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Abstract

Previous studies have identified a collection @if@reas that show neural selectivity for the
distinction between human-to-human and human-teabbjnteractions, including regions
implicated in sensory and social processing. Itaies largely unknown, however, how the
functional communication between these areas clsangéh the type of interaction.
Combining a generalized psychophysiological inteoac(gPPI) analysis and independent
component analysis (ICA), the current study soughtidentify the context-sensitive
modulation of the functional network architectureridg touch observation. Thirty-seven
participants watched 75 video clips displaying abeind non-social touch events during a
functional imaging scan. A gPPI analysis of preited regions of interest revealed that
social-cognitive brain regions show enhanced iegganal coupling during social touch
observation, both among social-cognitive braingagiand between social-cognitive regions
and sensory regions. Conversely, during non-staiadh observation, a significantly stronger
coupling among brain areas within the system thaicgsses the unimodal sensory
information was observed. At the level of largelsdarain networks extracted with ICA,
stronger connectivity between 11 pairs of networksluding default mode networks, was
observed during social touch observation, whileydhiee pairs of networks showed stronger
connectivity during non-social touch observatioheTurrent study identifies the presence of
context-dependent changes in functional brain techire based on whether the touch
recipient is a person or an object, highlightingimereased exchange of neural information

for social processing.
Keywords

social touch observation; social cognition; funeib connectivity; generalized
psychophysiological interaction (gPPI) analysistedpendent component analysis (ICA)

Abbreviations



FC, functional connectivity; gPPIl, generalized psyghysiological interaction; IC,
independent component; ICA, independent componaaiiysis; MDL, minimum description
length; PO, parietal operculum; Precu, precuneGg,Principal components analysis



1. Introduction

The sense of touch enables us to efficiently imtenath both social and physical aspects of
the environments. While the biological motion inx&d in touching behaviors in both
situations may be similar, the goal and meaningheftouch are highly dependent on the
touch recipient, such as whether it is a persorarorobject. In the former situation, we
communicate emotion through touch (Hertenstein,méasl, Mccullough, & Keltner, 2009;
Hertenstein, Keltner, App, Bulleit, & Jaskolka, B)0while in the latter situation we explore,
recognize, and manipulate objects (Klatzky, Lederng&a Metzger, 1985). For instance, we
express our emotion by stroking the arm of a lomeed, while we test the texture of fabric by
stroking the surface with our hands. Thereforediptang and attributing meaning to touch
may begin with identifying whether the touch isdige a social or non-social context.

The underlying neurophysiological mechanisms supmprthese two contrasting
functional roles of the sense of touch have bedhdeeumented, including segregated neural
pathways that connect the periphery and the bdamhansson, Trulsson, Olsson, & Westberg,
1988; Johnson, 2001; McGlone, Wessberg, & Olaus26th4; Moehring, Halder, Seal, &
Stucky, 2018; Vallbo, Olausson, Wessberg, & Noltrd4€193).

Neuroimaging studies have also confirmed markedemihces in the neural
mechanisms underlying visual perception of socsalnon-social touch (Blakemore, Bristow,
Bird, Frith, & Ward, 2005; Lee Masson, Van De Pl&sgniels, & Op de Beeck, 2018;
Morrison, Bjornsdotter, & Olausson, 2011). In pautar, the observation of social touch
interactions, in contrast to non-social touch, iistronger neural activations and more
informative multi-variate representations in thensbosensory cortex (Blakemore et al., 2005;
Lee Masson et al., 2018; Morrison et al., 2011) #red brain regions implicated in social
cognition, including the temporoparietal junctidrPJ) and medial prefrontal cortex (MPFC)

(Lee Masson et al., 2018; Sliwa & Freiwald, 201IA).contrast, the observation of object-



oriented touch elicits relatively stronger actieatin object processing areas, such as fusiform
gyrus (Lee Masson et al., 2018).

To date, it remains unclear how social vs. nonaoaispects of touch events
dynamically reorganize the functional architectwfethe brain since the aforementioned
studies have focused on localizing a series ofnbragions showing either increased
activation or enhanced representational informaitoresponse to observed touch. However,
complex cognitive functions, including social cagm, cannot be achieved by one specific
brain region that processes information in isolatimom other brain regions. Instead, it has
long been suggested that cognition is the resudiynémic integration and coordinationtbe
collective brain activity across several regionisi® et al., 2019; Tononi & Edelman, 1998).

The present study sought to characterize the fomakirelevance of alterations the
brain network architecture during the observation social and non-social touch by
employing a multi-method approach. First, we tookthaory-driven approach by first
selecting brain regions of interest (ROI) thoughbe involved in the processing of visually
presented touch events and sought to investigatiitittional communication between them.
Second, to complement this theory-driven approaehalso performed a data-driven, model-
free, multivariate independent component analy$3A) to extract the brain networks
processing visually presented touch events withnal Isource separation technique (Vince D.
Calhoun, Liu, & Adali, 2009; Mckeown et al., 1998)nally, we assess context-dependent
changes in regional and network level functionahretivity (FC) with a generalized
psychophysiological interaction (gPPI) analysis Usi@n, Ries, Xu, & Johnson, 2012).

Interpreting the affective state of two people exuying touch requires social
cognition such as theory of mind (ToM). Numerousiroenaging studies have shown that
TPJ and MPFC are consistently activated whenevagslpgerform all sorts of tasks requiring

mental state reasoning (for review, Schurz, Raduehhorn, Richlan, & Perner, 2014)n



addition to those two core social brain regionsliogped in ToM,precuneus (precu), middle
temporal gyrus (MTG), and superior temporal gyr83G) are also consistently activated
during three types of ToM tasks, the false-belgedki the emotion vs. physical pain stories
task, and the passive observation of a movie dagienother person's experiences (Jacoby,
Bruneau, Koster-Hale, & Saxe, 2016). Based on mivelvement of these brain regions in
mental state reasoning and previous findings orakotteraction processing (Lee Masson et
al., 2018; Sliwa & Freiwald, 2017; Wurm, Caramaza.ingnau, 2017), we hypothesize that
the functional communication among aforementioremmat-cognitive brain regions/networks,
implicated in ToM, would be enhanced during theepbation of social touch as compared to
non-social touch. Furthermore, given the involvetr@ithe somatosensory mirror system in
social touch processing (Keysers, Kaas, & Gazzal0), we hypothesized that the
somatosensory cortex, which is involved in selfengnced touch processing, would show
increased FC with social-cognitive brain regionsewhsubjects viewed social touch
interactions. We also hypothesize enhanced furaitiacoupling among visual brain
regions/networks during the observation of non&aotiuman-object interactions (Chao,
Haxby, & Martin, 1999; Mechelli, Sartori, Orlandi,Price, 2006).

At the network level, given that the social bragtwork, including the default mode
network (DMN), has been resolved through data-arii@A approach in a previous study
(Mars, Neubert, et al., 2012; McCormick, van Hoo@ghen, & Telzer, 2018), we expect
those networks to be extracted and to communicate mvith other sensory networks during
social touch observation.

2. Materialsand Methods
2. 1. Participants
MRI scans were collected for 37 participants (28asiamean age 25 years, range = 19 —

38). The full dataset comprises a reanalysis getnwdrds FC of data that were previously



analyzed with multivariate pattern analysis (MVRA&] participants from Lee Masson et al.,
2018, and the 16 other neurotypical participardsfLee Masson, Pillet, Amelynck, Van De
Plas, Hendriks, Op de Beeck, et al., 2019). Altipgrants had normal or corrected-to-normal
vision and had no previous psychiatric nor neunakghistory. All participants provided
written informed consent before the experiment. Shealy was approved by the Medical
Ethical Committee of KU Leuven (S53768 and S595%)ce we analyzed existing data, the
sample sizes in our analyses were identical todh#te original source studies. With respect
to the secondary analyses, we report all data sila (if any), all inclusion/exclusion
criteria, whether inclusion/exclusion criteria wexsablished prior to secondary data analysis,
all manipulations, and all measures that were thegithe reanalysis.

2.2. Stimuli

We used a set of stimuli created and validated prewzious study (Lee Masson & Op de
Beeck, 2018). The set consists of 39 video cligpldying an interpersonal touch scene
(social touch) and 36 video clips displaying a parsanipulating an object (non-social touch)

(Fig. 1).

Fig. 1.Example snapshots of the social and non-social stimuli. Images displaying interpersonal touch events
are shown in an orange-colored box. Non-social oeeents, displaying different interactions withrigas
objects, are shown in a light blue-colored box. Tdmmplete set of video materials can be found at
https://osf.io/8j74m/.

We intentionally matched the body movements actbessocial and the non-social touch
scenes (e.g., hugging a person vs. carrying a tm@yoid that this variable could induce
differences in the strength of FC between the teoddions. By doing so, the recipient (a
person vs. an object) of the touch becomes the eldyent that differs between the two
conditions. Details about stimulus creation anddadion can be found in Lee Masson & Op
de Beeck (2018). Stimuli are available online asadyic video clips (https://osf.io/8j74m/).

2.3. MRI data acquisition



MRI data were obtained on a research-dedicated®ip® scanner with a 32-channel coil at
the University Hospitals Leuven. For the functiodata, whole brain images (37 axial slices
with voxel size 2.% 2.7x 3mm® without a gap, and without fully covering cerebei)) were
acquired with echo planar (EPI) F&eighted sequences with the following acquisition
parameters: repetition time (TRR0O0Oms, echo time (TE}30ms, flip angle (FAx 90°,
field of view (FOV)=216x 216mm, and in-plane matrix80x 80. Each run comprised of
239volumes. The T1-weighted anatomical images wereuiesd] with a magnetization
prepared rapid gradient echo (MP-RAGE) sequencey @B8x 0.98x 1.2mm? resolution
(182 axial slices, FO¥250x250 mm, TR=9.6ms, TE=4.6ms, FA=8° in-plane
matrix=256x% 256 mm).

2.4. Visual fMRI experiment

During the scan sessions, participants watchedovidgps and responded whenever they
detected the touch initiator wearing a sweatsHira gre-instructed color (black vs. grey).
This task assured that participants paid atteriboine video clips. This orthogonal task was
designed to keep participants from falling asléémably, we designed our task in this way to
investigate spontaneous stimulus-related modulaifdRC during the implicit processing of
observed social vs. non-social touch. All the vil@d = 75) were presented in random order
once per run in an event-related design (numbeurd = 6 or 7, about 50 mins of scanning,
mean number of runs = 6.4 after discarding soms with excessive head motion). Each trial
consists of a video presentation (3s) and an stierulus interval (ISI, 3s) during which a
participant performed the task by pressing a butfdre total duration of each run took 7.8
min: 3 blocks within the run x (baseline displayiadixation cross for 6s + 25 trial per block
x (video presentation for 3s + 3s ISl)). To reli¢kie participant’s fatigue, after each run, they
were encouraged to take a short break in the scdoefere performing the next run.

Participants were able to pay attention up unéleéhd, given that task performance of the last



run was 97.2 (the group averaged median). All tdeas were projected on a screen behind
the scanner and viewed through a mirror mountethemead coil. The videos were presented
and the responses were recorded by PsychophysadsokoVersion 3.0.12 (PTB-3) (Kleiner
et al.,, 2007) in Matlab (R2015a, The Mathworks, itdat MA). Presentation codes are
available online (https://osf.io/hpwjx/).

2.5. ldentifying brain regions (ROI's) processing observed touch

ROIs, known to be involved in observed touch preices were selected and defined based
on the group-level results of a previous stwdth a combination of functional and anatomical
criteria (Lee Masson et al., 2018). This includaesual (Thompson & Baccus, 2012,
Vangeneugden, Peelen, Tadin, & Battelli, 2014), iado€¢Jacoby et al., 2016), and
somatosensory regions (Ebisch et al.,, 2008; Megyaplan, Essex, Damasio, & Damasio,
2011; Rolls et al., 2003; F. W. Smith & Goodale12p Brodmann area (BA) 17, 18, 19, 37,
V5, MTG, STG, TPJ, Precu, MPFC, BA3, 1, 2, and gtatioperculum (PO). As such, we
have 14 ROIls categorized into putative visual, aexpgnition, and somatosensory networks
based on the function and anatomical location oh&20l (Fig. 2).Notably, in this study, we
assigned ROIs to the putative network based om grenary role reported in the literature
(e.g., despite involvement of the somatosensoryexan social processing — such as the
processing of somatosensory experiences of other8A3, 1, 2 are assigned to the

somatosensory network as their primary role isrezgss tactile information).

Fig. 2.A visual depiction of the selected ROIs. The red mark in the brain image indicates thecseteareas of
each functionally-defined ROI. BA Brodmann Area, MTG = Middle Temporal Gyrus, STG apé&rior
Temporal Gyrus, TPJ = Temporo-Parietal Junctiomc®r= Precuneus, dmPFC = dorsal medial PreFrontal
Cortex. PO = Parietal Operculum.

Methods to define these ROIs were exactly the sasng our previous report (Lee
Masson et al., 2018). Here we again provide futhitke on the analysis steps implemented
specifically for ROI selection. To select voxelsthim the most relevant anatomical

boundaries, anatomical masks were obtained fronowsrsources: the PickAtlas software



(Maldjian, Laurienti, Kraft, & Burdette, 2003) formost of the ROIs, the SPM Anatomy
toolbox (Eickhoff et al., 2005) for V5 and PO (OfEickhoff, Schleicher, Zilles, & Amunts,
2006)), and the parcellation atlas (Mars, Sallegle 2012) for TPJ. Within each anatomical
mask, we selected the voxels that were activatethéymost relevant functional contrast at
the group level with the statistical thresh®d,.ees < 0.001. Details are the following: we
used both the visual fMRI experiment for ROIs begiog to either the visual network or the
social-cognition network and the separate functitmach localizer run for ROIs belonging to
the somatosensory network. During the separatehtéagalizer run, participants received
rubber band snapping (at a distance of about 8emd)kaush-stroke with the velocity of
5cm/s on the ventral surface of the right and lefearms while lying in the scanner. To fit
the general linear model (GLM) to the aforementionedcfional data, first, we preprocessed
all functional images with the statistical paraneetnapping (SPM 12) toolbox. Functional
images were 1) corrected for slice timing differes1c2) re-aligned to the mean image of the
first run, 3) normalized by warping them to a Mesatr Neurological Institute (MNI) space
with a re-sampling size of 2 xX2 mm, 4) spatially smoothed using Gaussian kerndis an

8 mm full-width at half maxima (FWHM). For the firgtvel analysis, a standard GLM was
fitted to the preprocessed functional data. Allresgors of experimental conditions (social,
non-social touch videos, and baseline for visuaRfdxperiment and brush-stroke and rubber
band snapping for a touch localizer run) were medi@s either delta functions matching the
onset time of each regressor (duratadh an event-related design, visual fMRI experiment)
or boxcar functions (duration = 10s, block desitpe, touch localizer run). Each function was
convolved with a canonical hemodynamic responsetiom. A temporal high-pass filter
(1/128Hz) was used. 6 Motion parameters were includealliGLMs as nuisance covariates.
Brain activation evoked by all touch videos andafi®n cross were contrasted for the visual

fMRI experiment, and brain activation evoked byeigig touch and rest were contrasted for



the touch localizer run. Lastly, standard randofeetfgroup-level analyses were conducted
to identify significantly activated voxels in théoeementioned contrasts in the whole brain.
This group activation was used to select the voxethin an anatomical mask. Table S1
illustrates statistical and spatial information abthe obtained clusters for each ROI. Lastly,
to ensure the independence of the BOLD signalaah &OI, we removed overlapping voxels
among neighboring ROIs, similarly to our previodsdy (Lee Masson et al., 2018). ROIs
were converted into binary masks for further analyBhis procedure is identified as step 1 in
Fig. 3.

Fig. 3. A schematic figure showing an overview of the workflow (see Methods for more details). Stepl.:
Each ROI, except somatosensory areas, was definedlécting voxels located within the anatomicakkntnat
showed stronger univariate activation during theesbation of touch as compared to the observatfothe
fixation cross. The somatosensory areas were defiyeselecting voxels located within the anatomimalsk
that showed stronger activation during actual tostomulation as compared to rest. Notably, sphexe® used
for visualization purposes. Refer to Fig. 2. foe @ictual voxel clusters that make up each FB@Ep2: an ICA
approach groups every voxel in the whole-brain etfunctional unit, called an independent comporf&Di,
based on the similarity of the features in BOLDdioourse across voxels, yielding a group spatigd arad
time-course of each IC. Each group spatial maplalzaled with an appropriate network descriptor basethe
result of spatial correlation with the templatectsias the DMN and visual network. Subsequently, pteal
regression was performed to compute the degregrafhsonization (reflected in 1ICAS) between the time-
course of the network and the stimulus eventsdoheask condition, social, non-social, and baselim the end,
the networks showing differences (reflectedriandP-FDR, the 4"and %' columns in Table 2) in the degree of
synchronization depending on task condition welecsed to further investigate network-level conngtt.
Step3: The average time-course was extracted and theRlaregressor was generated for each seed region
(ROI/network) by combining psychological and physg@ical regressors. This PPI regressor was incliideke
model explaining the time-course of each targetore¢gROIl/network) to identify the strength of thenttional
relationship (reflected in gPP1) between a seed and a target region for eachctagkition. Step4: A paired t-
test was used to determine significantly strongérbetween each pair of ROIs/networks for the cehtod
social vs. non-social touch.

2.6. ldentifying networks processing observed touch

2.6.1. Independent component analysis

ROI-to-ROI FC analysis may not provide a completéuype of how the entire brain networks
communicate in a task-dependent manner as thetisaelef the ROIs depends on a priori
knowledge and assumptions. To comprehensively ctaarae network communication in the
entire brain, in addition to ROI-to-ROI FC analysiwe also adopted a data-driven
multivariate approach. In particular, ICA (Vince Balhoun et al., 2009; Mckeown et al.,
1998) decomposes mixed signals in the whole bram maximally independent components
(ICs) each of which explains unique variance of iM#ata. We applied spatial ICA,

10



implemented in the Group ICA Toolbox (http:/mialalon.org/software/, GIFT version 3.0b),
to the preprocessed fMRI data (i.e., slice-timeeaued, realigned, normalized, and smoothed
data using an 8mm Gaussian kernel) to identify gsoof brain regions having temporally
coherent BOLD signal fluctuations during the oba#ion of touch.

First, similarly to previous studies (Cisler et, &013; Jarrahi et al., 2015; Thye,
Ammons, Murdaugh, & Kana, 2018), the dimensiongMR| data were reduced, and the
number of ICs required to fully describe the totaliance of data was estimated using a
minimum description length (MDL) criterion (Li, Ada & Calhoun, 2007). The optimal
number of ICs was estimated to be 25. Next, datmateon was performed twice at the
individual and group level using standard principamponents analysis (PCA), followed by
an independent component estimation using the laxol@A algorithm (Bell & Sejnowski,
1995). The Infomax ICA was repeated ten times usiieglCASSO toolbox implemented in
GIFT to extract the most stable 25 ICs at the grimyel. According to the results of an
estimated quality index from the ICASSO, which rasdrom 0 to 1 (values approaching 1
imply reliable extraction of the component; valagproaching 0 imply a randomly produced,
unreliable component), all 25 ICs were reliablealdy index values > 0.9). To compute the
individual participant’s ICs, we performed GICA la@construction on the group ICs using
parameters of PCA compression and projection (Calhédali, Pearlson, & Pekar, 2001).
Resulting spatial images and time-courses wereartew to z-scores. Here, the resulting z-
score of each voxel reflects its contribution te thme-course of each IC. Individuals’ back
reconstructed, and then z-score converted ICs thereused to compute a group mean spatial
map and a group mean time-course of each IC.

2.6.2. Identifying the task-relevant networksfrom ICs

The analysis pipeline mentioned below is illustdatestep 2 of Fig. 3.

11



Spatial components. Following previous studies (Xu et al., 2013; Zhahad.i, 2012), we
performed spatial sorting, implemented in GIFT discard noise-related ICs. We computed
the spatial correlation between a group-level sp&tnap of each IC (thresholdedzagcore >

3) and probabilistic maps of the grey matter (GMihite matter (WM), and cerebrospinal
fluid (CSF) provided with SPM12. The voxels thatk@aip each IC should be predominantly
located in the GM. Accordingly, the ICs whose grdeyel spatial map contain a large
number of voxels located in WM and CSF, most likedgresent physiological noise. Among
the 25 ICs, 7 ICs which either related to CSF (ficieht of determinationrf) > 0.05) or did
not relate to GMr€ < 0.001) were removed. None of the ICs were shatiarrelated with
WM. Based on visual inspection, two additional I@snsisting of voxels located in the
cerebellum (N = 1) or around the edges of the bifdix 1) were additionally excluded from
further analysis. We excluded ICs composed of #relellum because the cerebellum was
not completely covered during the scan due to teetsTR. Using the same methods, we
labeled the remaining 16 ICs with functional oriosgl descriptors (e.g., DMN or visual
network). In particular, each IC was correlatedhviite Resting State Networks templates (S.
M. Smith et al., 2009) available in GIFT, and tladdl of the template with the maximal
correlation value was assigned to the IC. From ploisit forward, we will refer to the ICs as
“networks” and we will designate particular ICsinetks by referring to its label (e.g., DMN).
Temporal components: Similarly to how we functionally defined ROIs, ratithan selecting
all 16 networks, we first verified whether BOLD sd& fluctuations of each network respond
differently to task and baseline conditions. TotHs we assessed task-related modulation
over time-courses of the remaining 16 networks gisthe temporal sorting feature
implemented in GIFT (for a similar approach, sesg <t al., 2009; Jarrahi et al., 2015; Ye et

al., 2012).
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The temporal sorting function performs a multipegnession analysis to find the
association between BOLD signal fluctuations ofheaetwork and the reference time-courses
of the three regressors (i.e., social touch, namstouch, and baseline condition displaying a
fixation cross), and measurtd®e degree to which the onset of stimulus presentatodulates
the time-course of each network during the task badeline. Consequently, for each
individual, a set of 16 beta coefficients (IGA_is obtained for each of the three task
regressors, which indicate to what extent the tagkessor is associated with a particular
network. Next, a group-level mean ICAvalue is computed to indicate to what extent the
time-course of each network is engaged during tle&ak non-social, and baseline conditions
at the group level.

For each network, a within-subjects ANOVA was perfed to determine the main
effect of conditions on the ICA8-values (the false discovery rate (FDR)-correctedype-1
errors). Afterward, using a one sample t-test, gtlewel spatial maps of each network that
showed task-related engagement were thresholdegyat < 0.001 and converted into binary
maps for further analysis.

2.7. Functional Connectivity Analyses

2.7.1. Pre-processing

With the SPM 12 toolbox the following preprocesssigps were carried out: (1) functional
images were corrected for slice timing differen¢@3;realigned to the mean image of the first
run; (3) the anatomical image was co-registereflinational images; (4) segmented to GM,
WM, and cerebrospinal fluid; and then (5) the fumtal images and segmented GM, WM,
and CSF images were normalized to the MNI templatie the voxels resliced to 2 x 2 x 2.

We did not smooth the images (Alakorkkd, Saarim&derean, Saraméki, & Korhonen,

2017). The subsequent procedures were performed tweé CONN (CONN 17) toolbox

(Whitfield-Gabrieli & Nieto-Castanon, 2012).
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Prior to the first-level estimation of FC, we remedvthe artifacts from the fMRI data
using the component-based noise correction meti@mmpCor), as implemented in the
CONN toolbox. Specifically, we estimated outlyinglumes based on the motion (subject-
motion threshold = 0.9 mm) and global signalv@lue threshold = 5) deviations using an
Artifact Detection and Repair toolbox, as implenaehin the CONN toolbox. This variable
was used for scrubbing during the de-noising stBps de-noising step also includes
regressing out: (1) 10 principal components of W&l and CSF signal from the data
calculated with PCA,; (2) head motion-related actiéaby using six head motion parameters
and their first derivatives; and (3) task-relatedB® signals by performing linear de-trending.
Bandpass-filtering was performed to remove slowlictiiating signal (0.008 Hz) such as
scanner drift.

2.7.2. Generalized psychophysiological interaction analyses

We examined how brain regions interact in a taggeddent manner, using a gPPI analysis
implemented in CONN toolbox (McLaren et al., 201RRI analysis is a type of task-based
FC analysis that identifies voxels/ROls of whicle BBOLD response time course (change in
neural activity over time) is more related to tlvata seed region in a given psychological
context. Unlike the standard PPI analysis thatuithes contrast information when forming a
psychological regressor, the gPPI approach congale BOLD signal with the canonical
hemodynamic response function for each conditicioreemaking the contrast, forming a
separate psychological regressor for each condifidns approach has been known to
improve the fit of the regression model for evezlated fMRI data (McLaren et al., 2012).

The following description is shown in step 3 of F3g First, we extracted an averaged
BOLD time-course across selected voxels for eachiie@vork and used it as a physiological
regressor. For a subject-level analysis, we geeé@ratPPI regressor for each condition by

calculating the element-by-element product betwegeychological and physiological
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regressors. Second, we computed how strongly the-t¢ourse of one ROl/network is
correlated with the PPI regressor of another. Untkrrelational analysis, gPPI is based on
multiple regression, thereby generating diffefgrtlues when the seed and target regions are
reversed. This pair-wise computation was made Veryepossible pair-wise combination of
selected ROIs/networks to measure task-dependangel in FC for each participant. Third,
results were converted to z-scores using the Fsslzetransformation before calculating a
group-level averaged FC. We conducted a randonetsffanalysis across participants to
measure the differences in FC between social amdsooial conditions at the group-level.
Statistical inferences were made using a one-sapgiled t-test comparing ROIl/network
connectivity for the social vs. non-social conditi?®We corrected for the rate of typel errors
with the FDR at the analysis-level (the numberests performed; that is, each possible pair
combination of ROIs/network) instead of the ROWmatk-level (the number of
ROls/networks selected).

All the data necessary to replicate the resultshaf study are contained in Open

Science Framework (https://osf.io/hpwijx/).

3. Results

3.1. Task-dependent changesin ROI-to-ROI connectivity
We sought to examine changes in FC among the kain begions involved in processing
visually presented touch events, i.e., brain ateatsare part of the visual, somatosensory, or
social-cognitive brain networks. The results of gfiePl analysis demonstrated that task-
dependent changes in inter-regional functional Bng@mmong ROIs did indeed take place, as
a function of whether participants watched humamdin orhuman-object interactions.

Overall, as illustrated in Fig. 4 (red vs. blueekh and Table 1 (orange vs. sky-blue at
the 8" column), enhanced connectivity strength among R&s was more extensively found

during the observation of social touch compareddo-social touch (number of ROI-pairs
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showing increased FC strength during social touzdenoration = 23; during non-social touch
observation = 7, the"5column of Table 1). This finding is consistentlwdur previous study
demonstrating stronger neural activation in a watgge of brain areas during the observation

of social touch compared to non-social touch (Less$bn et al., 2018).

Table 1.Detailed statistical results of the ROI-to-ROI FC for the contrast of social > non-social touch
observation. The color of the cells in the first and second ouis illustrate to which network each ROI
theoretically belongs: the visual network is cotbri@ green, the social-cognition network in pinkdathe
somatosensory network in red. TH& &@Ilumn indicates whether the FC is increased dutie observation of
social (in orange) or non-social touch (in sky-blug@ = FC among ROIs belonging to different netwsmrke.,
between-networks, W = FC among ROIs belonging ¢ostime network, i.e., within-networks

Seed | Target | T Statistics | P-FDR FC
TPJ 4.11 0.004 | Social (B)
STG 3.09 0.031 | Social (B)
-3.62 0.001
TPJ 2.94 0.006 | Social (B)
STG 5.86 0.000 | Social (B)
TPJ 5.55 0.000 | Social (B)
MTG 4.15 0.004 | Social (B)
3.27 0.023 | Social (W)
STG 4.25 0.003 | Social (B
-3.93 0.005
-3.27 0.023
MTG 3.07 0.031 | Social (B)
STG 6.02 0.000 | Social
-5.96 0.000
MTG TPJ 4.92 0.001 | Social (W)
-4.04 0.004
-2.98 0.036
sTG MTG 3.89 0.000 | Social (W)
3.05 0.004 | Social (B)
MTG 5.36 0.000 | Social (W)
™I STG 5.02 0.000 | Social (W)
3.75 0.008 | Social (B)
4- 3.11 0.031 | Social (B)
STG 4.04 0.004 | Social (W)
Precu | TPJ 3.20 0.026 | Social (W)
MTG 291 0.041 | Social (W)
MPFG
2.83 0.045 | Social (B)
STG 3.12 0.031 | Social (B)
Precu 2.87 0.043| Social (B)

3.47 0.015 [ Non (W)~

Fig. 4.Differencesin the ROI-to-ROI FC for the social vs. non-social touch contrast. lllustrated are pairs of
regions that demonstrated increased connectivityhi® observation of social touch relative to nonial touch
(red lines) and increased connectivity for non-abtiuch (blue lines). The color of the line cortineg the two
ROIs and the square box next to each ROI repretie®ROI-to-ROI connectivity value, reflected irettvalue.
The red mark in the brain image indicates the loocatf each ROI. T =t value from a one samplequhirtest, P

FDR corrected< 0.05
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More specifically, as hypothesized, watching aalacuch scene, in contrast to a non-
social touch scene, induces enhanced functiongbliogubetween ROIs within the social-
cognition system (e.g., increased FC among MTG, ,.STIK3, and Precu; Fig. 4 and Table 1).
Given that mentalizing the states of others (eeptional states of a touch initiator and a
recipient in this context) is a core part of soaalnition, we expected to observe this
increased connectivity among the social brain ade@isig social touch observation.

The increase of the strength in FC occurred noy between social brain areas but
also between social brain areas and other areasgsing more basic sensory information. In
particular, enhanced connectivity strength was fesebetween the social brain areas and
the brain areas that process visual informatiog.,(8:PJ was strongly connected to BA17,
BA18, and BA37; STG was strongly connected to BARA37, and V5) or somatosensory
information (STG and Precu were strongly connetiddiA2).

Conversely, in the case of non-social touch scedesplaying human-object
interactions, our results revealed significantlgager connectivity between ROI-pairs within
the same sensory networks: enhanced functionalliogspbetween ROIs within the visual
(e.g., BA18 and V5 more strongly connected to BAd®somatosensory networks (i.e., PO
more strongly connected to BA2).

MTG, sensitive tomoving human body and tool stimuli (Beauchamp, Lé&xby, &
Martin, 2003), showed extensive task-dependentagites in functional relationships with
other brain regions. Specifically, social touch eation evoked significantly greater
connectivity between MTG and other social brairaarerhile non-social observation evoked
significantly greater connectivity between MTG asttler sensory areas. For example, MTG
is more strongly connected to high-level visual (BAand BA37) and somatosensory areas
(PO). Detailed statistical information for thessuks is provided in Table 1.

3.2. Identifying the task-relevant networ ks and characterizing connectivity
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3.2.1 Thetask-relevant networksrevealed by a data-driven multivariate | CA approach

Prior to evaluating task-dependent changes in n&tteenetwork connectivity, we first
extracted networks using a data-driven multivari@® on the whole-brain fMRI data, which
resulted in 25 networks. Among these, 8 networksevieund to be related to noise and one
network was located in the cerebellum. The remgirii6 networks were labeled, and as
hypothesized, this ICA approach yielded four DMMsl 42 other networks comprising one
visual, two sensorimotor, two precuneus, two exeeutontrol, one auditory, one language,
and one salience network, as well as an unlabedeglank consisting of the bilateral anterior
temporal lobe, and another unlabeled network ctingisof the bilateral insular cortex
(Component description, Table 2). As mentionecheamethod section 2.6.2, we selected the
networks based on whether the degree of tempotalone synchronization with the task,

represented by ICAS-values, varied across task conditions.

Table 2.Detailed statistical results of the within-subjects ANOVA on the ICA_pB-values (driven from the
temporal sorting procedure) of social, non-social, and baseline conditions. Additionally, the labels for each
component are listed next to the component nunaet the correlatiorR) values between the selected template
providing the label and the group spatial map ehemomponent were also listed. N = network.

Component Component description R-value F Statistics P-FDR

number

IC1 Ventral DMN (N1) 0.26/0.18 3.97 0.027

IC2 Visual Network (N2) 0.17 167.82 0.000

IC3 Sensorimotor Network (N3) 0.21 8.70 0.000

IC4 Precuneus Network (N4) 0.25 7.25 0.002

IC5 Right Executive Control Network 0.20 1.97 0.17

IC6 Auditory Network (N5) 0.27 11.73 0.000

IC7 Left Executive Control Network 0.19 1.16 0.32

IC8 Dorsal DMN (N6) 0.38 7.63 0.001

IC9 Sensorimotor Network (N7) 0.24 26.70 0.000

IC10 Noise

IC11 Noise

IC12 Dorsal DMN (N8) 0.26 83.39 0.000

IC13 Noise

IC14 Dorsal DMN (N9) 0.29/0.18 25.70 0.000

IC15 Precuneus Network (N10) 0.25 101.21 0.000

IC16 Noise

IC17 Noise

IC18 Language Network (N11) 0.18 42.44 0.000

IC19 Noise

IC20 Anterior Salience Network (N12) 0.20 13.32 @.00

1c21 No label found, bilateral anterior 174 0.19
temporal lobe

IC22 Noise

IC23 Noise

IC24 No label found (N13), bilateral insula 4.83 0D.

IC25 Cerebellum 0.23
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According to the results of a within-subjects ANOM@&st, 13 of the 16 networks
showed a significant effect of task (i.e., socran-social, and baseline) on the degree of
synchronization between time-course fluctuationthefnetwork and the task events (the last
column in Table 2). According to post hoc t-tegiese task effects are mainly driven by the
contrast with the baseline condition. By taking teenporal sorting approach, task-related
networks could be functionally defined in the samnner as the functional ROIs (i.e., touch
> baseline). The networks that differentially syrehze with the task conditions included
four DMNSs, two sensorimotor, two precuneus, a Misaa auditory, a language, a salience,
and an unlabeled network consisting mainly of thatdral insular cortex. Fig. 5 illustrates
the group spatial maps of these 13 networks. Ta8Bleontains descriptions of the implicated

brain regions and the list of peak MNI coordinatéthese networks.

Fig. 5. Visualization of 13 networkswith their labels. The red mark in the brain image displays voxdis/ent
to each network revealed by an ICA approach. Thesgorks were included for further gPPI analysis.

3.2.2. Task-dependent changesin networ k-to-network connectivity

A model-free multivariate ICA approach permittedtasextract 13 networks whose
degree of synchronization with the task event whHsrdntially determined by task condition.
To complement the results of the ROI-to-ROI coninégtanalysis, we examined the task-
dependent changes in connectivity among these @égtiieed networks (Fig. 5). At the
network level, ICA-gPPI results revealed enhancedctional coupling in 11 pairs of
networks (red lines in Fig. 6 and Table 3) durihg bbservation of social touch as compared
to non-social touch. Three DMNs (N1, 6 and 9) shebwehanced functional coupling with
other networks during the observation of sociakhgusuggesting that these networks share

significantly much more social information with etthetworks than non-social information.

Table 3Detailed statistical results of the network-to-network FC for the contrast of social > non-social
touch observation. The 5th column indicates whether the strength®@fis=increased during the observation of
social or non-social touch. The visual network édoced in green, the DMN in pink, and the somatsseyn
network in red.

Seed Target T Statistics | P-FDR FC

N1 (DMN) N11 (Language) 3.03 0.04 Social
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N4 (Precu) 3.09 0.04 Social
N5 (Auditory) 3.41 0.03 Social
N4 (Precu) -3.24 0.03 | Non
N4 (Precu) 3.99 0.01 Social
N5 (Auditory) 3.08 0.04 Social
-3.05 0.04 Non
N6 (DMN) N5 (Auditory) 3.41 0.03 Social
N9 (DMN) 3.25 0.03 | Social
N8 (DMN)
N5 (Auditory) 4.88 0.003 Social
N9 (DMN) N11 (Language) 4.17 0.01 Social
N13 (No Label, insula 3.35 0.03 Social
N10 (Precu) N4 (Precu) 4.03 0.01 Social
N9 (DMN) 3.52 0.03 | Social
N11 (Language) -3.31 0.03] _ Non
. N4 (Precu) 3.41 0.03 Social
N12 (Salience) N11 (Language) 3.11 0.04] Social
N13 (No Label, insula N9 (DMN) 2.95 0.046 Social

Fig. 6. Differences in FC between each pair of networks for the social vs. non-social touch contrast.
lllustrated are pairs of networks that demonstrateteased strength of connectivity for the obseoweof social
touch relative to non-social touch (red lines) amtteased strength of connectivity for non-socmalch (blue
lines). The color of the line connecting the netkgoand the square box next to each network repiesee
connectivity value, reflected in the t-value. DMNJefault mode network, Precu = Precuneus, N = mitwio=
t value from a one sample t-test:dR corrected< 0.05

For the opposite contrast, only three pairs of petw (blue lines in Fig. 6) showed
increased connectivity. No DMN networks were pdrttteese pairs showing stronger FC

during the observation of non-social touch. Théstteal details are provided in Table 3.
4. Discussion

The present study investigated the functional @elee of alterations in the brain network
architecture during the observation of social (ho#tehuman) and non-social (human-to-
object) interactions. Adapting both theory- andaddtiven approaches, we were able to
characterize how two different types of task — ustéerding the meaning of human-to-
human interaction vs. human-to-object manipulatieh modulate the neural functional
architecture both at the level of individual braggions and at the large-scale network level.
4.1. Increased connectivity within the social cognitive system during human-to-human
social touch observation

With a hypothesis-driven, ROI-based analysis, wenébincreased connectivity within a set

of brain areas previously identified as the soc@initive system active during the
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observation of social touch relative to non-sotmaich. These results extend the findings of
our previous MPVA study investigating neural reprasations underlying the understanding

of others' social touch interactions, revealing thgportance of communication between

biological motion selective areas (MTG and STG) patteived valence selective areas (TPJ
and Precu) (Lee Masson et al., 2018).

The role of the temporal and parietal cortex iniaoperception and cognition has
been extensively documented, including its involeamin biological motion perception
(Allison, Puce, & McCarthy, 2000), action understiang (Deen, Koldewyn, Kanwisher, &
Saxe, 2015; Pelphrey, Morris, & McCarthy, 2004)d anferring mental states of others
(Ciaramidaro et al., 2007; Jacoby et al., 2016;eS&anwisher, 2003). Nevertheless, task-
induced changes in their functional relationshipseionly recently begun to be explored
(McCormick et al., 2018). Our finding of increasmederregional communication within the
social-cognitive system during social touch obseowa extends previous research that
showed strong functional relationships among sdain regions, including STS, TPJ, Precu,
during a social evaluation task (McCormick et 2018).

Previous studies investigating the neural basisosfal understanding of others have
consistently reported strong activation in MPFCimnlyrtasks requiring inferring other's
emotions and intentions, self-other distinctionsjualging other's behavior (W. Li, Mai, &
Liu, 2014; Lieberman, 2007; Van Overwalle, 2009wéver, similar to our previous MVPA
findings that did not reveal neural selectivity &ocio-affective characteristics of observed
touch in the MPFC (Lee Masson et al.,, 2018), we md observe increased functional
communication of MPFC with other brain regions dgrsocial touch observation.

To provide a complete picture of how the entireirbr@etworks communicate in a
task-dependent manner and to complement the resuviésled by the ROI-based approach,

we extracted 13 task-related networks using a diav@n ICA method. Among them, four
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networks were identified as the DMN. According éwiew studies (W. Li et al., 2014; Mars,
Neubert, et al., 2012), key nodes of the DMN maimniglude the medial posterior cortex,
MPFC, and TPJ. Similarly, two DMNs identified inetfcurrent study include the MPFC,
whereas the other two DMNs mainly cover the megasterior cortex (Table S2). The
network-level connectivity analysis revealed ineesgh functional connections between the
DMN (N6), consisting of Precu and the MPFC, anddhditory network (N5) during social
touch observation. Despite its label, the auditeeiwork includes brain regions involved in
social (i.e., Precu) and emotional (insula) proiceséig. 5). Except for one aforementioned
functional connection of DMN (N6), the current sfuibes not provide evidence of increased
communication of MPFC during social touch obsepratiAs discussed in our previous
MPVA study (Lee Masson et al.,, 2018), performing @athogonal task requiring color
identification of the shirt of the touch initiataray not require the extensive involvement of
the MPFC, which is specialized in more elaborateféyrtful social processing (W. Li et al.,
2014).

Two other DMNs, mainly consisting of voxels loaghte the medial posterior cortex,
showed increased functional couplings with anothetwork (i.e., Language Network)
containing voxels located in the STG. The curréntg demonstrates that a data-driven ICA
method can be used to cluster a collection of iegions that make up the DMNs during the
passive touch observation. Similar to ROI-based df@lysis, we observed that DMNs
communicate with other networks containing socieditb areas during social information
processing.

4.2. Increased connectivity between the social cognitive system and the sensory system
during human-to-human social touch observation
Observing social touch increases interactions batwhe social cognitive system and other

basic sensory systems, both at the level of beagions and large-scale networks. Firstly, the
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social-cognitive system (STG, and TPJ) communicatese with areas involved both in low-
(BA17 and 18) and high-level visual processing (BASd V5). A possible interpretation of
these results is that the social and visual systgaik in concert to extract socially relevant
information from visually presented bodily moven®eat the two interacting people shown in
the social touch scene.

Secondly, enhanced functional coupling with theiaocognitive system (STG and
Precu) was observed in the somatosensory area (BARey node of the somatosensory
mirror system (Keysers & Gazzola, 2009; Keyseral ¢t2010). Likewise, the ICA approach
revealed increased connectivity between the DMN) (&8l the sensorimotor network (N7)
consisting of the bilateral postcentral gyrus.

The ability to map another person's somatosensqgrgreence to the self, quantified
by the level of neural activation in the somatoseynsarea, has been related to ToM and
empathy mechanisms (Giummarra et al., 2015; Peledm Levy-Gigi, Richter-Levin,
Korem, & Shamay-Tsoory, 2016; Schaefer, Heinze, &t& 2012). In a similar vein, the
somatosensory cortex, activated when receivingaatbuch, has been found to exhibit neural
selectivity for the perceived socio-affective memnopf observed touch (Lee Masson et al.,
2018). Furthermore, perturbing this area by meahgsbrain stimulation decreases an
individual's prosocial behavior (Gallo et al., 2D1&iven this converging evidence of the
crucial role of the somatosensory system in hidgéeet social processing, enhanced
communication between the social cognitive and sosemsory systems during social touch
observationcan be interpreted as facilitating our ability tmderstand other people’s
emotional states by directly mapping bodily expaees of others to the self. Our findings are
also in line with previous studies demonstratingctional communication between nodes in
the mirroring and the mentalizing systems when eggnting observed actions as socio-

emotional expressions (Spunt & Lieberman, 2012).
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Finally, in addition to the DMNs, we were able tbacacterize FC patterns across
different networks using a data-driven ICA approags indicated in the results section, we
observed much more communication between netwarkdidated in different cognitive
functions during social touch observation. In patar, we observed both the salience
network (N12) and the network (N13) composed ofitisella showing increased connectivity
with other networks. Given the role of the insulasocio-emotional processing (Uddin, 2016),
this increase implies enhanced integration of \ligymaesented social touch information with
internal emotional representations. With the sarmlgmethod, a previous study has
demonstrated increased FC between the insula arahtierior cingulate cortex (ACC), which
compose the salience network, when touching a humaad (social touch) as compared to
touching a mannequin hand (non-social touch) (Bcaliaet al., 2019).These findings
suggest that the salience network may function @snaain-general neural system processing
social touch information in cooperation with otimetworks.

4.3. Increased connectivity within the same sensory systems during human-to-object
non-social touch observation

Visual scenes depicting object manipulation elctitaore interregional communication
between areas located in the same sensory syst€nbdfween BA 18 and BA 19 in the
visual system; FC of BA19 and BA37 with V5 in thisual system; and FC between BA 2
and PO in the somatosensory system). Given theafotee visual cortex in recognizing a
manipulable object, these findings are very likativen by the presence of inanimate objects
in the non-social touch condition scene (Chao ¢t1809; Haxby et al., 1991). Likewise, the
increased connectivity between BA2 and PO, whiehpart of the somatosensory system, can
be explained by considering that both brain regiptesy a crucial role in tactile object
recognition (Reed, Shoham, & Halgren, 2004) andh lo&in regions show increased neural

activation while observing human hands engagedbjacd manipulation (Meyer et al., 2011).
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4.4. Converging evidence from ROIl-based and ICA-based measures of the context-
sensitive modulation of the connectivity

In general, the results obtained using both methskswed similar context-sensitive
modulation of the functional network architecturgidg the touch observation. Specifically,
both revealed that functional couplings betweemhbmgions and between networks occurred
more strongly during the social touch observatiercampared to non-social touch. Taking
both approaches, we have observed converging esedéor increased communication
between the brain regions/networks, implicated aciad processing, and other sensory
areas/networks. Our findings imply that the procegsf human-to-human social interactions
may be facilitated through larger-scale brain comication.

Notably, some discrepancies were observed betweenesults derived from both
methodologies. For example, unlike an ROIl-basedap@roach (null results discussed in
supplementary materials), ICA-based measures afev€aled context-dependent changes in
functional communication between the salient neksomainly consisting of the insula, and
other networks (e.g., DMN).Similar discrepancies were observed between the two
methodologies for the connectivity of the netwarntaining MPFC, with another network.
Based on our findings, these two approaches appdsa complementary. The ROl approach
provides information about connectivity betweenividlial brain regions. The ICA-based FC
approach seems to help find additional evidendbeahetwork level that could not be found
with the ROI-based approach. Thus, the ICA-basedapfoach may be a useful tool for
comprehensively characterizing network communicatiothe entire brain while offering the
benefits of blind source separation and dimensitynedduction.Our findings are consistent
with the previous study showing high similaritiehough not identical) between the
connectivity maps obtained during the visuo-mo&sktusing two methodologies (Joel, Caffo,

Van Zijl, & Pekar, 2011).

25



4.5. How our findingsrelate to under standing others

Social perception, action recognition, and the thexd mind are representative examples of
social information processing (Yang, Rosenblau,féei& Pelphrey, 2015). These social
cognitive abilities enable us to understand anopgeson's emotions, intentions, and mental
statesbased on behavioral cues expressed during soteahations such as facial expressions,
body gestures, and reciprocal toudie present study has demonstrated that understandi
others who are engaging in reciprocal touch iseadd through the engagement of various
neural systems and the enhanced communication éetweem. Importantly, our study
provides evidence that during the observation dfeotpeople's touch actions, extensive
changes occur in the functional structure of treerdepending on whether the recipient is a
person or an object. Our findings suggest thaflxbility in context-dependent modulation
of brain communication may be the underlying neanachanism of social cognitive ability
that enables us to understand others.

4.6. Limitations and directions for futureresearch

In this study, we adopted both a theory-driven R@ed and data-driven ICA-based
approach. As described in the Materials and Methsaition, ROI selection was already
made when designing our previous multivariate patenalysis study (Lee Masson et al.,
2018). The advantage of selecting the same RQlstgt facilitates comparisons among our
publications using the same experimental designyasa@ with different neuroimaging
methods. Moreover, a hypothesis-driven ROI approacteases the study's sensitivity and
reduces the problems of multiple comparisons. Digathges of the ROI approach, such as
missing out some brain regions, are remediatedhbydata-driven multivariate ICA-based
approach. However, although the ICA approach offdrs benefits of dimensionality

reduction and blind source separation, increasdiagtudy's sensitivity, this approach may not
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fully replace a whole brain-level ROI analysis. $hifuture studies could consider different
types of FC analysis, such as whole-brain ROlIssaedl-based FC analysis.

The current study raises further questions that watuire future research. The
directionality of the information flow remains toe binvestigated using a neuroimaging
method with a finer temporal resolution to clanfiether the interaction is the results of top-
down or bottom-up modulation. It is also necesdaryclarify how connectivity patterns
change over time in order to understand a dynatnictsire of neural model supporting social
touch perception. For example, implementing a Geammgusality approach to data obtained
with magnetoencephalography (MEG) can aid in ansygehese questions.

5. Conclusion

The present study provides novel and rich evidéhatthe observation of human-to-human
social touch interactions, relative to non-soadaich, elicits much more information exchange
among key brain regions and networks. Furthermoue, findings support and extend an
existing integrative neural model of social cogmt(Bohl & van den Bos, 2012; Yang et al.,
2015) by characterizing how strongly the somatosgnsnirror network is connected to
regions and networks implicated in social cognitaod social perception. Lastly, the current
study emphasizes the advantages of a task-baseteativity approach in revealing the
context-sensitive modulation mmeural functional architecture, which cannot bensared by a
task-free resting state approach.
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