda, taking into account the circle constraints as imposed
by Synergrid. Figure 6.4a gives the results for a participation rate of 5 %,
meaning that 5 % of all available LV connection points are able to provide FCR
capacity, while Figure 6.4b gives the results for a participation rate of 15 %. In
the figure, a neighbourhood with a value of 100 % indicates that all available
FCR capacity, and thus all participating assets, can be used in the FSP pool,
while a value of e.g. 70 % indicates that only up to 70 % of the available FCR
capacity or participating assets can be used for FCR, in order to comply with
the circle constraints imposed by Synergrid. We select the location of the
participating assets randomly from the available connection points according to
a uniform distribution, so that the total number of participating assets equals
the participation rate.

For this calculation, we assumed that every participating connection point is
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able to provide at least 5 kW of FCR capacity and selected the participating
connection point randomly from all LV connection points in Breda. We
calculated the maximum amount of FCR capacity in an FSP pool can by
solving (6.3) with ∀i : ci(pi) = 0 and cFCR = 1, for which we used Gurobi [163].
To eliminate the effect of randomness in the location of the assets, Figure 6.4
shows the Monte Carlo average of ten such simulations.

From Figure 6.4, it is clear that there exists a large spatial difference in reduction
of FCR capacity: at 5 % participation, mainly in the city centre there is
already a substantial amount of reduction of the usable FCR capacity. At
15 % participation, the reduction of the usable FCR in the city centre becomes
very strong and also in more suburban neighbourhoods there is a considerable
amount of reduction observable. On the other hand, in the more rural, outer
neighbourhoods, up to 100 % of available FCR capacity can still be used.

Figure 6.5a quantifies this spacial difference, showing the usable proportion of
available FCR capacity in function of the degree of participation for the three
types of neighbourhoods identified previously: rural, residential (suburban) and
the city centre. The neighbourhoods in the city centre show the biggest decrease
between 2 % and 10 % participation, while rural neighbourhoods only start to
decrease their usable proportion after 15 % participation, at a much slower rate.

However, this slower reduction in rural neighbourhoods does not automatically
translate into a higher total FCR capacity, as the number of connection points in
a rural neighbourhood is much lower than in a residential neighbourhood. This
can be seen in Figure 6.5b, which shows the total FCR capacity of each type of
neighbourhood. While FCR capacity increases linearly with the participation
rate in rural neighbourhoods, the capacity is still much lower than in a residential
neighbourhood, as there are many more connection points. In the city centre,
the increase in total FCR capacity levels off at around 5−10 % participation,
indicating that any additional FCR assets deployed in the city centre beyond
this level of participation will not increase the total FCR capacity of the pool
of the FSP.

6.5.2 Performance of the Distributed Optimization Algorithm

This section discusses the performance of the proposed distributed optimization
algorithm. To limit the simulation time, we limit simulate only the
Zandberg neighbourhood in Breda (shown in Figure 6.3), a typical residential
neighbourhood.

We simulate nT = 24 time steps, each corresponding to one hour of a day. To
keep the optimization problems efficiently solvable, we assume the local cost
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Figure 6.6: Evolution of the objective value (a) and primal residuals of the
distributed constraints (b) using the proposed distributed optimization, in
function of the iteration number k.

of providing FCR capacity ci(pi) is a linear function of the frequency control
capacity: ci(pi) = c̃Ti pi, with c̃i = (c̃i,0, . . . , c̃i,nT )T . As the goal is to obtain
an idea of the performance of the algorithm, rather than calculating the actual
monetary value of the objective, we choose c̃i,t from a uniform distribution
between 0 and 1 for each time step t and asset i. The price of FCR capacity
is chosen to be cFCR = 0.8, as primary frequency control is usually one of the
most valuable services for flexibility [133]. Choosing cFCR = 0.8, means that
in 20 % of the cases the local cost for FCR capacity will still be higher than
what one can gain from FCR capacity during that time step. To compare the
performance of the distributed optimization algorithm, we also solve problem
(6.3) in a centralized fashion towards a global optimal point, using the Gurobi
solver [163].

Finally, in Algorithm 4, we set kIP = 10 and α = 0.005.

Convergence

Figure 6.6a the evolution of the objective value when simulating the distributed
algorithm with ρF = 0.25 and ρc = 0.3, for 10 % participation in function
of the iteration number k. The figure also shows the global optimum of
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the centralized solver. As expected, rather than to the global optimum, the
distributed optimization converges to a suboptimal solution which is 3.4 % from
the global optimum.

Figure 6.6b shows the evolution of the Euclidean norm of the primal residuals
of constraints (6.3d) and (6.3c), the two constraints that have been distributed.
One can see that both norms decrease rapidly in the beginning, but convergence
slows down when the algorithm advances. For this scenario, the algorithm
converges to a feasible point in 173 iterations.

Comparing Figure 6.6a with Figure 6.6b, one can observe that the low objective
value in the beginning is possible due to the high value of the primal residual
of constraints (6.3c) and (6.3d). When the distributed optimization advances,
the solution is forced towards a more feasible solution, thereby increasing the
objective value and decreasing the primal residuals. The values of ρc and ρF
determine how fast the primal residuals are forced towards zero.

Impact of ρc

Figure 6.7 shows the relative optimality gap of the distributed optimization
algorithm versus the number of iterations until convergence towards a feasible
point, for values of ρc ranging between 0.1 and 2.0 and ρF = 0.25. The relative
optimality gap is defined as the difference between the objective value of the
converged distributed optimization algorithm and the global optimum found
by the centralized solver, divided by this global optimum. To account for the
randomness in the location of the assets and the local costs ci,t, we ran the
distributed optimization algorithm for eight randomly drawn scenarios. Each
marker type in Figure 6.7 represents one scenario with 10 % participation with
the continuous black line the average of the eight scenarios. As can be seen,
there is a clear trade-off between the optimality gap and the number of iterations
needed for convergence, which can be tuned by varying the parameter ρc.

Increasing ρc results in quicker convergence towards a feasible point as more
weight is put on the penalty terms in the augmented Lagrangian (6.5), but the
algorithm also gets stuck quicker on a suboptimal integer solution. A smaller
ρc on the other hand encourages exploration of other integer solutions, but also
requires more iterations to reach a feasible point.

As ρc only impacts convergence of the circle constraints (6.3d), an analogue
reasoning can be followed for ρF and the convergence of the FSP constraint
(6.3c). However, as the circle constraints are much more restricting, we found
that the impact of ρF is much less than that of ρc.
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Figure 6.7: Optimality gap versus number of iterations until convergence for
various values of ρc, at 10 % participation. Each marker type represents a
different randomly drawn scenario, ran for ρc ranging between 0.1 and 2.0 and
ρF = 0.25. The black line is the average of all scenarios, with each black dot
corresponding to one value of ρc. The dashed lines are the averages at 5 % and
15 % participation.

Figure 6.7 also shows the averages of eight randomly drawn scenarios with 5 %
participation and five scenarios with 15 % participation. These show a clear
trend: as the number of participating assets decreases, both the optimality gap
and the number of iterations needed for convergence decrease as well, and vice
versa. However, the trade-off between iterations and optimality gap remains
visible for all participation degrees.

Although the optimality gap increases with a higher participation, this will
not cancel out the additional revenues resulting from a larger aggregate FCR
capacity pF that comes with a higher participation, as indicated by Table 6.1.
The table shows the global optimum found with a centralized solver and the
objective value of the distributed algorithm with ρc = 0.3 after convergence,
averaged over all simulated scenarios. As one can see, although the optimality
gap increases with increasing participation, the objective value of the distributed
optimization still decreases (which means an increase in revenues) due to a
larger amount of FCR capacity that can be valorized.

Finally, Figure 6.8 compares the execution time of the distributed algorithm
with a centralized solver, in function of the number of assets nI in the simulation.
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Participation [%]
5 10 15

Objective (6.3a) global optimum -4201 -7451 -9464
Objective (6.3a) distributed optimization -4194 -7175 -8532
Optimality gap distributed optimization 0.18% 3.2% 9.9%

Table 6.1: Average Optimality Gap and Objective Value (6.3a), Solved
to a Global Optimum with a Centralized Solver and with the Distributed
Optimization Algorithm with ρc = 0.3.
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Figure 6.8: Optimisation time in function of the number of assets when solving
the problem centralized, using cvxpy [210] and Gurobi [163] and with the
distributed optimization algorithm with ρc = 0.3 and a participation of 10 %.

The results are obtained by including an increasing number of neighbourhoods,
each with a participation of 10 %, into the simulation. The time needed for the
centralized solver increases rapidly with the number of nodes, while the time for
the distributed solver increases at a slower rate, owing to the parallelization of
the local optimization (6.6) and of the circle constraint optimization (6.7). The
figure clearly shows that, as from about 1000 assets, the distributed optimization
becomes faster than a centralized solver.

In [211], another heuristic is proposed for ADMM applied to a mixed-integer unit
commitment problem: first solving the continuous relaxed problem, and then
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switching to the integer problem. However, solving the continuous relaxed
problem already consumes a lot of iterations, and we found that a same
optimality gap can be achieved with fewer iterations by choosing an appropriate
value of ρc.

6.6 Conclusion

In this paper, we presented the problem of an FSP operating a pool of low-
voltage connected flexibility resources to optimally provide FCR, while being
compliant with the 2018 Belgian regulatory constraints at the distribution grid
level.

We showed that these new regulatory constraints have a considerable impact
on the total FCR capacity that can be monetized, however the impact varies
strongly between neighbourhoods with different population densities.

We elaborated the mixed-integer problem of an FSP when operating such a
pool of low-voltage grid connected assets and have proposed a distributed
optimization algorithm that solves the problem in a tractable way while
maintaining confidentiality of costs and the constraints of the local participants.
A performance assessment of the distributed optimization shows a trade-off
between the number of iterations needed for convergence towards a feasible
point and the optimality gap. We showed that the distributed optimization
converges quicker than a centralized solver when the number of participating
assets increases above 1000.

Future work includes comparison of the proposed distributed ADMM with other
distributed algorithms, such as the dual ascent method or column generation
and an assessment on how the optimality gap could be decreased. Finally, it
would be interesting to assess to what extent the new regulations are able to
mitigate problems in the low-voltage distribution grid.



Chapter 7

General Conclusions and
Future Work

This dissertation studies the use of battery energy storage systems in the
electricity grid and electricity markets. The main contributions of the work
include:

• An overview of the different applications battery storage systems can be
used for.

• An in-depth techno-economic analysis, involving the optimised sizing and
control of battery storage providing primary frequency control.

• Optimised controllers that allow behind-the-meter battery storage systems
to combine primary frequency control with self-consumption or peak
shaving and thereby increase value.

• An analysis of the impact of distribution grid constraints on the aggregated
primary frequency control flexibility from low-voltage grid connected
assets.

The section below summarises the answers this dissertation provides to the
research questions posed in Section 1.3, and is followed by a general conclusion
of the dissertation. Finally some suggestions for future work are given.
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7.1 Answers to the Research Questions

1. For which applications can battery storage systems be used in today’s
market conditions?

(a) Which of these applications are relevant for third party battery owners
and operators?

(b) What is the value of a battery in each of these applications and which
application can be expected to deliver the most value?

Chapter 2 answers these research questions and describes the various applications
BESSs can be used for in the European power grid and electricity markets. The
chapter classifies the applications into three groups: ancillary services offered
to grid operators, wholesale electricity market applications and applications for
the end-consumer.

As TSOs have started to procure ancillary services for load-frequency control
from non-conventional energy resources, providing these ancillary services have
been of interest for BESS investors and operators. Especially providing FCR
has been the purpose of many utility-scale battery projects, as batteries can
respond very fast and the service requires the least amount of energy capacity.

The chapter also provides a quantitative estimation of the value of the different
applications per MWh of energy capacity of a 1 C BESS. Our analysis shows
that FCR is the application which can provide the highest value, due to the
rather limited energy content needed and a liquid market with a relatively high
remuneration. There is a high potential value in arbitraging on short-term
(intraday) wholesale markets and imbalance markets. However, achieving this
value requires perfect hindsight knowledge of the market prices, so that the
practically achievable value lies a lot lower. It is expected that an increase
of renewable generation will lead to an increase in volatility on short-term
electricity markets, further increasing the potential revenues for arbitraging
on these markets. Positive business cases for BESS used by grid operators to
provide congestion management and grid investment deferral exist, but markets
to procure this service from third party battery operators are still in a pilot
phase.

Self-consumption and peak shaving are two consumer applications which can
be provided by behind-the-meter battery storage and can create a considerable
value for the consumer. The actual value of these application depends on the
consumption profile, the size of the BESS and the electricity tariff structure
faced by the consumer. However, at current market prices, only FCR and aFRR
are able to pay back a BESS at an investment cost of 500e/kWh.
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2. What is the value of a battery storage system delivering frequency control
reserves?

(a) How to optimise the battery control over its lifetime, while taking the
details of battery dynamics and degradation into account?

(b) What is the optimal size of a battery delivering frequency control?

These research questions are dealt with in Chapter 3. The chapter proposes a
novel holistic optimisation framework for the investment analysis, sizing and
control design of a battery energy storage system used for frequency control.
As a battery energy storage system has a limited energy content, a recharge
controller is needed to ensure the battery is never empty nor full, as this would
mean the symmetric frequency control capacity is not available any more. In
the chapter, we optimised a parametrised recharge controller to ensure the
battery is always able to delivery the service, while minimising degradation
and electricity cost. Since the grid frequency is stochastic, we formulated the
problem as a stochastic optimisation problem. We adopted a global evolutionary
optimisation algorithm, which allowed us to use a more detailed battery and
degradation model of which a closed mathematical expression is not readily
available. Via a thorough analysis, we were able to decrease the amount of
data needed, reducing the execution time while keeping the approximation error
within predefined limits.

As a case study, the optimisation framework is applied to the German FCR
market, considering all relevant regulations and using real frequency data.
The results show that a positive business case for a BESS providing FCR is
possible. To provide 1 MW of FCR capacity, a battery storage system rated at
1.6 MW/1.6 MWh has the highest net present value and can provide FCR for
10.8 years, after which it is degraded to 80 % state of health. The degradation
is mainly due to calender degradation, as most of the cycles when doing FCR
are with low DoD, which have limited impact on degradation.

3. How can a battery storage system combine multiple applications?
(a) How to design a controller that optimally combines multiple applica-

tions?
(b) Does the value of the battery storage increases by combining multiple

applications?

The combination of multiple applications with a battery storage system is
addressed in Chapters 4 and 5, which study how to take advantage of behind-
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the-meter battery storage systems for frequency control together with self-
consumption or peak shaving, respectively.

The chapters propose a battery controller which allows to combine multiple
applications and is the result of a stochastic optimisation problem, performing
the trade-off between the expected value of both applications and so maximising
total value. To ensure the required frequency control capacity is continuously
available, we employed a linear recharging controller which we integrated
into the optimisation problem using robust optimisation as a safe, tractable
approximation to the probabilistic constraints, allowing to ensure the risk on
unavailability is below a predefined value while keeping the problem efficiently
solvable. To combine frequency control with peak shaving, we extended this
controller with a dynamic programming framework which allowed us to combine
the daily decision making in the frequency control markets with the longer-term
objective of peak shaving.

Case study results from both chapters show that there are synergies when
combining frequency control with self-consumption or peak shaving and more
value can be created by combining the applications than by using the battery for
one application only. The controllers resulting from the proposed optimisations
allow to reserve more energy and battery power for self-consumption at moments
when expected production is high, or for peak shaving when a peak is expected
in the consumption profile. The combination of FCR with self-consumption
allows to increase the revenues of the battery with 35 % compared to performing
frequency control only, and times 2.5 compared to self-consumption only. Besides
an increase in revenues, the ability to use a BESS for multiple applications also
presents a hedge against changing market conditions in one of the applications.

The dynamic program developed to combine frequency control with peak shaving
shows that the optimal frequency control capacity varies with the consumption
peak observed so far. Finally, results show that additional value can be obtained
by aggregating FCR capacity from multiple batteries installed at different sites
while they perform peak shaving locally at each site. In a case study we show
that aggregating two batteries in this way doubles revenues compared to using
the batteries for peak shaving only, and increases revenues with 10 % compared
to using them for FCR only.

4. What is the impact of distribution grid constraints on flexibility from
battery storage?

This research question is treated in Chapter 6. In 2018, a new Belgian regulation
became into force, limiting the flexible capacity connected to the low-voltage
distribution grid that can be used for frequency control. The chapter analyses
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the impact of this new distribution grid constraint on the total frequency control
capacity that can be used by an aggregator. As the regulation considers how
close the flexible assets are located together, there is a larger impact on the
flexibility from neighbourhoods with a high population density, such as city
centres, than from rural neighbourhoods. For instance, if 5 % of the households
participate in demand response flexibility, only around 70 % of totally available
frequency control capacity can be used in city centres, but still 100 % of totally
available frequency control capacity in more rural neighbourhoods, and 90 %
on average. Although it is unrealistic that 5 % of all households will provide
frequency control capacity, as the frequency control market volume is simply
not large enough, the presented analysis can be applicable for certain areas,
such as newly build neighbourhoods, that have a higher density in flexibility
from e.g. battery storage.

To deal with the distribution grid constraints and maximise the frequency control
capacity, the chapter proposes the use of a scalable distributed optimisation
algorithm to aggregate frequency control capacity, which allows the assets to keep
their cost functions private and only have to communicate with neighbouring
assets that are geographically close, and with the flexibility service provider or
aggregator.

7.2 General Conclusions

As more intermittent renewable generation is being installed into the electricity
grid, the need for flexibility to balance the grid increases as well. However,
traditional flexible assets such as gas-fired power are not climate-neutral and
are being pushed out of the market by renewable generation that have a lower
marginal cost. Decreasing prices of battery cells are making batteries a promising
option for energy storage and flexibility in the electricity grid. Nevertheless,
the return of investment in battery storage remains low and uncertain, holding
back a widespread rollout of battery energy storage in the power grid.

Battery storage can deliver a number of different services to different stakeholders
in the electricity grid. This dissertation analyses and compares the value of
multiple battery storage applications and shows that frequency containment
reserve brings the most value for battery storage as the remuneration is relatively
high and the required energy for activation is rather low. The value for battery
storage in automatic frequency restoration reserve is also considerably high,
mainly due to the high activation payments, and both ancillary services for
load-frequency control and are able to pay back the investment in a BESS at an
investment cost of 500e/kWh. In theory, there is more value in battery storage
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providing arbitrage in short-term (intraday) wholesale and balancing markets.
However, as one does not have perfect hindsight knowledge of the market prices,
the practical achievable value lies lower and is dependable on the quality of the
market price forecaster that one is able to develop.

When providing frequency containment reserve, a battery energy storage system
needs a recharge controller, ensuring the battery is never empty nor full, as this
would mean the symmetric reserve capacity is not available any more. This
dissertation provides a way to optimise such a recharge controller, minimising
degradation of the battery while complying with regulatory constraints. Using
such an optimised controller and taking into account a detailed degradation
model, we have shown that battery energy storage delivering frequency
containment reserves in the German market can indeed be profitable for certain
sizes of battery systems and if market prices do not decline too much.

Combining applications is another way to increase value from battery energy
storage. This is especially interesting for behind-the-meter battery storage,
where additional value can be created by providing ancillary services on top
of the local service the battery provides to the consumer where the battery is
installed. In this dissertation, we have studied how to combine frequency control
with self-consumption or with peak shaving. We have developed controllers that
allow to optimally combine these applications, maximising the value from the
battery. We show that synergies between the services exists, i.e. more value can
be obtained from combining the applications than by using the battery storage
for one application only. Besides, we have shown that value can be increased
even further when aggregating frequency control capacity of multiple battery
storage systems installed at multiple sites, when used simultaneously for peak
shaving at these sites. The ability to use a BESS for multiple applications does
not only lead to increased revenues, but also presents a hedge against changing
market conditions for one of the applications.

Most of the behind-the-meter battery storage will be connected to the
distribution grid. Therefore, when aggregating the flexibility from these battery
storage systems to be used on wholesale markets or to offer ancillary services to
the TSO, it is important to take into account distribution grid constraints. By
analysing the impact of a new regulatory constraint that has the objective to
prevent congestion of the distribution grid caused by flexible assets in Belgium,
we show that such distribution grid constraints indeed have a limiting effect
on total aggregated flexible capacity, especially in areas where the density of
flexible assets is high.
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Recommendations for Policy Makers and Regulators

Currently, providing load-frequency control as ancillary service to the
transmission grid operators is one of the most important applications for battery
storage. Due to their limited energy content, battery energy storage systems
delivering frequency control reserves have to be controlled differently than
traditional power assets, as they have to manage their state of charge. Despite
regulations from the European Commission that have the objective to come to
more integrated European ancillary services markets with harmonised products,
the product details often still differ between various European countries and
rules on state of charge management are not always clear. A clear, unambiguous
regulatory framework that establishes harmonised ancillary services products
and lays down the rules on state of charge management would therefore help
to take away uncertainty towards investors, to create a level playing field
for all assets, with or without a limited energy content, and so stimulate
the development of energy storage in the grid. Together with the design of
liquid and transparent ancillary services markets that have a low bid size
granularity, regulators and grid operators have some important tools to advance
the development of energy storage and stimulate innovation in the power grid.

Energy costs of battery storage providing FCR in Germany are low and therefore
do not represent a considerable cost. However, this is due to regulations that
exempt stand-alone battery storage of many grid costs and levies which are
typically charged to electricity consumers. When these electricity consumption
taxes and levies are not exempted, these levies and taxes are effectively double
charged if the stored energy is not used on the same premises. The levies are
charged once when consuming electricity from the grid to charge the battery,
and later again by the end consumer who uses the electricity discharged by the
battery. This can present a large burden for energy storage when providing
ancillary services or wholesale market arbitrage. A novel directive of the
European Parliament on the electricity market already states that battery
storage cannot be subject to such double charges, including grid tariffs, when
providing flexibility services to grid operators [212]. A quick implementation of
this directive by member states will boost profitability as it decreases the cost
of using battery storage flexibility in the grid.

Currently, distribution grid constraints for aggregators are either non-existing
or are rather basic. For instance, the regulatory constraint studied in this
dissertation is simple to enforce, but it is not clear if it is the most efficient
way to avoid distribution grid problems. Using a more accurate representation
of distribution grid constraints, for instance by taking specific time periods or
actual grid load into account, will allow for more flexibility at places in the grid
where there is still some headroom, and restrain the use of flexibility only at
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places and times where there are real problems.

7.3 Future Work

In today’s battery storage market, there is a rather clear separation between the
battery storage system manufacturer, which designs and produces the battery
energy storage system as a final product, and the battery system operator, who
operates the battery storage system and tries to create value with it by using the
battery storage system for a certain application, as described in this dissertation.
While the manufacturer has a deep understanding of the dynamics and the
components of the battery system, typically not all this information is shared
with the battery operator, which can therefore only optimise the operation
of the battery system using a simplified battery model. This issue becomes
especially apparent when considering battery degradation. A battery storage
system manufacturer typically warrants the remaining energy capacity of a
battery system in function of some simplified parameters, like total throughput.
However, using such a simplified metric in warranties does not represent reality
and a battery operator who uses this metric to optimise its operational control
strategy will therefore obtain a sub-optimal control strategy which lead to a
conservative operation of the battery storage system.

An integrated design of both the battery system and the operational controller,
taking the end-use application, the dynamics and degradation into account,
can clearly bring additional value. However, such an integrated design can
quickly become very complex due to the large amount of parameters. Useful
future work will therefore consist of creating integrated design methods for the
operational control and system design of battery storage systems.

To achieve this, more research is needed into accurate, yet practically usable
degradation models for battery storage systems. Current research on battery
degradation is focussed on degradation of a single cell, when stored at a constant
SoC or cycled with a constant depth of discharge. However, these conditions
do not represent the actual operation of a battery system and it is still largely
unclear how exactly battery storage systems degrade when used in actual
applications.

Most degradation models assume the battery cell reaches its end of life when
the remaining energy capacity is at 80 % of initial energy capacity. Nevertheless,
such a battery cell still has 80 % of energy capacity remaining, and there is
no physical reason to stop using cell after this threshold. The same holds for
second life batteries, e.g. from electric vehicles. While the remaining capacity of
a battery might be too low for electric vehicles, it could still be used for energy
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storage in the grid, at a much lower capital cost than new battery storage
systems. However, the current understanding of degraded and second life
batteries is rather limited and more research can stimulate the use of degraded
and second life batteries for energy storage.

In this dissertation, we have paid much attention to controllers that are
implementable in practice, e.g. by avoiding the use of any hindsight knowledge,
and using real data where this was available. Nevertheless, relevant future
work consists of the practical validation of the performance of the developed
controllers on actual battery systems installed in a real-life setting.

Aggregating battery storage systems with other types of flexibility such as
demand response from industrial processes or residential consumption can lead
additional value. For instance, when the other flexible assets have a larger or
even unlimited energy content, they can help to overcome the energy capacity
requirements of applications which require a long activation time. Therefore,
promising future work consists of researching which types of assets have the
most potential to be aggregated with battery storage systems and developing
control strategies to deliver the required services with multiple assets while
respecting the constraints of each asset.

Finally, interesting future research is on the integration of distribution grid
constraints in market clearing algorithms, both in wholesale markets and in
ancillary services markets. Besides, flexibility can also be used to relieve
distribution grid congestion problems and support de DSO in operating the
distribution grid. Therefore, promising future work consist of using flexibility to
offer localised ancillary services to the DSO, possibly via a microgrid concept,
where battery storage is shared in a neighbourhood to relieve distribution grid
congestion at the point where the neighbourhood is connected to the rest of the
distribution grid.





Appendix A

Rainflow Counting Algorithm

The rainflow counting algorithm used in (3.2) starts from all the local extrema
νi of the vector SoC and is shown below:

Algorithm A.1 Rainflow Counting Algorithm [99]
1: Let ν = (ν1, ν2, . . . , νnν ) be a vector containing the local extrema of SoC ∈ Rnt .
2: s← 1, i← 3, ic ← 0, Q0 ← 0.
3: while i ≤ nν do
4: while i− s < 2 do
5: i← i+ 1.
6: ∆1 ← |νi−2 − νi−1| ,∆2 ← |νi−1 − νi|.
7: if ∆2 ≥ ∆1 then
8: if i− 2 = s then
9: Store |νi−2 − νi−1| as a half cycle:
10: ic ← ic + 1, SoCcycav,ic

← (νi−2 + νi−1)/2, DoDic ← ∆1,
Qic ← Qic−1 + ∆1C/2.

11: Remove νi−2 from ν, re-index and set s← s+ 1, i← i− 1.
12: else
13: Store |νi−2 − νi−1| as a full cycle:
14: ic ← ic + 1, SoCcycav,ic

← (νi−2 + νi−1)/2, DoDic ← ∆1,
Qic ← Qic−1 + ∆1C.

15: Remove νi−2 and νi−1 from ν, re-index and set i← i− 2.
16: else
17: i← i+ 1.
18: Store all remaining differences |νi−1 − νi| in ν as a half cycle, according to step 10.

171





Bibliography

[1] United Nations. Climate Change. [Online]. Available: www.un.org/en/se
ctions/issues-depth/climate-change/ [Accessed 2019-10-03].

[2] Earth Science Communications Team - NASA. Responding to Climate
Change. [Online]. Available: climate.nasa.gov/solutions/adaptation-
mitigation/ [Accessed 2019-10-03].

[3] United Nations Treaty Collection, Chapter XXVII 7. d, “Paris agreement
(adopted 12 dec. 2016 and entered into force 4 nov. 2016).”

[4] European Environment Agency. Total greenhouse gas emission trends
and projections. [Online]. Available: www.eea.europa.eu/data-and-ma
ps/indicators/greenhouse-gas-emission-trends-6/assessment-2 [Accessed
2019-10-03].

[5] D. Steinberg, D. Bielen, J. Eichman, K. Eurek, J. Logan, T. Mai,
C. McMillan, A. Parker, L. Vimmerstedt, and E. Wilson, “Electrification
and decarbonization: Exploring us energy use and greenhouse gas
emissions in scenarios with widespread electrification and power sector
decarbonization,” National Renewable Energy Lab.(NREL), Golden, CO
(United States), Tech. Rep., 2017.

[6] European Commission. 2030 climate & energy framework. [Online].
Available: ec.europa.eu/clima/policies/strategies/2030_en [Accessed
2019-10-03].

[7] European Commission. 2050 long-term strategy. [Online]. Available:
ec.europa.eu/clima/policies/strategies/2050_en [Accessed 2019-10-03].

[8] B. Shen, G. Ghatikar, Z. Lei, J. Li, G. Wikler, and P. Martin, “The role of
regulatory reforms, market changes, and technology development to make
demand response a viable resource in meeting energy challenges,” Applied
Energy, vol. 130, pp. 814 – 823, 2014. doi: 10.1016/j.apenergy.2013.12.069

173

www.un.org/en/sections/issues-depth/climate-change/
www.un.org/en/sections/issues-depth/climate-change/
climate.nasa.gov/solutions/adaptation-mitigation/
climate.nasa.gov/solutions/adaptation-mitigation/
www.eea.europa.eu/data-and-maps/indicators/greenhouse-gas-emission-trends-6/assessment-2
www.eea.europa.eu/data-and-maps/indicators/greenhouse-gas-emission-trends-6/assessment-2
ec.europa.eu/clima/policies/strategies/2030_en
ec.europa.eu/clima/policies/strategies/2050_en


174 BIBLIOGRAPHY

[9] P. Tielens and D. Van Hertem, “The relevance of inertia in power systems,”
Renewable and Sustainable Energy Reviews, vol. 55, pp. 999 – 1009, 2016.
doi: 10.1016/j.rser.2015.11.016

[10] H. Höschle, C. De Jonghe, D. Six, and R. Belmans, “Capacity
remuneration mechanisms and the transition to low-carbon power systems,”
in 2015 12th International Conference on the European Energy Market
(EEM), May 2015. doi: 10.1109/EEM.2015.7216647 pp. 1–5.

[11] N. Kittner, F. Lill, and D. M. Kammen, “Energy storage deployment and
innovation for the clean energy transition,” Nature Energy, vol. 2, no. 9,
p. 17125, 2017. doi: 10.1038/nenergy.2017.125

[12] B. Nykvist and M. Nilsson, “Rapidly falling costs of battery packs for
electric vehicles,” Nature climate change, vol. 5, no. 4, p. 329, 2015. doi:
10.1038/nclimate2564

[13] A. Stephan, B. Battke, M. Beuse, J. H. Clausdeinken, and T. S.
Schmidt, “Limiting the public cost of stationary battery deployment
by combining applications,” Nature Energy, vol. 1, no. 7, p. 16079, 2016.
doi: 10.1038/nenergy.2016.79

[14] G. Fitzgerald, J. Mandel, J. Morris, and H. Touati, “The economics of
battery energy storage: How multi-use, customer-sited batteries deliver
the most services and value to customers and the grid,” Rocky Mountain
Institute, p. p6, 2015.

[15] P. Hardy and A. Pinto-Bello, “EU Market Monitor for Demand Side
Flexibility 2019,” smartEn - Smart Energy Europe, Delta-EE, Tech. Rep.,
November 2019. [Online]. Available: www.smarten.eu/wp-content/up
loads/2019/11/EU_Market_Monitor_2019_short_final.pdf [Accessed
03-12-2019].

[16] “Battery Storage to Drive the Power System Transition,”
BATSTORM H2020 project, Tech. Rep., September 2018.
[Online]. Available: ec.europa.eu/energy/en/topics/technology-and-
innovation/energy-storage/batteries#batstorm-project [Accessed 03-12-
2019].

[17] A. Poullikkas, “A comparative overview of large-scale battery systems for
electricity storage,” Renewable and Sustainable Energy Reviews, vol. 27,
pp. 778 – 788, 2013. doi: 10.1016/j.rser.2013.07.017

[18] K. Imran and I. Kockar, “A technical comparison of wholesale electricity
markets in north america and europe,” Electric Power Systems Research,
vol. 108, pp. 59 – 67, 2014. doi: 10.1016/j.epsr.2013.10.016

www.smarten.eu/wp-content/uploads/2019/11/EU_Market_Monitor_2019_short_final.pdf
www.smarten.eu/wp-content/uploads/2019/11/EU_Market_Monitor_2019_short_final.pdf
ec.europa.eu/energy/en/topics/technology-and-innovation/energy-storage/batteries#batstorm-project
ec.europa.eu/energy/en/topics/technology-and-innovation/energy-storage/batteries#batstorm-project


BIBLIOGRAPHY 175

[19] Q. Wang, C. Zhang, Y. Ding, G. Xydis, J. Wang, and J. Østergaard,
“Review of real-time electricity markets for integrating distributed energy
resources and demand response,” Applied Energy, vol. 138, pp. 695 – 706,
2015. doi: 10.1016/j.apenergy.2014.10.048

[20] D. Newbery, G. Strbac, and I. Viehoff, “The benefits of integrating
european electricity markets,” Energy Policy, vol. 94, pp. 253 – 263, 2016.
doi: 10.1016/j.enpol.2016.03.047

[21] European Commission, “Commission Regulation (EU) 2017/1485 of 2
August 2017 establishing a guideline on electricity transmission system
operation.”

[22] European Commission, “Commission regulation (eu) 2017/2195 of 23
november 2017 establishing a guideline on electricity balancing.”

[23] ENTSO-E. Glossary. [Online]. Available: docstore.entsoe.eu/data/data-
portal/glossary [Accessed 24-06-2019].

[24] ENTSO-E, “Network Code on Load-Frequency Control and Reserves,”
Tech. Rep., 2013. [Online]. Available: www.entsoe.eu/fileadmin/user_up
load/_library/resources/LCFR/130628-NC_LFCR-Issue1.pdf

[25] J. Tant, F. Geth, D. Six, P. Tant, and J. Driesen, “Multiobjective battery
storage to improve pv integration in residential distribution grids,” IEEE
Transactions on Sustainable Energy, vol. 4, no. 1, pp. 182–191, Jan 2013.
doi: 10.1109/TSTE.2012.2211387

[26] Deutsche ÜNB. Regelleistung, Internetplattform zur Vergabe von
Regelleistung. [Online]. Available: www.regelleistung.net/

[27] Elia, “General framework for frequency containment reserve
service by non-CIPU resources 2019-2021,” Jan 2019. [Online].
Available: www.elia.be/~/media/files/Elia/Suppliers/Purchasing%20cat
egories/GFA%20FCR%20NonCIPU%20201901%20VFINAL.pdf

[28] Deutsche ÜNB, “Eckpunkte und Freiheitsgrade bei Erbringung von
Primärregelleistung,” Tech. Rep., Apr. 2014. [Online]. Available:
www.regelleistung.net/ext/download/eckpunktePRL

[29] Deutsche ÜNB, “Anforderungen an die Speicherkapazität bei Batterien
für die Primärregelleistung,” Tech. Rep., Sep. 2015. [Online]. Available:
www.regelleistung.net/ext/download/anforderungBatterien

[30] J. Kopiske, S. Spieker, and G. Tsatsaronis, “Value of power plant flexibility
in power systems with high shares of variable renewables: A scenario

docstore.entsoe.eu/data/data-portal/glossary
docstore.entsoe.eu/data/data-portal/glossary
www.entsoe.eu/fileadmin/user_upload/_library/ resources/LCFR/130628-NC_LFCR-Issue1.pdf
www.entsoe.eu/fileadmin/user_upload/_library/ resources/LCFR/130628-NC_LFCR-Issue1.pdf
www.regelleistung.net/
www.elia.be/~/media/files/Elia/Suppliers/Purchasing%20categories/GFA%20FCR%20NonCIPU%20201901%20VFINAL.pdf
www.elia.be/~/media/files/Elia/Suppliers/Purchasing%20categories/GFA%20FCR%20NonCIPU%20201901%20VFINAL.pdf
www.regelleistung.net/ext/download/eckpunktePRL
www.regelleistung.net/ext/download/ anforderungBatterien


176 BIBLIOGRAPHY

outlook for germany 2035,” Energy, vol. 137, pp. 823 – 833, 2017. doi:
10.1016/j.energy.2017.04.138

[31] NERC, “Balancing and frequency control - a technical document prepared
by the nerc resources subcommittee,” NERC - North American Electric
Reliability Corporation, Tech. Rep., January 2011.

[32] 50Hertz, Amprion, TenneT, TransnetBW, “Präqualifikationsverfahren
für Regelreserveanbieter in Deutschland - 23.05.2019,” Tech. Rep., 2019.
[Online]. Available: www.regelleistung.net/ext/download/PQ_Bedingun
gen_FCR_aFRR_mFRR

[33] Elia, “R2 Non-CIPU. description and conclusions of the pilot
project. assessment of implications of transfer of energy.” Tech. Rep.,
Dec 2017. [Online]. Available: www.elia.be/~/media/files/Elia/users-
group/Working-Group-Balancing/20171221_R2-non-CIPU-Report.pdf

[34] C. Olk, D. U. Sauer, and M. Merten, “Bidding strategy for a battery
storage in the german secondary balancing power market,” Journal of
Energy Storage, vol. 21, pp. 787 – 800, 2019. doi: 10.1016/j.est.2019.01.019

[35] ENTSO-E WGAS. Survey on ancillary services
procurement, balancing market design 2018. [Online].
Available: entsoe.eu/publications/market-reports/#survey-on-ancillary-
services-procurement-and-electricity-balancing-market-design [Accessed
2019-03-20].

[36] “Challenges and Opportunities for the Nordic Power
System,” Statnett, Fingrid, Energinet.dk, Svenska
Kraftnät, Tech. Rep., Augustus 2016. [Online].
Available: www.fingrid.fi/globalassets/dokumentit/fi/yhtio/tki-toiminta
/report-challenges-and-opportunities-for-the-nordic-power-system.pdf

[37] F. M. Gonzalez-Longatt and S. M. Alhejaj, “Enabling inertial
response in utility-scale battery energy storage system,” in 2016 IEEE
Innovative Smart Grid Technologies - Asia (ISGT-Asia), Nov 2016. doi:
10.1109/ISGT-Asia.2016.7796453. ISSN 2378-8542 pp. 605–610.

[38] R. Eriksson, N. Modig, and K. Elkington, “Synthetic inertia versus fast
frequency response: a definition,” IET Renewable Power Generation,
vol. 12, no. 5, pp. 507–514, 2018. doi: 10.1049/iet-rpg.2017.0370

[39] “Need for synthetic inertia (SI) for frequency
regualation,” ENTSO-E, Tech. Rep., January 2018. [Online].
Available: docstore.entsoe.eu/Documents/Network%20codes%20documen
ts/NC%20RfG/IGD_Need_for_Synthetic_Inertia_final.pdf [Accessed
18-12-2019].

www.regelleistung.net/ext/download/PQ_Bedingungen_FCR_aFRR_mFRR
www.regelleistung.net/ext/download/PQ_Bedingungen_FCR_aFRR_mFRR
www.elia.be/~/media/files/Elia/users-group/Working-Group-Balancing/20171221_R2-non-CIPU-Report.pdf
www.elia.be/~/media/files/Elia/users-group/Working-Group-Balancing/20171221_R2-non-CIPU-Report.pdf
entsoe.eu/publications/market-reports/#survey-on-ancillary-services-procurement-and-electricity-balancing-market-design
entsoe.eu/publications/market-reports/#survey-on-ancillary-services-procurement-and-electricity-balancing-market-design
www.fingrid.fi/globalassets/dokumentit/fi/yhtio/tki-toiminta/report-challenges-and-opportunities-for-the-nordic-power-system.pdf
www.fingrid.fi/globalassets/dokumentit/fi/yhtio/tki-toiminta/report-challenges-and-opportunities-for-the-nordic-power-system.pdf
docstore.entsoe.eu/Documents/Network%20codes%20documents/NC%20RfG/IGD_Need_for_Synthetic_Inertia_final.pdf
docstore.entsoe.eu/Documents/Network%20codes%20documents/NC%20RfG/IGD_Need_for_Synthetic_Inertia_final.pdf


BIBLIOGRAPHY 177

[40] Imperial Irrigation District (IID). IID demonstrates battery’s emergency
black start capability. [Online]. Available: www.iid.com/Home/Compone
nts/News/News/557/30?backlist=%2F [Accessed 27-06-2019].

[41] P. Bach Andersen, J. Hu, and K. Heussen, “Coordination strategies for
distribution grid congestion management in a multi-actor, multi-objective
setting,” in 2012 3rd IEEE PES Innovative Smart Grid Technologies
Europe (ISGT Europe), Oct 2012. doi: 10.1109/ISGTEurope.2012.6465853.
ISSN 2165-4816 pp. 1–8.

[42] H. P. Knops, L. J. de Vries, and R. A. Hakvoort, “Congestion management
in the european electricity system: an evaluation of the alternatives,”
Journal of Network Industries, no. 3, pp. 311–351, 2001.

[43] K. Spiliotis, S. Claeys, A. R. Gutierrez, and J. Driesen, “Utilizing
local energy storage for congestion management and investment
deferral in distribution networks,” in 2016 13th International
Conference on the European Energy Market (EEM), June 2016. doi:
10.1109/EEM.2016.7521198. ISSN 2165-4093 pp. 1–5.

[44] A. Ramos, C. D. Jonghe, V. Gómez, and R. Belmans, “Realizing the
smart grid’s potential: Defining local markets for flexibility,” Utilities
Policy, vol. 40, pp. 26 – 35, 2016. doi: 10.1016/j.jup.2016.03.006

[45] Centrica. Cornwall local energy market. [Online]. Available: www.centri
ca.com/innovation/cornwall-local-energy-market [Accessed 2019-12-18].

[46] L. Hirth, I. Schlecht, C. Maurer, and B. Terteegen, “Cost-
or market-based? Future redispatch procurement in Germany,”
Commissioned by the Federal Ministry for Economic Affairs and
Energy Germany, Tech. Rep., October 2019. [Online]. Avail-
able: www.bmwi.de/Redaktion/EN/Publikationen/Studien/future-redi
spatch-procurement-in-germany.pdf?__blob=publicationFile&v=2 [Ac-
cessed 19-12-2019].

[47] D. I. Chatzigiannis, G. A. Dourbois, P. N. Biskas, and A. G.
Bakirtzis, “European day-ahead electricity market clearing model,”
Electric Power Systems Research, vol. 140, pp. 225 – 239, 2016. doi:
10.1016/j.epsr.2016.06.019

[48] Epex Spot SE - Belpex. Product specifications. [Online]. Available:
www.belpex.be/about-us/contact/ [Accessed 2019-07-12].

[49] Epex Spot SE. Epex Spot introduces curtailable blocks and loop blocks on
all Day-Ahead markets. [Online]. Available: www.epexspot.com/en/press-
media/press/details/Press/show_detail/40116 [Accessed 10-10-2019].

www.iid.com/Home/Components/News/News/557/30?backlist=%2F
www.iid.com/Home/Components/News/News/557/30?backlist=%2F
www.centrica.com/innovation/cornwall-local-energy-market
www.centrica.com/innovation/cornwall-local-energy-market
www.bmwi.de/Redaktion/EN/Publikationen/Studien/future-redispatch-procurement-in-germany.pdf?__blob=publicationFile&v=2
www.bmwi.de/Redaktion/EN/Publikationen/Studien/future-redispatch-procurement-in-germany.pdf?__blob=publicationFile&v=2
www.belpex.be/about-us/contact/
www.epexspot.com/en/press-media/press/details/Press/show_detail/40116
www.epexspot.com/en/press-media/press/details/Press/show_detail/40116


178 BIBLIOGRAPHY

[50] ENTSO-E. ENTSO-E Transparency Platform. [Online]. Available:
transparency.entsoe.eu/ [Accessed 2019-08-27].

[51] D. Keles, J. Scelle, F. Paraschiv, and W. Fichtner, “Extended forecast
methods for day-ahead electricity spot prices applying artificial neural
networks,” Applied Energy, vol. 162, pp. 218 – 230, 2016. doi:
10.1016/j.apenergy.2015.09.087

[52] K. Neuhoff, N. Ritter, A. Salah-Abou-El-Enien, and P. Vassilopoulos,
“Intraday markets for power: Discretizing the continuous trading?” DIW
Berlin Discussion Paper, vol. 1544, Jan. 2016. doi: 10.2139/ssrn.2723902

[53] T. Gomez, I. Herrero, P. Rodilla, R. Escobar, S. Lanza, I. de la Fuente,
M. L. Llorens, and P. Junco, “European union electricity markets: Current
practice and future view,” IEEE Power and Energy Magazine, vol. 17,
no. 1, pp. 20–31, Jan 2019. doi: 10.1109/MPE.2018.2871739

[54] Epex Spot SE. Intraday market with delivery on the German TSO zone.
[Online]. Available: www.epexspot.com/en/product-info/intradaycontinu
ous/germany [Accessed 29-01-2018].

[55] Epex Spot SE. [Online]. Available: www.epexspot.com [Accessed
2019-09-02].

[56] A. Mesbah, “Stochastic model predictive control: An overview and
perspectives for future research,” IEEE Control Systems Magazine, vol. 36,
no. 6, pp. 30–44, Dec 2016. doi: 10.1109/MCS.2016.2602087

[57] I. Richardson, M. Thomson, D. Infield, and C. Clifford, “Domestic electri-
city use: A high-resolution energy demand model,” Energy and Buildings,
vol. 42, no. 10, pp. 1878–1887, 2010. doi: 10.1016/j.enbuild.2010.05.023

[58] J. M. Bright, C. J. Smith, P. G. Taylor, and R. Crook, “Stochastic
generation of synthetic minutely irradiance time series derived from mean
hourly weather observation data,” Solar Energy, vol. 115, pp. 229–242,
2015. doi: 10.1016/j.solener.2015.02.032

[59] BDEW. Strompreis für Haushalte. [Online]. Available: www.bd
ew.de/service/daten-und-grafiken/strompreis-fuer-haushalte/ [Accessed
2019-09-04].

[60] Bundesnetzagentur. EEG-Registerdaten un -Fördersätze. [Online].
Available: www.bundesnetzagentur.de/DE/Sachgebiete/Elektrizitaetu
ndGas/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDate
nInformationen/EEG_Registerdaten/EEG_Registerdaten_node.html/
[Accessed 2019-09-04].

transparency.entsoe.eu/
www.epexspot.com/en/product-info/intradaycontinuous/germany
www.epexspot.com/en/product-info/intradaycontinuous/germany
www.epexspot.com
www.bdew.de/service/daten-und-grafiken/strompreis-fuer-haushalte/
www.bdew.de/service/daten-und-grafiken/strompreis-fuer-haushalte/
www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/EEG_Registerdaten/EEG_Registerdaten_node.html/
www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/EEG_Registerdaten/EEG_Registerdaten_node.html/
www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/EEG_Registerdaten/EEG_Registerdaten_node.html/


BIBLIOGRAPHY 179

[61] A. Picciariello, J. Reneses, P. Frias, and L. Söder, “Distributed generation
and distribution pricing: Why do we need new tariff design methodologies?”
Electric Power Systems Research, vol. 119, pp. 370–376, feb 2015. doi:
10.1016/j.epsr.2014.10.021

[62] Bundesrepublik Deutschland, Bundesrechtsverordnung. (2015, Jul.)
Stromnetzentgeltverordnung (StromNEV). [Online]. Available: www.gese
tze-im-internet.de/stromnev/

[63] Journal officiel de la République Française, “Décret n°2016-141 du 11
février relatif au statut d’électro-intensif et à la réduction TURPE .”
[Online]. Available: www.legifrance.gouv.fr/affichTexte.do;jsessionid=3D
A5A16655A37CDAF6706146DFFA9E1D.tpdila16v_3?cidTexte=JOR
FTEXT000032036397&dateTexte=20160212

[64] Westnetz. Netzentgelte Strom. [Online]. Available: iam.westnetz.de/ueber-
westnetz/unser-netz/netzentgelte-strom/ [Accessed 2019-09-05].

[65] Y. Wang and L. Li, “Time-of-use electricity pricing for industrial
customers: A survey of u.s. utilities,” Applied Energy, vol. 149, pp. 89 –
103, 2015. doi: 10.1016/j.apenergy.2015.03.118

[66] J. Stöckl, P. Jonke, B. Bletterie, and S. Kadam, “Power quality
improvement strategies for battery storage systems with low-voltage
grid support,” in 2017 19th European Conference on Power Elec-
tronics and Applications (EPE’17 ECCE Europe), Sep. 2017. doi:
10.23919/EPE17ECCEEurope.2017.8099053

[67] R. Dharavath, I. J. Raglend, and A. Manmohan, “Implementation of solar
pv — battery storage with dvr for power quality improvement,” in 2017
Innovations in Power and Advanced Computing Technologies (i-PACT),
April 2017. doi: 10.1109/IPACT.2017.8245134 pp. 1–5.

[68] J. Stuyts, “Implementation of unbalance compensation using grid-
supporting converters,” Ph.D. dissertation, KU Leuven, 2018.

[69] R. Green and N. Vasilakos, “Market behaviour with large amounts of
intermittent generation,” Energy Policy, vol. 38, no. 7, pp. 3211 – 3220,
2010. doi: 10.1016/j.enpol.2009.07.038

[70] T. Rintamäki, A. S. Siddiqui, and A. Salo, “Does renewable energy
generation decrease the volatility of electricity prices? an analysis of
denmark and germany,” Energy Economics, vol. 62, pp. 270 – 282, 2017.
doi: 10.1016/j.eneco.2016.12.019

www.gesetze-im-internet.de/stromnev/
www.gesetze-im-internet.de/stromnev/
www.legifrance.gouv.fr/affichTexte.do;jsessionid=3DA5A16655A37CDAF6706146DFFA9E1D.tpdila16v_3?cidTexte=JORFTEXT000032036397&dateTexte=20160212
www.legifrance.gouv.fr/affichTexte.do;jsessionid=3DA5A16655A37CDAF6706146DFFA9E1D.tpdila16v_3?cidTexte=JORFTEXT000032036397&dateTexte=20160212
www.legifrance.gouv.fr/affichTexte.do;jsessionid=3DA5A16655A37CDAF6706146DFFA9E1D.tpdila16v_3?cidTexte=JORFTEXT000032036397&dateTexte=20160212
iam.westnetz.de/ueber-westnetz/unser-netz/netzentgelte-strom/
iam.westnetz.de/ueber-westnetz/unser-netz/netzentgelte-strom/


180 BIBLIOGRAPHY

[71] D. Greenwood, K. Lim, C. Patsios, P. Lyons, Y. Lim, and P. Taylor,
“Frequency response services designed for energy storage,” Applied Energy,
vol. 203, pp. 115 – 127, 2017. doi: 10.1016/j.apenergy.2017.06.046

[72] R. Lee, S. Homan, N. M. Dowell, and S. Brown, “A closed-loop analysis
of grid scale battery systems providing frequency response and reserve
services in a variable inertia grid,” Applied Energy, vol. 236, pp. 961 – 972,
2019. doi: 10.1016/j.apenergy.2018.12.044

[73] R. Hollinger, L. M. Diazgranados, C. Wittwer, and B. Engel, “Optimal
provision of primary frequency control with battery systems by exploiting
all degrees of freedom within regulation,” Energy Procedia, vol. 99, pp.
204 – 214, 2016. doi: 10.1016/j.egypro.2016.10.111

[74] D. I. Stroe, V. Knap, M. Swierczynski, A. I. Stroe, and R. Teodorescu,
“Operation of a grid-connected lithium-ion battery energy storage system
for primary frequency regulation: A battery lifetime perspective,” IEEE
Transactions on Industry Applications, vol. 53, no. 1, pp. 430–438, Jan
2017. doi: 10.1109/TIA.2016.2616319

[75] T. Thien, D. Schweer, D. vom Stein, A. Moser, and D. U. Sauer, “Real-
world operating strategy and sensitivity analysis of frequency containment
reserve provision with battery energy storage systems in the german
market,” Journal of Energy Storage, vol. 13, pp. 143 – 163, 2017. doi:
10.1016/j.est.2017.06.012

[76] Y. J. A. Zhang, C. Zhao, W. Tang, and S. H. Low, “Profit-maximizing
planning and control of battery energy storage systems for primary
frequency control,” IEEE Transactions on Smart Grid, vol. 9, no. 2,
pp. 712–723, March 2018. doi: 10.1109/TSG.2016.2562672

[77] B. Cheng and W. B. Powell, “Co-optimizing battery storage for the
frequency regulation and energy arbitrage using multi-scale dynamic
programming,” IEEE Transactions on Smart Grid, vol. 9, no. 3, pp.
1997–2005, May 2018. doi: 10.1109/TSG.2016.2605141

[78] Y. Shi, B. Xu, Y. Tan, D. Kirschen, and B. Zhang, “Optimal battery
control under cycle aging mechanisms in pay for performance settings,”
IEEE Transactions on Automatic Control, vol. 64, no. 6, pp. 2324–2339,
June 2019. doi: 10.1109/TAC.2018.2867507

[79] F. M. Gatta, A. Geri, R. Lamedica, S. author, M. Maccioni, F. Palone,
M. Rebolini, and A. Ruvio, “Application of a lifepo4 battery energy storage
system to primary frequency control: Simulations and experimental
results,” Energies (2016), vol. 9, no. 11. doi: 10.3390/en9110887



BIBLIOGRAPHY 181

[80] M. Kazemi and H. Zareipour, “Long-term scheduling of battery storage
systems in energy and regulation markets considering battery’s lifespan,”
IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6840–6849, Nov 2018.
doi: 10.1109/TSG.2017.2724919

[81] S. Melo, U. Brand, T. Vogt, J. Telle, F. Schuldt, and K. Maydell, “Primary
frequency control provided by hybrid battery storage and power-to-
heat system,” Applied Energy, vol. 233-234, pp. 220 – 231, 2019. doi:
10.1016/j.apenergy.2018.09.177

[82] B. Lian, A. Sims, D. Yu, C. Wang, and R. W. Dunn, “Optimizing lifepo4
battery energy storage systems for frequency response in the uk system,”
IEEE Transactions on Sustainable Energy, vol. 8, no. 1, pp. 385–394, Jan
2017. doi: 10.1109/TSTE.2016.2600274

[83] L. Johnston, F. Díaz-González, O. Gomis-Bellmunt, C. Corchero-
García, and M. Cruz-Zambrano, “Methodology for the economic
optimisation of energy storage systems for frequency support in wind
power plants,” Applied Energy, vol. 137, pp. 660 – 669, 2015. doi:
10.1016/j.apenergy.2014.09.031

[84] J. Fleer, S. Zurmühlen, J. Meyer, J. Badeda, P. Stenzel, J.-F. Hake,
and D. U. Sauer, “Techno-economic evaluation of battery energy storage
systems on the primary control reserve market under consideration of
price trends and bidding strategies,” Journal of Energy Storage, vol. 17,
pp. 345 – 356, 2018. doi: 10.1016/j.est.2018.03.008

[85] R. L. Fares, J. P. Meyers, and M. E. Webber, “A dynamic model-based
estimate of the value of a vanadium redox flow battery for frequency
regulation in texas,” Applied Energy, vol. 113, pp. 189 – 198, 2014. doi:
10.1016/j.apenergy.2013.07.025

[86] C. Betzin, H. Wolfschmidt, and M. Luther, “Electrical operation
behavior and energy efficiency of battery systems in a virtual storage
power plant for primary control reserve,” International Journal of
Electrical Power & Energy Systems, vol. 97, pp. 138 – 145, 2018. doi:
10.1016/j.ijepes.2017.10.038

[87] T. F. Fuller, M. Doyle, and J. Newman, “Simulation and optimization of
the dual lithium ion insertion cell,” Journal of the Electrochemical Society,
vol. 141, no. 1, pp. 1–10, 1994. doi: 10.1149/1.2054684

[88] M. R. Jongerden and B. R. Haverkort, “Which battery model to use?” IET
software, vol. 3, no. 6, pp. 445–457, 2009. doi: 10.1049/iet-sen.2009.0001



182 BIBLIOGRAPHY

[89] X. Hu, S. Li, and H. Peng, “A comparative study of equivalent circuit
models for Li-ion batteries,” Journal of Power Sources, vol. 198, pp.
359–367, jan 2012. doi: 10.1016/j.jpowsour.2011.10.013

[90] K. Li and K. J. Tseng, “Energy efficiency of lithium-ion battery used
as energy storage devices in micro-grid,” in IECON 2015 - 41st Annual
Conference of the IEEE Industrial Electronics Society. IEEE, nov 2015.
doi: 10.1109/IECON.2015.7392923 pp. 005 235–005 240.

[91] Datasheet Cell Type UR18650E, Panasonic/Sanyo. [Online]. Available:
www.master-instruments.com.au/file/62415/1/Sanyo-UR18650E.pdf

[92] M. Ecker, N. Nieto, S. Käbitz, J. Schmalstieg, H. Blanke, A. Warnecke,
and D. U. Sauer, “Calendar and cycle life study of Li(NiMnCo)O2-based
18650 lithium-ion batteries,” Journal of Power Sources, vol. 248, pp.
839–851, feb 2014. doi: 10.1016/j.jpowsour.2013.09.143

[93] J. Schmalstieg, S. Käbitz, M. Ecker, and D. U. Sauer, “A holistic
aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries,”
Journal of Power Sources, vol. 257, pp. 325–334, jul 2014. doi:
10.1016/j.jpowsour.2014.02.012

[94] E. P. Roth, “Thermal abuse performance of MOLI, panasonic
and sanyo 18650 Li-ion cells,” Sandia National Laboratories, Tech.
Rep., 2005. [Online]. Available: prod.sandia.gov/techlib-noauth/access-
control.cgi/2004/046721.pdf

[95] J. Vetter, P. Novák, M. Wagner, C. Veit, K.-C. Möller, J. Besenhard,
M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, and A. Hammouche, “Age-
ing mechanisms in lithium-ion batteries,” Journal of Power Sources, vol.
147, no. 1-2, pp. 269–281, sep 2005. doi: 10.1016/j.jpowsour.2005.01.006

[96] A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard, and D. Riu,
“A review on lithium-ion battery ageing mechanisms and estimations for
automotive applications,” Journal of Power Sources, vol. 241, pp. 680–689,
nov 2013. doi: 10.1016/j.jpowsour.2013.05.040

[97] R. Darling and J. Newman, “Modeling side reactions in composite
LiyMn2O4 electrodes,” Journal of The Electrochemical Society, vol. 145,
no. 3, pp. 990–998, 1998. doi: 10.1149/1.1838376

[98] G. Ning, R. E. White, and B. N. Popov, “A generalized cycle life model
of rechargeable Li-ion batteries,” Electrochimica Acta, vol. 51, no. 10, pp.
2012–2022, feb 2006. doi: 10.1016/j.electacta.2005.06.033

www.master-instruments.com.au/file/62415/1/Sanyo- UR18650E.pdf
prod.sandia.gov/techlib-noauth/access-control.cgi/ 2004/046721.pdf
prod.sandia.gov/techlib-noauth/access-control.cgi/ 2004/046721.pdf


BIBLIOGRAPHY 183

[99] “ASTM E1049 - 85(2017), Standard Practices for Cycle Counting
in Fatigue Analysis,” ASTM International, West Conshohocken, PA,
Standard, 2017.

[100] G. He, Q. Chen, C. Kang, P. Pinson, and Q. Xia, “Optimal bidding
strategy of battery storage in power markets considering performance-
based regulation and battery cycle life,” IEEE Transactions on Smart
Grid, vol. 7, no. 5, pp. 2359–2367, 2016. doi: 10.1109/TSG.2015.2424314

[101] B. Xu, A. Oudalov, A. Ulbig, G. Andersson, and D. S. Kirschen,
“Modeling of lithium-ion battery degradation for cell life assessment,”
IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1131–1140, March
2018. doi: 10.1109/TSG.2016.2578950

[102] SMA, “Efficiency and derating. Sunny Boy / Sunny Boy Storage /
Sunny Tripower / Sunny Mini Central / Sunny Highpower,” SMA,
Tech. Rep. WirkungDerat-TI-en-43, April 2017. [Online]. Available:
files.sma.de/dl/1348/WirkungDerat-TI-en-47.pdf [Accessed 20-12-2019].

[103] F. M. Gatta, A. Geri, S. Lauria, M. Maccioni, and F. Palone, “Battery
energy storage efficiency calculation including auxiliary losses: Technology
comparison and operating strategies,” IEEE PowerTech 2015, Eindhoven.,
2015. doi: 10.1109/PTC.2015.7232464

[104] M. Doyle and J. Newman, “Analysis of capacity–rate data for Lithium
batteries using simplified models of the discharge process,” Journal of
Applied Electrochemistry, vol. 27, no. 7, pp. 846–856, Jul 1997. doi:
10.1023/A:1018481030499

[105] W. Peukert, “Über die Abhängigkeit der Kapazität von der Entladestrom-
stärke bei Bleiakkumulatoren,” Elektrotechnische Zeitschrift, vol. 20, pp.
20–21, 1897.

[106] D. Doerffel and S. A. Sharkh, “A critical review of using the peukert
equation for determining the remaining capacity of lead-acid and lithium-
ion batteries,” Journal of Power Sources, vol. 155, no. 2, pp. 395 – 400,
2006. doi: 10.1016/j.jpowsour.2005.04.030

[107] A. Oudalov, D. Chartouni, and C. Ohler, “Optimizing a Battery
Energy Storage System for Primary Frequency Control,” IEEE
Transactions on Power Systems, vol. 22, no. 3, pp. 1259–1266, 2007.
doi: 10.1109/TPWRS.2007.901459

[108] M. Delfanti, D. Falabretti, M. Merlo, and G. Monfredini, “Distributed
Generation Integration in the Electric Grid: Energy Storage System for
Frequency Control,” Journal of Applied Mathematics, vol. 2014, pp. 1–13,
2014. doi: 10.1155/2014/198427

files.sma.de/dl/1348/WirkungDerat-TI-en-47.pdf


184 BIBLIOGRAPHY

[109] T. Borsche, A. Ulbig, M. Koller, and G. Andersson, “Power and energy
capacity requirements of storages providing frequency control reserves,”
in 2013 IEEE Power & Energy Society General Meeting. IEEE, 2013.
doi: 10.1109/PESMG.2013.6672843

[110] O. Mégel, J. L. Mathieu, and G. Andersson, “Maximizing the potential
of energy storage to provide fast frequency control,” in IEEE PES ISGT
Europe 2013. IEEE, Oct. 2013. doi: 10.1109/ISGTEurope.2013.6695380
pp. 1–5.

[111] J. Engels, B. Claessens, and G. Deconinck, “Combined stochastic
optimization of frequency control and self-consumption with a battery,”
IEEE Transactions on Smart Grid, vol. 10, no. 2, pp. 1971–1981, Mar.
2019. doi: 10.1109/TSG.2017.2785040

[112] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas,
Dynamic programming and optimal control. Athena scientific Belmont,
MA, 2005, vol. 1, no. 3.

[113] A. Shapiro and A. Philpott, “A tutorial on stochastic programming,”
Manuscript, pp. 1–35, 2007. [Online]. Available: www2.isye.gatech.edu/pe
ople/faculty/Alex_Shapiro/TutorialSP.pdf

[114] W.-K. Mak, D. P. Morton, and R. Wood, “Monte Carlo bounding
techniques for determining solution quality in stochastic programs,”
Operations Research Letters, vol. 24, no. 1-2, pp. 47–56, Feb. 1999. doi:
10.1016/S0167-6377(98)00054-6

[115] G. Calafiore and M. Campi, “The Scenario Approach to Robust Control
Design,” IEEE Transactions on Automatic Control, vol. 51, no. 5, pp.
742–753, May 2006. doi: 10.1109/TAC.2006.875041

[116] V. N. Vapnik, Statistical learning theory, ser. Adaptive and learning
systems for signal processing, communications, and control. New York
(N.Y.): Wiley, 1998. ISBN 0471030031

[117] M. Vidyasagar, “Randomized algorithms for robust controller synthesis
using statistical learning theory,” Automatica, vol. 37, no. 10, pp. 1515 –
1528, 2001. doi: 10.1016/S0005-1098(01)00122-4

[118] S. Grammatico, X. Zhang, K. Margellos, P. Goulart, and J. Lygeros, “A
scenario approach for non-convex control design,” IEEE Transactions
on Automatic Control, vol. 61, no. 2, pp. 334–345, Feb 2016. doi:
10.1109/TAC.2015.2433591

www2.isye.gatech.edu/people/faculty/Alex_Shapiro/ TutorialSP.pdf
www2.isye.gatech.edu/people/faculty/Alex_Shapiro/ TutorialSP.pdf


BIBLIOGRAPHY 185

[119] V. N. Vapnik and A. Y. Chervonenkis, “On the uniform convergence of
relative frequencies of events to their probabilities,” Theory of Probability
& Its Applications, vol. 16, no. 2, pp. 264–280, 1971. doi: 10.1137/1116025

[120] A. Shapiro and A. Dentcheva, Darinka Ruszczyński, Lectures on Stochastic
Programming. Siam, 2014. ISBN 9781611973426

[121] R. Storn and K. Price, “Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces,” Journal
of Global Optimization, vol. 11, no. 4, pp. 341–359, Dec 1997. doi:
10.1023/A:1008202821328

[122] Bundesrepublik Deutschland, Bundesgesetz. (2005, Jun.) Gesetz über die
Elektrizitäts- und Gasversorgung (Energiewirtschaftsgesetz — EnWG).
[Online]. Available: www.gesetze-im-internet.de/enwg_2005/

[123] Bundesrepublik Deutschland, Bundesgesetz. (1990, Mar.)
Stromsteuergesetz (StromStG). [Online]. Available: www.gesetze-
im-internet.de/stromstg/

[124] Bundesrepublik Deutschland, Bundesgesetz, Einspruchsgesetz. (2017,
Jul.) Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-
Energien-Gesetz — EEG2017). [Online]. Available: www.gesetze-im-
internet.de/eeg_2014/

[125] Bundesrepublik Deutschland, Bundesgesetz. (2016, Jan.) Gesetz für
die Erhaltung, die Modernisierung und den Ausbau der Kraft-Wärme-
Kopplung (Kraft-Wärme-Kopplungsgesetz — KWKG). [Online]. Available:
www.gesetze-im-internet.de/kwkg_2016/

[126] Bundesrepublik Deutschland, Bundesgesetz. (1992, Jan.)
Stromnetzentgeltverordnung (StromNEV). [Online]. Available: ww
w.gesetze-im-internet.de/kav/

[127] Bundesrepublik Deutschland, Bundesrechtsverordnung. (2016, Aug.)
Verordnung zu abschaltbaren Lasten (AblaV). [Online]. Available:
www.gesetze-im-internet.de/ablav_2016/

[128] J. Fleer, S. Zurmühlen, J. Meyer, J. Badeda, P. Stenzel, J.-F. Hake, and
D. U. Sauer, “Price development and bidding strategies for battery energy
storage systems on the primary control reserve market,” Energy Procedia,
vol. 135, pp. 143 – 157, 2017. doi: 10.1016/j.egypro.2017.09.497

[129] Directorate-General for Economic and Financial Affairs (DG ECFIN) -
European Commission. Economic forecast for Germany. [Online]. Available:
ec.europa.eu/info/business-economy-euro/economic-performance-and-

www.gesetze-im-internet.de/enwg_2005/
www.gesetze-im-internet.de/stromstg/
www.gesetze-im-internet.de/stromstg/
www.gesetze-im-internet.de/eeg_2014/
www.gesetze-im-internet.de/eeg_2014/
www.gesetze-im-internet.de/kwkg_2016/
www.gesetze-im-internet.de/kav/
www.gesetze-im-internet.de/kav/
www.gesetze-im-internet.de/ablav_2016/
ec.europa.eu/info/business-economy-euro/economic-performance-and-forecasts/economic-performance-country/germany/economic-forecast-germany_en
ec.europa.eu/info/business-economy-euro/economic-performance-and-forecasts/economic-performance-country/germany/economic-forecast-germany_en


186 BIBLIOGRAPHY

forecasts/economic-performance-country/germany/economic-forecast-
germany_en [Accessed 03-07-2018].

[130] Speichermonitoring, “Wissenschaftliches Mess- und Evaluierungspro-
gramm Solarstromspeicher 2.0 - Jahresberich 2017,” 2017. [Online].
Available: www.speichermonitoring.de/fileadmin/user_upload/Speicherm
onitoring_Jahresbericht_2017_ISEA_RWTH_Aachen.pdf

[131] G. Mulder, D. Six, B. Claessens, T. Broes, N. Omar, and J. V. Mierlo,
“The dimensioning of PV-battery systems depending on the incentive and
selling price conditions,” Applied Energy, vol. 111, pp. 1126–1135, 2013.
doi: 10.1016/j.apenergy.2013.03.059

[132] V. Knap, S. K. Chaudhary, D. I. Stroe, M. Swierczynski, B. I.
Craciun, and R. Teodorescu, “Sizing of an energy storage system
for grid inertial response and primary frequency reserve,” IEEE
Transactions on Power Systems, vol. 31, no. 5, pp. 3447–3456, 2016.
doi: 10.1109/TPWRS.2015.2503565

[133] A. Oudalov, D. Chartouni, C. Ohler, and G. Linhofer, “Value analysis
of battery energy storage applications in power systems,” in 2006
IEEE PES Power Systems Conference and Exposition, Oct 2006. doi:
10.1109/PSCE.2006.296284 pp. 2206–2211.

[134] J. Fleer and P. Stenzel, “Impact analysis of different operation strategies
for battery energy storage systems providing primary control reserve,”
Journal of Energy Storage, vol. 72, no. 2015, p. 19, 2016. doi:
10.1016/j.est.2016.02.003

[135] CAISO. (2012) Non-generator resource (ngr) and regulation energy
management (rem) overview - phase 1. [Online]. Available: www.caiso.co
m/Documents/NGR-REMOverview.pdf

[136] Y. Xiao, Q. Su, F. S. S. Bresler, R. Carroll, J. R. Schmitt, and M. Olaleye,
in 2014 IEEE PES General Meeting | Conference Exposition, July.

[137] T. Borsche, A. Ulbig, and G. Andersson, “A new frequency control
reserve framework based on energy-constrained units,” in 2014
Power Systems Computation Conference. IEEE, aug 2014. doi:
10.1109/PSCC.2014.7038111

[138] C. Jin, N. Lu, S. Lu, Y. Makarov, and R. a. Dougal, “Coordinated
control algorithm for hybrid energy storage systems,” in 2011 IEEE
Power and Energy Society General Meeting. IEEE, jul 2011. doi:
10.1109/PES.2011.6039893

ec.europa.eu/info/business-economy-euro/economic-performance-and-forecasts/economic-performance-country/germany/economic-forecast-germany_en
ec.europa.eu/info/business-economy-euro/economic-performance-and-forecasts/economic-performance-country/germany/economic-forecast-germany_en
ec.europa.eu/info/business-economy-euro/economic-performance-and-forecasts/economic-performance-country/germany/economic-forecast-germany_en
www.speichermonitoring.de/fileadmin/user_upload/Speichermonitoring_Jahresbericht_2017_ISEA_RWTH_Aachen.pdf
www.speichermonitoring.de/fileadmin/user_upload/Speichermonitoring_Jahresbericht_2017_ISEA_RWTH_Aachen.pdf
www.caiso.com/Documents/NGR-REMOverview.pdf
www.caiso.com/Documents/NGR-REMOverview.pdf


BIBLIOGRAPHY 187

[139] C. Brivio, S. Mandelli, and M. Merlo, “Battery energy storage
system for primary control reserve and energy arbitrage,” Sustainable
Energy, Grids and Networks, vol. 6, pp. 152–165, jun 2016. doi:
10.1016/j.segan.2016.03.004

[140] O. Mégel, J. L. Mathieu, and G. Andersson, “Scheduling distributed
energy storage units to provide multiple services under forecast error,”
International Journal of Electrical Power and Energy Systems, vol. 72,
pp. 48–57, 2015. doi: 10.1016/j.ijepes.2015.02.010

[141] F. Braam, L. M. Diazgranados, R. Hollinger, B. Engel, G. Bopp, and
T. Erge, “Distributed solar battery systems providing primary control
reserve,” IET Renewable Power Generation, vol. 10, no. 1, pp. 63–70,
2016. doi: 10.1049/iet-rpg.2015.0147

[142] Y. Shi, B. Xu, D. Wang, and B. Zhang, “Using battery storage for peak
shaving and frequency regulation: Joint optimization for superlinear gains,”
IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 2882–2894, May
2018. doi: 10.1109/TPWRS.2017.2749512

[143] A. Shahsavari, A. Sadeghi-Mobarakeh, E. Stewart, E. Cortez, L. Alvarez,
F. Megala, and H. Mohsenian-Rad, IEEE Transactions on Smart Grid.

[144] G. Deconinck, K. D. Craemer, and B. Claessens, “Combining market-
based control with distribution grid constraints when coordinating electric
vehicle charging,” Engineering, vol. 1, no. 4, pp. 453 – 465, 2015. doi:
10.15302/J-ENG-2015095

[145] Photovoltaikforum. (2016) Regelleistungsmodell von Caterva: Für jedes
Kilowatt Regelleistung 150 bis 160 Euro im Jahr. [Online]. Available:
www.photovoltaikforum.com/magazin/praxis/regelleistungsmodell-
von-caterva-fuer-jedes-kilowatt-regelleistung-150-bis-160-euro-im-jahr-
4765/

[146] Sonnen. (2017) sonnen-Messkonzept zur mehrfache Nutzung von
Batteriespeichern für den FNN-Hinweis vorgeschlagen. [Online].
Available: www.sonnenbatterie.de/de/sonnen-messkonzept-zur-mehrfa
che-nutzung-von-batteriespeichern-fuer-den-fnn-hinweis-vorgeschlagen/

[147] E. Vrettos, F. Oldewurtel, and G. Andersson, “Robust Energy-Constrained
Frequency Reserves from Aggregations of Commercial Buildings,” IEEE
Transactions on Power Systems, vol. 31, no. 6, pp. 4272–4285, 2016. doi:
10.1109/TPWRS.2015.2511541

[148] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust Optimization.
Princeton University Press, 2009. ISBN 9780691143682

www.photovoltaikforum.com/magazin/praxis/ regelleistungsmodell-von-caterva-fuer-jedes-kilowatt- regelleistung-150-bis-160-euro-im-jahr-4765/
www.photovoltaikforum.com/magazin/praxis/ regelleistungsmodell-von-caterva-fuer-jedes-kilowatt- regelleistung-150-bis-160-euro-im-jahr-4765/
www.photovoltaikforum.com/magazin/praxis/ regelleistungsmodell-von-caterva-fuer-jedes-kilowatt- regelleistung-150-bis-160-euro-im-jahr-4765/
www.sonnenbatterie.de/de/sonnen-messkonzept-zur- mehrfache-nutzung-von-batteriespeichern-fuer-den-fnn- hinweis- vorgeschlagen/
www.sonnenbatterie.de/de/sonnen-messkonzept-zur- mehrfache-nutzung-von-batteriespeichern-fuer-den-fnn- hinweis- vorgeschlagen/


188 BIBLIOGRAPHY

[149] P. J. Goulart, E. C. Kerrigan, and J. M. Maciejowski, “Op-
timization over state feedback policies for robust control with
constraints,” Automatica, vol. 42, no. 4, pp. 523–533, Apr. 2006. doi:
10.1016/j.automatica.2005.08.023

[150] J. W. Rombouts and J. Gheerardyn, “Portfolio managed, demand-side
response system,” U.S. Patent 9 471 080, Oct. 18, 2016.

[151] M. Dyer and L. Stougie, “Computational complexity of stochastic
programming problems,” Mathematical Programming, vol. 106, no. 3,
pp. 423–432, May 2006. doi: 10.1007/s10107-005-0597-0

[152] A. Charnes and W. W. Cooper, “Chance-Constrained Programming,”
Management Science, vol. 6, no. 1, pp. 73–79, Oct. 1959. doi:
10.1287/mnsc.6.1.73

[153] K. Margellos, P. Goulart, and J. Lygeros, “On the road between
robust optimization and the scenario approach for chance constrained
optimization problems,” IEEE Transactions on Automatic Control, vol. 59,
no. 8, pp. 2258–2263, 2014. doi: 10.1109/TAC.2014.2303232

[154] A. Nemirovski, “On safe tractable approximations of chance constraints,”
European Journal of Operational Research, vol. 219, no. 3, pp. 707–718,
2012. doi: 10.1016/j.ejor.2011.11.006

[155] R. T. Rockafellar and S. Uryasev, “Optimization of conditional value-
at-risk,” The Journal of Risk, vol. 2, no. 3, pp. 21–41, 2000. doi:
10.21314/JOR.2000.038

[156] D. Bertsimas, D. Pachamanova, and M. Sim, “Robust linear optimization
under general norms,” Operations Research Letters, vol. 32, no. 6, pp.
510–516, Nov. 2004. doi: 10.1016/j.orl.2003.12.007

[157] X. Chen, M. Sim, and P. Sun, “A Robust Optimization Perspective
on Stochastic Programming,” Operations Research, vol. 55, no. 6, pp.
1058–1071, 2007. doi: doi:10.1287/opre.1070.0441

[158] W. Chen, M. Sim, J. Sun, and C.-P. Teo, “From CVaR to Uncertainty
Set: Implications in Joint Chance-Constrained Optimization,” Operations
Research, vol. 58, no. 2, pp. 470–485, 2010. doi: 10.1287/opre.1090.0712

[159] W. Chen and M. Sim, “Goal-Driven Optimization,” Operations Research,
vol. 57, no. 2, pp. 342–357, Apr. 2009. doi: 10.1287/opre.1080.0570

[160] A. Kessy, A. Lewin, and K. Strimmer, “Optimal whitening and
decorrelation,” The American Statistician, vol. 72, no. 4, pp. 309–314,
2018. doi: 10.1080/00031305.2016.1277159



BIBLIOGRAPHY 189

[161] J. Dupačová, N. Gröwe-Kuska, and W. Römisch, “Scenario reduction in
stochastic programming,” Mathematical Programming, vol. 95, no. 3, pp.
493–511, Mar. 2003. doi: 10.1007/s10107-002-0331-0

[162] J. Löfberg, “YALMIP : A Toolbox for Modeling and Optimization in
MATLAB,” in Proceedings of the CACSD Conference, Taipei, Taiwan,
2004.

[163] Gurobi Optimization Inc., “Gurobi optimizer reference manual,” 2012.
[Online]. Available: www.gurobi.com

[164] BDEW. Energiedaten - Durchschnittlicher Strompreis für Haushalte
2016. [Online]. Available: www.bdew.de/internet.nsf/id/DE_Energiedate
n#cat/Daten%2FGrafiken%5CEnergie%20allgemein%5CEnergiedaten
%5C3.%20Stromversorgung/3-15-strompreis-fuer-haushalte-de

[165] Bundesnetzagentur, “Photovoltaikanlagen - Datenmeldungen und EEG-
Vergütungssätze.”

[166] A. Malhotra, B. Battke, M. Beuse, A. Stephan, and T. Schmidt, “Use
cases for stationary battery technologies: A review of the literature and
existing projects,” Renewable and Sustainable Energy Reviews, vol. 56,
pp. 705 – 721, 2016. doi: 10.1016/j.rser.2015.11.085

[167] D. Wu, M. Kintner-Meyer, Tao Yang, and P. Balducci, “Economic analysis
and optimal sizing for behind-the-meter battery storage,” in 2016 IEEE
Power and Energy Society General Meeting (PESGM), July 2016. doi:
10.1109/PESGM.2016.7741210. ISSN 1944-9933 pp. 1–5.

[168] “TSOs’ proposal for the establishment of common and harmonised rules
and processes for the exchange and procurement of balancing capacity
for Frequency Containment Reserves (FCR) (...).” ENTSO-E, Tech. Rep.,
Oktober 2018.

[169] R. Passey, N. Haghdadi, A. Bruce, and I. MacGill, “Designing more cost
reflective electricity network tariffs with demand charges,” Energy Policy,
vol. 109, no. July, pp. 642–649, 2017. doi: 10.1016/j.enpol.2017.07.045

[170] Bayernwerk. Netzentgelte §17 und 27 abs. 1 stromnev. [Online].
Available: www.bayernwerk-netz.de/de/bayernwerk-netz-gmbh/netzinf
ormation/netzentgelte/netzentgelte-strom.html [Accessed 2019-05-17].

[171] J. Leadbetter and L. Swan, “Battery storage system for residential
electricity peak demand shaving,” Energy and Buildings, vol. 55, pp.
685 – 692, 2012. doi: 10.1016/j.enbuild.2012.09.035

www.gurobi.com
www.bdew.de/internet.nsf/id/DE_Energiedaten#cat/Daten%2FGrafiken%5CEnergie%20allgemein%5CEnergiedaten%5C3.%20Stromversorgung/3-15-strompreis-fuer-haushalte-de
www.bdew.de/internet.nsf/id/DE_Energiedaten#cat/Daten%2FGrafiken%5CEnergie%20allgemein%5CEnergiedaten%5C3.%20Stromversorgung/3-15-strompreis-fuer-haushalte-de
www.bdew.de/internet.nsf/id/DE_Energiedaten#cat/Daten%2FGrafiken%5CEnergie%20allgemein%5CEnergiedaten%5C3.%20Stromversorgung/3-15-strompreis-fuer-haushalte-de
www.bayernwerk-netz.de/de/bayernwerk-netz-gmbh/netzinformation/netzentgelte/netzentgelte-strom.html
www.bayernwerk-netz.de/de/bayernwerk-netz-gmbh/netzinformation/netzentgelte/netzentgelte-strom.html


190 BIBLIOGRAPHY

[172] M. Koller, T. Borsche, A. Ulbig, and G. Andersson, “Review of grid
applications with the Zurich 1MW battery energy storage system,”
Electric Power Systems Research, vol. 120, pp. 128–135, Mar. 2015. doi:
10.1016/j.epsr.2014.06.023

[173] B. P. Bhattarai, K. S. Myers, and J. W. Bush, “Reducing demand charges
and onsite generation variability using behind-the-meter energy storage,”
in 2016 IEEE Conference on Technologies for Sustainability (SusTech),
Oct 2016. doi: 10.1109/SusTech.2016.7897156 pp. 140–146.

[174] A. Oudalov, R. Cherkaoui, and A. Beguin, “Sizing and optimal operation
of battery energy storage system for peak shaving application,” in 2007
IEEE Lausanne Power Tech, July 2007. doi: 10.1109/PCT.2007.4538388
pp. 621–625.

[175] G. Piero Schiapparelli, S. Massucco, E. Namor, F. Sossan, R. Cherkaoui,
and M. Paolone, “Quantification of primary frequency control provision
from battery energy storage systems connected to active distribution
networks,” in 2018 Power Systems Computation Conference (PSCC),
June 2018. doi: 10.23919/PSCC.2018.8442554 pp. 1–7.

[176] F. Braeuer, J. Rominger, R. McKenna, and W. Fichtner, “Battery storage
systems: An economic model-based analysis of parallel revenue streams
and general implications for industry,” Applied Energy, vol. 239, pp. 1424
– 1440, 2019. doi: 10.1016/j.apenergy.2019.01.050

[177] R. Moreno, R. Moreira, and G. Strbac, “A MILP model for optimising
multi-service portfolios of distributed energy storage,” Applied Energy,
vol. 137, pp. 554 – 566, 2015. doi: 10.1016/j.apenergy.2014.08.080

[178] H. Heitsch and W. Römisch, “Scenario Reduction Algorithms in Stochastic
Programming,” Computational Optimization and Applications, vol. 24,
no. 2/3, pp. 187–206, 2003. doi: 10.1023/A:1021805924152

[179] S. T. Rachev and W. Römisch, “Quantitative stability in stochastic
programming: The method of probability metrics,” Mathematics
of Operations Research, vol. 27, no. 4, pp. 792–818, 2002. doi:
10.1287/moor.27.4.792.304

[180] J. M. Morales, S. Pineda, A. J. Conejo, and M. Carrion, “Scenario
reduction for futures market trading in electricity markets,” IEEE
Transactions on Power Systems, vol. 24, no. 2, pp. 878–888, May 2009.
doi: 10.1109/TPWRS.2009.2016072

[181] D. P. Bertsekas, Dynamic programming and optimal control: approximate
dynamic programming, 4th ed. Athena scientific Belmont, MA, 2012,
vol. 2.



BIBLIOGRAPHY 191

[182] C. Cervellera, A. Wen, and V. C. Chen, “Neural network and regression
spline value function approximations for stochastic dynamic programming,”
Computers & operations research, vol. 34, no. 1, pp. 70–90, 2007.

[183] V. C. Chen, “Application of orthogonal arrays and mars to inventory
forecasting stochastic dynamic programs,” Computational statistics &
data analysis, vol. 30, no. 3, pp. 317–341, 1999.

[184] Elia, “General framework for frequency containment reserve
service by non-CIPU resources,” 2017. [Online]. Available:
www.elia.be/~/media/files/Elia/Products-and-services/ancillary%20ser
vices/purchase%20of%20ancillary%20services/General-Framework-R1-
Non-CIPU-2015_2018_version-May-2017.pdf

[185] R. D’hulst and E. Peeters, “Distributed voltage control strategies in a LV
distribution network,” in International Conference on Renewable Energies
and Power Quality (ICREPQ10), Granada (Spain), 23rd to 25th March,
vol. 2010, 2010.

[186] E. Demirok, P. C. González, K. H. B. Frederiksen, D. Sera, P. Rodriguez,
and R. Teodorescu, “Local reactive power control methods for overvoltage
prevention of distributed solar inverters in low-voltage grids,” IEEE
Journal of Photovoltaics, vol. 1, no. 2, pp. 174–182, Oct 2011. doi:
10.1109/JPHOTOV.2011.2174821

[187] S. Deshmukh, B. Natarajan, and A. Pahwa, “Voltage/var control in
distribution networks via reactive power injection through distributed
generators,” IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1226–
1234, Sep. 2012. doi: 10.1109/TSG.2012.2196528

[188] Synergrid. Synergrid. [Online]. Available: www.Synergrid.be/ [Accessed
2018-06-13].

[189] Synergrid, “Overeenkomst tussen de DNB en de dienstverlener
van flexibiliteit in het kader van de levering van R1 aan Elia
door het gebruik van flexibiliteit bij distributienetgebruikers op het
laagspanningsdistributienet,” Tech. Rep., May 2018.

[190] G. Litjens, E. Worrell, and W. van Sark, “Economic benefits of
combining self-consumption enhancement with frequency restoration
reserves provision by photovoltaic-battery systems,” Applied Energy, vol.
223, pp. 172 – 187, 2018. doi: 10.1016/j.apenergy.2018.04.018

[191] A. C. Chapman, G. Verbič, and D. J. Hill, “Algorithmic and strategic
aspects to integrating demand-side aggregation and energy management
methods,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2748–2760,
Nov 2016. doi: 10.1109/TSG.2016.2516559

www.elia.be/~/media/files/Elia/Products-and-services/ ancillary%20services/purchase%20of%20ancillary%20services/ General-Framework-R1-Non-CIPU-2015_2018_version-May- 2017.pdf
www.elia.be/~/media/files/Elia/Products-and-services/ ancillary%20services/purchase%20of%20ancillary%20services/ General-Framework-R1-Non-CIPU-2015_2018_version-May- 2017.pdf
www.elia.be/~/media/files/Elia/Products-and-services/ ancillary%20services/purchase%20of%20ancillary%20services/ General-Framework-R1-Non-CIPU-2015_2018_version-May- 2017.pdf
www.Synergrid.be/


192 BIBLIOGRAPHY

[192] S. Mhanna, A. C. Chapman, and G. Verbič, “A fast distributed algorithm
for large-scale demand response aggregation,” IEEE Transactions
on Smart Grid, vol. 7, no. 4, pp. 2094–2107, July 2016. doi:
10.1109/TSG.2016.2536740

[193] S. Weckx, R. D’Hulst, B. Claessens, and J. Driesen, “Multiagent charging
of electric vehicles respecting distribution transformer loading and voltage
limits,” IEEE Transactions on Smart Grid, vol. 5, no. 6, pp. 2857–2867,
Nov 2014. doi: 10.1109/TSG.2014.2345886

[194] N. Gatsis and G. B. Giannakis, “Decomposition algorithms for
market clearing with large-scale demand response,” IEEE Transactions
on Smart Grid, vol. 4, no. 4, pp. 1976–1987, Dec 2013. doi:
10.1109/TSG.2013.2258179

[195] C. K. Wen, J. C. Chen, J. H. Teng, and P. Ting, “Decentralized plug-in
electric vehicle charging selection algorithm in power systems,” IEEE
Transactions on Smart Grid, vol. 3, no. 4, pp. 1779–1789, Dec 2012. doi:
10.1109/TSG.2012.2217761

[196] J. Engels, H. Almasalma, and G. Deconinck, “A distributed gossip-based
voltage control algorithm for peer-to-peer microgrids,” in 2016 IEEE Inter-
national Conference on Smart Grid Communications (SmartGridComm),
Nov 2016. doi: 10.1109/SmartGridComm.2016.7778789

[197] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Püschel, “D-
ADMM: a communication-efficient distributed algorithm for separable
optimization,” IEEE Transactions on Signal Processing, vol. 61, no. 10,
pp. 2718–2723, May 2013. doi: 10.1109/TSP.2013.2254478

[198] P. Gandotra, R. K. Jha, and S. Jain, “A survey on device-to-device
(d2d) communication: Architecture and security issues,” Journal of
Network and Computer Applications, vol. 78, pp. 9 – 29, 2017. doi:
10.1016/j.jnca.2016.11.002

[199] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
“Internet of things: A survey on enabling technologies, protocols, and
applications,” IEEE Communications Surveys Tutorials, vol. 17, no. 4,
pp. 2347–2376, jun 2015. doi: 10.1109/COMST.2015.2444095

[200] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide area
networks: An overview,” IEEE Communications Surveys Tutorials, vol. 19,
no. 2, pp. 855–873, jan 2017. doi: 10.1109/COMST.2017.2652320

[201] H. W. Jung, “Über den kleinsten kreis, der eine ebene figur einschließt.”
Journal für die reine und angewandte Mathematik, vol. 137, pp. 310–313,
1910.



BIBLIOGRAPHY 193

[202] Enexis Netbeheer. Open data. [Online]. Available: www.enexis.nl/over-
ons/documenten-en-publicaties/open-data [Accessed 2018-06-13].

[203] P. Samadi, H. Mohsenian-Rad, R. Schober, and V. W. S. Wong, “Advanced
demand side management for the future smart grid using mechanism
design,” IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1170–1180,
Sep. 2012. doi: 10.1109/TSG.2012.2203341

[204] O. K. Gupta and A. Ravindran, “Branch and bound experiments in convex
nonlinear integer programming,” Management Science, vol. 31, no. 12, pp.
1533–1546, 1985. doi: 10.1287/mnsc.31.12.1533

[205] T. Westerlund and F. Pettersson, “An extended cutting plane method
for solving convex minlp problems,” Computers & Chemical Engineering,
vol. 19, pp. 131 – 136, 1995. doi: 10.1016/0098-1354(95)87027-X

[206] R. A. Stubbs and S. Mehrotra, “A branch-and-cut method for 0-1 mixed
convex programming,” Mathematical Programming, vol. 86, no. 3, pp.
515–532, Dec 1999. doi: 10.1007/s101070050103

[207] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011. doi: 10.1561/2200000016

[208] J. Eckstein and D. P. Bertsekas, “On the Douglas–Rachford splitting
method and the proximal point algorithm for maximal monotone
operators,” Mathematical Programming, vol. 55, no. 1, pp. 293–318, Apr
1992. doi: 10.1007/BF01581204

[209] Bevolkingsontwikkeling; regio per maand [Population growth; region per
month]. CBS Statline. [Online]. Available: opendata.cbs.nl/statline/#/C
BS/nl/dataset/37230ned/table?ts=1528880736628 [Accessed 2018-06-13].

[210] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[211] M. J. Feizollahi, M. Costley, S. Ahmed, and S. Grijalva, “Large-scale
decentralized unit commitment,” International Journal of Electrical
Power & Energy Systems, vol. 73, pp. 97 – 106, 2015. doi:
10.1016/j.ijepes.2015.04.009

[212] Directive (EU) 2019/944 of the European Parliament and of the
Council of 5 June 2019 on common rules for the internal market for
electricity and amending Directive 2012/27/EU. [Online]. Available:
data.europa.eu/eli/dir/2019/944/oj [Accessed 2019-12-24].

www.enexis.nl/over-ons/documenten-en-publicaties/open-data
www.enexis.nl/over-ons/documenten-en-publicaties/open-data
opendata.cbs.nl/statline/#/CBS/nl/dataset/37230ned/table?ts=1528880736628
opendata.cbs.nl/statline/#/CBS/nl/dataset/37230ned/table?ts=1528880736628
data.europa.eu/eli/dir/2019/944/oj




Curriculum Vitae

Jonas Engels

Born on 4th August, 1990 in Lier, Belgium.

2002 - 2008 Secondary School,
Sciences-Mathematics (8h),
Sint-Gummaruscollege Lier, Belgium.

2009 - 2012 Bachelor of Engineering: Mechanical & Electrical Engineering,
KU Leuven, Belgium.
Graduated Cum Laude.

Fall 2012 Erasmus Program,
KTH Royal Institute of Technology, Stockholm, Sweden.

2012 - 2014 Master of Engineering: Energy,
KU Leuven, Belgium.
Graduated Magna Cum Laude.

2014 - 2015 Business Consultant,
Sia Partners, Brussels, Belgium.

2015 - 2019 Ph.D. in Engineering Science,
Department of Electrical Engineering,
KU Leuven, Belgium.

2016 - ... Researcher,
REstore / Centrica Business Solutions Belgium.

195





List of Publications

Status on 1 January, 2020.

Articles in Peer-Reviewed Journals

1. Engels J., Claessens B., Deconinck G. (2019). Optimal Combination
of Frequency Control and Peak Shaving with Battery Storage Systems.
IEEE Transactions on Smart Grid (Early Access), December 2019.

2. Engels J., Claessens B., Deconinck G. (2019). Grid-Constrained
Distributed Optimization for Frequency Control with Low-Voltage
Flexibility. IEEE Transactions on Smart Grid, vol. 11, no. 1, pp. 612-622,
Jan 2020.

3. Engels J., Claessens B., Deconinck G. (2019). Techno-economic analysis
and optimal control of battery storage for frequency control services,
applied to the German market. Applied Energy 242, pp. 1036-1049. May
2019.

4. Engels J., Claessens B., Deconinck G. (2017). Combined Stochastic
Optimization of Frequency Control and Self-Consumption with a Battery.
IEEE Transactions on Smart Grid, vol. 10, no. 2, pp. 1971-1987, March
2019.

Patents

1. Claessens B., Engels J., Peeters S., Rombouts J.W., (2018) Self-
Organizing Demand-Response System. US16/157,431. Pending.

197



198 LIST OF PUBLICATIONS

International Conferences

1. Almasalma H., Engels J. and Deconinck G. (2017). Dual-decomposition-
based peer-to-peer voltage control for distribution networks. CIRED, vol.
2017, no. 1, pp. 1718-1721, Glasgow, 12-15 June 2017.

2. Engels J., Almasalma H., Deconinck G. (2016). A Distributed Gossip-
based Voltage Control Algorithm for Peer-to-Peer Microgrids. IEEE
International Conference on Smart Grid Communications (SmartGrid-
Comm), pp. 376-381, Sydney, 6-9 November 2016.

3. Almasalma H., Engels J., Deconinck G. (2016). Peer-to-Peer Control of
Microgrids. 8th IEEE Benelux Young researchers symposium in Electrical
Power Engineering, Eindhoven, 12-13 May 2016.

4. Van Stiphout A., Engels J., Guldentops D., Deconinck G. (2015).
Quantifying the Flexibility of Residential Electricity Demand in 2050: a
Bottom-Up Approach. IEEE Powertech, Eindhoven, 29 June - 2 July
2015.





FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF ELECTRICAL ENGINEERING

DIV. ELECTA
Kasteelpark Arenberg 10 box 2445

B-3001 Leuven
jonas.engels@kuleuven.be

www.esat.kuleuven.be/electa


	Abstract
	Beknopte samenvatting
	Abbreviations and Acronyms
	Terminology
	Nomenclature
	Contents
	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Road Towards This Thesis
	Research Questions, Challenges and Scope
	Outline and Contributions

	Battery Storage in Electricity Markets
	Introduction
	Overview of Battery Energy Storage Applications
	Description and Value Estimation of Battery Energy Storage Applications
	Frequency Containment Reserve (FCR)
	Automatic Frequency Restoration Reserve (aFRR)
	Manual Frequency Restoration Reserve (mFRR)
	Replacement Reserve (RR)
	Inertia
	Black Start
	Voltage Control
	Congestion Management & Network Investment Deferral
	Day-Ahead Market Arbitrage
	Intraday Market Arbitrage
	Imbalance Price Arbitrage & Portfolio Balancing
	Increasing Self-Consumption
	Peak Shaving
	Time of Use Bill Management
	Power Quality Improvements
	Uninterruptible Power Supply

	Quantitative Comparison of the Applications
	Conclusion

	Battery Storage Used for Frequency Reserves
	Introduction
	Frequency Containment Reserve
	Related Works and Contributions

	BESS Model and FCR Controller
	Battery Cell Model
	Degradation Model
	From a Battery Cell Model to a BESS Model
	FCR Controller

	Optimisation Framework
	Expected Value Approximation
	Chance Constraint Approximation
	Optimisation Algorithm
	Total Revenues and Costs

	Case Study: BESSs in German FCR
	Data and Regulatory Requirements
	Optimisation Setup
	Results and Discussion

	Conclusions

	Combining Self-Consumption and Frequency Control Applications with a Battery
	Introduction
	Background and Related Work
	Background on Frequency Control
	Related Work

	Problem formulation
	Primary Frequency Control
	Recharging Policy
	Battery Efficiency
	Chance-Constraints and Robust Optimisation
	Equivalent State Feedback Policy

	Self-Consumption
	Self-Consumption Policy
	Stochastic Optimisation
	Scenario Reduction
	Evaluation of the Solution Quality

	Simulation and Results
	Primary Frequency Control
	Combination with Self-Consumption

	Conclusion

	Combining Frequency Control and Peak Shaving with Battery Storage Systems
	Introduction
	Frequency Control with a BESS
	Peak Shaving
	Related Literature

	Optimisation and Control Framework
	Frequency Control Framework
	Combining Peak Shaving and Frequency Control
	Stochastic Optimisation
	Non-Anticipative Peak Shaving Controller
	Dynamic Programming Framework

	Aggregating Multiple Sites
	Simulation and Results
	Combining Peak Shaving and Frequency Control
	Dynamic Programming Framework
	Monthly Costs and Revenues

	Conclusion

	Impact of Distribution Grid Constraints on Low-Voltage Grid Connected Flexibility
	Introduction
	FCR with Low-Voltage Connected Assets in Belgium
	A Distributed Optimization Framework for the FSP

	Construction of Circle Constraints
	Distributed Optimization of a Pool of Assets
	Central Optimization Problem
	Distributed Optimization

	Case Study: Distributed Assets in Breda
	Impact of Circle Constraints on Usable FCR Capacity
	Performance of the Distributed Optimization Algorithm

	Conclusion

	General Conclusions and Future Work
	Answers to the Research Questions
	General Conclusions
	Future Work

	Rainflow Counting Algorithm
	Bibliography
	Curriculum Vitae
	List of Publications

