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Introduction
Adipose tissue inflammation and systemic insulin resistance are the hallmarks of  obesity and causal fac-
tors of  obesity-induced metabolic disorders such as prediabetic conditions and type 2 diabetes mellitus 
(T2DM). Adipose tissue macrophages (ATMs) are the most abundant immune population in obese visceral 
adipose tissue and play a central role in modulating adipose tissue function and homeostasis. The plas-
ticity of  macrophages allows swift, fine-tuned, and diverse responses to execute crucial functions during 
pathogen infection and tissue homeostasis. Such plasticity coupled with dynamic tissue- and stress-specific 
responses generates highly heterogeneous macrophage subpopulations with phenotypic complexity that 
is difficult to characterize. This challenge is exemplified by the confusing and conflicting results obtained 
when macrophages are characterized as single populations from specific tissues or in response to pathogenic 
challenges. The inability to define specific functional macrophage populations may underlie failures in the 
development of  effective disease therapies; therefore, new approaches are needed (1).

Several models proposed to understand macrophage function define cells by either pathogen/antigen- 
specific responses or tissue-specific outcomes (1–3). The most popular macrophage polarization model 

Adipose tissue macrophages (ATMs) are crucial for maintaining adipose tissue homeostasis 
and mediating obesity-induced metabolic abnormalities, including prediabetic conditions and 
type 2 diabetes mellitus. Despite their key functions in regulating adipose tissue metabolic and 
immunologic homeostasis under normal and obese conditions, a high-resolution transcriptome 
annotation system that can capture ATM multifaceted activation profiles has not yet been 
developed. This is primarily attributed to the complexity of their differentiation/activation process 
in adipose tissue and their diverse activation profiles in response to microenvironmental cues. 
Although the concept of multifaceted macrophage action is well accepted, no current model 
precisely depicts their dynamically regulated in vivo features. To address this knowledge gap, we 
generated single-cell transcriptome data from primary bone marrow–derived macrophages under 
polarizing and nonpolarizing conditions to develop new high-resolution algorithms. The outcome 
was the creation of a 2-index platform, MacSpectrum (https://macspectrum.uconn.edu), that 
enables comprehensive high-resolution mapping of macrophage activation states from diverse 
mixed cell populations. MacSpectrum captured dynamic transitions of macrophage subpopulations 
under both in vitro and in vivo conditions. Importantly, MacSpectrum revealed unique signature 
gene sets in ATMs and circulating monocytes that displayed significant correlation with BMI and 
homeostasis model assessment of insulin resistance (HOMA-IR) in obese human patients. Thus, 
MacSpectrum provides unprecedented resolution to decode macrophage heterogeneity and will 
open new areas of clinical translation.
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separates macrophages into classical (M1) and alternative (M2) activation states, based on responses elic-
ited by T helper 1 (Th1) (or other pathogens) and Th2 cell–derived cytokines, respectively (4–7). Other 
models separate M1 and M2 into subtypes based on limited features examined in different contexts (8). 
However, no currently available model allows comprehensive annotation of  complex macrophage fea-
tures under different conditions (9). Advances in high-throughput sequencing technologies allow in-depth 
analyses of  cell populations to identify distinct subsets and dissect regulatory mechanisms underlying cell 
function. However, currently available algorithms that perform comparisons of  transcriptomes from whole 
populations are unable to define complex and subtle differences among subpopulations within one lin-
eage, and have even less capacity to characterize the dynamic activation-state changes of  each subpopula-
tion. Hence, the results are often ambiguous when macrophages are analyzed as bulk samples using these 
methods, which weakens our understanding of  human macrophages.

To identify critical signaling networks governing ATM action under healthy or obese conditions, we gen-
erated single-cell transcriptome data to develop new algorithms for high-resolution macrophage analysis. This 
resulted in the creation of  a macrophage annotation platform, MacSpectrum (https://macspectrum.uconn.
edu) that can differentiate macrophage subpopulations by polarized activation state and terminal maturation 
(Table 1) stage. The 2 newly developed algorithms that drive MacSpectrum, the macrophage polarization 
index (MPI) and the activation-induced macrophage differentiation index (AMDI) (Table 1), enable full- 
spectrum coverage and high-resolution annotation of  macrophage subpopulations in vivo through the fine- 
mapping of  each cell to a well-supported inflammatory or “terminal maturation” state. MacSpectrum divided 
ATMs into M1-like, M2-like, transitional, and preactivation phenotypes to allow further characterization. 
More importantly, MacSpectrum revealed unprecedented information about macrophage responses under 
obese conditions, including regulatory factors, signaling pathways, and diabetes-specific signature genes.

With the increased severity of the obesity pandemic and its associated risk of T2DM, a practical chal-
lenge is to identify novel biomarkers in circulating monocytes, the most convenient venue for clinical diagnosis. 
Although great investments have been made, it remains difficult to identify functionally relevant biomarkers 
that directly contribute to T2DM pathogenesis in the ever-expanding obese population. Toward this goal, we 
analyzed CD14+ ATMs and circulating monocytes from obese patients using MacSpectrum and identified 
several biomarkers that correlated with high significance to diabetic phenotypes.

Thus, MacSpectrum provides what we believe is a novel and comprehensive platform to annotate mac-
rophage function and dissect diverse programs under sophisticated conditions in vivo, a major challenge in 
macrophage biology.

Results
Conventional analysis of  single-cell RNA sequencing data revealed nonoverlapping cell cluster distribution between 
primary ATMs and the in vitro bone marrow–derived macrophage polarization system. ATMs are the most abun-
dant immune population in white visceral fat (10) and are known to play crucial roles in maintaining 
adipose tissue function and immunological homeostasis (11). ATMs increase significantly in quantity and 
proportion in obese visceral fat (12), while the whole ATM population has been shown to shift from a less 
inflammatory M2-like activation state to a proinflammatory M1-like activation state (13). Nevertheless, 
despite transcriptome profiles of  ATMs previously documented in different studies (14–16), no known tran-
scriptome annotation tool allows full-spectrum capture of  the dynamic action of  macrophages in vivo or 
depiction of  the dynamic yet distinct activation programs of  ATMs under healthy or obese conditions. To 
fill this knowledge gap, we performed single-cell RNA sequencing (scRNA-seq) analyses of  purified ATMs 
(CD45+CD11b+F4/80+) from diet-induced obese or normal chow diet–fed lean mice. In parallel, to facili-
tate characterization of  ATM subpopulations with respect to activation and terminal differentiation states, 
we also generated scRNA-seq profiles of  the in vitro polarization system, a well-established model where 
primary bone marrow–derived macrophages (BMDMs) are stimulated with robust polarization conditions: 
unstimulated for M0, IFN-γ plus LPS for M1, and IL-4 plus IL-13 for M2 (Figure 1A).

scRNA-seq profiles were analyzed using CellRanger, which was developed using the widely accepted 
t-distributed stochastic neighbor embedding (t-SNE) algorithm, to focus on similarity comparisons at the 
whole-transcriptome level. Three distinct BMDM cell clusters were identified using t-SNE that were con-
sistent with the anticipated treatments in culture (Figure 1B), and were validated by the presence of  mature 
macrophage signature genes (CD45, Adgre1 [F4/80], Lyz2) and their polarization signature gene expression 
patterns (e.g., Nos2, CD86, and Tnf for M1; Ym1, Arg1, Fizz-1, and Mgl2 for M2) (Figure 1D). However, 
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when this strategy was applied using scRNA-seq profiles from ATMs isolated from obese or lean murine 
visceral adipose tissue, our t-SNE analysis yielded a very different pattern that featured unevenly distrib-
uted and poorly separated cells (Figure 1C and Supplemental Figure 1B; supplemental material available 
online with this article; https://doi.org/10.1172/jci.insight.126453DS1). Moreover, several classic M1/
M2 signature genes were rarely expressed in ATMs and/or presented no obvious differences between lean 
and obese populations (Supplemental Figure 1C), despite that the latter was suggested to contain more 
M1-like subsets, as was identified using other classic M1 markers (17). These findings and those from more 
recent studies highlight the inadequacy of  the classic model in characterizing macrophage populations (14, 
18). Currently available methods (such as t-SNE and PCA) used to analyze these data focus on similarity 
comparisons at the whole-transcriptome level, with limited knowledge of  details to capture complex bio-
logical function, and thus are inefficient at capturing relatively subtle differences within a population, such 
as multiple activation states of  macrophages, and indeed, such limitations of  current algorithms have been 
recently realized and discussed (19). Thus, to understand the molecular differences between some macro-
phage cell populations, higher-resolution methods are required.

MPI characterized the dynamic activation waves of  macrophage responses in vitro. To generate a platform 
tailored to capture the dynamic yet relatively subtle differences at the whole-transcriptome level among 
macrophage subpopulations, we took advantage of  scRNA-seq profiles from the BMDM polarization 
system. We first performed a series of  calculations to identify a gene set that could clearly separate 
M1 and M2 cells and retained the highest inclusion of  the most differentially expressed genes (see 
Methods for details). Groups of  top-ranked genes with preferential expression in M1 or M2 samples 
(FDR-adjusted P value < 1 × 10–10, detectable frequency > 1%, unique molecular identifier [UMI] > 1) 
were selected to calculate the similarity of  each cell to the average UMI in either M1 or M2 samples 
using a method modified from Pearson’s correlation (Supplemental Figure 2 and Methods). Among 
all tested groups, the top 500 most differentially expressed genes were selected as the “polarization 
signature genes” (PSGs) (Table 1) because they allowed for efficient separation and yet retained effec-
tive gene coverage between M1 and M2 samples (Figure 2A). Next, we generated a linear regression 
line of  all scRNA-seq profiles plotted by the correlation to M1 or M2 average expression levels of  the 
PSGs (rm1, rm2), which we termed the “polarization axis” (Figure 2, B and C, and Table 1). Each cell was 
then assigned an MPI value with adjusted distance of  their projection point to the starting point of  the 
polarization axis (see Methods for details) (Figure 2C). We observed that M1 and M2 samples were well 
separated along the polarization axis and classic M1 and M2 markers displayed predicted correlations 
with MPI values (Figure 2, D and F, and Supplemental Table 1): higher MPI suggests more M1-like 
(more inflammatory) states and lower MPI suggests more M2-like (less inflammatory) states. Ontology 
analysis revealed that the PSGs are enriched for cell signaling pathways that are well recognized as 
macrophage polarization regulators (Figure 2E).

Table 1. Description of terms used in the present study

Term Abbreviation Description
Terminal maturation The transitional process from preactivation-state 

macrophages to fully activated/polarized macrophages.
Polarization signature genes PSG The genes used for MPI generation; they were selected by 

comparing M1 vs. M2 BMDMs. 
Polarization axis The axis along the regression line of M1 and M2 BMDMs 

(Figure 2B), pointing from the most M2-like to the most 
M1-like cells; MPI was determined based on a cell’s projection 

on the polarization axis.
Macrophage polarization index MPI The index describing the polarity of macrophage activation; 

the lowest and highest MPI values suggest the most M2- and 
M1-like macrophages in a population, respectively.

Activation-induced macrophage differentiation signature 
genes 

AMDSG The genes used for AMDI generation; they were selected by 
comparing M0 vs. M1 and M2 BMDMs. 

Activation-induced macrophage differentiation index AMDI The index describing the degree of macrophage terminal 
maturation.
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To evaluate the efficacy of  MPI in deciphering macrophage activation states, we tested our model with 
several publicly available macrophage transcriptome data sets from other research groups that included 
human or murine macrophages challenged with different stimuli (www.ncbi.nlm.nih.gov/geo/). Interest-
ingly, application of  MPI not only demonstrated the activation states of  macrophages in these experiments, 
but also revealed features in a more comprehensive and clearer way compared with previous experiments, 

Figure 1. scRNA-seq profiles of cultured M0, M1, and M2 BMDMs and ATMs from lean and obese mice. (A) scRNA-seq scheme. Cultured M0, M1, and 
M2 BMDMs were barcoded separately and processed together for scRNA-seq. ATMs from lean and obese mice were barcoded separately and processed 
together for scRNA-seq. (B and C) t-SNE clustering of scRNA-seq from 6979 M0, 4736 M1, and 6391 M2 BMDMs (B), and combined data from BMDMs (M0, 
M1, and M2) and 1710 lean and 1758 obese ATMs (C). (D) Expression of macrophage lineage markers (left panel), and well-known M1 (middle panel) and M2 
markers (right panel) by t-SNE plots.
 



5insight.jci.org   https://doi.org/10.1172/jci.insight.126453

R E S E A R C H  A R T I C L E

Figure 2. Generation of the macrophage polarization index (MPI). (A) rm1 versus rm2 contour plots of 4736 M1 and M2 BMDMs using the top 500 most 
differentially expressed (absolute fold change) and significantly changed genes (FDR-adjusted P < 1 × 10–10) (PSG). (B) Polarization axis is the regression line 
of transcriptomes to M1 (rm1) or M2 gene sets (rm2). (C) MPI is calculated as l = P – P0. (D) Macrophage distributions along the MPI scale. (E) PSG-enriched 
pathways. (F) Heatmap of PSG. Known markers for M1 or M2 are indicated; complete gene list is in Supplemental Table 1. (G and H) MPI density distributions 
of human PBMC-derived macrophages stimulated with IFN-γ (GSE82227) (67) (G) and murine BMDMs after Salmonella exposure (GSE65528) (83) (H).
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such as a clear sequential “activation wave” of  human (Figure 2G) or mouse (Figure 2H) macrophages 
from early to late time points after stimulation (Supplemental Figure 3). Thus, these validation tests sup-
ported the efficacy of  MPI to annotate either murine or human macrophage activation states.

AMDI captures transition from preactivated to activated macrophages. Next, we developed a second index, 
AMDI, to annotate the process from preactivation states (M0) toward fully activated and matured macro-
phages (M1/M2). Heterogeneity of  tissue macrophages is not only defined by diverse activation states, but 
also by terminal maturation, i.e., how complete the activation process is. Studies suggest that tissue mac-
rophages are derived from either embryonic or bone marrow precursors (20–22). Embryonic-origin tissue- 
resident macrophages are considered fully mature populations that maintain homeostasis (23). Under stress 
conditions, monocytes can also be recruited to tissues and transition into macrophages that either replenish 
the homeostasis-maintaining tissue-resident population or undergo activation to orchestrate inflammatory 
responses (20–22). Thus, to enable comprehensive investigations of  in vivo–derived macrophages under 
normal or disease conditions, we created an index for macrophage terminal maturity. Indeed, comparison 
of  whole transcriptomes among M0, M1, and M2 BMDMs revealed higher similarity between M0 and M2 
than either M0 and M1 or M2 and M1 (Figure 3, A and B). Furthermore, MPI application successfully 
identified the M1 population but failed to distinguish M0 and M2 (Supplemental Figure 4A), suggesting 
that genes other than PSGs were responsible for the M0 to M2 terminal differentiation process.

Thus, we extracted a list of  genes that correlated with macrophage terminal maturation but not polar-
ized activation (see Methods for details), resulting in a total of  435 genes that we defined as “activation- 
induced macrophage differentiation signature genes” (AMDSGs) (Table 1). Ontology analysis confirmed 
that these genes were highly enriched for factors significantly altered during macrophage terminal matu-
ration (e.g., Csf1r, Cebpb, Cd274, Itga4, etc.; refs. 24–27, respectively), canonical signaling pathways for cell 
cycle control, and development of  macrophage functions (antigen presentation, communication between 
innate and adaptive immune cells, etc.; Figure 4A). Using the AMDSGs, we calculated the similarities 
between the averaged M0 BMDM gene expression and each BMDM cell (rm0) and found that cells with 
higher rm0 indicated higher similarity to M0 BMDMs; this indicated a preactivation and more immature 
phenotype, whereas cells with negative rm0 (–rm0) suggested less similarity to M0 cells, hence a more mature 
state. Accordingly, each cell was assigned an AMDI value (see Methods for details) to depict their relative 
maturity as a macrophage (Figure 4B). Furthermore, compared with unsupervised clustering with whole 
transcriptome (Figure 1D), t-SNE analyses using PSG and AMDSG gene sets presented lean or obese 
ATMs with cell clusters either overlapping with or close to BMDM clusters, suggesting features that are 
more comparable to ex vivo culture systems (Supplemental Figure 4B).

Importantly, with the application of  PSGs and AMDSGs, the 3 BMDM M0/M1/M2 cell popula-
tions were assigned to 3 separate branches when cell trajectory algorithms (28–30) were applied (Figure 
4C); intriguingly, these aligned along a pseudotime progression scale, suggesting a mechanistic process 
where M0 cells precede M1 and M2 cells (30) (Figure 4D). PSGs and AMDSGs displayed significantly 
altered expression patterns within each branch as well (Figure 4E). In contrast, a cell trajectory plot built 
using whole transcriptomes presented substantial overlap between M0 and M2 BMDMs (Supplemental 
Figure 4C). In summary, compared with whole-transcriptome-based cell cluster characterization or cell 
trajectory analyses, application of  PSGs/AMDSGs provided a fine-mapping strategy tailored to capture 
macrophage activation.

MacSpectrum incorporates MPI and AMDI to define ATM subpopulations in obesity. To enable a compre-
hensive depiction of  macrophage activation and terminal maturation states, we incorporated the 2 newly  
created indices, MPI and AMDI, to establish the MacSpectrum platform (www.macspectrum.uconn.
edu). Based on the combined relative values of  MPI and AMDI for macrophages, we designated cells in 
each region of  the MacSpectrum plot as A, “M2-like”; B, “M1-like”; C, “transitional M1-like”; and D, 
“preactivation” (Figure 5A). As expected, application of  MacSpectrum successfully distinguished all 3 
BMDM activation states, M0, M1, and M2 (Supplemental Figure 4, D and E). We next tested the ability 
of  MacSpectrum to annotate complex in vivo macrophage states from scRNA-seq data sets that recorded 
artery macrophage responses under atherosclerotic (baseline) or regression conditions (GSE97941) (31). 
Integrating MPI and AMDI, MacSpectrum effectively depicted a dynamic macrophage subpopulation 
compositional change from atherosclerotic (baseline) to regression conditions, where a highly matured 
(high AMDI) and inflamed (high MPI) macrophage pattern transitioned to a more nonactivated and less 
inflammatory pattern (low AMDI and MPI, region D) (Supplemental Figure 4F), which was consistent 
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with the original publication (31). Thus, these results suggest that the MacSpectrum model developed with 
expression changes of  PSGs and AMDSGs was able to capture characteristic features of  macrophages and 
effectively drive their separation into distinct subpopulations.

Next, we applied MacSpectrum to scRNA-seq profiles of  ATMs to dissect their functional contribution 
to tissue homeostatic maintenance and actions under stress (Figure 5, B–D). ATMs are the most abundant 
immune cells in white visceral fat (10) and play crucial roles in maintaining adipose tissue function and 
immunological homeostasis (11). ATMs increase significantly in quantity and proportion in obese visceral 
stroma, and the whole ATM population has been shown to shift from a less inflammatory M2-like to a 
proinflammatory M1-like activation state (13). Given such a distinct phenotypic shift and proportional 
change between M1-/M2-like states in lean and obese ATMs, single-cell transcriptome analysis would be 
expected to display clear clusters of  M1 or M2 cells. In practice, however, lean and obese ATMs analyzed 
using the t-SNE algorithm overlapped with themselves in a cluster that was separate from polarized M1 or 
M2 BMDM clusters (Figure 1D and Supplemental Table 1). Of  note, classic M1/M2 signature genes were 
rarely or weakly expressed in ATMs and/or presented no obvious enrichment in either lean or obese pop-
ulations (Supplemental Figure 1C), despite a report that obese ATMs contain more M1-like subsets (17).

MacSpectrum successfully identified various ATM populations with distinct activation and maturation 
states (Figure 5B and Supplemental Figure 5, A–D). Specifically, ATMs from lean tissue were predomi-
nantly enriched in region A, defined by cells with high AMDI and low MPI, while ATMs from obese tissue 
displayed a diversified profile with cells clustered in all 4 regions (Figure 5B). Compared with ATMs from 
lean mice, ATMs from obese mice had an overall increased proportion of  cells with high MPI, and thus a 
greater proinflammatory activation status.

To precisely characterize ATM subpopulation properties and functions, we performed gene ontology 
and pathway analyses on cells from each region (A–D) (Figure 5 and Supplemental Figure 6). Overall, 
obese-tissue ATMs presented enhanced proinflammatory profiles compared with ATMs from lean tissue 
and contained a significantly higher proportion of  cells in regions B and C (high MPI) (Figure 5B). Of  
note, cells in region B (high MPI/high AMDI) primarily consisted of  obese ATMs with mature and 
strong inflammatory properties (Figure 5C), while the obese-dominated region C showed similar gene 
signatures (Supplemental Figure 7, A and B) with a previously reported proinflammatory CD9+ ATM 

Figure 3. Comparison of BMDM scRNA-seq profiles. (A) Similarity analyses of individual cells in M0, M1, and M2 BMDM samples were calculated using 
whole transcriptomes. An equal number (4736) of cells were randomly selected from each population; rows and columns represent individual cells from the 
2 populations being compared, and the color of their crossing point represents adjusted correlation coefficient r; higher (yellow) and lower (blue) r suggest 
higher and lower similarity, respectively. (B) Bulk similarities between the M0, M1, and M2 BMDM populations as in A. Distances between populations are 
indicated next to the connecting lines; longer distances indicate more different from each other.
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subpopulation found in obese mice (15), consistent with its high MPI values. On the other side of  the 
spectrum, region D cells exhibited early maturity (lowest AMDI) and low inflammatory features (low 
MPI) among all the ATM subpopulations, which might represent more monocytic cells that are newly 
recruited from peripheral blood. However, their origin requires further study, especially for lean ATMs 
which are suggested to primarily derive from embryonic origins (32). Interestingly, the macrophage/

Figure 4. Generation of the activation-induced macrophage differentiation index (AMDI). (A) Pathways significantly enriched in the 435 AMDSGs. (B) Mac-
rophage distributions along the AMDI scale. (C and D) Single-cell trajectory of M0, M1, and M2 BMDMs (4736 cells/sample) with Monocle (30) using PSGs and 
AMDSGs colored by BMDM population (C) or pseudotime (D). (E) Heatmap showing smoothened relative expression of PSGs and AMDSGs along pseudotime 
progression, from M0 to M1 and M2 branches of the single-cell trajectory. Known signature genes are indicated. Hierarchical clustering generated 6 expres-
sion groups: groups I and III enriched in M1, group II enriched in M2 or M1 and M2, groups V and VI enriched in M0, group IV enriched in M0 or M2.
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dendritic cell differentiation regulators Spi1 (PU.1) and Zeb2 (33, 34) and their downstream target genes 
were enriched in regions C and B of  the obese ATMs, respectively (Supplemental Figure 8, C and D). 
Moreover, previously reported dendritic cell signature genes (35) including Cd11c and several MHC class 
members were enriched in region B of  the obese ATMs (Supplemental Figure 7C), indicating potential 
contribution of  dendritic cells to obesity-induced adipose tissue inflammation. However, considering 
the often overlapping characteristics of  dendritic cells and macrophages (36–38), the specific identity of  
those cells requires further investigation.

Figure 5. MacSpectrum characterization of visceral ATM subsets from lean and obese mice. (A) Macrophage subsets on the MacSpectrum plot were des-
ignated as A,“M2-like”; B, “M1-like”; C, “transitional M1-like”; and D, “preactivation”. (B) MacSpectrum plot of 1710 lean and 1758 obese ATMs with percent-
ages calculated for each region (A, B, C, or D). (C) Pathways enriched in lean (L) and obese (O) region-specific (A, B, C, or D) subpopulations. (D) Heatmap of 
ATM signature genes identified using MacSpectrum. Each gene was plotted as one row along MPI; all genes arranged by hierarchical clustering.
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Based on these observations combined with gene ontology studies (Supplemental Figure 8, A and B), 
we propose a model of  obesity-induced alterations in ATM subpopulations (Supplemental Figure 8E). In 
lean adipose tissue, preactivation and less mature macrophages (D) primarily develop into resident M2 
cells (A) to carry out tissue maintenance functions (12, 20, 39, 40). In obese adipose tissue, metabolic and 
immunological cues in the white visceral adipose tissue enhance monocyte recruitment (20, 41), activate a 
portion of  cells into resident M2 ATMs (A), and activate another portion of  cells into an acute/strong (C) 
then later a tuned/moderate inflammation state (B) (Supplemental Figure 8E), resulting in obesity-induced 
adipose tissue inflammation.

MacSpectrum identifies unique gene sets in diabetic conditions in obesity. Plasticity is a key feature of  mac-
rophages that allows activation of  condition-specific functions through specific signaling pathways in 
response to diverse stimuli. The proportions of  cells across the 4 regions of  MacSpectrum (Figure 5A) 
dictate the overall macrophage population character under a given condition, and can be used to identify 
stimulation- or disease-specific signature genes. Taking advantage of  MacSpectrum resolution for defining 
complex macrophage subpopulations in vivo, we performed several comparisons to identify genes that 
could represent early biomarkers for obesity-related conditions in humans. We first identified genes with 
preferential expression in (a) “preactivation” cells, by comparing obese versus lean ATMs in region D 
from mice; and (b) mature macrophages with polarized inflammatory states, by comparing obese ATMs 
in region B with lean ATMs in region A from mice. We then cross-compared these gene sets to identify 
signature genes expected to be involved in the early stages of  obesity inflammation. Finally, to determine 
whether any of  these genes correlated with human conditions related to obesity, we cross-compared these 
genes with those from (i) obese human patients with and without diabetes, and (ii) obese human patients 
before and after bariatric surgery.

As shown in Supplemental Figure 9A, a total of  603 mouse genes displayed significant differential 
expression in obese versus lean preactivation (region D) cells (P < 0.05, fold change > 1.5). Among them, 
over 60% of  genes consistently displayed polarization-associated expression preference (385 out of  603 
genes, P < 0.05, fold change > 1.5 comparing obese M1-like cells in region B vs. lean M2-like cells in 
region A). Interestingly, 436 genes expressing a distinct macrophage polarization pattern in murine ATMs 
also displayed significant differential expression (P < 0.05) in CD14+ cells isolated from obese human sub-
jects with or without diabetes (GSE54350). Signaling pathway analysis of  these genes revealed enriched 
TNFR, IL-8, and IL-1 inflammatory signaling pathways and those involved in oxidative stress response 
(Supplemental Figure 9B).

To evaluate the contribution of  monocytes in the pathogenesis of  obesity-induced T2DM, we selected 
preactivation cells in region D mapped by MacSpectrum for comparison to circulating monocyte profiles 
generated from obese patients who underwent bariatric surgery (an effective procedure to ameliorate obesity- 
induced insulin resistance and metabolic disorder risks). A total of  185 genes that displayed differential 
expression patterns in murine preactivation ATMs (obese vs. lean ATMs in region D) were also significantly 
altered (P < 0.05) in circulating monocytes isolated from 18 patients before or 3 months after surgery. To 
identify genes that are important for ATM polarization in murine obesity but also altered in human obese 
subjects with or without diabetes (GSE54350) or associated with improved metabolic stress (GSE32575), 
we cross-examined the lists of  genes with significant expression differences (P < 0.05) in each comparison 
and identified a total of  23 gene candidates (Figure 6A and Supplemental Table 6). Gene ontology analyses 
of  these genes indicated roles in both inflammatory and metabolic regulation of  monocytes/macrophages 
(Supplemental Figure 9C). Among this set of  genes, several were previously reported as diabetes-associated 
genes by different studies, such as Ercc1 (42–44), Comt (45), Clic1, Gpx1 (46–48), Rnaset2 (49), Tkt (50, 51), 
Sparc (52), Gpc3 (53), Prrx1 (54, 55), and Bdh2 (56, 57). In addition to these known diabetes-related genes, 
we also identified 13 genes that potentially contribute to T2DM development in obese populations. For 
example, PRKAG2 encodes a member of  the noncatalytic subunit of  AMP-activated protein kinase (AMPK) 
gamma unit family that mediates binding to AMP/ADP/ATP for activating/inhibiting AMPK function 
(58). The function of  PRKAG2 has not been analyzed in T2DM; however, mutations of  this gene may lead 
to Wolff-Parkinson-White syndrome and other glycogen storage diseases in heart (59).

In our mega-analysis using MacSpectrum, we found that PRKAG2 displayed significant correlation with 
BMI (P < 0.05, r = 0.59) and homeostasis model assessment of  insulin resistance (HOMA-IR) (P < 0.05,  
r = 0.41) in obese patients that underwent bariatric surgery (Figure 6, A–D), which concomitantly displayed 
an expression pattern preferentially in CD14+ ATMs from obese subjects with diabetes than those without 
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Figure 6. MacSpectrum identified unique gene sets associated with diabetes conditions in obesity. (A) Heatmap showing expression of the 23 gene 
candidates identified using MacSpectrum in blood monocytes of 18 obese patients before and after bariatric surgery. (B and C) Correlation coefficients (r) 
of the 23 gene candidates with patients’ BMI (B) and HOMA-IR (C). (D and E) Correlation (D) of PRKAG2, ERCC1, AMOTL2, and BDH2 with HOMA-IR and BMI 
and their microarray-determined relative expression (E) in visceral adipose tissue CD14+ cells from 12 obese patients with (Dia) or without diabetes (No Dia) 
(GSE54350). Data represent mean ± SEM. *P < 0.05, **P < 0.01 by 2-tailed Welch’s t test.
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diabetes (Figure 6E). AMOTL2, a protein encoded by another gene also less known to contribute to T2DM 
pathogenesis, can bind to angiostatin to modulate angiogenesis and cell-matrix remodeling through inhibi-
tion of  the Wnt/β-catenin pathway (60). AMOTL2 was suppressed in obese diabetic subjects compared with 
nondiabetic subjects (Figure 6E); concomitantly, the expression pattern of  AMOTL2 was negatively correlated 
with BMI (P < 0.05, r = –0.64) and HOMA-IR (P < 0.05, r = –0.49; Figure 6, A–D). Expression patterns 
in obese subjects with or without diabetes, the expression distribution with Pearson’s correlation values to 
BMI or HOMA-IR, and the functions involved in metabolic/inflammatory regulation of  each gene in this 
23-gene set are summarized in Supplemental Table 6. Taken together, our results identified a signature of  
markers that distinguish T2DM risk in obese subjects in circulating monocytes, suggesting their potential 
functional contribution to the pathogenesis of  T2DM in obesity.

Discussion
Macrophages are often the most dominant tissue immune cells that contribute to both tissue homeostasis 
and diseases. Under normal conditions, macrophages primarily maintain a noninflammatory state by facili-
tating tissue regeneration and wound healing. In response to immune challenges, macrophages are essential 
to innate immunity, with a diversified and quick response to invading pathogens and an ability to clear autol-
ogous tissue waste. Macrophages in various tissues may have either embryonic or bone marrow–derived 
hematopoietic origins, but their function in maintaining tissue homeostasis or responding to acute or chronic 
stress may be interchangeable (61–64). Given the important function of  macrophages and their direct link to 
circulating monocyte recruitment under stress conditions, researchers have invested great efforts to delineate 
their diversified phenotypes and swift responses to both systemic and tissue microenvironmental cues. How-
ever, while functional annotation of  macrophages in vivo is both necessary and heavily pursued, the precise 
landscape of  macrophages in tissues under both healthy or stress conditions remains vague.

Technologies such as scRNA-seq have the potential to advance our understanding of  macrophages in 
vivo by facilitating investigations into macrophage maturation and activation states at the individual cell 
level. However, current algorithms for mining such data rely on similarities and differences at the overall 
transcriptome level. Compared with features that define cell lineages, signals altered during macrophage 
terminal maturation and activation are relatively less distinct, as we observed in this study and others have 
pointed out as one of  the major computational challenges in scRNA-seq clustering (19). To address this 
technical challenge, we generated a platform, MacSpectrum, specifically designed to capture macrophage 
dynamic changes during tissue infiltration and activation by incorporating original algorithms and scRNA-
seq profiles from multiple macrophage data sets. Based on 2 created indices, MPI and AMDI, that fine-map 
each macrophage with a combination of  terminal maturity and polarization states, MacSpectrum enables 
effective macrophage functional annotation with high resolution and sensitivity. The capability of  Mac-
Spectrum to segregate macrophage heterogeneity was well supported by its performance on samples from 
human and murine species, under in vitro and in vivo conditions, and in bulk and single-cell sequencing 
formats. The spectrum-like model of  macrophage activation states revealed in the present study is consis-
tent with previous studies (15, 65, 66), and MacSpectrum further provides quantitative indices that more 
finely map each macrophage, and thus will enable researchers to define macrophage subpopulations with 
high resolution that encompass inflammatory/antiinflammatory states as well as intermediate subpopu-
lations from complex in vivo microenvironments under normal or stressed/diseased conditions. It should 
be noted that there are other features of  macrophages, such as origins (e.g., bone marrow– vs. yolk sac–
derived), that cannot be deciphered by MacSpectrum currently. In addition, the performance of  MacSpec-
trum with human data sets will need to be examined more thoroughly to address several challenges, which 
include limited human monocyte/macrophage data availability, procedural variations, small sample sizes, 
and large variations in individual medical backgrounds.

Although MacSpectrum was built on murine macrophage (BMDM) gene expression profiles, the 
application strategy we developed does not rely on similarity comparisons between samples from one 
study (such as murine BMDMs, our starting point) to those from another study (any other mouse or 
human monocyte/macrophage study). The MacSpectrum strategy involves using signature gene lists, 
novel algorithms, and study- specific data to build indices. We generated 2 comprehensive signature gene 
lists (PSGs and AMSDGs; >400 genes each) that are most relevant to macrophage action based on a 
strong BMDM polarization model. Then, when MacSpectrum is applied to analyze any other macro-
phage/monocyte study, gene IDs from the PSGs and AMSDGs are extracted from the study data to 
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be analyzed and their expression levels are used to calculate the MPI and AMDI indices, respectively. 
Thus, values of  MPI and AMDI for each sample are only relative within the same study to capture the 
unique activation features for each study context. To test the efficacy of  MacSpectrum, we rigorously 
tested its ability to annotate human macrophages under various physiological and pathogenic condi-
tions. We have compared multiple sets of  transcriptome profiles from human monocytes/macrophages 
that were isolated from different physiological conditions or exposed to various pathogens (GSE82227, 
GSE32575, GSE54350, GSE36952, and GSE92495; refs. 67–71, respectively). We found that close to 
80% of  expressed genes were shared by murine or human macrophages, consistent with previously 
reported conservation between monocytes/macrophages of  the 2 species (72, 73). More importantly, 
these genes also displayed comparable expression patterns during activation (Figures 2 and 6, Supple-
mental Figures 3 and 9, Supplemental Table 6, and data not shown). Of  note, these data were also 
generated using different platforms, such as microarray, conventional RNA-seq, or scRNA-seq, suggest-
ing MacSpectrum exhibits tolerance for analyzing transcriptome profiles across techniques with varying 
depths. Thus, MacSpectrum displayed high potential to characterize monocyte/macrophage actions in 
both human and mouse models under normal or disease conditions. At its current stage, due to limita-
tions of  profiling technology, MacSpectrum aims to provide fine-mapping information of  monocytes/
macrophages within each study, rather than cross-study comparisons. We acknowledge that the model 
can be further strengthened and applied to human diseases when more unified standards in the profiling 
technology and more monocyte/macrophage data sets are available.

In addition to consistent identification of  known features, MacSpectrum demonstrated great potential 
for uncovering novel characteristics of  macrophages in tissues, as well as stimulation-specific gene sets. 
Under conditions of  acute or chronic stress, circulating monocytes are recruited into tissues and subse-
quently undergo terminal differentiation and activation upon exposure to microenvironmental cues. Chron-
ic inflammation is a hallmark of  obesity and a risk factor for obesity-induced T2DM; this is accompanied 
by systemic metabolic and inflammatory exposure to circulating monocytes before their recruitment to 
obese adipose tissue, which may contribute to further differentiation and activation of  the process locally. 
Therefore, it is not surprising to identify genes sharing similar expression preference in ATMs and circulat-
ing monocytes that allow for differential diabetic states in obese subjects.

Indeed, several studies have defined links between obesity, inflammation, circulating monocytes, and 
differential gene expression. Obesity can induce changes in miR expression in circulating monocytes; 
miR-146b-5p, which decreased in monocytes during obesity, is a major mediator of  the antiinflammatory 
action of  globular adiponectin (74). A separate study found an association between COX4I1 depression, 
insulin resistance, and T2DM in obesity (75), and its expression in monocytes reflected that in adipose 
tissues. In addition, researchers observed equal changes in abdominal adipose tissues from obese diabetic 
humans and mice.

These results support MacSpectrum as a framework to readily annotate previous macrophage clas-
sifications (e.g., M1 vs. M2) and as a systematic approach for dissecting the “many alternative faces of  
macrophage activation” (76). Clear separation of  diverse macrophage populations along with functional 
annotation and identification of  underlying tissue- or disease-specific gene signatures, as we initiated 
here for diabetes, will facilitate more focused therapeutic development. The data processing pipe of  Mac-
Spectrum is summarized in Figure 7.

MacSpectrum enabled fine-mapping of  individual cells with respect to their terminal maturity and 
polarization states, and therefore allowed the comprehensive analysis of  tissue macrophages. The shift of  
each macrophage subpopulation along the MPI and AMDI axes also facilitated a more precise annotation 
of  the overall macrophage subpopulation dynamic under various physiological conditions. Of  note, mac-
rophage transcriptional activation programs are loyal to the outcomes imposed by specific stimuli, which 
are often multifactorial and with various magnitudes. Therefore, we expect to observe tissue- or disease- 
specific features when analyzing macrophages. Indeed, we observed that top-ranked genes display MPI and 
AMDI correlations while sharing less than 15% overall commonality between macrophages from visceral 
adipose tissue in diet-induced obesity and aorta macrophages isolated from an atherosclerosis model (data 
not shown). Therefore, stimulation-specific gene sets should be studied with different disease and tissue 
contexts, which is our future plan to further optimize the MacSpectrum system. This will facilitate the 
enhanced characterization of  macrophages as well as other heterogeneous cell populations.
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Methods

Patients and ethics statement
Human data collected in a previous study (68) were provided for our mega-analyses in this study. In summary,  
the original study (68) complies with the Declaration of  Helsinki and the Medical Ethics Committee of  
the Katholieke Universiteit Leuven approved the study protocol (68). As stated in the previous study (68), 
all human participants gave written informed consent. The cohort comprised 18 obese individuals with-
out clinical symptoms of  cardiovascular disease (BMI: 45.1 ± 1.4 kg/m2, P < 0.001 compared with lean 
controls). These 18 morbidly obese subjects were referred to the hospital for bariatric surgery. Before they 
were included, individuals were evaluated by an endocrinologist, an abdominal surgeon, a psychologist,  
and a dietician. Only after multidisciplinary deliberation did the selected patients receive a laparoscopic 
Roux-en-Y gastric bypass (bariatric surgery) (68). CD14+ monocytes were collected before and 3 months 
after bariatric surgery (BMI: 37.5 ± 1.3 kg/m2, P < 0.001 compared with before weight loss), total RNA 
was extracted from these cells, and genome-wide expression analysis was performed. Insulin resistance was 
calculated as follows: HOMA = fasting plasma insulin (mU/l) × fasting blood glucose (mM)/22.5. The 
samples were collected between March 29, 2005 and May 30, 2006.

Animals
Mice (C57BL/6J) were purchased from The Jackson Laboratory (stock no. 000664), housed in a 12-hour 
light/12-hour dark cycle, and provided ad libitum access to food and water for the duration of  the study 
unless stated otherwise. Male mice 5–6 weeks of  age were used for feeding analyses. For dietary feeding 

Figure 7. Scheme showing the data processing pipeline of MacSpectrum.
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studies, mice were fed with a high-fat diet (HFD; 60% fat calories, 20% protein calories, and 20% carbohy-
drate calories; catalog D12492, Research Diets, Inc.) or Teklad standard chow diet (18% fat calories, 24% 
protein calories, and 58% carbohydrate calories; catalog 2918, Envigo) for 12 weeks. After the feeding 
regimen, mice were subjected to phenotype characterization, metabolic assays, and postmortem tissue 
collection for cell isolation.

BMDM differentiation and polarization
BMDMs were prepared as previously described (12, 77). In brief, bone marrow cells were collected from the 
femur and tibia bones followed by erythrocyte lysis with ammonium chloride solution (8.3 g/l ammonium chlo-
ride, 1.0 g/l potassium bicarbonate, and 0.009% EDTA) and seeded in tissue culture plates at a concentration 
of 0.15 × 106/cm2. Cells were induced for differentiation to monocytes in BMDM growth medium (Iscove’s 
Modified Dulbecco’s Medium [IMDM] + 10% FBS + 15% L-929 cell [ATCC, CCL-1]) for 7 days; fresh BMDM 
growth medium was replaced on day 3. Maturation and purity of BMDMs were evaluated on day 7 using flow 
cytometry analysis with fluorescence-conjugated antibodies against CD11b and F4/80. To induce polarization, 
BMDMs were stimulated 48 hours with 100 ng/ml LPS and 50 ng/ml IFN-γ for M1 activation, or 20 ng/ml 
IL-4 and 20 ng/ml IL-13 for M2 activation. Unstimulated BMDMs were collected as M0 state.

Isolation of stromal cells from visceral adipose tissue
Visceral adipose tissues (epididymal, retroperitoneal, and mesenteric fat pads) from 5 lean and 5 obese 
C57BL/6J male mice were isolated separately, mechanically dissected, and digested in Hank’s balanced salt 
solution (HBSS) containing 20 mM HEPES, 0.015 g/ml bovine serum albumin (BSA), and 2 mg/ml collage-
nase II (Invitrogen) for 1 hour at 37°C in an InGeneron ARC tissue processing system with periodic rotating 
and inverting. After removing erythrocytes with ammonium chloride solution, cells were filtered through a 
nylon mesh bag (250–300 μm, catalog 50-303-41, Thermo Fisher Scientific), then a 100-μm cell strainer. Cells 
were resuspended in PBS with 2% FBS, transferred into a BSA-coated tube, and left on ice before sorting.

FACS
Unless otherwise specified, antibodies (Abs) were from eBioscience. VSCs, ATMs, and BMDMs were 
stained with fluorescence-tagged Abs for lineage examination. Macrophages were detected with Abs 
against CD45.2 (catalog 17-0454-82), F4/80 (catalog 25-4801-82), CD11b (catalog 12-0112-82), CD206 
(catalog 141706; BioLegend), and CD11c (catalog 12-0114-83). Macrophage activation was measured with 
Abs against CD206, CD11c, CD80 (catalog 12-0801- 85), CD69 (catalog 45-0691-82), and CD86 (catalog 
17-0862-82). ATMs were defined as CD45.2+CD11b+F4/80+ cell populations and sorted on a BD Biosci-
ences FACSAria II cell sorter. Approximately 60,000 ATMs were isolated from lean and obese samples and 
used for scRNA-seq analysis.

scRNA-seq library preparation and data processing
BMDM cells from M0, M1, and M2 populations were analyzed separately for scRNA-seq and Mac-
Spectrum development. ATM cells pooled from 5 lean and 5 obese C57BL/6J male mice were pooled 
prior to scRNA-seq. All cells were resuspended in DPBS with 0.04% BSA, and immediately processed 
for scRNA-seq as follows. Cell count and viability were determined using trypan blue on a Countess 
FL II, and approximately 12,000 cells were loaded for capture onto the Chromium System using the v2 
single cell reagent kit according to the manufacturer’s protocol (10× Genomics). Following capture and 
lysis, cDNA was synthesized and amplified (12 cycles) as per manufacturer’s protocol (10× Genomics). 
The amplified cDNA from each channel of  the Chromium System was used to construct an Illumina 
sequencing library and was sequenced on a HiSeq 4000 with 150-cycle sequencing (asymmetric reads per 
10× Genomics). Illumina basecall files (*.bcl) were converted to FASTQs using CellRanger v1.3, which 
uses bcl2fastq v2.17.1.14. FASTQ files were then aligned to mm10 mouse reference genome and transcrip-
tome using the CellRanger v1.3 software pipeline with default parameters as reported previously (78); this 
demultiplexes the samples and generates a gene versus cell expression matrix based on the barcodes and 
assigns UMIs that enables determination of  the individual cell from which the RNA molecule originated. 
Gene expression was normalized using CellView software (79). Briefly, the number of  gene transcripts per 
cell was multiplied by the median of  transcripts across all the cells, and then log2 transformed (following 
an addition of  +1 pseudocount to prevent log error where the transcript count is 0; i.e., log2[0 + 1] = 0), 



1 6insight.jci.org   https://doi.org/10.1172/jci.insight.126453

R E S E A R C H  A R T I C L E

resulting in normalized expression (NE) values. Composition of  each gene set of  BMDMs and ATMs is 
summarized in Supplemental Table 2. For clustering, genes were selected based on normalized dispersion 
analysis. Dimensionality reduction was performed using CellRanger and CellView pipeline with the 1000 
most over-dispersed (i.e., variance/mean NE) genes using Barnes-Hut t-SNE with default parameters, and 
cell clusters were determined using DBSCAN (eps = 5.0, minpts = 15). Clusters were visualized (Figure 
1, B and D, and Supplemental Figure 1B) using the t-SNE 2D graph.

Selection of PSGs and AMDSGs
A total of  6979 M0, 4736 M1, and 6391 M2 BMDM scRNA-seq transcriptome profiles were generated. An 
equal number (4736 cells) of  scRNA-seq profiles were randomly selected from M0, M1, or M2 samples and 
used for further analysis.

PSGs. To select genes with the most significant difference during M1 and M2 polarization, we first 
filtered all selected scRNA-seq sets for genes with UMI greater than 1 in at least 1% of  cells in either M1 or 
M2 samples, resulting in a total of  11,315 unique gene IDs. Differentially expressed genes between M1 and 
M2 samples were calculated as log2 (fold change) and tested using the FDR-adjusted P value of  Welch’s t 
test. A total of  6267 genes were selected with an FDR-adjusted P value less than 1 × 10–10. These genes were 
then ranked high to low according to their absolute log2 (fold change) values. As shown in Figure 2A and 
Supplemental Figure 2, top-ranked genes with the most significant differences were selected to test efficacy 
of  separating M1 or M2 samples. The top 500 most significantly changed genes with P values less than 1 × 
10–10 (FDR) were selected for further application, and termed the PSGs (Supplemental Table 4).

AMDSGs. To identify genes that were significantly altered after M0 exposure to stimuli in M1/M2 acti-
vation, we performed the following steps: gene expression profiles of  M1, M2, or M0 consisted of  a total of  
11,566 genes that were expressed (UMI > 1) in more than 1% of  at least 1 of  the 3 populations. Differential 
expression between M1 versus M0 and M2 versus M0 BMDMs were calculated and tested as above. Genes 
that showed FDR-adjusted P values less than 1 × 10–5 were ranked high to low according to their absolute 
log2 (fold change) values, and the top 1000 of  each comparison were selected. Out of  the selected genes, 
435 showed either both-positive or both-negative log2 (fold change) between M1 versus M0 and M2 versus 
M0 BMDMs and were termed AMDSGs (Supplemental Table 5).

Pairwise similarity comparison among M0, M1, and M2 BMDM samples
Pairwise similarities between BMDM cells were calculated using Pearson’s correlation method. Pearson’s 
correlation coefficients of  each M1 versus M2 cell, M2 versus M0 cell, and M1 versus M2 cell pairs were 
calculated using the 11,566 genes that were expressed at greater than 1% frequency in at least 1 population 
of  the 3, as follows:

     (Equation 1)
Where Mx and My are expression levels (UMI counts) of  a certain gene in the 2 cells to be compared:  

Sct = S – Savg is the average expression of  that gene in all the BMDMs, n is the total number of  genes 
(11,566 genes) used for calculation, and r is the Pearson correlation coefficient of  the 2 cells, as an indicator 
of  similarity. A larger r means more similar. The calculated similarities were hierarchically clustered using 
Cluster 3.0 and visualized using Java TreeView 3.0 (http://jtreeview.sourceforge.net) (Figure 3A).

Macrophage single-cell transcriptome profile similarity comparison
Three sets of  reference transcriptome profiles were generated as the average UMI of  each detected gene 
(UMI > 1, detection frequency > 1% in either M0, M1, or M2 samples) in 4736 cells of  M0, M1, or M2 
samples as described above, and termed the M0-average reference transcriptome (M0aveR), M1aveR, or M2aveR.

Similarities between macrophage transcriptomes (a single-cell or bulk macrophage transcriptome 
profile) and reference, M0aveR, M1aveR, or M2aveR, were calculated using a method modified from Pear-
son’s correlation (rmj, equation listed below) in R. The PSGs and AMDSGs were first adapted to the 
macrophage transcriptomes, resulting in (sub)sets of  PSG (PSGsub) and AMDSG (AMDSGsub) that were 
expressed in the macrophages to be tested. To emphasize the changes in gene expression during mac-
rophage activation under various conditions, we performed a gene set centering adjustment to focus on 
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fold-change difference of  each individual gene in all samples within a study. The average expression level 
of  a given gene (Savg) was calculated as the mean of  this gene in each dataset (S) in the whole study. Sct 
is calculated as the centered value of  this gene: let S be the original expression level, then the centered 
expression Sct will be:
Sct = S – Savg

Accordingly, 3 sets of  reference transcriptomes, M0aveR, M1aveR, and M2aveR, were adjusted by centering each 
gene expression level as described, and termed Mj–ctR (j = 0, 1, 2). The similarity between a macrophage 
transcriptome profile and one centered reference transcriptome was calculated as the following: i represents 
a gene ID among the PSG set (for rm1 or rm2 calculation) or AMDSG set (for rm0 calculation); n = number of  
genes in PSGsub (for rm1, rm2) or AMDSGsub (for rm0); j = 0, 1, 2.

     (Equation 2)
Adjusted correlation values for each comparison is provided as rm0, rm1, or rm2 for each transcriptome 

profile. Each cell in an scRNA-seq data set or an RNA-seq profile in a given experiment was treated as one 
transcriptome profile and calculated for all 3 r values.

Similarities between the 3 sets of  reference transcriptomes, M0aveR, M1aveR, or M2aveR, were calculated 
following the same method as above. Adjusted correlations (rM1M0, rM2M0, rM1M2) between the 3 populations 
were calculated using all the 11,566 genes that were expressed (UMI > 1) in more than 1% of  at least 1 of  the 
3 populations. The distances between the 3 populations were calculated as 1 – rM1M0, 1 – rM2M0, and 1 – rM1M2, 
respectively (Figure 3B). Larger distances indicate more different from the other.

Generation of MPI and AMDI for each cell
Calculations described below were applied to all tested transcriptome profiles, including scRNA-seq and 
RNA-seq profiles. Transcriptome profiles generated using other platforms, such as qRT-PCR and microarray, 
were also tested (data not shown).

The rm1 and rm2 values were calculated as mentioned above for each cell in M1 or M2 BMDMs with 
PSG and plotted (Figure 2C). Linear regression of  the cell distribution (M1 and M2 BMDMs) on the 
rm1-rm2 plot was performed using R (Figure 2, B and C). The adjusted R2 value was 0.998 and the regres-
sion line was defined as the polarization axis. Let the equation of  the regression line be: ax + by + c = 0.
The coordinates of  each sample’s P were calculated as follows:

     (Equation 3)

The most upper-left P (xp0, yp0) in the BMDM M1-M2 samples was set as the reference 0 point (P0). 
Accordingly, the most lower-right P (xpmax, ypmax) was set as the reference Pmax point. The distance l from the 
reference 0 point to a given sample’s P (xp, yp) was calculated as follows:

     (Equation 4)
The distance between Pmax and P0 was scaled to a –50 (P0) to 50 (Pmax) range and each rescaled individual 

sample was termed its MPI.
Three sets of  BMDM (M0, M1, and M2) scRNA-seq data were applied to compute AMDI. The rm0 of  

each cell in BMDM data sets (M0, M1, and M2) was calculated as mentioned above using the AMDSG set. 
The highest and lowest rm0 of  the cells in the BMDM data sets were set as –50 and 50, and all the other rm0 
values were rescaled accordingly with linear relation, and were termed AMDI. Plots were generated using 
ggplot2 (80) or our own R codes.
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Heatmap generation of gene expression along the polarization axis
The polarization axes were divided into intervals with a given bin size and cells within a certain bin were 
treated as a small group. A gene expression value (log2 transformed) was calculated as the average level 
(UMI, FPKM, TPM, etc.) of  all cells in each bin group. In figures presented in this study, the bin size of  
MPI values was 5 (Figure 2F) or 2.5 (Figure 5D and Supplemental Table 3) units. The range of  gene expres-
sion levels in all bins was rescaled to a 0 to 100 artificial unit range and the expression levels were accord-
ingly transformed along this scale with linear relation. Transformed expression levels of  genes in each bin 
group were then hierarchically clustered by the hclust function of  R using the complete-link agglomeration 
method; distances used for clustering were calculated by the dist function using the Euclidean method. 
The clustered relative expression values along the polarization axis were visualized using R plotly package 
(https://plot.ly).

Cell-trajectory analysis
Single-cell trajectories of  BMDMs were built using the Monocle package (version 2.8.0) (28–30, 81). 
Whole-transcriptome trajectories of  BMDMs were built using the total 11,566 genes that were expressed 
(UMI > 1) in more than 1% of  at least 1 of  the 3 populations. In our modified trajectory analyses, BMDMs 
were sorted using the 500 PSGs plus 435 AMDSGs. Dimensionality reduction was conducted using the 
DDRTree method and the minimum spanning tree was plotted using the plot_cell_trajectory function.

Expression levels of  the signature genes along pseudotime in the 2 lineages (i.e., from M0-dominant 
state to M1-dominant state and from M0-dominant state to M2-dominant state) were visualized using 
the plot_genes_branched_heatmap function; on the generated heatmap, gene expression levels were 
smoothened using the VGAM package and rescaled to a –3 to 3 range, and were hierarchically clustered.

Dimensionality reduction and clustering
t-SNE dimensionality reduction of  BMDMs and ATMs based on whole transcriptomes was generated 
by 10× Genomics Cell Ranger pipeline (version 2.1). Dimensionality of  gene-barcode matrices was first 
reduced to 10 principal components using principal components analysis (PCA). PCA-reduced data were 
further reduced to 2-dimensional space using the t-SNE method and visualized in the Loupe Cell Browser 
(10× Genomics) and/or by R. Graph-based clustering of  cells was conducted in the PCA space; a sparse 
nearest-neighbor graph of  the cells was built first and Louvain modularity optimization was then applied. 
The number of  nearest neighbors was logarithmically in accordance with the number of  cells. In the last 
step, repeated cycles of  hierarchical clustering and merging of  cluster pairs that had no significant differ-
ential expression was performed, until no more cluster pairs could merge.

Dimensionality reduction of  ATMs and atherosclerosis macrophages based on specific PSGs and 
AMDSGs were conducted using the Rtsne function of  R. The cell-gene matrices including only the 
selected signature genes were first reduced to 50 principal components by PCA, which were passed to the 
Barnes-Hut t-SNE algorithm to further reduce the data to 2-dimensional space. The t-SNE plots overlaid 
with gene expression were visualized by R.

Other bioinformatic analyses
Signaling pathway enrichment and upstream regulator prediction were analyzed using Ingenuity Path-
way Analysis (IPA) (Qiagen), unless indicated specifically. Gene ontology analysis for each data set 
was performed using various platforms or online servers, including PANTHER classification system 
(www.pantherdb.org) (82), ToppGene Suite (toppgene.cchmc.org), and NIH DAVID Bioinformatics 
Resources (david-d.ncifcrf.gov).

Statistics
Unless otherwise stated, P values of  gene differential expression were determined by 2-tailed Welch’s t test. 
P values of  enrichment of  pathways, upstream regulators, and gene ontology terms were generated by the 
corresponding bioinformatics tools.

Study approval
All animal procedures were approved by and carried out in accordance with the policies of  the Institutional 
Animal Care and Use Committee of  UConn Health. Patient data were collected by P. Holvoet and complied 
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with the Declaration of  Helsinki and the Medical Ethics Committee of  the Katholieke Universiteit Leuven 
approved the study protocol (68). As stated in the previous study (68), all human participants gave written 
informed consent prior to inclusion in the study.
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