CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 5, NO. 4, DECEMBER 2019 423

Direct Load Control of Thermostatically Controlled
Loads Based on Sparse Observations Using Deep
Reinforcement Learning

Frederik Ruelens, Bert J. Claessens, Peter Vrancx, Fred Spiessens, and Geert Deconinck

Abstract—This paper considers a demand response agent that
must find a near-optimal sequence of decisions based on sparse
observations of its environment. Extracting a relevant set of
features from these observations is a challenging task and may
require substantial domain knowledge. One way to tackle this
problem is to store sequences of past observations and actions in
the state vector, making it high dimensional, and apply techniques
from deep learning. This paper investigates the capabilities of
different deep learning techniques, such as convolutional neural
networks and recurrent neural networks, to extract relevant
features for finding near-optimal policies for a residential heating
system and electric water heater that are hindered by sparse
observations. Our simulation results indicate that in this specific
scenario, feeding sequences of time-series to an Long Short-Term
Memory (LSTM) network, which is a specific type of recurrent
neural network, achieved a higher performance than stacking
these time-series in the input of a convolutional neural network
or deep neural network.

Index Terms—Convolutional networks, deep reinforcement
learning, long short-term memory, residential demand response.

I. INTRODUCTION

PTIMAL control of Thermostatically Controlled Loads
(TCLs), such as heat pumps and water heaters, is ex-
pected to play a key role in the application of residential
demand response [1]-[3]. TCLs can use their thermal inertia,
e.g. a water buffer or building envelope, as a thermal battery
to store energy and shift energy consumption in response to
changes in the electricity price or to provide grid services.
Among the more important challenges hindering the applica-
tion of residential demand response is partial observability of
the environment [4]-[6], where a part of the state remains
hidden from the agent due to sensor limitations, resulting in a
partially observed control problem.
Model-predictive Control (MPC) [7] and Reinforcement
Learning (RL) [8] are two opposing paradigms to solve the

Manuscript received March 18, 2019; revised August 24, 2019; accepted
October 17, 2019. Date of publication December 30, 2019; date of current
version November 4, 2019.

F. Ruelens was and G. Deconinck (corresponding author, e-mail: geert.
deconinck @kuleuven.be) is with the Department of Electrical Engineering,
KU Leuven/EnergyVille, 3001 Leuven, Belgium.

B. J. Claessens is with REstore, Centrica, 2600 Antwerp, Belgium.

P. Vrancx was with the Al-lab, Vrije Universiteit Brussel, 1050 Brussels,
Belgium.

F. Spiessens is with Vito/Energy Ville, 2600 Mol, Belgium.

DOLI: 10.17775/CSEEJPES.2019.00590

optimal control problem of TCLs. As such, MPC and RL have
developed a set of different techniques to tackle the problem
of planning under partial observability.

In MPC, a Kalman filter is often used to estimate hidden
features by exploiting information about the system dynamics
and using Bayesian interference. For example, in [4] Vrettos
et al. applied a Kalman filter to estimate the temperature of
a building envelope and in [S] Kazmi et al. applied a similar
approach to estimate the state of charge of an electric water
heater.

RL approaches, on the other hand, store sequences of past
interactions with their environment in a memory and extract
relevant features based on this memory. The challenges herein
is to consider a priori how many interactions are important
to learn a specific task and what exact features should be
extracted. Deep neural networks or multi-layer perceptrons are
the quintessential technique for automatic feature extraction
in RL [9], [10]. An important breakthrough of automatic
feature extraction using deep learning is presented in [11],
where Mnih et al. apply a convolutional neural network to
automatically extract relevant features based on visual input
data to successfully play Atari games.

Finally, by combining RL and MPC, the authors of [12]
presented a method that trains complex control policies with
supervised learning, using MPC to generate the supervision.
The teacher (MPC) uses a rough representation of its environ-
ment and full state, and the learner updates its policy based
on the partial state using supervised learning.

II. LITERATURE REVIEW

This section provides a short literature overview of Re-
inforcement Learning (RL) related to demand response and
discusses some relevant applications of deep learning in RL.

A. Reinforcement Learning and Demand Response

An important challenge in tackling residential Demand
Response (DR) is that any prior knowledge in the form of
a physical model of the environment and disturbances is not
readily available or may be too costly to obtain compared
to the financial gains obtained with DR. As RL techniques
can be applied “blind” and consider their environment as a
black box, they require no prior knowledge nor do they require
a system identification step, making them extremely suited
for residential DR. As a result, residential DR has become

2096-0042 © 2019 CSEE

424 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 5, NO. 4, DECEMBER 2019

a promising application domain for RL [13]-[19]. The most
important RL algorithms applied to DR are temporal difference
RL, batch RL and more recently deep RL. The first application
of RL to demand response were standard temporal difference
methods, such as Q-learning and SARSA [8]. For example,
in [13], Wen et al. showed how Q-learning can be applied to
a residential demand response setting and in [14], Kara et al.
applied Q-learning to provide short-term ancillary services to
the power grid by using a cluster TCLs. Extending this work,
Mocanu et al. demonstrated how a deep belief network can
be integrated in Q-learning and SARSA to extract relevant
features [15], allowing for cross-building transfer learning.

In [16], the authors demonstrated how batch RL can be
tailored to a residential demand response setting using a set of
hand-crafted features, based on domain specific insights. The
authors extended a well-known batch RL algorithm, fitted Q-
iteration, to include a forecast of the exogenous variables and
demonstrated that it outperformed standard temporal differ-
ence methods, resulting in a learning phase of approximately
20-30 days, suggesting that batch RL techniques are more
suitable for demand response.

More recently, inspired by advances in deep learning, the
authors extended this approach for a cluster of TCLs using an
automatic feature extraction method based on convolutional
neural networks [17]. A binning algorithm is used to map
the full state of the cluster to a two-dimension representation
that can be used as input for the convolution neural network.
Similarly, in [18], Fran¢ois-Lavet et al. applied a convolutional
neural network as a function approximator within RL to
capture the stochastic behavior of the load and renewable
energy production in a microgrid setting with a short-term and
long-term storage. Finally, an exhaustive review and analysis
of RL applied to electric power systems decision and control
problems can be found in [19]. They state that due to the
complexity of the electric power system, RL methods provide
effective solutions to tackle electric power system control and
decision.

B. Recurrent Neural Networks and Partial Observability

In contrast to vanilla neural networks, Recurrent Neural
Networks (RNNs) have an internal state, which is based on
the current input state and the previous internal state, allowing
the internal state to act as a memory modeling the impact of
previous input states on the current task. This internal state
allows the RNN to process sequences of input data, making
it a natural framework to mitigate the problem of partial state
information.

In practice, however, RNNs have difficulties in learning
long-term dependencies [20]. An LSTM network is a special
type RNN developed by Hochreiter and Schmidhuber in [21]
that solves the long-term dependency problem, by adding spe-
cial structures called gates that regulate the flow of information
to the memory state.

The application of a RNN within Q-learning, called
recurrent-Q, was introduced by Lin and Mitchell in [22],
demonstrating that recurrent-Q was able to learn non-
Markovian tasks. Extending on this idea, Bram Bakker [23]
demonstrated how LSTM using advantage learning can solve

non-Markovian tasks with long-term temporal dependencies.
In addition to value-based RL, a successful implementation
of a policy gradient method with an LSTM architecture to a
non-Markovian task can be found in [24]. Motivated by the
promising results of Deepmind with Deep QN [11], the authors
of [25] demonstrated how an LSTM network can be combined
with a deep Q-network for handling partial observability in
Atari games, induced by flickering game screens.

C. Contributions

This paper investigates the effectiveness of different deep
learning techniques within reinforcement learning for demand
response applications that are hindered by sparse observa-
tions, making the following contributions. We present how an
LSTM network, Convolutional Neural Network (CNN) and
multi-layer neural network, can be used within a well-known
batch RL algorithm, fitted Q-iteration, to approximate the Q-
function, extending the state with historic partial observations.
We demonstrate their performance for two popular embodi-
ments of flexible loads, namely a heat pump for space heating
and an electric water heater. We compare the performance of
LSTM, CNN, neural networks and extremely randomized trees
when using sparse state information. The paper is structured
as follows. Section III states the problem and formalizes
it as a Markov decision process. Section IV explains how
these deep learning techniques can be used to extract relevant
features based on sequences of observations and used within
a batch RL. Section V describes the different deep learning
architectures. Section VI presents the simulation results of two
flexibility carriers and finally Section VII draws conclusions
and discusses further work.

III. MARKOV DECISION-MAKING FORMALISM

This section states the problem and presents the formalism
to tackle it.

A. Problem Statement

In most complex real-world problems, such as demand
response, an agent cannot measure the exact full state of
its environment, but only a partial observation of the state.
Depending on how good this partial observation can be used
to model future interactions, using partial information may
result in sub-optimal policies. This paper presents two demand
response applications that are hindered by partial observability,
where the agent cannot measure the state directly, but has
to extract relevant features based on how much energy the
application consumed and how much it lost. In our first
experiment, we consider a heat-pump agent that can only
measure its electricity consumption and outside temperature.
In the second experiment, we consider an electric water heater
agent with partial state information, consisting of its measured
electricity consumption and the flow rate and temperature of
the tap water exiting the water buffer. In addition, due to the
sequential nature of both problems, the agent must take future
transitions into account, resulting in a complex sequential
decision-making problem under uncertainty.

RUELENS et al.: DIRECT LOAD CONTROL OF THERMOSTATICALLY CONTROLLED LOADS BASED ON SPARSE OBSERVATIONS USING DEEP REINFORCEMENT LEARNING 425

To tackle this challenge, we will first formalize the underly-
ing problem as a Markov decision process and then introduce
the concepts of partial state information.

B. Formalism

At each discrete time step k, the full state of the environ-
ment evolves as follows: @11 = f(xg, uk, wy) with wy a
realization of a random disturbance drawn from a conditional
probability distribution p,,(-) and u, € U the control action.
Associated with each action of the agent, a cost ¢, is provided
by ¢ = p(@k, ur, wi), where p is a cost function that is a
priori given.

The goal of the agent is to find an optimal control policy
h* : X — U that minimizes the expected 7T-stage return for
any state in the state space. Value-based RL techniques char-
acterize the policy h is by using a state-action value function
or Q-function:

Qh(m’ u) = E

w""pw(')

[p(, u,w) + JA(f(z,u,w))] (1)

The Q-function is the cumulative return starting from state
x, taking action u, and following h thereafter. Given the Q-
function, an action for each state can be found as:

h(z) = arg minQ" (x, u). (2)

This paper applies a value-based batch RL technique to
approximate the Q-function corresponding to the optimal
policy based on an imperfect observation of the true state.

C. Fartial State

It is assumed that the state space X measured by the
agent consists of three components: timing-related state in-
formation X*%™e controllable state information XP"s and
exogenous (uncontrollable) state information X**°. In this
work the timing related is given by the current quarter in
the day ztme e Xtme — {1 ... 96}, which allows the
agent to capture time-varying dynamics. The controllable
state information xP™s € XPWS comprises the operational
measurements that are influenced by the control action. In
reality, most agents can only measure a partial observation
oihys of the true state mghys, resulting in a partially observable
Markov decision problem. The exogenous information x7*°
is invariant for control actions wg, but has an impact on
the dynamics. Examples of exogenous variables are weather
conditions and demand profiles (e.g heat demand).

Thus, the state measured by the agent at step k is given by:

time

wzbs = (x}) ,oghys, 3. 3)

Note that since (3) only includes part of the true state, it
becomes impossible to model future state transitions, making
the state non-Markovian.

D. Action

At each time step, a demand response agent can request an
action u; € [0,1]: either to switch OFF or ON. To guarantee
the comfort and safety constraints of the end users, each TCL
is equipped with an overrule mechanism (or thermostat). The
backup function B : X x U — UP"s maps the requested

control action uy € U taken in state x; to a physical control
action u}™® € UPhs:

ul,zhys = B(xg, u)- 4)

The settings of the backup function B are unknown to the
learning agent, but the resulting action ughys can be measured

by the learning agent.

E. Cost

This papers considers a dynamic pricing scenario where an
external price profile is known deterministically at the start of
the optimization horizon:

Crp = p(ughys, k) = ughys)\kAt 5

where A is the electricity price at time step k and At is the
length of a control period.

IV. BATCH REINFORCEMENT LEARNING

Given full observability, batch RL algorithms start with a
batch of four tuples of the form: (wk, Up, T, uS
xj, represents the true state of the problem.

According to the theory of partial observable Markov de-
cision processes [9], the optimal value function at time step
k depends on the partial state observations of all proceeding
periods. However, since these observations accumulate over
time, it is important to capture sufficient statistics, i.e. a
history length h which summarizes the essential content of
the measurements. As such, this paper tackles the problem
of partial observability by augmenting the state vector with
a sequence of partial state observation, requested actions and
physical actions of the last ~A observations:

) , where

mzug _ (xzime, a:ll'clist’ wzxo) (6)
with z!st given by:
hys hys hys hys
o - A B 77 S AN 77 o A N [V DO T/ SN
(7

As a result, this paper starts from a bath of four tuples given
by: {(&3"8, ug, 3" ub™¥)IM || where 22" represents the
augmented state. An important challenge is to learn how to
extract relevant features in a scalable way.

This paper applies fitted Q-iteration [26] to obtain an ap-
proximation of the Q-function Q*(x?"¢, u). Fitted Q-iteration
iteratively approximates the Q-functions for each state-action
pair using its corresponding cost and the approximation of
the Q-function from the previous iterations. To leverage the
availability of forecasts of exogenous information, e.g. outside
temperatures, we use the extension of fitted Q-iteration as
presented in [16], which replaces the observed exogenous in-
formation by its forecasted value ﬁ:?xol (line 7 in Algorithm 1).

In order for Algorithm 1 to work, we need to select
an approximator architecture (step 10) that is able to learn
relevant features from sequences of input data and that can
generalize the Q-function.

426

Qr = ()", uk)

aug
"t)

CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 5, NO. 4, DECEMBER 2019

| °e o)
phys cx0 ,
..... W Uk—=15- oy Uk—h UL T, aiime gexo — 5 IDconvolution

phys
et

phys
9L~4.+1‘

phys
U—h ‘

‘ Uk—1

U~ ‘

(a) Neural network

Fig. 1.
where each node is associated with one particular time instance.

Algorithm 1 Batch RL [26] using LSTM [21]

J phys\#F -
Input: F = {@3”, u, @™, w1 N (@701
history length h
. construct M = {228 uy,, 238 uP™* 1M using (6) and

(N
2 let @y be zero everywhere on X x U
» for N=1,...,T do

« fork=1,...,#M do

5: |+ x‘]ccime

6 C ughys)\lAt

. wZUg/ — (x}cime" CbziSt/, :%;:xol),

8 Qg —cr+ gg@N—l(wzug ,)
o end for

w0 use approximator (Fig. 1) to obtain @N from 7 =

{(®3"8,w), Qng) k= 1,..., #M}

. end f(g N
Output: Q* = Qxn

V. DEEP LEARNING APPROXIMATORS

This paper investigates the effectiveness of the following
deep learning approximators when combined with fitted Q-
iteration.

A. Deep Neural Network

It has been shown that a neural network with a single layer is
sufficient to represent any function, but the layer may become
infeasible large and may fail to train and generalize correctly.
To overcome these two challenges, deeper networks are used
as these networks can reduce the number of units to represent
the function and can reduce the generalization error. Fig. 1(a)
illustrates the neural network as used in this paper, consisting
of an input layer given by (x."®, uy), two hidden layers with
rectified linear units (ReLUs), and one linear output layer,
representing the approximated Q-function.

B. Convolutional Neural Network

CNNs have been successfully applied to extract features
from image data, represented as a 2D grid of pixels. In this

(b) Convolutional neural network

(c) Long short-term memory network

Sketch of the deep learning architectures used in the simulation section. The LSTM network is represented as an unfolded computational graph,

paper, we consider a time series and convolve a 1D filter of
length N over the time-series in the state (7). A sketch of
the applied CNN can be seen in Fig. 1(b), which consists
of two components that are merged to output a singe value.
The first component is a dense neural network which takes
the timing-related information, exogenous information and
action as input. The second component is a CNN which takes
the time-series as input (7). For each sequence, the network
consists of two layers containing eight 1D filters of length
4 followed by a ReLU, which is downsampled by using an
average pooling layer.

C. Long Short-term Memory

1) Background

An LSTM network (Fig. 1(c)) consists of LSTM nodes that
are recurrently connected to each other. Each LSTM node has
an internal recurrence or memory cell C® and a system of
gating units that controls the flow of information. For each
step ¢ of the sequence =M, ... ,x® . . () the resulting
action of the forget gate £, input gate () and output gate
o®) of a single LSTM node is provided by:

O =o(Wih"D, 2" + by)
i® = o(W;[RD 0] + b))
o = a(W,[h* Y 2®] +b,)

®)

where W, W;, W, and by, b;, b, are the weights and biases of
the forget, input and output gate, o denotes the logistic sigmoid
function and (¥ denotes the current element of sequence (11),
with the time step index ¢ ranging from 1 to h.

The internal memory cell of the LSTM node is updated as:

c) = £, cl=1 4), C®) 9)

where CY) and C(*=1) are the current and previous memory
state and * denotes a pointwise multiplication operator. Note
that the new memory C*) is defined by the information it
forgets from the old state f ®) s« C*=1) and remembers from
the current i) x C'®),

In the last step, a hyperbolic tangent function is applied to
the memory cell and multiplied with the output o(*), which

RUELENS et al.: DIRECT LOAD CONTROL OF THERMOSTATICALLY CONTROLLED LOADS BASED ON SPARSE OBSERVATIONS USING DEEP REINFORCEMENT LEARNING 427

defines what information to output.

h) = o « tanh(CV) (10)

This gating mechanism allows the LSTM network to store
information about the state for long periods of time and
protects the gradient in the cell from harmful changes during
training related to the vanishing or exploding gradient problem
of RNN [20].

2) Approximator Architecture

The approximator architecture consists of two components:
an LSTM network and a standard multi-layer perceptron
(Fig. 1). The first part of the input, corresponding to the LSTM
component, contains the historic information of the partial
state ", For each k = h + 1,...,#M, the input of the
LSTM network is given by the following sequence:

phys phys
Okh Ok’—}{z/+1
S S
“11331 ey ug_yh (11)
Uk—1 Uk—h
N—_—— ——
m}(‘1) m(kh)

The history depth h defines how much time steps the network
can see in the past to compute its approximation of the Q-
function. The length of the memory cell d. represents an
important hyper parameter and defines how many knowledges
can be encoded. As can be see in Fig. 1 only the content of
the last memory cell h; is used as an input for the next layer.

The second part contains the time-related information, ex-
ogenous information and action: x?me, 7%, u. The outputs of
both components are combined to form a single architecture,
which is followed by two fully connect layers with Rectified
Linear Unit (ReLU) activation functions. A final linear output
layer approximates the final Q-function for the provided state-
action pair.

VI. SIMULATION EXPERIMENTS

This section evaluates the performance of combining the
presented deep learning techniques with Algorithm 1 for two
TCLs (a heat-pump within building and an electric boiler)
as providers of demand flexibility exposed to a dynamic
energy price. The TCLs are represented using a second-order
equivalent thermal parameter (ETP) model.

A. Simulation Framework

At the end of each simulation day, Algorithm 1 is used to
compute a new policy based on current batch and electricity
price for the following day. The RL agent starts with an empty
batch and alternates exploration and exploitation according to
a decreasing exploration probability: ¢4 = 0.75%, where d
denotes the current episode.

All experiments are repeated 10 times starting from a differ-
ent random seed, resulting in different exploration probabilities
and stochastic disturbances. The results below present the
average of these simulation experiments, where a confidence
bound (£20) is indicated by a shaded area, representing a 0.95
probability that the solution lies in the shaded area.

The average simulation time for one day (Algorithm 1) is
about 1.5 hour' using Keras with Theano as backend.

B. Experiment 1: Space Heating

The second-order ETP model for the space heating con-
siders both the inside air temperature as well as the (not
observable) building mass temperature, similar as in [17], [27].
The dynamics of the model are given by

ar, 1
=— TmnHy — Ty (U + Hp, atToUs
@~ Endln = Ta(Uat Hi) + Qa4 ToU]
dT, 1
— = H, (T, - T, m 12
g ¢ Hm()+ Qi (12)

where U, equals the conductance of the building envelope.
T, is the outside air temperature, T, is the inside air tem-
perature, and T, is the inner mass temperature. Hy, is the
conductance between the inner air and the solid mass. C, and
Cp represent the thermal mass of the air and interior solid
mass, respectively. The heat flux into the interior air mass),
is given by a combination of solar heat gains, heat gains of
the internal loads, and heat gain generated by the heat pump
itself, which is related to the heat pump power multiplied with
its coefficient-of-performance, as in [28].

Numerically, a second-order heat-pump model (C, =
2441 MJKK, U, = 125WI/K, C,, = 9MIK, H,, =
6.863 kW/K) with real-world Belgian outside temperatures
T, from [29] is used to simulate the temperature dynamics
of a residential building with a heat pump. The heat pump
has a maximum electric heating power of 2.3 kW and the
minimum and maximum comfort settings are set to 20°C and
23°C (293 K and 296 K). To model stochastic impact of user-
behavior we sample an exogenous temperature disturbance
from AN(0,0.025). The time resolution of the dynamics is
60 seconds and of the control policy is 15 minutes.

The state vector describing the environment is defined as:

L = (x;gimeaTlgleznaTkoaTkexo)a (13)

where :c};me contains timing information, 7} the air tem-

perature, 1;" the virtual mass temperature, 7} the outside
temperature and 7. an exogenous disturbance. As stated
in the problem description, it is assumed that the RL agent
cannot measure the air and mass temperature of the building,
resulting in a partial observed control problem. As such, we
construct the following augmented state vector:

x = (xgme,[u}z}iyls7 .. ,uglly}fL
[ukflv e 7uk7h]7 (14)

[TIS—lv"'aTlco—h]aTI?>>

which includes three time series of length h = 20.
1) NN Architecture

The neural network consists of three dense layers with
50 neurons with ReLU activation functions, followed by a
linear output unit. The neural network was trained using
RMSprop with a minibatch size of 32, and the training set
contained about 100 days of data at 15 minute resolution
(hence, approximately 10,000 data points).

I'Simulation hardware: Xeon E5-2680 v2 processor with 15 GiB memory
(Amazon elastic cloud instance type: c3.2xlarge).

428 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 5, NO. 4, DECEMBER 2019

0.05

004 g

0.03 |

0.02

Mean Squared Error

0.01}

0.00 L L . L .
0 5 10 15 20 25 30
Training iterations (100)

Fig. 2. Mean squared error during training for different dimensions of the
LSTM memory cell. The training was stopped after 10 minutes. The best re-
sults obtained after 10 minutes of training using a memory cell of dimension 8.

2) CNN Architecture

The network consists of two components, namely a CNN
and dense network. The CNN component consists of two 1D
convolutions (along the time dimension) that are each followed
by an average pooling layer. The dimension of the first filter
is (L x 3), where L is the filter length and 3 is number of
input sequences and the dimension of the second filter is L x
1. Both filters have a filter length of 4. The dense network
processes the time-related information, exogenous information
and action. Both components are merged and followed with
two layers with 20 neurons and a single output layer. All layers
use ReLU activation function except for the output layer that
uses a linear function.
3) LSTM Architecture

The input to the LSTM network is provided by the se-
quence:

phys phys
k—1> k—h>
Uk—1, serey | Uk—h, (15)
T4 Ty
and the NN is provided by x?me, TY and uy.

For the heat-pump experiment the best results were obtained
with the history depth h set to 20 time steps (quarters) and
the length of each LSTM memory cell d.p set to 8.

4) Convergence

Figure 3 depicts the cumulative cost using function ap-
proximators (Fig. 3(a)) and daily average outside temperature
(Fig. 3(b)). The no control strategy activates the backup
controller, without setting a control action, and can be seen
as a worst case scenario as it is agnostic about the electricity
price. An upper bound is computed by considering the full
state information as defined in (13). In addition to LSTM
with partial state information, the figure depicts the cumulative
of using an ensemble of extremely randomized trees (or
ExtraTrees) [26]. The number of trees in the ensemble was
set to 100 and the minimum sample size for splitting a node
to 5. Our results indicate that the ExtraTrees approximator
was not able to extract relevant features from the partial

state information and performed only 1.5% better than the
no control strategy. In contrast, the LSTM approximator was
able to extract relevant features and achieved a reduction of
5.5%.

12
—— LSTM (partial state)

—~ 1.0f — Trees (partial state)
g — Trees (full state)
=08 No control
5
E 0.6}
k5]
= 04
g
=
© 0.2

0.0 ‘ ‘ ‘ : :

0 10 20 30 40 50
Days
(@
15 - - - - -
_ 0
: 3 \\/\/\/W
10!
0 10 20 30 40 50
Days

(b)

Fig. 3. (a) Cumulative cost of the heat pump experiment using FQI-LSTM
and FQI-Trees. (b) Corresponding daily average outside temperature.

Figure 4(a) shows the daily cost obtained with Algorithm 1,
using a partial state information and a neural network, with
CNN and LSTM network as a function approximator. Fig. 4(b)
indicates the scaled cost which is ¢ calculated as follows:
(¢ — ¢£)/(cne — ¢£), where ¢ is the result of using the full
state information and c,. of using the no control strategy,
resulting in ¢ = 0 for the full state strategy and ¢ = 1
for the no control strategy. This figure indicates Algorithm
1 obtained a scaled cost of 0.37 using LSTM, 0.66 using NN
and 0.82 using CNN. Fig. 4(c) compares the resulting control
policies of LSTM, CNN en NN with the control policy of the

1.6 -
1.4 O
= 1.2 <
? 1.OF -)
<08} £
g 06 5
O 04 g
021 5
0.0 =
20 25 30 35 40 45 50 55
Days
(a)
3.0 T T T T T T
_25F — NN LSTM =— CNN — NC -— Benchmark (Full state)
£20 1
20]
= 1.0 V/\ A /A " A
05 NS T INAAAAN
0.0
20 25 30 35 40 45 50 55
Days
(b)
2.0

LSTM — CNN

~—— Benchmark (Full state)

Performance

20 25 30 35 40 45 50 55
Days
(©

Fig. 4. (a) Daily cost for the heat pump experiment using FQI-NN, FQILSTM
and FQI-CNN based on sparse observations. (b) Corresponding scaled daily
cost. (c) Metric defined by the distance between the near optimal policy
(benchmark) and policy obtained with FQI-NN, FQI-LSTM and FQI-CNN.

RUELENS et al.: DIRECT LOAD CONTROL OF THERMOSTATICALLY CONTROLLED LOADS BASED ON SPARSE OBSERVATIONS USING DEEP REINFORCEMENT LEARNING 429

3 Day 43 Day 44 Day 45 Day 46 Day 47 120
21
o
~
0
o
E’ZS—
g 22t
2 21}
g 20 n n
[_4
3 Day 52 120 _
= 100 £
2l 180 £
= 60 &
E 1} 40 g
-9 F 4120 £
0) I | /\AM() R
—_ . - . . 120
£ 23) {1002
o 180
£ 2f 60 3
< =
221 I 20 3
=] F 20 E
& 20 0
0 20 40 60 80

0 20 40 60 80
Time (15 min)

0 20 40 60 80
Time (15 min)

Fig. 5.

Time (15 min)

0 20 40 60 80
Time (15 min)

0 20 40 60 80
Time (15 min)

Power consumption (first and third row) and air temperatures (second and fourth row) for 10 greedy simulation days (left y-axis) using FQI-LSTM

with partial state information for the heat pump experiment. The corresponding price profiles are depicted in gray (right y-axis).

full state using a euclidean distance. Although NN achieved a
better performance than CNN, the resulting policy of CNN and
LSTM are closer to the policy of the full state. We speculate
that the CNN and LSTM learned a better representation of the
full state than the NN, since the NN achieved a low cost by
lowering the air temperature to minimum temperature without
reacting to the price.

5) Daily Results

A more qualitative interpretation of our results can be seen
in Fig. 5. The figure shows the power consumption and the
corresponding daily price profiles. It can be seen that the
learning agent successfully postponed its power consumption
to low price moments, while satisfying the comfort constraints.

C. Experiment 2: Electric Water Heating

The second experiment considers an electric water heater
with a water buffer of 200 liters and a daily average water
consumption of 100 liter. The minimum and maximum water
temperature is set to 45°C and 65°C. The water heater is
equipped with a thermostatic mixing value to assure a constant
requested temperature of 45°C. The water heater has an
electric power rating of 2.3 kW and a built-in backup controller
as defined in [30]. The time resolution for the dynamics is
5 seconds and the time resolution for the control policy is
15 minutes.

The full state vector of the electric water heater is defined
by:

xy, = («fme T, T dy) (16)
where Tft is the temperature corresponding to the i*" layer
and dj, is the current tap demand. During our simulation, a
non-linear stratified model with 50 layers is used to simulate

the temperature gradient along the water tank and stochastic
tap water profiles are used based on [30].

In a previous paper [31], the authors considered that the
agent could measure an imperfect state through eight temper-
ature sensors. In this experiment, however, it is assumed that
the buffer is not equipped with a set of sensors to measure the
different temperatures inside the water buffer.

As a result, we define the following augmented state vector:

xe = (x}cime,[uk_l, Uk, [ugﬁyf, . ugkiy,f]
. . c c
itk g na), [T T D) A

where z}cime contains timing information, wuj is the re-
quested control action, uPPYs is the actual action, and 7
and T,‘f‘ are the mass flow rate and temperature of the
water exiting the water buffer. Note that [ub™F, ... uP"]
represents the electricity consumption of the boiler and
[y - Tg—pt1], [T,If‘, . ,T,Lﬁ_th] represents the energy
flowing out of the boiler.

1) (C)NN Architecture

The NN and CNN architecture are identical as in the
previous experiment with the exception that the filters size
of the first convolutional layer is 4 x 4, because now we have
4 input sequences.

2) LSTM Architecture

The input to the LSTM network is provided by the se-
quence:

phys phys
Up_1> k—h>
Uk—1 Uk—h
. . (18)
mk7 mk—h+17
I£] |L]
T, Tk—h+1

430 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 5, NO. 4, DECEMBER 2019

—Day 43 —Day 46

W

Day 47

_ Day 48 _Day 49

%)

—_

Power (kW)

ff\ N A

SO~

SoC
PO O

e
oo

s i sl

w

5%}

Power (kW)

0.0

0 20 40 60 80
Time (15 min)

0 20 40 60 80
Time (15 min)

Fig. 6.

0 20 40 60 80
Time (15 min)

0 20 40 60 80
Time (15 min)

0 20 40 60 80
Time (15 min)

Power consumption (first and third row) and state of charge (second and fourth row) for 10 greedy simulation days (left y-axis) using FQI-LSTM

with partial state information for the electric water heater experiment. The corresponding price profiles are depicted in gray (right y-axis).

For the boiler experiment the best results were obtained with
the history depth h set to 40 time steps (quarters) and the
length of each LSTM memory cell d. set to 12.

3) Daily Results

For the electric water heater scenario, we only offer quali-
tative results (Fig. 6). It shows the daily power consumption
of an electric water heater and corresponding price profiles.
It can be seen that the learning agent required four weeks of
learning before obtaining reasonable policies (lower row of
graphs). A final comparison between using a CNN or LSTM
network as a function approximator can be seen in Fig. 7,
indicating that using a CNN resulted in a cost reduction of
5.5% and using an LSTM network in 10.2%. The results of
FQI-NN were omitted because we were able to stabilize the
learning of the NN.

1.0

CNN
No control
0.8
— LSTM
3
<
= 0.6
8
8
2
= 04 =
g
=
]
0.2
0'00 10 20 30 40
Days
Fig. 7. Cumulative cost of the electric water heater experiment using FQI-

LSTM and FQI-CNN based on partial state information.

VII. CONCLUSION

In this paper, we demonstrated the effectiveness of com-
bining different deep learning techniques with reinforcement
learning for two demand response applications that are hin-
dered by sparse observations of the true state. Since these
sparse observations result in a non-Markovian control problem,
we extended the state with sequences of past observations of
the state and action.

In the first experiment, we considered an agent that controls
a residential heating system under a dynamic pricing scenario,
where the agent can only measure its electricity consumption,
control action and outside temperature. Our simulations indi-
cated that reinforcement learning with long short-term memory
(LSTM) performed better than other techniques such as a
neural network, convolutional neural network and ensemble
of regression trees, when sparse observations were used. In
our second experiment, we considered an agent that controls
a residential electric water heater with a hot storage vessel of
200 liter. In this scenario, the agent can only measure its elec-
tricity consumption, control action and flow and temperature
of the tap water exiting the storage vessel. The simulation
results indicated that the LSTM network outperformed the
convolutional network and deep neural network.

We speculate that the higher performance of the LSTM
network comes from its internal memory cell which can
act as an integrator. This internal memory cell allows the
LSTM network to process sequences of sparse observations
and extract relevant features from it that can represent the
underlying state of charge (or energy level) of the application.

REFERENCES
[1] J. L. Mathieu, M. Kamgarpour, J. Lygeros, G. Andersson, and D.S.

RUELENS et al.: DIRECT LOAD CONTROL OF THERMOSTATICALLY CONTROLLED LOADS BASED ON SPARSE OBSERVATIONS USING DEEP REINFORCEMENT LEARNING

[2]

[3]

[4]

[51

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(191

[20]

[21]

[22]

Callaway, “Arbitraging intraday wholesale energy market prices with
aggregations of thermostatic loads,” IEEE Transactions on Power Sys-
tems, vol. 30, no. 2, pp. 763-772, Mar. 2015.

B. Dupont, P. Vingerhoets, P. Tant, K. Vanthournout, W. Cardinaels, T.
De Rybel, E. Peeters, and R. Belmans, “LINEAR breakthrough project:
Large-scale implementation of smart grid technologies in distribution
grids,” in Proceedings of the 3rd IEEE PES Innovative Smart Grid
Technologies Europe (ISGT Europe), Berlin, Germany, 2012, pp. 1-8.
G. Deconinck and K. Thoelen, “Lessons from 10 years of demand
response research: Smart energy for customers?” IEEE Systems, Man,
and Cybernetics Magazine, vol. 5, no. 3, pp. 21-30, Jul. 2019.

E. Vrettos, E. C. Kara, J. MacDonald, G. Andersson, and D. S. Callaway,
“Experimental demonstration of frequency regulation by commercial
buildings—part I: Modeling and hierarchical control design,” IEEE
Transactions on Smart Grid, vol. 9, no. 4, pp. 3213-3223, Jul. 2018.
H. Kazmi, S. D’Oca, C. Delmastro, S. Lodeweyckx, and S. P. Corgnati,
“Generalizable occupant-driven optimization model for domestic hot
water production in NZEB,” Applied Energy, vol. 175, pp. 1-15, Aug.
2016.

Q. Hu, E Oldewurtel, M. Balandat, E. Vrettos, D. T. Zhou, and C.
J. Tomlin, “Building model identification during regular operation -
empirical results and challenges,” in Proceedings of 2016 American
Control Conference (ACC), 2016, pp. 605-610.

E. F. Camacho and C. Bordons, Model Predictive Control, 2nd ed.,
London, UK: Springer London, 2004.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
Cambridge, MA: MIT Press, 1998.

D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming,
Nashua, NH: Athena Scientific, 1996.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning[Online].
MIT Press, 2016. Available: http://www.deeplearningbook.org

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.
Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533, Feb.
2015.

G. Kahn, T. Z. Zhang, S. Levine, and P. Abbeel, “PLATO: Policy
learning using adaptive trajectory optimization,” in Proceedings of 2017
IEEE International Conference on Robotics and Automation (ICRA),
2017, pp. 3342-3349.

Z. Wen, D. O’Neill, and H. Maei, “Optimal demand response using
device-based reinforcement learning,” IEEE Transactions on Smart Grid,
vol. 6, no. 5, pp. 2312-2324, Sep. 2015.

E. C. Kara, M. Berges, B. Krogh, and S. Kar, “Using smart devices for
system-level management and control in the smart grid: A reinforcement
learning framework,” in Proceedings of the 3rd IEEE International
Conference on Smart Grid Communications (SmartGridComm), Tainan,
China, 2012, pp. 85-90.

E. Mocanu, P. H. Nguyen, W. L. Kling, and M. Gibescu, “Unsupervised
energy prediction in a smart grid context using reinforcement cross-
building transfer learning,” Energy and Buildings, vol. 116, pp. 646—
655, Mar. 2016.

F. Ruelens, B. J. Claessens, S. Vandael, B. De Schutter, R. Babuska,
and R. Belmans, “Residential demand response of thermostatically
controlled loads using batch reinforcement learning,” IEEE Transactions
on Smart Grid, vol. 8, no. 5, pp. 2149-2159, Sep. 2017.

B. J. Claessens, P. Vrancx, and F. Ruelens, “Convolutional neural
networks for automatic state-time feature extraction in reinforcement
learning applied to residential load control,” IEEE Transactions on Smart
Grid, vol. 9, no. 4, pp. 3259-3269, Jul. 2018.

V. Francois-Lavet, D. Taralla, D. Ernst, and R. Fonteneau, “Deep
reinforcement learning solutions for energy microgrids management,”
in European Workshop on Reinforcement Learning (EWRL 2016), 2016.
M. Glavic, R. Fonteneau, and D. Ernst, “Reinforcement learning for
electric power system decision and control: Past considerations and
perspectives,” in Proceedings of the 20th World Congress of the Inter-
national Federation of Automatic Control (IFAC), Toulouse 9-14 July,
Toulouse, France, 2017, pp. 1-10.

Y. Bengio, P. Frasconi, and P. Simard, “The problem of learning
long-term dependencies in recurrent networks,” in IEEE International
Conference on Neural Networks, 1993, pp. 1183-1188.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

L. J. Lin and T. M. Mitchell, “Reinforcement learning with hidden
states,” in Proceedings of the 2nd international conference on From

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

431

Animals to Animats 2: Simulation of Adaptive Behavior, 1993, pp. 271-
280.

B. Bakker, “Reinforcement learning with long short-term memory,”
in Proceedings of the 14th International Conference on Neural Infor-
mation Processing Systems: Natural and Synthetic, Vancouver, British
Columbia, Canada, 2001, pp. 1475-1482.

D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber, “Solving deep
memory POMDPs with recurrent policy gradients,” in Proceedings of
the 17th International Conference on Artificial Neural Networks, 2007,
pp. 697-706.

M. Hausknecht and P. Stone, “Deep recurrent Q-learning for partially
observable MDPs,” arXiv:1507.06527, 2015.

D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode reinforce-
ment learning,” Journal of Machine Learning Research, pp. 503-556,
Apr. 2005.

W. Zhang, K. Kalsi, J. Fuller, M. Elizondo, and D. Chassin, “Aggregate
model for heterogeneous thermostatically controlled loads with demand
response,” in Proceedings of 2012 IEEE Power and Energy Society
General Meeting, 2012, pp. 1-8.

S. Iacovella, F. Ruelens, P. Vingerhoets, B. Claessens, and G. Deconinck,
“Cluster control of heterogeneous thermostatically controlled loads using
tracer devices,” IEEE Transactions on Smart Grid, vol. 8, no. 2, pp.
528-536, Mar. 2017.

KMI - Royal Meteorological Institute of Belgium. (2017, January
21). Ambient temperatures (Ukkel, Belgium)[Online]. https://github.
com/openideas/IDEAS/blob/master/IDEAS/Inputs/Uccle. TMY

K. Vanthournout, R. D’hulst, D. Geysen, and G. Jacobs, “A smart
domestic hot water buffer,” IEEE Transactions on Smart Grid, vol. 3,
no. 4, pp. 2121-2127, Dec. 2012.

F. Ruelens, B. J. Claessens, S. Quaiyum, B. De Schutter, R. Babuska,
and R. Belmans, “Reinforcement learning applied to an electric water
heater: From theory to practice,” IEEE Transactions on Smart Grid, vol.
9, no. 4, pp. 3792-3800, Jul. 2018.

Frederik Ruelens received his Ph.D. degree in Elec-
trical Engineering from the KU Leuven, Belgium
in 2016. Since 2019, he is Deployment Engineer at
Proximus focusing on DevOps (docker, kubernetes,
automated continuous integration). He is passion-
ate about solving complex problems from different
fields and deploying real-world machine learning
applications.

Bert J. Claessens received his Ph.D. degree in
applied physics from the University of Technology
of Eindhoven, The Netherlands in 2006. Since 2016
he is head of optimization research and innovation
at REstore as part of Centrica Business Solutions.
Since 2019 he is part-time professor of intelligent
energy systems at Eindhoven University of Tech-
nology. His main research interests are directed
towards residential demand response and artificial
intelligence for energy applications.

Peter Vrancx obtained his Ph.D. degree in Com-
puter Science summa cum laude from Vrije Univer-
siteit Brussel. During his Ph.D. he developed game
theoretical models of multi-agent reinforcement
learning algorithms. After graduating, he worked
as a postdoctoral researcher on several applied ma-
chine learning and reinforcement learning projects.
In 2016, he became an Assistant Professor with
the Department of Computer Science at the Vrije
Universiteit Brussel. He also served as a steering
group member of BruBotics - the Brussels Human

Robotics Research Center. He is currently the Head of Reinforcement Learn-
ing and Multi-agent Systems research at PROWLER.io. His main research
interests are Reinforcement Learning, Neural Networks, and Game Theory.

432 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 5, NO. 4, DECEMBER 2019

Alfred (Fred) Spiessens received his Ph.D. de-
gree in Software Engineering from the Universit
Catholique de Louvain, Belgium in 2007. He has
experience in industry since 1983 and performs
applied and academic research since 2004. Since
2014 he is a Senior Research Professor in the
group Algorithms, Models and Optimization at En-
ergyVille/VITO investigating energy optimization
techniques and advising Ph.D. students.

Geert Deconinck is Full Professor at KU Leuven
university (Belgium). He received his M.Sc. degree
in Electrical Engineering and his Ph.D. degree in
Engineering Sciences from KU Leuven, Belgium
in 1991 and 1996 respectively. He is head of the
research group ELECTA on Electrical Energy at the
Department of Electrical Engineering (ESAT). In
the research centre EnergyVille on smart energy for
sustainable cities, he is the scientific leader for the
algorithms, modelling, optimisation, applied to smart
electrical and thermal networks. His research focuses
on robust distributed coordination and control, specifically in the context of
smart grids.

