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ABSTRACT
This paper presents an in-depth analysis of the application of different techniques
for vehicle state and tyre force estimation using the same experimental data and
vehicle models, except for the tyre models. Four schemes are demonstrated: (i) an
Extended Kalman Filter (EKF) scheme using a linear tyre model with stochastically
adapted cornering stiffness, (ii) an EKF scheme using a Neural Network (NN) data-
driven linear tyre model, (iii) a tyre model-less Suboptimal-Second Order Sliding
Mode (S-SOSM) scheme, and (iv) a Kinematic Model (KM) scheme integrated in
an EKF. The estimation accuracy of each method is discussed. Moreover, guidelines
for each method provide potential users with valuable insight into key properties
and points of attention.
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1. Introduction

Advanced Driver Assistance Systems (ADAS) as well as Automated Driving (AD)
technologies are being increasingly implemented in mass market vehicles, aiming for
improved driving safety and passenger comfort [1]. Those technologies can be enhanced
by the knowledge of tyre forces and vehicle planar motion states (longitudinal and
lateral velocities of the Centre of Gravity (COG) and sideslip angles).

The sideslip angle in the vehicle’s COG is defined as the angle between the ve-
hicle’s longitudinal axis and its direction of travel and can be determined from the
planar states, being COG velocities and yaw rate [2,3]. Planar tyre forces—and their
controlled distribution over the wheels—govern safe motion of the vehicle. Therefore,
knowledge of these planar states and tyre forces is crucial for the development and im-
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plementation of ADAS such as Lane Centering Assist (LCA), Autonomous Emergency
Braking (AEB), and obstacle avoidance. Vertical tyre forces are essential to enhance
passenger comfort through (semi-) active suspension control.

This work deals with techniques estimating tyre forces and planar motion states
based on readily available measurement data and models. Those virtual sensors have
clear benefits over their physical counterparts such as being far less intrusive and
expensive. Theoretically, the planar vehicle velocities can be measured using GPS.
However, low cost sensors show poor accuracy and robustness which can only be
improved with a more expensive GPS unit. Both options are undesired. Similarly,
tyre forces can, for example, be measured by Wheel Force Transducers (WFTs) [4],
which are extremely costly though. In contrast, virtual sensors for the planar vehicle
velocities and the tyre forces require only non-intrusive sensors: Inertial Measurement
Unit (IMU), GPS, wheel speed sensors and steering angle sensor.

However, some effort needs to be spend on modelling the vehicle’s behaviour as a
foundation for the estimators. In this work we distinguish between two model cat-
egories, denoting them as kinematic when no forces and inertia are present for the
estimation, and dynamic when we do consider these effects explicitly.

Kinematic models are used for state estimation [5]. [6] discusses a kinematic ap-
proach for sideslip angle estimation. The main advantage of these models is robustness
against changes in vehicle tyre and road parameters. In contrast, in the absence of dy-
namics and consequently state updating, estimations heavily depend on measurements
as model inputs. Therefore, the sensitivity for sensor noise and bias is high. But also
for measurement corruption, for example the negative effect of body and road angles
on IMU data.

Dynamic models allow the estimation of both planar velocities and tyre forces. They
often use a range of vehicle dynamics sub-models. For example, the longitudinal tyre
forces can be estimated through a rotating wheel dynamics model, the lateral (per-
axle) tyre forces through a bicycle model, and the vertical tyre forces through a load
transfer model.

Further distinction is made based on the integrated tyre model. Nonlinear tyre mod-
els, such as the Brush, Dugoff, LuGre, or Magic Formula models, are well known [7–14].
Numerous works employing such models for tyre force estimation can be found [15–18].
Stable estimations are obtained using these deterministic models. The drawback here
is the risk of estimation bias when using incorrect tyre and road parameters. This is
not unlikely to occur due to the high number of varying parameters in such models, for
example tyre inflation pressure, effective rolling radius, and road condition (tyre/road
friction coefficient). Alternatively, an adaptive tyre model can be used [19], for ex-
ample, the adaptive linear tyre model [20]. To capture nonlinear behaviour, linear
model parameters can be estimated stochastically [21] or using sliding modes. An-
other option are data-driven techniques, for example Neural Networks (NN) [22–25].
Finally, tyre model-less estimation schemes can be applied [26–29]. Here, direct tyre
force estimation can be executed, using for example Sliding Mode Observers [30,31].

Many vehicle state and tyre force estimation techniques have been proposed and par-
tially compared [32]. These include Kalman Filters [33,34], Neural Networks [22,35,36],
observers, both Luenberger [37] and Sliding Modes [38,39]. This paper demonstrates
four model-based schemes for vehicle state and tyre force estimation. Three of the
methods use the same basic vehicle dynamics sub-models (excluding tyre models).
Hence, similar accuracy levels are expected for the different methods. Therefore, the
focus is rather on some key guidelines per method, required to achieve the presented
performance. With this in mind, it is more interesting to have more rather than less
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diversity amongst the methods. Therefore, several distinctions are made, leading to
the following choices: (i) an Extended Kalman Filter (EKF) scheme using a linear
tyre model with stochastically adapted cornering stiffness, (ii) an EKF scheme us-
ing a Neural Network (NN) data-driven linear tyre model and (iii) a tyre model-less
Suboptimal-Second Order Sliding Mode (S-SOSM) scheme. (iv) Finally, these dynamic
model-based methods are distinguished from a kinematic model-based approach (KM)
which is integrated in an EKF. The same reference data is used for demonstrating their
accuracy performance. Furthermore, guidelines are discussed for each of the methods.
These list the key points for the development of the techniques in order to obtain the
presented accuracy performance.

The rest of the paper is structured in the following manner: Section 2 explains the
vehicle model which is the base for the estimation procedures. An introduction to the
electric test vehicle, the test track, and the recorded data is given in Section 3. The
employed estimation approaches are presented in Section 4. Section 5 discusses the
estimation results in comparison to the reference signals and provides general points
of attention as well as guidelines for successful implementation. Finally, Section 6
delivers the conclusions and points for future work.

2. Vehicle modelling
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Figure 1. Sub-models used in general estimation framework.

This chapter treats the different sub-models used in the general estimation frame-
work (see Fig. 1) of the methods demonstrated in this paper. As already mentioned
in the introduction, rotating wheel dynamics are employed for longitudinal tyre force
estimation. A bicycle model is used in the estimators to obtain the planar states and
the planar tyre forces (except for the KM approach). A body kinematics model is used
in combination with suspension position (zij) sensors to calculate body angles required
to correct IMU data when used in the planar states estimators. A quasi-static load
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transfer model is applied to calculate the vertical tyre forces from measured accelera-
tions.

For this paper, only forward driving has been considered as most significant dynam-
ics (especially in lateral direction) are expected in this case. However, the employed
estimation schemes are anticipated to also work for backward driving.

2.1. Planar vehicle dynamics

The estimation techniques compared in this paper are based on the bicycle model, as
proposed by Segel [40]. The model is shown in Fig. 2, where δ is the steering angle,
ψ̇ the yaw rate, vx and vy are the centre of gravity (COG) vehicle speeds, β, αf and
αr the COG, front and rear axle sideslip angles, Fxf and Fxr the front and rear axle
longitudinal tyre forces, Fyf and Fyr the front and rear axle lateral tyre forces, and lf
and lr are the distances from the COG to the front and rear axle, respectively.

x

y

Figure 2. The bicycle model, as developed by [40].

With this model the planar vehicle dynamics can be formulated as:

m(v̇x − ψ̇vy) = Fxf cos (δ)− Fyf sin (δ) + Fxr − Fres (1a)

m(v̇y + ψ̇vx) = Fyf cos (δ) + Fxf sin (δ) + Fyr (1b)

Izzψ̈ = lf (Fyf cos (δ) + Fxf sin (δ))− lrFyr (1c)

in which m is the vehicle mass and Izz the yaw moment of inertia. The influence
of air and rolling resistance on the longitudinal force equilibrium is described by a
second-order polynomial:

Fres = C0 + C1vx + C2v
2
x (2)

in which the coefficients Ck are defined to match the test vehicle:

C =

 297 N

8.34 N s/m

0.49 N s2/m2

 (3)
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2.2. Rotating wheel dynamics

The longitudinal tyre forces Fxij are described according to the rotating wheel dy-
namics: {

Iwhlω̇ij = Tdrvij − Tbrkij − rl (Fxij + µrFzij)

Tbrkij = kbrkPbrkij
(4)

Here and throughout the rest of this paper ij is used to denote the four vehicle corners:
i ∈ {front, rear}, j ∈ {left, right}. Iwhl and ωij are the wheel rotational inertia and
speed. Tdrvij and Tbrkij are the driving and braking torques. The braking torque is
calculated from the hydraulic brake pressure Pbrkij through the proportional constant
kbrk. Finally, rl is the loaded tyre radius and µr is the rolling resistance coefficient.

2.3. Load transfer

The quasi-static load transfer model (5) is used to describe the normal tyre forces Fzij ,
cf. [14,41]. Road angles are neglected. Roll and pitch motion are assumed decoupled.
The model captures vehicle weight mg which is distributed over the front and rear
axle according to the position of the COG (lf , lr). The effect of vehicle pitch (due
to longitudinal acceleration ax) on the normal forces is also accounted for. In both
cases load on the axle is distributed over left and right according to the COG position
(tl, tr). Finally, the effect of vehicle roll is taken into account. Hereby the loads are
distributed over the front and rear axle according to kφf and kφr, the front and rear
equivalent roll stiffnesses taking into account suspension springs as well as anti-roll
bars. A tuning procedure based on (5) comparing computed and measured wheel load
Fzij for the rear axle revealed the kφi values; the roll centre height hφi was deduced
from the suspension geometry. With a symmetric suspension, the load change on the
left and right tyres due to vehicle roll is equal and opposite.

∆Fzφi =
1

T

(
kφi

kφf + kφr −maz IMUh′
h′ +

L− li
L

hφi

)
may IMU

∆Fzθi =± max IMUh

2L

Fzij =
T − tj
T

· (L− li)maz IMU

L
±∆Fzφi ±∆Fzθi

(5)

Here, h′ is the perpendicular distance between the COG and the roll axis. The geo-
metric dimensions and force quantities are shown in Fig. 3.

2.4. Vehicle body kinematics

Vehicle body roll and pitch angles φv, θv are calculated kinematically from four suspen-
sion stroke sensors measuring zij . The approach is adopted from [42]. Four estimates
are made per body roll and pitch angle. Each estimate is based on a combination of
three suspension sensors. Finally, per body angle, the average is taken over the four
estimates.
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Figure 3. Tyre forces and vehicle geometry.

For the estimation of the planar states and tyre forces, the IMU acceleration mea-
surements ax IMU, ay IMU need to be corrected from errors introduced by gravity g (6).
Therefore, the vehicle body angles as shown in Fig. 4 are required.{

ax IMU corr = ax IMU + g sin (θv)

ay IMU corr = ay IMU − g sin (φv)
(6)

y

z

φv

x

z

θv

Figure 4. Vehicle body angles.

In this paper, road bank and slope angles are neglected as the track on which the
test data was recorded is quite flat and thus the influence of the road angles on the
estimation accuracy is expected to be very limited. However, approaches for road
angles estimation can be found in literature, for example [42].

The IMU measurements corrected from vehicle body angle influences still need to be
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Figure 5. Test vehicle: Electrified SUV.

transformed from the position of the IMU to the COG. [43] gives a clear explanation
of this process based on the following equation, where a is the vector of the COG
accelerations:

a = aIMU corr − ϕ̇× (ϕ̇× rIMU)− ϕ̈× rIMU (7)

Here, ϕ̇ is the vector of the vehicle body’s angular velocities, ϕ̈ is the vector of the
vehicle body’s angular accelerations, and rIMU is the vector of the IMU to COG
distances as specified in Table 1. Please note that the IMU is installed in the horizontal
plane of the COG such that only longitudinal and lateral distances occur.

3. Test vehicle and data

3.1. Vehicle

The vehicle dynamics tests have been conducted with Flanders Make’s electrified
compact SUV, see Fig. 5. Table 1 contains the specifications of the fully equipped
vehicle, including driver and passenger in the front seats. It features two independent
electric motors at the rear axle; however, torque vectoring control had been disabled
for the data acquisition (nevertheless, the employed estimation schemes are anticipated
to deliver valid estimated signals also in the case of active torque vectoring control).
Two high-fidelity WFTs were installed in the rear.

In order to record the required estimator input, measurement, and reference signals,
the following sensors have been used: WFTs measuring the three-dimensional rear
wheel forces, optical sensor for vehicle body velocity and sideslip angle reference, IMU
to capture the translational accelerations and angular velocities of the vehicle body,
suspension stroke sensors for body angles calculation. Additional signals have been
retrieved via the vehicle’s CAN bus: steering wheel angle (with known mapping to
angle of left and right front wheels), angular wheel speeds, and brake pressure. The
electric motors’ torque signals were acquired from the motor controllers. The data rate
of all sensor signals has been limited to 100 Hz as this was the lowest physical data
rate amongst the installed sensors.

A calibration procedure was performed before each data collection test ensuring

7



Table 1. Test vehicle specifications.

Value Unit

Body geometry

Wheelbase L 2.675 m

Distance between front axle and COG lf 1.439 m

Distance between rear axle and COG lr 1.236 m

Track width T 1.625 m

Distance between left track and COG tl 0.778 m

Distance between right track and COG tr 0.847 m

Height of COG above ground h 0.65 m

Vehicle mass m 2,442 kg

Yaw inertia Izz 3,231 kg m2

Longitudinal distance between IMU and COG rIMUx 0.580 m

Lateral distance between IMU and COG rIMUy 0.070 m

Suspension, wheel, brake system

Front equivalent roll stiffness kφf 95,300 Nm/rad

Rear equivalent roll stiffness kφr 123,400 Nm/rad

Front roll centre height hφf 0.19 m

Rear roll centre height hφr 0.07 m

Loaded tyre radius rl 0.343 m

Rolling resistance coefficient µr 0.01

Wheel rotational inertia Iwhl 0.9 kg m2

Front proportional constant kbrkf 36.3 Nm/bar

Rear proportional constant kbrkr 9.2 Nm/bar

Powertrain

Electric motor power, nominal 2×42 kW

Electric motor torque, nominal 2×135 Nm

that signals recorded by the WFTs were correctly adjusted to zero or their steady-
state value.

3.2. Experimental test data

All tests have been carried out with the electrified SUV at the Ford Lommel Proving
Ground (LPG) in Belgium.

Two laps on the vehicle handling track, aka. inner durability track or ‘Track 7’, of
the LPG were performed: first one with mild vehicle dynamics excitation, resembling
everyday driving conditions, followed by a limit handling lap with very high excitation
levels. Fig. 6 provides an overview of the track; the star marks start and finish of the
laps, the blue dot indicates a cobblestone corner, and the red triangles highlight a
hilly road section. Fig. 7 and 8 show the vehicle behaviour during the low and high
excitation laps, respectively.

The figures showing the estimation results in Section 5 are based on the fast Track 7
lap. For reference however, error metric tables for both slow and fast lap are included.

To complement the two laps on Track 7, tests with different standard vehicle han-
dling manoeuvres were performed: Steady-state constant radius, ISO double lane
change, slalom, step steer, straight line braking, braking in turn.
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Figure 6. Test track: ‘Track 7’ at Ford LPG.

Figure 7. Measurements for slow Track 7 lap.

4. Estimation approaches

This paper compares a total of four vehicle state and tyre force estimation approaches:

• Purely Linear and Extended Kalman Filter based (‘KF’);
• Neural Network and Extended Kalman Filter based (‘NN’);
• Suboptimal-Second Order Sliding Mode and Extended Kalman Filter based (‘S-

SOSM’);
• Kinematic model and Extended Kalman Filter based velocity estimation (‘KM’).

The four approaches have been selected to compare rather traditional with more
recent techniques: KF only requires the well-established EKF; NN employs Neural
Networks for tyre modelling; S-SOSM is based on a recently proposed enhancement of
Sliding Mode Control; KM makes use of quaternion notation for ground vehicle state
estimation which has not been demonstrated before.

Two approaches (KF and NN) provide estimates of the planar vehicle states (lon-
gitudinal, lateral velocities vx, vy, and yaw rate ψ̇) as well as longitudinal and lateral
(per-axle) tyre forces Fx, Fy; the S-SOSM approach is solely used to estimate Fx and
Fy; with KM only the planar vehicle states are estimated, cf. Table 2. A common
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Figure 8. Measurements for fast Track 7 lap.

Table 2. Estimation approach overview.

Approach State est. Tyre force est.

KF X X
NN X X
S-SOSM X
KM X

approach is employed to obtain the vertical tyre forces Fz.

4.1. Vertical tyre forces

In this paper the common approach for obtaining the vertical tyre forces Fzij is based
on the load transfer model (5):

Fz estimation
Load transfer model (5)

x = Fzij

u = [ax IMU ay IMU az IMU]
>

xk = f(uk)

4.2. Linear and Extended Kalman Filter approach

The KF approach is comprised of two estimator modules. In the first module, the
individual longitudinal tyre forces are estimated. A discrete-time KF is constructed
based on the wheel rotational dynamics (4), augmented with a random walk model
for the longitudinal tyre forces. The time-discretisation is performed by a forward
Euler scheme. The estimated longitudinal tyre forces are taken as input to the second
estimator module, in which the axle lateral tyre forces and vehicle planar motion states
are estimated. This module uses a discrete-time EKF built on the bicycle model (1).

The second estimator module has two specific features that require further expla-
nation. Firstly, the dynamic state update equation for the longitudinal velocity (1a)
is replaced by a kinematic one:

v̇x = ax + ψ̇vy (8)
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Figure 9. Scheme of the axle lateral tyre force and vehicle planar motion state estimator of the KF-based

approach.

with ax the longitudinal acceleration according to (7). The predictions from this model
are corrected by the wheel speed measurements, whereby a best wheel selection algo-
rithm is employed that selects the measurement from the wheel with the least amount
of longitudinal slip. This ‘best’ wheel speed measurement is denoted as vx,best. Sec-
ondly, the axle lateral tyre forces are modelled by the adaptive linear tyre model
proposed in [20]: {

Fyi = −2Cyiαi

Ċyi = 0
for i ∈ {f, r} (9)

where αi is the axle sideslip angle and Cyi is the unknown axle cornering stiffness,
whose evolution is represented by a zero-order hold model with a predefined uncer-
tainty in the Kalman Filter to account for variable tyre behaviour (nonlinear tyre
behaviour, road friction changes, etc.). The axle sideslip angles are given by the fol-
lowing kinematic relations (under a small angle assumption):

αf =
vy + lf ψ̇

vx
− δ, αr =

vy − lrψ̇
vx

(10)

As was shown in previous work of the authors [21,34], the resulting system ex-
hibits ‘excitation dependent’ observability. That is, its observability becomes gradually
poorer as the axle sideslip angles tend to zero, eventually leading to an unobservable
system for straight driving. This leads to poor estimation performance in low excita-
tion situations (situations in which the sideslip angles remain small). To overcome this
problem, an enhanced estimation scheme was proposed in [21]. This scheme exploits
the fact that linear tyre behaviour is mostly a property of the tyre and to a much
lesser extent of the road conditions. As a consequence, in case of linear tyre behaviour,
the sideslip angle may be accurately predicted by a vehicle model that assumes linear
tyre behaviour, irrespective of the road conditions. The proposed scheme makes such
prediction, denoted βlin, and adds it as a pseudo measurement in the estimator. In
case of nonlinear tyre behaviour, the estimator relies on the adaptive tyre model and
applies cornering stiffness adaptation to track this nonlinear behaviour. In the same
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way robustness to varying road conditions is obtained. A covariance adaptation strat-
egy is then applied to assign appropriate uncertainties to this pseudo measurement
and to the unknown cornering stiffnesses: the more nonlinear the tyres behave, the
higher the uncertainties assigned to βlin and Cyi. To this end, a degree of nonlinearity
measure in tyre behaviour is defined based on a continuous yaw rate criterion. This is
further explained in the guidelines, Section 5.2.

Fig. 9 schematically illustrates this approach, which successfully mitigates the issues
related to poor observability in low excitation situations while maintaining proper
performance in high excitation situations and robustness to varying road conditions.
The complete estimation process in step-by-step overview:

Fx estimation
Linear Kalman Filter
→ Rotating wheel dynamics (4)
Time update:

x = [Fxij ωij ]
>

u = [Tdrv Tbrk Fzij ]
>

x̂−k = fk(x̂+
k−1,uk−1)

Note: Fx modelled as random walk

Measurement update:

y = [ωij ]

x̂+
k = x̂−k + Kk

(
yk − hk(x̂−k )

)
vx, vy, ψ̇, and Cyi estimation

Extended Kalman Filter
→ Bicycle model (1), (9), (10)
Time update:

x = [vx vy ψ̇ Cyi]
>

u = [ax δ]
>

x̂−k = fk(x̂+
k−1,uk−1)

Note: kinematic update equation for vx
Cyi modelled as random walk

Measurement update:

y = [ψ̇ ay vx,best βlin]>

x̂+
k = x̂−k + Kk(yk − hk(x̂−k ,uk))

Note: covariance adaptation strategy applied to βlin
and Cyi

4.3. Neural Network and Extended Kalman Filter approach

Similar to the KF estimation approach and following the methodology introduced in
previous works [24,29,44], different state estimation structures are constructed and
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integrated in a modular fashion as displayed in Fig. 1 and Fig. 10. This section is
primarily focused on the tyre cornering stiffness estimation method, being the main
difference from the KF approach.
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Figure 10. Modular NN-based virtual sensor.

Equivalent to the KF method, a tyre model of linear characteristic is employed here.
The axle lateral forces are modelled as:

Fyi ≈ Fyi0 + ∆Fyi = Fyi0 + Cyi∆αi (11)

Specifically, the axle lateral force Fyi is defined as the sum of a steady-state term Fyi0
and a force increment ∆Fyi. The latter term is formed by the product of the axle
lateral stiffness Cyi and the axle lateral slip increment ∆αi. The terms Fyi0 and Cyi
are considered time-varying EKF parameters, and are approximated by a feedforward
NN structure.

This approach is aimed at avoiding the conventional tyre characterisation procedure
(i.e. sandpaper tyre testing, skid-trailer tyre testing [45–47]) by means of an in-vehicle
standardised tyre testing programme. This methodology was first introduced and val-
idated through a software-in-the-loop (SIL) programme in [24] for testing the NN’s
robustness to tyres of different size and operating at different conditions (e.g. tyre
pressure, time-varying friction).

The NNs are trained to fit the nonlinear functions Fyf = fNNf (ax, αf ), Fyr =
fNNr(ax, αr), where the longitudinal acceleration was introduced to capture the axle
lateral force reduction experienced during combined-slip situations [24]. In order to
determine these functions, the objective testing manoeuvres presented in Table 3 were
executed with Flanders Make’s electrified SUV at Ford LPG.

Table 3. Objective testing manoeuvres to train
the axle lateral force NNs.

Manoeuvre Repetitions

Braking in a turn 4

Steady-state constant radius 14

Step steer 5

These manoeuvres are standardised steady-state and transient tests often performed
to characterise relevant chassis attributes such as the yaw responsiveness, yaw damping
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or understeering gradient [48]. The number of repetitions was dictated by the data
available after performing the experimental activities described in Section 3.2. For
simplicity, all the repetitions were considered as an initial step. As accurate results
were obtained with this reduced number of manoeuvres it was not necessary to perform
additional iterations over the training dataset.

The NN training datasets were formed by direct concatenation of each test run.
In particular, an input dataset was formed by the longitudinal acceleration signals
acquired from a high-accuracy IMU and the axle lateral slip computed from (10). The
yaw rate and longitudinal velocity signals were logged directly from the vehicle CAN
bus, while the lateral velocity was obtained from an optical sensor mounted at the front
bumper (this signal was translated to the vehicle COG for consistency). The output
datasets were formed by the axle lateral forces experienced by the chassis. In this case,
the rear axle lateral force was defined as the sum of the lateral forces measured by the
WFTs, Fyr = Fyrl + Fyrr, while the front axle lateral force was reconstructed offline
adopting a synthesised planar dynamics model.

Once the training datasets were defined, two NN structures were created adopting
the net.m Matlab function and trained using a Levenberg-Marquardt backpropagation
algorithm. This step was realised by means of the trainlm.m function. The number
of hidden-layer neurons was set to 6 (i.e. 2-6-1 NN structures) following a systematic
design methodology and the NN stability was studied following the approach detailed
in [24]. After approximating the nonlinear functions fNNf , fNNr, the axle lateral stiff-
ness values Cyi were computed following a finite differences approach. For additional
details regarding the previous steps [24] can be consulted.

From a vehicle implementation point of view, the proposed structure can be easily
embedded in current Yaw Stability Control (YSC) systems. Specifically, an accurate
estimate of the lateral velocity is provided from a standard set of on-board mea-
surements. The additional tyre friction information estimated by the structure can
be employed to infer the road friction potential following a slip-based estimation ap-
proach [24].

4.4. Suboptimal-Second Order Sliding Mode and Extended Kalman Filter
approach

This approach consists of two stages: the first one is a tyre force observer relying on
the so-called Suboptimal-Second Order Sliding Mode (S-SOSM) [49]; the second stage
is an EKF enhancement allowing to smoothen the S-SOSM estimates alongside the
sensor signals.

4.4.1. S-SOSM-based observer

Fig. 11 shows this part of the estimation approach schematically. The three main
elements are (i) longitudinal tyre force observer, (ii) wheel torque adaptation, and
(iii) lateral tyre force observer.

4.4.1.1. Longitudinal tyre force observer. The longitudinal tyre force Fxij esti-
mation employs the rotating wheel dynamics (4) in a slightly altered form (see (12))
and is performed in the wheel frame. Measured wheel speeds ωij and requested wheel
torques Tij = Tdrv ij − Tbrk ij are used to generate an S-SOSM on the sliding surface
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∆T̂ij ∆T̂ eFx

max

ax
Fres

F̂zij

ωij

Tij

F̂xij F̂xij[v]

F̂yij ψ̇
may

F̂yi[v] F̂yij[v]
Fxij
obs. Fyi

obs.
M(δ)

Figure 11. The S-SOSM observation scheme.

σxij = ωij − ω̂ij . This task is performed with the estimation law

Iwhl
˙̂ωij = Tij −∆T̂ij − rluxij (12)

where ux is the observer input law [49] defined by

ux/y = −
∫
Kx/y sign

(
σx/y −

σx/ymax

2

)
dt (13)

with gain Kx/y for the longitudinal and lateral case respectively and σx/ymax =
σx/y(tmax), where tmax is the last time instant at which σ̇x/y = 0. The estimated

longitudinal tyre force is F̂xw = ux.

4.4.1.2. Wheel torque adaptation. The overall torque deviation ∆T̂ in (12) is the
output of the PI adaptive law:

∆
˙̂
T = KP ėFx

+KIeFx
(14)

Based on (1), the input eFx
is given by:

eFx
= max −

∑
ij

(F̂xij[v])− Fres

 (15)

with Fres computed according to (2).

The term ∆T̂ is then allocated on the individual wheels (∆T̂ij in (12)) taking the
driving situation into account. It is assumed that, when a negligible torque is applied
to a specific wheel, the corresponding torque deviation is null. In case of a rear wheel
driven vehicle, such as the one considered in the experimental validation in Section 3.2,
the following ∆T̂ distribution is applied:

∆T̂ij =



∆T̂
F̂zrj

F̂zr
if ax > athd acceleration

∆T̂
F̂zij
mg

if |ax| < athd coasting

∆T̂
F̂zij
mg

cbrk if ax < −athd braking

with the normal forces estimated according to (5), the coefficient cbrk accounting for
the brake torque split ratio, and athd being a calibratable threshold.

4.4.1.3. Lateral tyre force observer. A single S-SOSM observer is sufficient for
the estimation of the lateral tyre forces based on the single track vehicle model (1) and
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the relation may = Fyf [v] +Fyr[v], with the lateral forces being expressed in the vehicle
body frame. In order to account for differential tyre force induced yaw moments, the
term ∆F̂xi[v] (i ∈ {f, r}) is added to (1c) [31]. The following S-SOSM observer is

designed to steer the estimation error σy = ψ̇ − ˙̂
ψ to zero in finite time, with

¨̂
ψ and

F̂yf [v] defined as ¨̂
ψ =

1

Izz
[lfmay − (lf + lr)uy + T

2 ∆F̂xf [v] + T
2 ∆F̂xr[v]]

F̂yf [v] = may − uy
(16)

As in the longitudinal case, the estimated force acting on the rear axle is F̂yr[v] = uy,
where uy is again the output of the S-SOSM control law (13). Note that, the forces
summation in (15) is expressed in the body frame, so that a linear transformation is

required to convert the estimated values F̂xij provided by (12). This computation is
implemented by means of a rotation matrix M(δ), for which more details are provided
in [31].

4.4.2. EKF enhancement

The adoption of the EKF allows for smoothing the estimated tyre/axle forces Fxij ,

Fyi, as well as the acquired measurement signals ψ̇, ay, and ax used to obtain them.
The EKF, see for example [33], is implemented with the state, measurement, and

input vectors x, y, and u being defined as:

x =
[
Fxij Fyr[v] ax ay ωij ψ̇

]>
y =

[
F̂ SM
xij F̂ SM

yr[v] a
sens
x asens

y ωsens
ij ψ̇sens

]>
u = [Tij δ]

>

and superscripts sens and SM denoting ‘sensor measurement’ and ‘sliding mode estima-
tion’ respectively. Moreover, since we directly measure the state, H(t) = H = I holds.
In order to apply the EKF, we assume known process noise w ∼ N (0,Q) and mea-
surement noise v ∼ N (0,R), in the nonlinear continuous state-space description

ẋ = f(x,u,w), y = h(x,v)

The nonlinear function f(x,u,w) has the form

f(x,u,w) = [0, 0, 0, 0, 0, 0, 0, fxij , fy] (17)

where the terms fx, fy, which in practice are obtained from (1) and (4), depend on
vehicle states and parameters. Their explicit definition can be found in [31].

The EKF covariance matrices Q and R were tuned by running an optimisation
procedure. Non-diagonal elements were set to zero in order to reduce the computational
cost. The results of this optimisation for the values of diagonal elements of Q and R
as well as the observer gains K are reported in Table 4. As is evident by the number
of parameters, the calibration effort for the S-SOSM method is considerable. However,
this is mainly for the EKF enhancement. In fact, thanks to this smoothing stage, there
is no need to reduce the gains K for chattering alleviation purposes, as for example
in [50]. The output of the S-SOSM observer can be seen as a noisy measurement for
the EKF, thus requiring a proper tuning of the observation covariance matrix R.
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Table 4. S-SOSM tuning parameters.

QFx
QFy

Qax
Qay

Qω Qψ̇ Kx

26.03 7.68 70.35 8.93 93.28 77.86 2 · 106

RFx
RFy

Rax
Ray

Rω Rψ̇ Ky

0.25 0.03 0.1 0.05 0.02 2 2 · 103

4.5. Kinematic model and Extended Kalman Filter approach

In order to estimate the planar vehicle states, this approach employs the following
kinematic model:

v = vxi + vyj + vzk (18)

a = v̇ + ϕ̇× v (19)

Here, v ∈ R3 and a ∈ R3 represents the velocity and acceleration vectors respectively.
Furthermore, v̇ ∈ R3 and ϕ̇ ∈ R3 denote the velocity time derivative and the angular
rates respectively. Model equation (19) is extended to include the effects of gravity
and the quaternion definition is used to model rotations, leading to:[

0
a

]
=

[
0
v̇

]
+

[
0

ϕ̇× v

]
+ q⊗

[
0
g

]
⊗ q∗ (20)

Here, g ∈ R3 describes the gravity vector, q,q∗ ∈ H4 represent a quaternion and its
conjugate respectively. Finally ⊗ stands for the Hamiltonian product.

The complete system is defined as:[
0
v̇

]
=

[
0
a

]
−
[

0
ϕ̇× v

]
− q⊗

[
0
g

]
⊗ q∗

q̇ =
1

2
q⊗ ϕ̇

(21)

System (21) is nonlinear given the cross product and the Hamiltonian product. Finally,
based on (21) an EKF is built to estimate the longitudinal and lateral vehicle speeds.

++ -
+

-
inputs

Body Angles

Figure 12. Lateral and longitudinal speed observation scheme.

Figure 12 shows the observer scheme. The inputs required are given by an inertial
measurements unit, ap and ϕ̇p, ∀p ∈ {x, y, z}, and the wheel speed sensors, ωij . Again,
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the suffix ij refers to a specific vehicle corner: i ∈ {front, rear}, j ∈ {left, right}.
The observer estimates the longitudinal and lateral velocities with respect to the

position of the accelerometers and gyroscopes. Thus, it is imperative to know these
parameters in advance. If they are unknown, the performance of the algorithm can
still be improved via the tuning of the EKF.

Tuning of the estimation approach can be done by ‘trial-and-error’, see [5], the
random walk variable related covariances are with a higher order compared to the
ones measured. In this case an optimisation technique was implemented to define the
covariance matrices Q and R. Note that the tuning optimisation process is based
on different data sets than the ones presented in the results section of this paper
(Section 5).

5. Discussion of results and guidelines

The following Fig. 13 to Fig. 17 show the estimation results of all methods in di-
rect comparison with the reference signals, where applicable; as the test vehicle was
equipped with WFTs only at the rear axle, no front tyre force reference signals were
recorded. However, those signals can be estimated, of course. For brevity, the figures
only show the data of the fast Track 7 lap.

In order to counteract the noise level exhibited by the optical reference velocity
sensor, a third order, zero-phase digital Butterworth filter with 5 Hz cutoff frequency
has been applied during data post-processing on the plotted longitudinal and lateral
velocity reference signals. This ensures the preservation of the signals’ relevant fre-
quency content and still reduces the noise enough to allow a graphical comparison in
Fig. 16 and Fig. 17.

Each observer was tuned individually but then the tuning was kept constant for all
results presented in this work. In general, all estimation approaches track the reference
signals closely and with comparable accuracy. For an objective comparison of the esti-
mation results against the reference, Root-Mean-Square Error (RMSE) and maximum
error (emax) are computed as follows:

RMSE =

√
‖x− xref‖2

Ns
(22)

emax = max (|x− xref|) (23)

where x is the estimated quantity, xref the reference signal, and Ns the number of
samples in the complete time series.

Tables 5 and 6 contain the results. Fig. 18 displays the normalised RMSE and
normalised emax error metrics for both slow and fast Track 7 laps. Smaller normalised
error values imply higher estimation accuracy and thus better results.

The dynamic model-based KF and NN approaches perform sufficiently accurate
when it comes to the estimation of the planar states, assuming a planar vehicle model.
The dynamic model-based characteristic of the estimators leads to clean estimates with
low levels of noise. Similar accuracy in slow lap (rely mostly on linear model), and fast
lap (rely mostly on adaptive linear model), demonstrate the proper functioning of the
KF approach for tyre force virtual sensing. For the NN approach, a limited number
of field tests is sufficient to capture the tyre characteristics and supply accurate and
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Figure 13. Longitudinal tyre forces for fast Track 7 lap.

Figure 14. Lateral axle tyre forces for fast Track 7 lap.

low-noise tyre force estimates.
Concerning the S-SOSM approach, tyre force estimation accuracy is similar to the

other approaches—with a slightly higher effort: by using the enhanced vehicle model
(16) within the estimation algorithm and assuming correct vehicle parameters, one
‘forces’ the estimation to be correct in (finite) short time, not considering the chat-
tering. Then the EKF enhancement allows to remove the chattering, at the cost of a
minor delay introduced by the filtering.

The KM approach delivers similar results for the planar vehicle states compared to
the other methods using dynamic models, despite its simplicity. Generally, the results
are noisier—due to the lack of the low-pass filtering effect of the vehicle model—
but tracking accuracy is similar. However, a more involved approach making use of
quaternions is needed to handle the IMU orientation correctly.

5.1. Vertical tyre force estimation – guidelines

The load transfer model (5) is used for vertical tyre force estimation and is a less
integral part of the estimation scheme as opposed to the other vehicle sub-models.
Signal exchange is unidirectional. Estimated vertical tyre forces are pre-calculated
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Figure 15. Vertical tyre forces for fast Track 7 lap.

Figure 16. Longitudinal vehicle velocity for fast Track 7 lap.

Figure 17. Lateral vehicle velocity for fast Track 7 lap.
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Table 5. Error metrics for slow Track 7 lap

RMSE emax

S-SOSM NN KF S-SOSM NN KF Unit

Fx 110 107 109 441 417 446 N
Fy 257 411 406 1936 2099 2131 N
Fz 348 6906 N

KM NN KF KM NN KF

vx 0.21 0.25 0.21 0.91 1.05 0.92 m/s
vy 0.22 0.21 0.21 1.11 0.80 0.82 m/s

Table 6. Error metrics for fast Track 7 lap

RMSE emax

S-SOSM NN KF S-SOSM NN KF Unit

Fx 184 183 190 1146 1095 1114 N
Fy 700 1358 755 2744 14104 6940 N
Fz 625 7258 N

KM NN KF KM NN KF

vx 0.28 0.33 0.28 1.44 1.44 1.36 m/s
vy 0.36 0.31 0.29 2.05 1.46 1.27 m/s

and used as inputs for the estimation of the planar tyre forces.
As the calculations are purely deterministic, the accuracy of the results heavily

depends on correct model parameters and measurement inputs of the load transfer
model. It is critical to use precise vehicle mass and geometry as well as accurate
suspension characteristics. Here, model inputs are the measured COG accelerations.

5.2. Dynamic model-based approaches – guidelines

5.2.1. Longitudinal tyre force estimation

The uncertainties assigned to the wheel speed measurements are based on the actual
variances of the signals. These variances are mainly determined by noise. Since the
measurement model is the identity matrix, no model error is present in the measure-
ment model so all uncertainty is related to the signal itself.

Assigning the uncertainties on the model equations is mainly based on physical
insights. We know that the rotating wheel dynamics model (4) is rather accurate, so
the assigned variance should be small. Similarly, the variance assigned to the random
walk model of the longitudinal tyre forces Fx is based on its expected variation. After
assigning initial guesses based on these insights, further tuning is performed by a
‘trial-and-error’ procedure.

5.2.2. COG velocity estimation and cornering stiffness estimation

As described above, two distinctions are made here.

KF approach: This method estimates the tyre cornering stiffness per axle Cyi
stochastically as a random walk in an EKF using an adaptive linear tyre model. Addi-
tionally, the vehicle sideslip angle βlin is predicted—assuming linear tyre behaviour—
and added as a pseudo measurement in the estimator. To obtain stable and accurate
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Figure 18. Normalised error metrics for slow and fast Track 7 laps.

performance for low and high driving dynamics, covariance adaptation functions are
devised. For nonlinear tyre behaviour, high covariances for Cyi and βlin are applied.
For linear tyre behaviour, low covariances suffice. Finally, for the case of no lateral
excitation, zero value Cyi covariance and low βlin covariance are employed. See [21] for
further details.

NN approach: In a second method, Cyi is estimated using neural networks in a linear
tyre model framework. For obtaining good accuracy performance, the NN structure
requires proper training. Standardised vehicle dynamics manoeuvres as specified in
the estimation approach description, see Section 4.3, are sufficient. This procedure
may be easily automated with the development of future automated vehicle testing
platforms, cf. [51]. Furthermore, as discussed in Section 4.3, the development of the
NN approach requires reliable data on vehicle velocities and tyre forces. In this study,
these are retrieved by an optical velocity sensor and WFTs. Succesfull implementation
of this method therefore depends on the presence of such measuring equipment during
the development process.

The major concern when dealing with any data-based approach is to guarantee that
the training dataset is sufficiently rich so as to avoid potential extrapolation issues. In
this sense, large tyre lateral slip angles should be recorded during the execution of the
tests (e.g. ramp steer cornering manoeuvres for the front axle or step steer manoeuvres
to cause instability on the rear axle). Braking-in-a-turn events should be added to the
training dataset in order to capture the tyre force reduction with the longitudinal
force. As an example, braking events may be executed at even deceleration levels (−2,
−4, −6 m/s2) during steady-state cornering for this purpose.

5.3. S-SOSM approach – guidelines

5.3.1. Longitudinal tyre force estimation

As opposed to the dynamic model-based approaches, the observer does not update the
system states directly, but through the system inputs/observer outputs. In this case,
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the motor torques are the observer inputs. The observer aims to estimate individual
longitudinal tyre forces using the rotating wheel dynamics model and the individual
wheel speeds. The S-SOSM reference Fx is calculated from measured longitudinal
acceleration ax and vehicle mass m. For this method it is therefore more critical to
use an accurate vehicle mass. Also, with high dependency on ax, it is crucial to abide
by the flat road assumption, or otherwise correct measurements for the road angles
induced gravity component. Next to vehicle mass, the accuracy of the wheel radius
rl plays a similarly important role in coming to a representative longitudinal force
observer reference.

The observer gains have to be chosen based on the dynamics which have to be
dominated by control laws (13), as explained extensively in [31].

The EKF smoothing stage of this estimation approach mainly requires tuning effort
on the covariance matrices Q and R. However, in this work an optimisation scheme
was used for this task. The non-diagonal elements were chosen zero in order to reduce
the computational cost.

5.3.2. Lateral tyre force estimation

In contrast to the other methods, direct per-axle tyre force estimation is applied here.
No additional effort is required for cornering stiffness estimation. Again, an optimisa-
tion scheme was employed for the tuning of the covariance matrices Q and R.

5.4. Kinematic model-based approach – guidelines

5.4.1. COG velocities estimation

The greatest benefit of state estimation based on kinematic models is their robustness
against parameter variations (e.g. tyre and road parameters but also vehicle mass and
inertia parameters) and unknown disturbances. The proposed method use a combina-
tion of low cost sensors, and the specific characteristics of these transducers will have
a major effect on the performance of the state estimator.

Regularly, kinematic model-based approaches for lateral speed estimation suffer
from drift due to observability problems during straight driving. This problem has been
solved in [52] and [53] by applying a heuristic function to the planar kinematic model.
In our case, System (21) becomes fully observable under random walk considerations
even during straight driving.

This method relies on IMU measurements. The angular rates are used in quaternion
notation to correct the acceleration bias due to gravity components induced by the
body and road angle dynamics. Furthermore, if the geometrical location of the IMU
with respect to the desired position of the longitudinal and lateral speed estimation is
known beforehand, the uncertainty on the kinematic model is kept at the minimum.
These parameters are considered design parameters, therefore they should be known
in advance. If they are not, the observation scheme should be tuned accordingly with
proper covariance matrices Q and R. Also time integration errors do not pose issues for
this approach, since it is a closed-loop observer and the measurements are considered
free from bias.

23



6. Conclusion

This study demonstrated the use of four model-based approaches for vehicle state and
tyre force estimation: (i) an Extended Kalman Filter (EKF) scheme using a linear
tyre model with stochastically adapted cornering stiffness, (ii) an EKF scheme using a
Neural Network (NN) data-driven linear tyre model, (iii) a tyre model-less Suboptimal-
Second Order Sliding Mode (S-SOSM) scheme, and (iv) a Kinematic Model (KM)
scheme integrated in an EKF.

Data collected with an electrified and instrumented SUV on a vehicle proving ground
is used to generate the input and reference data for all estimation methods. Similar
levels of estimation accuracy are obtained by all methods. This is expected as all
methods are based on the same vehicle models and model parameters, except for the
tyre models.

The method depending more on sensor data (KM) rather than on model predictions
(KF and NN), is more robust at the expense of slightly noisier estimation results. Also,
in the absence of state updating, additional steps are required to correct for errors in
measurement data. Therefore, the KM approach makes use of a quaternion notation
to deal with gravity disturbances on the IMU measurements.

The sensitivity to model parameters for the different methods applied, as discussed
in the guidelines section, is not straightforward. For example, the S-SOSM method
with its wheel torque adaptation algorithm generates a tyre force reference making
direct use of vehicle mass and wheel radius parameters, which need to be as accurate
as possible.

Also the tuning effort varies from method to method. For example, to achieve stable
and accurate performance with the KF approach, covariance adaptation functions were
devised when crossing from linear to nonlinear tyre behaviour. In the case of the NN
approach, the training procedure is based on reference data which is typically not
available from the standard sensor set installed in production vehicles. In order to
identify and suggest solutions for such challenges, this paper contains a dedicated
section on guidelines per method.

Finally, applications to ADAS, with its real-time requirements, will further differ-
entiate the methods and their growth paths. This is left as one direction for future
research on the demonstrated methods.

6.1. Future steps

• Development and implementation of accurate and robust method to infer indi-
vidual tyre lateral forces from the accurately estimated per-axle signals.
• Implement road bank and slope angle estimation to further enhance applicability

of proposed virtual sensors.
• Further comparison of tyre force estimates using a revised tyre force compensa-

tion procedure.
• Further comparison of state estimators embedded in a controller structure for a

set of critical safety test cases.
• Development and implementation of estimation scheme for mass and inertia

parameters.
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