| 1                           | THE METABOLIC ENGINE OF ENDOTHELIAL CELLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3                           | Kim D. Falkenberg <sup>1,2</sup> , Katerina Rohlenova <sup>1,2</sup> , Yonglun Luo <sup>3-6</sup> & Peter Carmeliet <sup>1,2</sup>                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5<br>6<br>7<br>8<br>9<br>10 | (1) Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leu-<br>ven, Leuven, B-3000, Belgium; (2) Laboratory of Angiogenesis and Vascular Metabolism, Center<br>for Cancer Biology, VIB, Leuven, B-3000, Belgium; (3) Department of Biomedicine, Aarhus Uni-<br>versity, Aarhus DK-8000, Denmark; (4) Lars Bolund Institute of Regenerative Medicine, BGI-<br>Qingdao, Qingdao 266555, China; (5) BGI-Shenzhen, Shenzhen 518083, China; (6) China Na-<br>tional GeneBank, BGI-Shenzhen, Shenzhen 518120, China. |
| 11                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13                          | Running title: Endothelial cell metabolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 14<br>15                    | Keywords: Endothelial cells, metabolism, angiogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16                          | Editorial correspondence:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 17                          | P. Carmeliet, M.D., Ph.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 18                          | Laboratory of Angiogenesis and Vascular Metabolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19                          | VIB, KU Leuven                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20                          | Center for Cancer Biology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 21                          | Campus Gasthuisberg O&N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 22                          | Herestraat 49 - 912,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 23                          | B-3000, Leuven, Belgium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 24                          | tel: 32-16-37.32.02; fax: 32-16-37.25.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 25                          | e-mail: peter.carmeliet@kuleuven.vib.be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

# **ABSTRACT**

Endothelial cells (ECs) line the quiescent vasculature, but can form new blood vessels (a process termed angiogenesis) in disease. Strategies targeting angiogenic growth factors have been clinically developed for the treatment of malignant and ocular diseases. Studies over the past decade docu-mented that several pathways of central carbon metabolism are necessary for EC homeostasis and growth, and that strategies that stimulate or block EC metabolism can be used to respectively pro-mote or inhibit vessel growth. In this review, we provide an updated oversight of our growing under-standing of central carbon metabolic pathways in ECs and the therapeutic opportunities of targeting EC metabolism.

#### **38 INTRODUCTION**

Blood vessels supply oxygen and nutrients, drain waste, regulate vascular patency, produce angi-39 ocrine signals for tissue regeneration and serve as gateways for immune cell trafficking<sup>1</sup>. They are 40 lined by endothelial cells (ECs), the name of which is deduced from the Greek word " $\varepsilon v \delta o v$  (endon)", 41 meaning "inside", referring to their inner location in the blood vessel. While ECs are guiescent in 42 healthy adults (except in a few conditions such as pregnancy, etc.), they become rapidly activated in 43 response to signals, produced by tissues in need of vascularization, which results in the formation of 44 new blood vessels – a process referred to as angiogenesis  $^{1,2}$ . When activated, ECs undergo a pheno-45 typic switch<sup>3</sup> and differentiate into proliferating stalk cells to elongate the sprout and into migratory 46 tip cells to guide the sprout at the forefront, a position that is adopted by the fittest cell via dynamic 47 competition (Fig. 1)  $^{4}$ . 48

Dysfunction of ECs has been implicated in the pathophysiology of diabetes <sup>5</sup> and atherosclerosis <sup>6</sup>, and contributes to the development of peripheral artery disease <sup>7</sup>, coronary heart disease and myocardial infarction <sup>8,9</sup>, cerebrovascular disease <sup>10</sup>, as well as kidney disease <sup>11</sup>. Excessive angiogenesis, on the other hand, promotes diseases such as cancer, blinding eye disease and pulmonary arterial hypertension (PAH) <sup>12-14</sup>.

Traditional anti-angiogenic therapies (AATs) target EC-activating growth factor pathways, such as VEGF signaling. However, while clinically used for cancer and blinding eye disease treatment, these approaches lack sufficient efficacy and treated patients develop resistance – partly due to the compensatory effect of other signaling pathways that activate ECs <sup>1,15</sup>. In search of new therapeutic opportunities that may bypass these limitations, a new concept, proposed in 2009, postulated that ECs rely on metabolic adaptations to execute the instructions of angiogenic signals to form new blood vessels (Fig. 1) <sup>16</sup>. In this review, we provide an update of our current understanding of how ECs utilize 61 metabolism, often in a particular manner, and discuss possible therapeutic opportunities of targeting 62 EC metabolism for the development of alternative therapeutic strategies to promote or inhibit vessel 63 growth. Rather than providing a historical, all-encompassing overview, we highlight principles by illus-64 trating key examples.

# 65 ENDOTHELIAL METABOLISM

## 66 GLYCOLYSIS AND SIDE PATHWAYS

67 Blood vessels deliver oxygen to nearly all tissues in the body, yet ECs are not fully taking profit of the 68 access to oxygen in the blood and generate most of their ATP anaerobically via glycolysis (Fig. 2,3) – in contrast to many other cell types <sup>17</sup>. This is striking, as the conversion of glucose to pyruvate during 69 70 glycolysis yields only 2 moles of ATP per mole of glucose, making it a less efficient means for ATP pro-71 duction than oxidative phosphorylation (OXPHOS), yielding 36 moles of ATP. However, this – at first sight – apparent contra-intuitive behavior offers advantages. Indeed, reliance on anaerobic metabo-72 73 lism lowers the production of reactive oxygen species (ROS) and enables ECs to vascularize regions 74 deprived of oxygen and nutrients, which would otherwise be impossible if their energy production was primarily dependent on oxidative glucose metabolism. Consistently, in glucose-replete condi-75 76 tions, ECs are relatively resistant to hypoxia, but they become sensitive to oxygen depletion when glucose levels drop <sup>18</sup>. Another advantage is that ECs, by consuming little oxygen, can transfer larger 77 78 amounts of oxygen to perivascular cells, a primary objective of why ECs developed during evolution.

While glycolytic flux is high in all types of ECs, it is lower in quiescent ECs due to downregulation of glycolytic gene expression by the transcription factors FOXO1 and Notch <sup>19,20</sup>. In contrast, growth factors like VEGF upregulate glycolytic gene expression in angiogenic ECs, and both proliferating stalk cells and migratory tip cells rely on glycolysis <sup>17,21</sup>. In tip cells, glycolytic energy production not only takes place in the cytosol, but also in local "ATP hot spots" in lamellipodia and filopodia,
 which facilitate energy-intensive actin cytoskeletal remodeling and promote tip cell competitiveness
 <sup>17</sup>.

Hyperproliferative ECs in cancer and PAH have high rates of glycolysis and employ this path-86 way not only for energy production but also for biomass synthesis <sup>22,23</sup>. In fact, ECs are hyperglycolytic 87 compared to many other cell types <sup>17</sup>. Hence, the upregulated glycolysis represents an attractive met-88 abolic target for manipulating pathological angiogenesis in these diseases <sup>24</sup>. Subject of intense re-89 search is, for instance, the role of the glycolysis stimulator 6-Phosphofructo-2-Kinase/Fructose-2,6-90 Biphosphatase 3 (PFKFB3, Fig. 2), a VEGFR target <sup>25</sup> that is upregulated in tumor ECs (TECs) <sup>22</sup>. Inhibit-91 ing or silencing PFKFB3 reduces the growth and migration of ECs in vitro, rendering them more guies-92 cent <sup>17,25,26</sup>. Of relevance, pharmacological blockade of PFKFB3 in mouse tumor models normalizes 93 abnormal tumor vessels by tightening vascular barrier integrity and improving vessel maturation <sup>27</sup>. 94 95 Extending these observations, overexpression of PFKFB3 in turn enhances glycolysis, which promotes vessel sprouting <sup>17</sup>. Indeed, mosaic overexpression of PFKFB3 in an EC spheroid sprouting model in 96 97 vitro or in a transgenic zebrafish angiogenesis model in vivo boosts tip cell behavior, which provided 98 the first evidence that a change in EC metabolism by itself, even without a change in angiogenic signaling, was capable of altering vessel sprouting <sup>17</sup>, showcasing the important role of EC metabolism. 99

Further illustrating the reliance of angiogenic ECs on glycolysis, inhibition of other glycolytic proteins, like hexokinase 2 (Fig. 2) <sup>21</sup>, which catalyzes an initial step in glycolysis, and adenosine receptor A2a <sup>28</sup>, an upstream activator of glycolysis, similarly impairs angiogenesis. Surprisingly, the antiangiogenic effect observed by inhibiting another glycolytic enzyme, PKM2, is mechanistically based on altered NFkB signaling instead of glycolytic attenuation or impairment <sup>29</sup>. In glucose-limiting conditions, such as during vessel sprouting into hypoglycemic tissues, angiogenic ECs rely on utilization of glucose stored in internal glycogen reservoirs, as impairment of glycogen breakdown by inhibiting gly cogen phosphorylase (GP) reduces EC viability and impairs EC migration <sup>30</sup>.

108 Intermediates of the glycolytic pathway are utilized as substrates for side pathways, like the 109 pentose phosphate pathway (PPP) (Fig. 2). The PPP is involved in nucleotide biosynthesis and provides 110 NADPH for fatty acid synthesis, redox homeostasis and the synthesis of nitric oxide (NO), a key regulator of vascular tone, by endothelial nitric oxide (NO) synthase (eNOS)<sup>31</sup>. Indeed, increasing the PPP 111 flux reduces ROS accumulation in ECs exposed to high glucose levels <sup>32</sup>. Hyperproliferative ECs in PAH 112 feature an elevated PPP flux, presumably in order to meet the cells' demand for nucleotides during 113 DNA replication (Fig. 3) <sup>33</sup>. In line, inhibition of the PPP by silencing rate-limiting enzymes in oxidative 114 or non-oxidative side arms (respectively, glucose-6-phosphate dehydrogenase (G6PDH)<sup>32</sup> or trans-115 ketolase (TKT)<sup>30</sup>, Fig. 2) reduces proliferation of angiogenic ECs. Considering that inhibiting the glyco-116 117 lytic flux in angiogenic ECs not only impedes energy production but also PPP-dependent biomass synthesis <sup>22</sup>, glycolysis manipulation may represent a therapeutic approach for targeting hyper-activated 118 ECs (Fig. 3A). 119

Another glycolytic side pathway implicated in angiogenesis is the hexosamine biosynthesis pathway (HBP, Fig. 2). The HBP produces UDP-GlcNAc (uridine diphosphate N-acetylglucosamine) inducing protein glycosylation, which regulates the activity of target proteins, like for example VEGFR2 <sup>34</sup>. In ECs, HBP-mediated protein glycosylation might have an inhibitory effect on angiogenesis, since blocking glycosylation by silencing the HBP key enzyme glutamine:fructose-6-phosphate amidotransferase 1 (GFAT1) <sup>35</sup> induces vascular sprouting, whereas boosting glycosylation has opposite effects <sup>36</sup>. The synthesis of serine, another pathway utilizing glycolytic intermediates, will be discussed below.

# 127 TCA CYCLE AND MITOCHONDRIAL OXIDATIVE PHOSPHORYLATION

128 A fraction of glycolysis-derived carbons enters the tricarboxylic acid (TCA) cycle in the form of acetyl-CoA or oxaloacetate (Fig. 2) <sup>17,37</sup>. ECs are particular in how they sustain the TCA cycle, as a substantial 129 amount of acetyl-CoA entering the TCA cycle is derived from fatty acids through fatty acid oxidation 130 131 (FAO, see below) in conjunction with other anaplerotic substrates likely derived from glucose and/or amino acids <sup>37</sup>. The TCA cycle is vital for biomass production in ECs, as its intermediates serve as sub-132 strates for various anabolic pathways, such as biosynthesis of nucleotides or amino acids like aspar-133 tate <sup>37-39</sup>. Also, the TCA cycle regenerates the reducing agent NADH for OXPHOS. Mitochondrial vol-134 135 ume in ECs typically (with an exception of brain ECs) represents only 2–5% of the cytoplasmic volume, 136 in contrast, for instance, to the 32% volume density of mitochondria in oxidative cardiac muscle cells <sup>40,41</sup>. Thus, it is not surprising that mitochondria and OXPHOS were traditionally considered to have 137 only marginal roles in ECs. However, recent reports documenting that OXPHOS is crucial for EC func-138 tion urge to reconsider the role of mitochondria in ECs <sup>42-46</sup>. 139

Mitochondrial respiration serves various purposes, including ATP production by utilizing re-140 141 ducing agents (Fig. 3). The respiratory machinery consists of multi-protein complexes that transfer 142 electrons derived from NADH and FADH<sub>2</sub> while pumping protons across the inner mitochondrial membrane (complexes I-IV). The consequent proton gradient is used by the ATP synthase to generate 143 144 ATP. Blockade of OXPHOS complexes I and III (by using piericidin A and antimycin A, respectively, or 145 by inactivating ubiquinol-cytochrome C reductase complex III subunit VII (UQCRQ)) compromises EC proliferation and impairs developmental and pathological angiogenesis <sup>47</sup>. In line with these findings, 146 147 indirect interference with OXPHOS - due to heme synthesis defects, which impedes the activity of heme-containing complexes III and IV (see Serine Metabolism)<sup>48</sup>, or by oxaloacetate accumulation as 148 a result of depletion of oxaloacetate decarboxylase FAHD1, which inhibits complex II activity <sup>49</sup> – also 149 150 causes proliferation defects in ECs.

151 Mechanistically, inhibition of respiratory complexes compromises recycling of NAD<sup>+</sup>, produced

152 by complex I, which diminishes the TCA cycle flux, lowers aspartate levels and impairs oxidative processes requiring NAD<sup>+</sup> (Fig. 3) <sup>47,50</sup>. Regenerating NAD<sup>+</sup> levels by ectopic expression of electron 153 154 transport chain-independent NADH oxidase rescues aspartate levels and proliferation in ECs. Therefore, a key function of OXPHOS in ECs is to maintain the NAD<sup>+</sup>/NADH ratio in order to sustain biosyn-155 thetic processes during proliferation, such as aspartate production <sup>47</sup>. This is in accordance with the 156 157 fact that, as mentioned above, ECs cover the major part (up to 85%) of their energy demand by glycolysis instead of utilizing OXPHOS (Fig. 3), indicating a negligible role of mitochondrial respiration in 158 ATP production in glucose-rich conditions <sup>17</sup>. Mitochondrial respiration in guiescent ECs (displaying 159 lower proliferation and anabolic needs) is downregulated by FOXO1<sup>20</sup>. 160

Mitochondrial metabolism offers ECs a flexibility to utilize substrates for energy production, 161 which may become essential for ECs in disease conditions. For instance, hyperproliferative TECs utilize 162 163 OXPHOS for both biomass synthesis and energy production in glucose-deprived conditions. Indeed, in tumors, glucose levels can be as low as 0.2 mM (in contrast to 5.5 mM in the blood) <sup>51</sup>. Accordingly, 164 proliferating TECs are more sensitive to inhibition of OXPHOS than guiescent ECs <sup>52-54</sup>. Moreover, ab-165 166 errant mitochondrial metabolism is a hallmark of hyperproliferative PAH-ECs, which rely more on glycolysis for energy production, forfeiting their metabolic flexibility to some extent. PAH-ECs feature 167 reduced mitochondrial ATP production and volume, but increased ROS formation <sup>55,56</sup>. 168

# 169 FATTY ACID METABOLISM

Lipids are used by ECs as (i) structural membrane components in the form of phospholipids <sup>57</sup>, (ii) as signaling molecules mediating cellular responses such as growth, stress and apoptosis <sup>58,59</sup>, and (iii) to sustain the TCA cycle (in conjunction with other anaplerotic substrates) <sup>37</sup>. ECs can take up fatty acids (FAs) directly from the circulation, either passively or by designated transporters (CD36; FATP family), and thereby regulate the lipid content in the blood, an important risk factor of atherosclerosis <sup>60</sup>. Despite having access to circulating lipids, ECs can also synthesize FAs endogenously by converting ace tyl-CoA to malonyl-CoA, which is then elongated to FAs (Fig. 2) <sup>61</sup>.

During angiogenesis, the availability of FAs for ECs is essential <sup>62</sup>, and growth factor VEGF-B 177 has been shown to induce FA uptake by upregulation of FATP3 and FATP4 expression <sup>63</sup>. In addition. 178 the synthesis of FAs is upregulated in proliferating ECs<sup>19</sup> and PAH-ECs<sup>64</sup>, making manipulation of this 179 pathway a potential target to treat pathological angiogenesis. Indeed, blocking FA synthesis by inhibi-180 181 tion of acetyl-CoA carboxylase ACC (by soraphen A or genetic inactivation), the enzyme catalyzing the reaction from acetyl-CoA to malonyl-CoA, decreases EC migration <sup>65</sup>. Mechanistically, the reduced 182 malonyl-CoA levels impede FA- and subsequently phospholipid synthesis <sup>66</sup>, leading to a shift in the 183 membrane phospholipid composition that affects membrane fluidity and filopodia formation (Fig. 184 2,3). Inhibiting fatty acid synthase (FASN), which is crucial for FA elongation from malonyl-CoA, de-185 creases EC migration and/or proliferation <sup>61,67</sup>. Unexpectedly, since the angiogenesis defect cannot be 186 rescued by palmitate supplementation <sup>61</sup>, this defect is not a consequence of FA depletion, as ob-187 served in cancer cells <sup>68</sup>. Instead, blockade of fatty acid synthesis leads to changes in post-188 189 translational protein modifications, i.e. reduced eNOS palmitoylation or increased mTOR malonylation, which reduces their activity and impairs vascular sprouting (Fig. 2,3) <sup>61,67</sup>. 190

FAs intended for different purposes (storage, elongation or oxidation) are shuttled between organelles by fatty acid transporters. Interestingly, the fatty acid transporter FABP4 is upregulated in angiogenesis, while its inhibition in ECs perturbs FA metabolism (by lipolysis of stored FAs, which increases the intracellular FA content and FAO) and induces oxidative stress, leading to reduced EC migration and proliferation <sup>69,70</sup>.

For catabolic use, FAs are imported into mitochondria by carnitine palmitoyl transferase 1a (CPT1a), where they are oxidized and enter the TCA cycle in the form of acetyl-CoA (Fig. 2). Whereas

many other cell types use FAO for energy production <sup>71-73</sup>, FAO in proliferating blood vascular and 198 199 lymphatic ECs is essential for sustaining the TCA cycle (in conjunction with other anaplerotic substrates), which results in the synthesis of aspartate, a precursor of nucleotides needed for DNA repli-200 cation during EC proliferation (Fig. 3) – a dependency rarely observed in other cell types <sup>37,74</sup>. Im-201 202 portantly, the TCA cycle in ECs is not replenished by a net contribution of FA-derived carbons in the traditional meaning of anaplerosis <sup>75</sup>. Although <sup>13</sup>C-labelled acetyl-CoA derived from the FA palmitate 203 204 enters the TCA cycle and labels oxaloacetate, there is no net formation of oxaloacetate from acetyl-205 CoA, derived from FAs. Rather, in conditions of sufficient availability of anaplerotic substrates (glutamine, glucose), FAO provides acetyl-CoA, which in conjunction with an anaplerotic substrate helps to 206 207 sustain the TCA cycle, necessary for dNTP synthesis for proliferation. Blocking FAO by inhibiting CPT1a (by etomoxir) in angiogenic ECs reduces EC proliferation but not migration <sup>37</sup>. Supplementation with 208 acetate, which can be converted to acetyl-CoA, or with nucleosides rescues the FAO defect <sup>37</sup>. In con-209 trast to angiogenic ECs, quiescent ECs utilize FAO for NADPH regeneration via the TCA cycle (see Re-210 dox metabolism, Fig. 3)<sup>19</sup>. 211

# 212 FATTY ACID AND KETONE BODY METABOLISM IN LYMPHATIC ECS

213 Besides its importance in blood vascular ECs, CPT1a regulates lymphatic EC (LEC) development, not 214 only by sustaining the TCA cycle and promoting nucleotide synthesis via the above described non-215 anaplerotic mechanism, but also by regulating venous-to-lymphatic EC differentiation via an epigenetic mechanism (Fig. 4) <sup>74,76</sup>. During embryonic development, LECs differentiate from venous ECs in a 216 217 process driven by the transcription factor PROX1, which upregulates the expression of a lymphangiogenesis program, e.g. VEGF receptor 3 (VEGFR3) and others <sup>77</sup>. PROX1 binds to the CPT1a promotor 218 219 and enhances its expression, leading to increased acetyl-CoA levels. Acetyl-CoA is then used for his-220 tone acetylation of PROX1-binding sites via direct interaction of PROX1 with the histone acetyltransferase p300. As a result, PROX1 makes its target genes more accessible for itself, thereby potentiating
 its own transcriptional activity <sup>74</sup>.

223 The fact that the lymphangiogenesis defect caused by FAO inhibition can be rescued by ace-224 tate supplementation highlights the importance of acetyl-CoA for LECs. Primed by these results, a re-225 cent study showed that acetyl-CoA derived from ketone body oxidation is crucial for lymphangiogenesis <sup>6</sup>. Ketone bodies are energy-rich metabolites secreted by the liver, which are oxidized in mito-226 227 chondria of extra-hepatic tissues into two molecules of acetyl-CoA, which can then enter the TCA cycle (Fig. 2) <sup>78</sup>. LEC-specific loss of 3-oxoacid-CoA-transferase-1 (OXCT1), a key enzyme of ketone body 228 oxidation<sup>78</sup>, reduces LEC proliferation, migration and vessel sprouting *in vitro* and impairs lymphangi-229 ogenesis in development and disease in Prox1<sup>ΔOXCT1</sup> mice, lacking Oxct1 in LECs <sup>76</sup>. Mechanistically, 230 231 OXCT1 silencing lowers acetyl-CoA levels, TCA cycle metabolite pools, and aspartate and dNTP levels, 232 required for LEC proliferation (Fig. 4). Ketone body supplementation to LECs induces opposite effects. Notably, elevation of lymph ketone body levels in wild type (but no longer in Prox1<sup>ΔOXCT1</sup>) mice by a 233 high-fat, low-carbohydrate ketogenic diet or by administration of the ketone body  $\beta$ -hydroxybutyrate 234 ( $\beta$ -OHB) increases lymphangiogenesis after corneal injury and myocardial infarction <sup>78</sup>. Intriguingly, in 235 236 a mouse model of microsurgical ablation of lymphatic vessels in the tail, which recapitulates features of acquired lymphedema in humans, the ketogenic diet improved lymphatic vessel function and 237 growth, reduced infiltration of anti-lymphangiogenic immune cells, and decreased edema<sup>78</sup>, suggest-238 ing a novel metabolite dietary therapeutic opportunity (see also Concluding Remarks) <sup>76</sup>. 239

## 240 GLUTAMINE AND ASPARAGINE METABOLISM

Of the set of amino acids analyzed, cultured ECs consume glutamine (the most abundant nonessential amino acid in the circulation) to the largest extent and use it, as many other cell types, not only for protein and nucleotide synthesis but also as a carbon source to replenish the TCA cycle via

glutaminase 1 (GLS1) (Fig. 2, 5) <sup>39,79</sup>. As such, GLS1 supports nucleotide synthesis and – to a certain 244 245 extent – citrate production and lipid biosynthesis via reductive carboxylation, though the latter contextual finding requires confirmation <sup>38,39</sup>. Glutaminase 2, on the other hand, provides glutamine car-246 247 bons and nitrogen for glutathione synthesis used for redox homeostasis in non-EC types, but its role 248 has not been studied in ECs yet (see Redox Metabolism). Accordingly, in in vitro and in vivo models, glutamine catabolism blockade (by metabolic, genetic or pharmacological means) in ECs impairs pro-249 250 tein and nucleotide synthesis, and renders ECs susceptible to oxidative stress, which leads to proliferation arrest and/or affects EC motility <sup>38,39</sup>. 251

252 Glutamine is essential for the synthesis of other amino acids and consequently proteins, and is a nitrogen donor for the *de novo* synthesis of asparagine in ECs. Notably, supplementation of aspara-253 gine plus  $\alpha$ -ketoglutarate rescued the phenotypes induced by glutamine starvation <sup>38,39</sup>. In contrast, 254 255 single agent supplementation with anti-oxidants or TCA cycle replenishment sufficed to rescue the 256 glutamine depletion-induced phenotype in cancer cells but not in ECs, suggesting a strong reliance of ECs on glutamine <sup>39</sup>. This can be even more apparent in disease conditions, as for example ECs infect-257 ed by Kaposi 's sarcoma-associated herpes virus depend on glutamine breakdown for survival <sup>80</sup>. As-258 259 paragine is believed to serve as a signaling metabolite (rheostat) that senses the availability of TCA intermediates for non-essential amino acid synthesis and coordinates a homeostatic response (Fig. 5) 260 <sup>81</sup>. Even though asparagine can be taken up by ECs, synthesis of this particular amino acid seems to be 261 262 critical, as inhibition of asparagine synthetase (ASNS, the enzyme producing asparagine from glutamine and aspartate) impairs EC proliferation, even in conditions where asparagine is not limiting <sup>39</sup>. 263

264 Intriguingly, despite the high levels of glutamine in the circulation, ECs express glutamine syn-265 thetase (GS), allowing them to synthesize glutamine from glutamate. However, even in glutamine-266 deprived conditions (which upregulates GS expression), ECs still only synthesize negligible amounts of 267 glutamine <sup>82</sup>. Nonetheless, GS is of particular importance during vessel growth as EC loss of GS impairs EC migration, but not proliferation (Fig. 5) <sup>82</sup>. The underlying mechanism relates, at least in part, to perturbed actin remodeling, caused by decreased localization in the plasma membrane of RhoJ, a Rho GTPase enriched in ECs and an assembly regulator of cytoskeleton proteins <sup>83</sup>. RhoJ requires palmitoylation for plasma membrane localization and activity, which is lost upon GS blockade. Molecular characterization and structural modeling identified GS as a previously unrecognized palmitoyl transferase <sup>82</sup>. While RhoJ was one identified target of the palmitoyl transferase activity of GS, it is likely that other targets are also affected.

#### 275 SERINE METABOLISM

276 ECs can take up serine from the extracellular milieu or synthesize it *de novo* from the glycolytic inter-277 mediate 3-phosphoglycerate (3PG) (Fig. 2, 5) and utilize it for the synthesis of heme, glutathione and nucleotides (dATP, dGTP, dTTP)<sup>84</sup>. The *de novo* synthesis pathway starts with a rate-controlling step 278 controlled by phosphoglycerate dehydrogenase (PHGDH)<sup>85</sup>. Loss of endothelial PHGDH impairs EC 279 280 proliferation and survival, causing severe vascular defects and neonatal lethality upon Phgdh gene inactivation in ECs <sup>48</sup>. The underlying mechanism of the PHGDH inhibition defect is a depletion of the 281 cellular heme pool, which impedes the activity of heme-containing OXPHOS complexes III and IV, and 282 thus results in electron leakage and defective mitochondrial respiration (Fig. 5)<sup>48</sup>. Escaped electrons 283 react with oxygen, which – together with decreased glutathione levels – causes ROS accumulation 284 and oxidative stress, and induces EC death <sup>48</sup>. Moreover, PHGDH defective ECs display not only the 285 expected decrease in dATP, dGTP and dTTP levels, but also in dCTP levels (not documented in any 286 287 other cell type to date). This is due to an impaired activity of dihydroorotate dehydrogenase (DHODH) 288 - a mitochondrial enzyme crucial for dCTP synthesis, the activity of which is coupled to and depend-289 ent on functional electron transport in OXPHOS. Treatment of ECs with a heme synthesis blocker 290 phenocopied the PHGDH loss, while supplementation with hemin rescued the proliferation defect in 291 PHGDH defective ECs, thus illustrating the importance of the role of PHGDH-dependent serine synthesis in heme production <sup>48</sup>. In contrast to other cell types <sup>48,86,87</sup>, ECs rely on *de novo* serine biosyn-292 293 thesis in a peculiar manner, as PHGDH knockdown in ECs reduces cellular serine levels and induces 294 apoptosis, which cannot be rescued by supplementation with the amino acids glycine and serine, even though they can take up serine from the extracellular medium <sup>48</sup>. In tumors, the flux of glycolytic 295 intermediates to serine biosynthesis is enhanced to sustain nucleotide synthesis for the hyperprolif-296 erative TEC phenotype <sup>22,48</sup>. Consistently, TECs express elevated levels of PHGDH <sup>48</sup>, representing a 297 298 therapeutic vulnerability to be explored for new anti-angiogenic approaches.

## 299 **REDOX METABOLISM**

A balanced redox state is crucial for ECs (for reviews, see <sup>88,89</sup>). At physiological concentrations, ROS serve as key mediators in cellular signaling regulating among others EC growth, survival and angiogenesis <sup>90</sup>. Highly elevated levels of ROS, however, give rise to oxidative stress, reduce bioavailability of the key vascular tone regulator nitric oxide (NO) and lead to EC activation and dysfunction, as has for example been observed in ECs in atherosclerosis <sup>91</sup>.

305 Healthy quiescent ECs lining perfused vessels are exposed to a high oxygen environment, which necessitates protective mechanisms against oxidative damage (Fig. 1). For this reason, upon 306 entering a quiescent state, ECs adapt their metabolism by increasing FAO (Fig. 3)<sup>19</sup>. A similar increase 307 in FAO was documented upon overexpression of FOXO1, which induces EC guiescence<sup>20</sup>. Interesting-308 309 ly, the anti-mitogenic signal Notch, which inhibits nucleotide synthesis, seems to be a major regulator 310 of controlling the switch between the use of FAO for promoting nucleotide synthesis in proliferating ECs (low Notch) versus the use of FAO for redox homeostasis in guiescent ECs (high Notch)<sup>19</sup>. Since 311 312 proliferating ECs utilize FAO to support the TCA cycle for nucleotide synthesis (see above), it is surprising that quiescent ECs would have higher, not lower FAO levels, since quiescent ECs synthesize fewer 313

314 nucleotides as they proliferate less. Intriguingly, the function of FAO in quiescent ECs is markedly different. Instead of being used for energy production or TCA cycle support for biomass synthesis, FAO is 315 used to sustain redox homeostasis in guiescent ECs<sup>19</sup>. FA-derived acetyl-CoA is used to sustain the 316 317 TCA cycle, which generates isocitrate and malate, i.e. substrates of NADPH-producing malic enzyme 318 and isocitrate dehydrogenase (IDH2, Fig. 2), the deficiency of which causes oxidative stress in ECs and vascular inflammation <sup>92</sup>. Indeed, NADPH is used to regenerate reduced glutathione (GSH) from its 319 oxidized form (GSSG) by glutathione reductase (see below) <sup>93</sup>. At the same time, when ECs switch 320 321 from proliferation to quiescence, they upregulate the expression of other NADPH-generating pathways and vasculoprotective proteins that consume NADPH (e.g. G6PDH, glutaredoxin-2 (GLRX2), glu-322 tathione peroxidase 3 (GPx3), peroxiredoxin-1 (PRDX1) and eNOS, Fig. 3) <sup>19</sup>. Hence, to meet the in-323 324 creased demands of NADPH by vasculoprotective genes, quiescent ECs reprogram their metabolism 325 to produce more NADPH via several routes, including increased FAO. The increased demands of anti-326 oxidant protection thus seem to relate to the fact that quiescent ECs are exposed to high oxygen levels in the blood stream and hence are in need of mechanisms to protect them from oxidative stress. 327

This may explain why EC loss of CPT1a aggravates inflammatory bowel disease due to elevated ROS levels <sup>19</sup>. Indeed, EC loss of CPT1a or its pharmacological inhibition *in vivo* induces vascular leakage and EC hyperpermeability (by affecting intracellular Ca<sup>2+</sup> homeostasis) and leads to EC dysfunction <sup>94,95</sup>. Of interest, treatment of mice, lacking CPT1a in ECs, with acetate (a source of acetyl-CoA) protects them against ROS production, vascular inflammation and EC dysfunction <sup>19</sup>, raising the question whether such type of metabolite delivery might be useful for the treatment of vascular complications in diabetes, atherosclerosis, etc.

335 Several other metabolic pathways are involved in the protection against oxidative damage in 336 ECs: (i) by relying mostly on glycolytic metabolism, ECs limit the levels of ROS produced by OXPHOS; 337 (ii) both glutamine and glycine are required for glutathione synthesis and, thus, deprivation of glutamine or serine (which is converted to glycine via serine hydroxymethyltransferase) are associated with increased ROS levels (see Serine Metabolism) <sup>39,48</sup>; (iii) serine, as one-carbon donor for the folate cycle, contributes to the generation of NADPH; (iv) UbiA prenyltransferase domain-containing protein 1 (UBIAD1), which synthesizes the eNOS cofactor Coenzyme Q10, protects ECs from oxidative stress and ROS-mediated lipid peroxidation <sup>96</sup>.

# 343 **CONCLUDING REMARKS & THERAPEUTIC PERSPECTIVES**

344 Studies during the past decade highlighted the importance of EC metabolism in vessel sprouting in 345 vitro and in vivo, and illustrated that manipulating EC metabolism can overrule instructions by 346 (lymph)angiogenic signals. While not only providing new fundamental insights in EC biology, these 347 findings also raise the question whether they can serve for the development of novel therapeutic 348 strategies to promote or inhibit growth of blood vascular or lymphatic vessels. We will highlight two 349 complementary examples. First, as an example of an approach to inhibit a metabolic target in ECs, we 350 discuss the potential of blockade of the glycolytic activator PFKFB3 in glycolysis-addicted TECs (Fig. 351 6A). While a justified concern is that not only TECs but also other healthy ECs and non-EC types may 352 require glycolysis, TECs rely on glycolysis more than other cell types, which can switch to other metabolic pathways more readily upon glycolysis blockade; precisely therefore, they are more sensitive to 353 even slight reductions in glycolysis levels <sup>22</sup>. The therapeutic goal is not to *eliminate* glycolysis (which 354 would cause toxic side-effects in other cell types) but rather to *normalize* the hyperglycolysis back to 355 glycolysis levels in quiescent ECs, so that TECs do no longer grow <sup>97</sup>. In fact, lowering TEC glycolysis by 356 357 15-25% sufficed to normalize tumor vessel abnormalities, thereby reducing metastasis and improving chemotherapy <sup>22</sup>, without inducing systemic toxicity (because such a low level of glycolysis inhibition) 358 359 is readily compensated by cell types that are not addicted to glycolysis). In contrast, lowering TEC glycolysis by a maximally tolerable anti-glycolytic activator dose induced opposite effects due to tumor 360

vessel disintegration <sup>27</sup>. Clinical development of an inhibitor of a glycolytic activator will be required 361 to prove this hypothesis. Silencing or blocking other EC metabolic targets (hexokinase 2<sup>21</sup>; PKM2<sup>29</sup>; 362 GP <sup>30</sup>; PHGDH <sup>48</sup>; CPT1a <sup>37</sup>; ACC1 <sup>65</sup>; FAPB4 <sup>69,70</sup>; GS <sup>82</sup>; GLS1 <sup>38,39</sup>; G6PDH <sup>30,32</sup>; FASN <sup>61,67</sup>; OXCT1 <sup>76</sup>; 363 UQCRQ<sup>47</sup>; FADH1<sup>49</sup>) has been shown to inhibit vessel sprouting *in vitro* and/or *in vivo*. These targets 364 365 might deserve future attention for possible AAT development, whereby it would be preferable to de-366 velop strategies to target such drugs to the ECs in neovessels in diseased tissues, while sparing normal 367 quiescent ECs in healthy tissues. Indeed, studies showing that, for instance, the inhibition of PKM2 368 impairs the vascular barrier integrity of quiescent ECs and that CPT1a inhibition leads to oxidative 369 stress and dysfunction of quiescent ECs urge for caution when developing EC metabolism-targeted therapeutics <sup>19,98</sup>. 370

Second, a ketogenic diet showed a promising improvement of lymphedema in a preclinical mouse model, a strategy rationally deduced from obtaining fundamental insights on how lipids and ketone bodies affect LEC biology <sup>74,76</sup>. This has resulted in the initiation of a phase II clinical trial to test the clinical effect of dietary ketone bodies (high fat/low carbohydrate ketogenic diet) in lymphedema patients (Fig. 6B).

376 Despite recent advances, only few metabolic enzymes have been characterized in ECs to date 377 in sufficient detail. Further research is needed to uncover complex metabolic links and to identify 378 other pathways that can be targeted to control angiogenesis or EC dysfunction. Considering the func-379 tional heterogeneity of ECs in different states (quiescent, stalk, tip cells), vascular beds (arterial, ve-380 nous, capillary, lymphatic vessels) and tissues, multi-omics profiling of ECs including at the single cell level could prove to be invaluable for future development of EC-targeted therapies. Advanced bioin-381 formatics tools allowing easy dataset exploration, like EndoDB<sup>99</sup>, and *in silico* approaches like compu-382 tational genome-scale metabolic modelling of ECs can further help facilitate the discovery of novel 383 384 unexplored targets and promise to yield exciting new perspective in the field.

# **386 ACKNOWLEDGEMENTS**

387 The authors apologize to any author whose work could not be included due to space limitations, and 388 thank all lab members, colleagues and collaborators for contributing to the discussed data. KF is sup-389 ported by a Marie Sklodowska-Curie IF (H2020-MSCA-IF-2017, No. 799522). KR is supported by the 390 Research Foundation Flanders (FWO, grant no. 12V9318N). YL is supported by Sanming Project of 391 Medicine in Shenzhen (SZSM201612074), by BGI-Research, Danish Research Council for Independent 392 Research (DFF-1337-00128), Sapere Aude Young Research Talent Prize (DFF-1335-00763A) and Aar-393 hus University Strategic Grant (AU-iCRISPR). The work of PC is supported by a Belgian Science Policy 394 grant (IUAP7/03), long-term structural Methusalem funding by the Flemish Government, grants from 395 the FWO (G.0834.13N and G.0532.10N), Foundation against Cancer (grant no. 2012-175), a European 396 Research Council (ERC) Advanced Research Grant (EU ERC269073) and an AXA Research grant. 397 398 AUTHOR CONTRIBUTIONS: All authors prepared, revised the manuscript and approved the final version; 399 KF prepared the figures. 400 **CONFLICT OF INTEREST DECLARATION:** The authors declare no competing financial interests. 401 402 403 AUTHOR INFORMATION: Correspondence should be addressed to <u>peter.carmeliet@kuleuven.vib.be</u>.

- 404
- 405

# 406 **REFERENCES**

407 1 Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of 408 angiogenesis. *Cell* **146**, 873-887, doi:10.1016/j.cell.2011.08.039 (2011).

409 2 Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of 410 angiogenesis. *Nature* **473**, 298-307, doi:10.1038/nature10144 (2011).

411 3 Eelen, G. *et al.* Endothelial Cell Metabolism. *Physiological reviews* **98**, 3-58, 412 doi:10.1152/physrev.00001.2017 (2018).

413 4 Jakobsson, L. *et al.* Endothelial cells dynamically compete for the tip cell position 414 during angiogenic sprouting. *Nature cell biology* **12**, 943-953, doi:10.1038/ncb2103 (2010).

415 5 Tabit, C. E., Chung, W. B., Hamburg, N. M. & Vita, J. A. Endothelial dysfunction in 416 diabetes mellitus: molecular mechanisms and clinical implications. *Reviews in endocrine & metabolic* 417 *disorders* **11**, 61-74, doi:10.1007/s11154-010-9134-4 (2010).

418 6 Gimbrone, M. A., Jr. & Garcia-Cardena, G. Endothelial Cell Dysfunction and the 419 Pathobiology of Atherosclerosis. *Circ Res* **118**, 620-636, doi:10.1161/circresaha.115.306301 (2016).

420 7 Vasa, M. *et al.* Number and migratory activity of circulating endothelial progenitor cells 421 inversely correlate with risk factors for coronary artery disease. *Circ Res* **89**, E1-7 (2001).

422 8 Matsuzawa, Y. & Lerman, A. Endothelial dysfunction and coronary artery disease: 423 assessment, prognosis, and treatment. *Coronary artery disease* **25**, 713-724, 424 doi:10.1097/mca.00000000000178 (2014).

425 9 Gutierrez, E. *et al.* Endothelial dysfunction over the course of coronary artery disease. 426 *Eur Heart J* **34**, 3175-3181, doi:10.1093/eurheartj/eht351 (2013).

427 10 Chrissobolis, S., Miller, A. A., Drummond, G. R., Kemp-Harper, B. K. & Sobey, C. G. 428 Oxidative stress and endothelial dysfunction in cerebrovascular disease. *Frontiers in bioscience* 429 (*Landmark edition*) **16**, 1733-1745 (2011).

430 11 Malyszko, J. Mechanism of endothelial dysfunction in chronic kidney disease. *Clinica* 431 *chimica acta; international journal of clinical chemistry* **411**, 1412-1420, 432 doi:10.1016/j.cca.2010.06.019 (2010).

433 12 Campochiaro, P. A. Ocular neovascularization. *Journal of molecular medicine (Berlin,* 434 *Germany)* **91**, 311-321, doi:10.1007/s00109-013-0993-5 (2013).

435 13 Folkman, J. Role of angiogenesis in tumor growth and metastasis. *Seminars in oncology* 436 **29**, 15-18, doi:10.1053/sonc.2002.37263 (2002).

437 14 Voelkel, N. F. & Gomez-Arroyo, J. The role of vascular endothelial growth factor in 438 pulmonary arterial hypertension. The angiogenesis paradox. *American journal of respiratory cell and* 439 *molecular biology* **51**, 474-484, doi:10.1165/rcmb.2014-0045TR (2014).

440 15 Ebos, J. M. & Kerbel, R. S. Antiangiogenic therapy: impact on invasion, disease 441 progression, and metastasis. *Nature reviews. Clinical oncology* **8**, 210-221, 442 doi:10.1038/nrclinonc.2011.21 (2011).

443 16 Aragones, J., Fraisl, P., Baes, M. & Carmeliet, P. Oxygen sensors at the crossroad of 444 metabolism. *Cell metabolism* **9**, 11-22, doi:10.1016/j.cmet.2008.10.001 (2009). 445 17 De Bock, K. *et al.* Role of PFKFB3-driven glycolysis in vessel sprouting. *Cell* **154**, 651-446 663, doi:10.1016/j.cell.2013.06.037 (2013).

447 18 Mertens, S., Noll, T., Spahr, R., Krutzfeldt, A. & Piper, H. M. Energetic response of 448 coronary endothelial cells to hypoxia. *Am J Physiol* **258**, H689-694, 449 doi:10.1152/ajpheart.1990.258.3.H689 (1990).

450 19 Kalucka, J. *et al.* Quiescent Endothelial Cells Upregulate Fatty Acid beta-Oxidation for 451 Vasculoprotection via Redox Homeostasis. *Cell metabolism* **28**, 881-894.e813, 452 doi:10.1016/j.cmet.2018.07.016 (2018).

453 20 Wilhelm, K. *et al.* FOXO1 couples metabolic activity and growth state in the vascular 454 endothelium. *Nature* **529**, 216-220, doi:10.1038/nature16498 (2016).

455 21 Yu, P. *et al.* FGF-dependent metabolic control of vascular development. *Nature* **545**, 456 224-228, doi:10.1038/nature22322 (2017).

457 22 Cantelmo, A. R. *et al.* Inhibition of the Glycolytic Activator PFKFB3 in Endothelium 458 Induces Tumor Vessel Normalization, Impairs Metastasis, and Improves Chemotherapy. *Cancer cell* 459 **30**, 968-985, doi:10.1016/j.ccell.2016.10.006 (2016).

460 23 Thenappan, T., Ormiston, M. L., Ryan, J. J. & Archer, S. L. Pulmonary arterial 461 hypertension: pathogenesis and clinical management. *BMJ (Clinical research ed.)* **360**, j5492, 462 doi:10.1136/bmj.j5492 (2018).

463 24 Cruys, B. *et al.* Glycolytic regulation of cell rearrangement in angiogenesis. *Nature* 464 *communications* **7**, 12240, doi:10.1038/ncomms12240 (2016).

465 25 Xu, Y. *et al.* Endothelial PFKFB3 plays a critical role in angiogenesis. *Arteriosclerosis,* 466 *thrombosis, and vascular biology* **34**, 1231-1239, doi:10.1161/atvbaha.113.303041 (2014).

467 26 Schoors, S. *et al.* Partial and transient reduction of glycolysis by PFKFB3 blockade 468 reduces pathological angiogenesis. *Cell metabolism* **19**, 37-48, doi:10.1016/j.cmet.2013.11.008 469 (2014).

470 27 Conradi, L. C. *et al.* Tumor vessel disintegration by maximum tolerable PFKFB3 471 blockade. *Angiogenesis*, doi:10.1007/s10456-017-9573-6 (2017).

472 28 Liu, Z. *et al.* Endothelial adenosine A2a receptor-mediated glycolysis is essential for 473 pathological retinal angiogenesis. *Nat Commun* **8**, 584, doi:10.1038/s41467-017-00551-2 (2017).

474 29 Stone, O. A. *et al.* Loss of pyruvate kinase M2 limits growth and triggers innate immune 475 signaling in endothelial cells. *Nature communications* **9**, 4077, doi:10.1038/s41467-018-06406-8 476 (2018).

477 30 Vizan, P. *et al.* Characterization of the metabolic changes underlying growth factor 478 angiogenic activation: identification of new potential therapeutic targets. *Carcinogenesis* **30**, 946-952, 479 doi:10.1093/carcin/bgp083 (2009).

480 31 Forstermann, U. & Sessa, W. C. Nitric oxide synthases: regulation and function. *Eur* 481 *Heart J* **33**, 829-837, 837a-837d, doi:10.1093/eurheartj/ehr304 (2012).

482 32 Leopold, J. A. *et al.* Glucose-6-phosphate dehydrogenase modulates vascular 483 endothelial growth factor-mediated angiogenesis. *The Journal of biological chemistry* **278**, 32100-484 32106, doi:10.1074/jbc.M301293200 (2003). 485 33 Fessel, J. P. *et al.* Metabolomic analysis of bone morphogenetic protein receptor type 2 486 mutations in human pulmonary endothelium reveals widespread metabolic reprogramming. *Pulm* 487 *Circ* **2**, 201-213, doi:10.4103/2045-8932.97606 (2012).

488 34 Chandler, K. B., Leon, D. R., Meyer, R. D., Rahimi, N. & Costello, C. E. Site-Specific N-489 Glycosylation of Endothelial Cell Receptor Tyrosine Kinase VEGFR-2. *Journal of proteome research* **16**, 490 677-688, doi:10.1021/acs.jproteome.6b00738 (2017).

491 35 Zibrova, D. *et al.* GFAT1 phosphorylation by AMPK promotes VEGF-induced 492 angiogenesis. *The Biochemical journal* **474**, 983-1001, doi:10.1042/bcj20160980 (2017).

493 36 Luo, B., Soesanto, Y. & McClain, D. A. Protein modification by O-linked GlcNAc reduces 494 angiogenesis by inhibiting Akt activity in endothelial cells. *Arteriosclerosis, thrombosis, and vascular* 495 *biology* **28**, 651-657, doi:10.1161/atvbaha.107.159533 (2008).

496 37 Schoors, S. *et al.* Fatty acid carbon is essential for dNTP synthesis in endothelial cells. 497 *Nature* **520**, 192-197, doi:10.1038/nature14362 (2015).

498 38 Kim, B., Li, J., Jang, C. & Arany, Z. Glutamine fuels proliferation but not migration of 499 endothelial cells. *EMBO J* **36**, 2321-2333, doi:10.15252/embj.201796436 (2017).

500 39 Huang, H. *et al.* Role of glutamine and interlinked asparagine metabolism in vessel formation. *EMBO J* **36**, 2334-2352, doi:10.15252/embj.201695518 (2017).

502 40 Blouin, A., Bolender, R. P. & Weibel, E. R. Distribution of organelles and membranes 503 between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. *The* 504 *Journal of cell biology* **72**, 441-455 (1977).

505 41 Oldendorf, W. H., Cornford, M. E. & Brown, W. J. The large apparent work capability of 506 the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and 507 other tissues of the rat. *Annals of neurology* **1**, 409-417, doi:10.1002/ana.410010502 (1977).

508 42 Groschner, L. N., Waldeck-Weiermair, M., Malli, R. & Graier, W. F. Endothelial 509 mitochondria--less respiration, more integration. *Pflugers Arch* **464**, 63-76, doi:10.1007/s00424-012-510 1085-z (2012).

511 43 Kluge, M. A., Fetterman, J. L. & Vita, J. A. Mitochondria and endothelial function. *Circ* 512 *Res* **112**, 1171-1188, doi:10.1161/CIRCRESAHA.111.300233 (2013).

513 44 Kadlec, A. O., Beyer, A. M., Ait-Aissa, K. & Gutterman, D. D. Mitochondrial signaling in 514 the vascular endothelium: beyond reactive oxygen species. *Basic Res Cardiol* **111**, 26, 515 doi:10.1007/s00395-016-0546-5 (2016).

516 45 Marcu, R., Zheng, Y. & Hawkins, B. J. Mitochondria and Angiogenesis. *Adv Exp Med Biol* 517 **982**, 371-406, doi:10.1007/978-3-319-55330-6\_21 (2017).

518 46 Koziel, A., Woyda-Ploszczyca, A., Kicinska, A. & Jarmuszkiewicz, W. The influence of 519 high glucose on the aerobic metabolism of endothelial EA.hy926 cells. *Pflugers Arch* **464**, 657-669, 520 doi:10.1007/s00424-012-1156-1 (2012).

521 47 Diebold, L. P. *et al.* Mitochondrial complex III is necessary for endothelial cell 522 proliferation during angiogenesis. *Nature Metabolism* **1**, 158-171 (2019).

523 48 Vandekeere, S. *et al.* Serine Synthesis via PHGDH Is Essential for Heme Production in 524 Endothelial Cells. *Cell metabolism* **28**, 573-587 e513, doi:10.1016/j.cmet.2018.06.009 (2018). 525 49 Petit, M., Koziel, R., Etemad, S., Pircher, H. & Jansen-Durr, P. Depletion of oxaloacetate 526 decarboxylase FAHD1 inhibits mitochondrial electron transport and induces cellular senescence in 527 human endothelial cells. *Exp Gerontol* **92**, 7-12, doi:10.1016/j.exger.2017.03.004 (2017).

528 50 Andrade, J. & Potente, M. Endothelial metabolism—more complex (III) than previously 529 thought. *Nature Metabolism* **1**, 14-15, doi:10.1038/s42255-018-0019-2 (2019).

530 51 Hirayama, A. *et al.* Quantitative metabolome profiling of colon and stomach cancer 531 microenvironment by capillary electrophoresis time-of-flight mass spectrometry. *Cancer research* **69**, 532 4918-4925, doi:10.1158/0008-5472.Can-08-4806 (2009).

533 52 Coutelle, O. *et al.* Embelin inhibits endothelial mitochondrial respiration and impairs 534 neoangiogenesis during tumor growth and wound healing. *EMBO molecular medicine* **6**, 624-639, 535 doi:10.1002/emmm.201303016 (2014).

538 54 Blecha, J. *et al.* Antioxidant defense in quiescent cells determines selectivity of electron 539 transport chain inhibition-induced cell death. *Free radical biology & medicine* **112**, 253-266, 540 doi:10.1016/j.freeradbiomed.2017.07.033 (2017).

541 55 Xu, W. *et al.* Alterations of cellular bioenergetics in pulmonary artery endothelial cells. 542 *Proceedings of the National Academy of Sciences of the United States of America* **104**, 1342-1347, 543 doi:10.1073/pnas.0605080104 (2007).

54 56 Diebold, I. *et al.* BMPR2 preserves mitochondrial function and DNA during 545 reoxygenation to promote endothelial cell survival and reverse pulmonary hypertension. *Cell* 546 *metabolism* **21**, 596-608, doi:10.1016/j.cmet.2015.03.010 (2015).

547 57 Spector, A. A. & Yorek, M. A. Membrane lipid composition and cellular function. 548 *Journal of lipid research* **26**, 1015-1035 (1985).

549 58 O'Donnell, V. B. Free Radicals and Lipid Signaling in Endothelial Cells. *Antioxidants & redox signaling* **5**, 195-203, doi:10.1089/152308603764816550 (2003).

551 59 Wymann, M. P. & Schneiter, R. Lipid signalling in disease. *Nat Rev Mol Cell Biol* **9**, 162-552 176, doi:10.1038/nrm2335 (2008).

553 60 Ghosh, A., Gao, L., Thakur, A., Siu, P. M. & Lai, C. W. K. Role of free fatty acids in 554 endothelial dysfunction. *Journal of biomedical science* **24**, 50, doi:10.1186/s12929-017-0357-5 (2017).

555 61 Bruning, U. *et al.* Impairment of Angiogenesis by Fatty Acid Synthase Inhibition Involves 556 mTOR Malonylation. *Cell metabolism* **28**, 866-880.e815, doi:10.1016/j.cmet.2018.07.019 (2018).

557 62 Vanetti, C., Bifari, F., Vicentini, L. M. & Cattaneo, M. G. Fatty acids rather than 558 hormones restore in vitro angiogenesis in human male and female endothelial cells cultured in 559 charcoal-stripped serum. *PLoS One* **12**, e0189528, doi:10.1371/journal.pone.0189528 (2017).

560 63 Hagberg, C. E. *et al.* Vascular endothelial growth factor B controls endothelial fatty acid 561 uptake. *Nature* **464**, 917-921, doi:10.1038/nature08945 (2010).

562 64 Singh, N., Singh, H., Jagavelu, K., Wahajuddin, M. & Hanif, K. Fatty acid synthase 563 modulates proliferation, metabolic functions and angiogenesis in hypoxic pulmonary artery 564 endothelial cells. *Eur J Pharmacol* **815**, 462-469, doi:10.1016/j.ejphar.2017.09.042 (2017). 565 65 Glatzel, D. K. *et al.* Acetyl-CoA carboxylase 1 regulates endothelial cell migration by 566 shifting the phospholipid composition. *J Lipid Res* **59**, 298-311, doi:10.1194/jlr.M080101 (2018).

567 66 Swinnen, J. V. *et al.* Fatty acid synthase drives the synthesis of phospholipids 568 partitioning into detergent-resistant membrane microdomains. *Biochemical and biophysical research* 569 *communications* **302**, 898-903 (2003).

570 67 Wei, X. *et al.* De novo lipogenesis maintains vascular homeostasis through endothelial 571 nitric-oxide synthase (eNOS) palmitoylation. *The Journal of biological chemistry* **286**, 2933-2945, 572 doi:10.1074/jbc.M110.193037 (2011).

573 68 Ventura, R. *et al.* Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase 574 Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and 575 Reprogramming Gene Expression. *EBioMedicine* **2**, 808-824, doi:10.1016/j.ebiom.2015.06.020 (2015).

576 69 Elmasri, H. *et al.* Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: 577 role of stem cell factor/c-kit pathway. *Angiogenesis* **15**, 457-468, doi:10.1007/s10456-012-9274-0 578 (2012).

579 70 Elmasri, H. *et al.* Fatty acid binding protein 4 is a target of VEGF and a regulator of cell 580 proliferation in endothelial cells. *Faseb j* **23**, 3865-3873, doi:10.1096/fj.09-134882 (2009).

581 71 Ghesquiere, B., Wong, B. W., Kuchnio, A. & Carmeliet, P. Metabolism of stromal and 582 immune cells in health and disease. *Nature* **511**, 167-176, doi:10.1038/nature13312 (2014).

583 72 Qu, Q., Zeng, F., Liu, X., Wang, Q. J. & Deng, F. Fatty acid oxidation and carnitine 584 palmitoyltransferase I: emerging therapeutic targets in cancer. *Cell death & disease* **7**, e2226, 585 doi:10.1038/cddis.2016.132 (2016).

586 73 Stoll, E. A. *et al.* Neural Stem Cells in the Adult Subventricular Zone Oxidize Fatty Acids 587 to Produce Energy and Support Neurogenic Activity. *Stem cells (Dayton, Ohio)* **33**, 2306-2319, 588 doi:10.1002/stem.2042 (2015).

589 74 Wong, B. W. *et al.* The role of fatty acid beta-oxidation in lymphangiogenesis. *Nature*, 590 doi:10.1038/nature21028 (2016).

591 75 Schoors, S. *et al.* Corrigendum: Fatty acid carbon is essential for dNTP synthesis in 592 endothelial cells. *Nature* **526**, 144, doi:10.1038/nature14624 (2015).

593 76 García-Caballero, M. *et al.* Role and therapeutic potential of dietary ketone bodies for 594 lymph vessel growth. *Nature Metabolism* (2019, in press).

595 77 Wong, B. W., Zecchin, A., Garcia-Caballero, M. & Carmeliet, P. Emerging Concepts in 596 Organ-Specific Lymphatic Vessels and Metabolic Regulation of Lymphatic Development. *Dev Cell* **45**, 597 289-301, doi:10.1016/j.devcel.2018.03.021 (2018).

598 78 Puchalska, P. & Crawford, P. A. Multi-dimensional Roles of Ketone Bodies in Fuel 599 Metabolism, Signaling, and Therapeutics. *Cell Metab* **25**, 262-284, doi:10.1016/j.cmet.2016.12.022 600 (2017).

601 79 DeBerardinis, R. J. & Cheng, T. Q's next: the diverse functions of glutamine in 602 metabolism, cell biology and cancer. *Oncogene* **29**, 313-324, doi:10.1038/onc.2009.358 (2010).

603 80 Sanchez, E. L., Carroll, P. A., Thalhofer, A. B. & Lagunoff, M. Latent KSHV Infected 604 Endothelial Cells Are Glutamine Addicted and Require Glutaminolysis for Survival. *PLoS pathogens* **11**, 605 e1005052, doi:10.1371/journal.ppat.1005052 (2015). 606 81 Zhang, J. *et al.* Asparagine plays a critical role in regulating cellular adaptation to 607 glutamine depletion. *Mol. Cell* **56**, 205-218, doi:10.1016/j.molcel.2014.08.018 (2014).

608 82 Eelen, G. *et al.* Role of glutamine synthetase in angiogenesis beyond glutamine 609 synthesis. *Nature* **561**, 63-69, doi:10.1038/s41586-018-0466-7 (2018).

610 83 Yuan, L. *et al.* RhoJ is an endothelial cell-restricted Rho GTPase that mediates vascular 611 morphogenesis and is regulated by the transcription factor ERG. *Blood* **118**, 1145-1153, 612 doi:10.1182/blood-2010-10-315275 (2011).

613 84 Lane, A. N. & Fan, T. W. Regulation of mammalian nucleotide metabolism and 614 biosynthesis. *Nucleic acids research* **43**, 2466-2485, doi:10.1093/nar/gkv047 (2015).

615 85 Amelio, I., Cutruzzola, F., Antonov, A., Agostini, M. & Melino, G. Serine and glycine 616 metabolism in cancer. *Trends in biochemical sciences* **39**, 191-198, doi:10.1016/j.tibs.2014.02.004 617 (2014).

618 86 Zhang, T. *et al.* Disruption of De Novo Serine Synthesis in Muller Cells Induced 619 Mitochondrial Dysfunction and Aggravated Oxidative Damage. *Molecular neurobiology* **55**, 7025-620 7037, doi:10.1007/s12035-017-0840-8 (2018).

621 87 Possemato, R. *et al.* Functional genomics reveal that the serine synthesis pathway is 622 essential in breast cancer. *Nature* **476**, 346, doi:10.1038/nature10350 (2011).

623 88 Santoro, M. M. Fashioning blood vessels by ROS signalling and metabolism. *Semin Cell* 624 *Dev Biol* **80**, 35-42, doi:10.1016/j.semcdb.2017.08.002 (2018).

625 89 Schroder, K. Redox Control of Angiogenesis. *Antioxidants & redox signaling*, 626 doi:10.1089/ars.2017.7429 (2018).

627 90 Breton-Romero, R. & Lamas, S. Hydrogen peroxide signaling in vascular endothelial 628 cells. *Redox biology* **2**, 529-534, doi:10.1016/j.redox.2014.02.005 (2014).

629 91 Incalza, M. A. *et al.* Oxidative stress and reactive oxygen species in endothelial 630 dysfunction associated with cardiovascular and metabolic diseases. *Vascular pharmacology* **100**, 1-19, 631 doi:10.1016/j.vph.2017.05.005 (2018).

632 92 Choi, S. J. *et al.* Isocitrate dehydrogenase 2 deficiency induces endothelial 633 inflammation via p66sh-mediated mitochondrial oxidative stress. *Biochemical and biophysical* 634 *research communications* **503**, 1805-1811, doi:10.1016/j.bbrc.2018.07.117 (2018).

635 93 Forman, H. J., Zhang, H. & Rinna, A. Glutathione: overview of its protective roles, 636 measurement, and biosynthesis. *Mol Aspects Med* **30**, 1-12, doi:10.1016/j.mam.2008.08.006 (2009).

637 94 Patella, F. *et al.* Proteomics-based metabolic modeling reveals that fatty acid oxidation 638 (FAO) controls endothelial cell (EC) permeability. *Mol Cell Proteomics* **14**, 621-634, 639 doi:10.1074/mcp.M114.045575 (2015).

640 95 Kalucka, J. *et al.* Quiescent Endothelial Cells Upregulate Fatty Acid beta-Oxidation for 641 Vasculoprotection via Redox Homeostasis. *Cell Metab*, doi:10.1016/j.cmet.2018.07.016 (2018).

642 96 Mugoni, V. *et al.* Ubiad1 is an antioxidant enzyme that regulates eNOS activity by 643 CoQ10 synthesis. *Cell* **152**, 504-518, doi:10.1016/j.cell.2013.01.013 (2013).

644 97 Carmeliet, P. & Jain, R. K. Principles and mechanisms of vessel normalization for cancer 645 and other angiogenic diseases. *Nature reviews. Drug discovery* **10**, 417-427, doi:10.1038/nrd3455 646 (2011). 647 98 Kim, B. *et al.* Endothelial pyruvate kinase M2 maintains vascular integrity. *J Clin Invest* 648 **128**, 4543-4556, doi:10.1172/JCI120912 (2018).

649 99 Khan, S. *et al.* EndoDB: a database of endothelial cell transcriptomics data. *Nucleic* 650 *Acids Res* **47**, D736-D744, doi:10.1093/nar/gky997 (2019).

651

## 652 **FIGURE LEGENDS**

653 **FIGURE 1:** ECs RELY ON METABOLIC REWIRING FOR ANGIOGENESIS

Quiescent ECs adapt their metabolism to endure high oxygen levels, which they are exposed to. When activated, ECs rewire their metabolism to sprout new vessels. Growth factors (schematically represented by green shapes) like fibroblast growth factor (FGF) or vascular endothelial growth factor (VEGF) bind to receptors on ECs and induce proliferation of "stalk cells" and migration of "tip cells". This phenotypic switch is dependent on metabolic changes in angiogenic ECs, which ensure amongst other energy and biomass production for proliferation and migration.

660 **FIGURE 2:** KEY METABOLIC PATHWAYS IN ECS.

The functions of the major metabolic pathways in ECs are described in the main text. Proteins discussed in the main text are depicted in dark blue font, red symbols in the OXPHOS pathway represent heme cofactors.

664 ABBREVIATIONS: 3PG, 3-phosphoglycerate; ACC, Acetyl-CoA Carboxylase; ASNS, Asparagine Synthetase; 665 ATP, Adenosine triphosphate;  $\beta$ -OHB, Beta hydroxybutyrate; CD36, CD36 molecule (fatty acid trans-666 locase); CoA, Coenzyme A; CPT1A, Carnitine palmitoyltransferase 1A; DHODH, Dihydroorotate dehy-667 drogenase; F2,6BP, Fructose-2,6-biphosphate; F6P, Fructose-6-phosphate; FAHD1, Fumarylacetoace-668 tate hydrolase domain containing 1 (oxaloacetate decarboxylase); FASN, Fatty acid synthase; FATP, Fatty acid transport protein; G3P, Glyceraldehyde-3-phosphate; G6P, Glucose-6-phosphate; G6PDH, 669 670 Glucose-6-phosphate dehydrogenase; GFAT1, Glutamine:fructose-6-phosphate amidotransferase 1; 671 GLS1, Glutaminase 1; GLS2, Glutaminase 2; GLUT1, Glucose transporter 1; GP, Glycogen phosphory-672 lase; GS, Glutamine synthetase; GSH, Glutathione; HK2, Hexokinase 2; IDH2, Isocitrate dehydrogenase 2; LECs, Lymphatic endothelial cells; ME3, Malic enzyme 3; NAD<sup>+</sup>/NADH, Nicotinamide adenine dinu-673

cleotide (oxidized/reduced); NADP<sup>+</sup>/NADPH, Nicotinamide adenine dinucleotide phosphate (oxidized/reduced); NFkB, nuclear factor kappa-light-chain-enhancer of activated B cells; OXCT1, 3oxoacid CoA-transferase 1; OXPHOS, Oxidative phosphorylation (mitochondrial respiration); PEP,
Phosphoenolpyruvate; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PHGDH,
Phosphoglycerate dehydrogenase; PKM2, Pyruvate kinase isozyme M2; R5P, Ribose-5-phosphate;
SDH, Succinate dehydrogenase; TCA, Tricarboxylic acid; TKT, Transketolase; UDP-GlcNAc, Uridine diphosphate N-acetylglucosamine.

#### 681 **FIGURE 3:** ADAPTATIONS OF METABOLIC PATHWAYS IN QUIESCENT VERSUS ANGIOGENIC ECS

682 Quiescent ECs (a) adapt their metabolism to maintain redox homeostasis to cope with their oxidative 683 stress-prone high oxygen environment (e.g. by upregulating the expression of vasculoprotective pro-684 teins and regeneration of NADPH, as well as by limiting ROS production). Angiogenic ECs (b) rewire 685 their metabolic pathways for energy and biomass production essential for cell proliferation and mi-686 gration. The pathways and the corresponding text boxes are highlighted with different colors (yellow, 687 glycolysis; brown, pentose phosphate pathway (PPP); dark green, fatty acid oxidation; light red, redox 688 metabolism; pink, OXPHOS; light green, fatty acid synthesis). The width of the highlighted pathway 689 corresponds to the flux through this pathway. For reasons of clarity, the metabolic pathways are 690 shown only schematically; for names of metabolites and metabolic enzymes, see Figure 2.

ABBREVIATIONS: ACC, Acetyl-CoA Carboxylase; AcCoA, Acetyl-CoA; Asp, Aspartate; ATP, Adenosine triphosphate; CI, Mitochondrial complex I; CIII, Mitochondrial complex III; CPT1A, Carnitine palmitoyltransferase 1A; DNA, Deoxyribonucleic acid; eNOS, Endothelial nitric oxide synthase 3; FA, Fatty acid; FASN, Fatty acid synthase; FOXO1, Forkhead box protein O1; G6PDH, Glucose-6-phosphate dehydrogenase; GLRX2, Glutaredoxin 2; GPX3, glutathione peroxidase 3; HK2, Hexokinase 2; IDH2, Isocitrate dehydrogenase 2; ME3, Malic enzyme 3; NAD+/NADH, Nicotinamide adenine dinucleotide (oxidized/reduced); NADP+/NADPH, Nicotinamide adenine dinucleotide phosphate (oxidized/reduced);
OXPHOS, Oxidative phosphorylation (mitochondrial respiration); PAH, Pulmonary arterial hypertension; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PRDX1, Peroxiredoxin 1; PTM:
post-translational modification (malonylation; palmitoylation); ROS, Reactive oxygen species; TCA,
Tricarboxylic acid; TECs, Tumor endothelial cells.

# 702 **FIGURE 4:** ADAPTATIONS OF METABOLIC PATHWAYS IN LYMPHATIC ECS

703 When stimulated by growth factors, lymphatic ECs (LECs) undergo metabolic adaptations (i.e. upregu-704 lation of ketone body oxidation (highlighted in red) and fatty acid oxidation (highlighted in dark 705 green)) to increase the synthesis of acetyl-CoA, which sustains the TCA cycle (in conjunction with ana-706 plerotic substrates), resulting in the production of aspartate, a nucleotide precursor. The lymphatic 707 master regulator PROX1 increases FAO by upregulating Cpt1a gene expression that leads to increased 708 synthesis of acetyl-CoA, which is used for histone acetylation of PROX1 target genes by the histone 709 acetylase p300, thereby facilitating transcription of PROX1 targets and lymphatic differentiation of 710 ECs. For reasons of clarity, the metabolic pathways are shown only schematically; for names of me-711 tabolites and metabolic enzymes, see Figure 2.

ABBREVIATIONS: Asp, Aspartate; ATP, Adenosine triphosphate; CPT1A Carnitine palmitoyltransferase 1A;
 DNA, Deoxyribonucleic acid; OXCT1, 3-oxoacid CoA-transferase 1; p300, Histone acetyltransferase
 p300; PROX1, Prospero Homeobox 1.

715

716

### 717 **FIGURE 5:** AMINO ACID METABOLISM IN ANGIOGENIC ECS

718 Angiogenic ECs upregulate amino acid synthesizing pathways, which are used for protein and nucleo-719 tide synthesis, redox homeostasis or posttranslational protein modification (PTM; palmitoylation). 720 Serine biosynthesis (Ser, highlighted in light blue) promotes nucleotide synthesis via one carbon me-721 tabolism and synthesis of the antioxidant glutathione (GSH) and heme, a co-factor of OXPHOS com-722 plexes, thereby securing mitochondrial respiration and dCTP synthesis by DHODH. Glutamine (GIn, 723 highlighted dark blue) is taken up from the environment and used to fuel the TCA cycle for biomass 724 production or asparagine synthesis (Asn). In contrast, glutamine synthase (GS) is negligible for gluta-725 mine synthesis but regulates EC migration as palmitoyl transferase of RhoJ, a regulator of cytoskeletal 726 organization. For reasons of clarity, the metabolic pathways are shown only schematically; for names 727 of metabolites and metabolic enzymes, see Figure 2.

ABBREVIATIONS: ASNS, Asparagine Synthetase; ATP, Adenosine triphosphate; dATP, Deoxyadenosine triphosphate; dCTP, Deoxycytidine triphosphate; dGTP, Deoxyguanosine triphosphate; DHODH, Dihydroorotate dehydrogenase; dTTP, Deoxythymidine triphosphate; GLS1, Glutaminase 1; Glu, Glutamate; GS, Glutamine synthetase; GS, Glutamine synthetase; PHGDH, Phosphoglycerate dehydrogenase; RhoJ, Ras homolog family member J; TCA, Tricarboxylic acid; TECs, Tumor endothelial cells.

#### 733 **FIGURE 6:** THERAPEUTIC STRATEGIES TARGETING EC METABOLISM

A) In response to growth factors released by cancer cells, glycolysis in TECs is hyperactivated, leading to hyperproliferation and impaired vascular barrier integrity, which compromises blood flow and facilitates cancer cell intravasation and metastasis (left panel). Inhibiting glycolysis moderately by approximately 20% (using a low dose of the PFKFB3 inhibitor 3PO) normalizes the glycolytic flux to levels observed in quiescent ECs, which reduces EC proliferation and re-establishes vessel barrier integrity. This reduces metastasis and re-establishes flow in tumor blood vessels, which promotes delivery of antitumor drugs (middle panel). In contrast, glycolysis inhibition by 40% or more using a maximally tolerable 3PO dose is toxic for ECs, leading to vessel disintegration and enhanced metastasis (right panel).

B) In patients with operable breast cancer, lymph nodes are often surgically removed. This disrupts the lymphatic vessel network, which can lead to fluid accumulation and the development of lymphedema (left). Administration of ketone bodies via a ketogenic diet to the disrupted lymphatic vessels stimulates the formation of new lymphatic vessels (lymphangiogenesis), which reduces lymphedema (right).

747 ABBREVIATIONS: 3PO, Selective inhibitor of PFKFB3; ATP, Adenosine triphosphate; PFKFB3, 6748 phosphofructo-2-kinase/fructose-2,6-biphosphatase 3.

749

750











-





b



