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ABSTRACT

State-of-the-art Modelica tools for modeling and simulating multi-physical systems
have reached certain maturity among the building physics community. Hence, sim-
ulation is widely used for control, sizing and performance assessment of energy
systems. However, serious efficiency issues arise for large-scale models. This arti-
cle proposes a practical application of co-simulation methods on detailed district
energy systems. The aim of this study is to assess performance and scalability of co-
simulation through Functional Mock-up Interfaces on a detailed and multi-physical
district model. In particular, we propose a comparative analysis between classical
simulation and co-simulation methods and a scalability analysis on a growing num-
ber of buildings. The models have been implemented using Modelica language and
the OpenIDEAS library. A decomposition approach is taken for modeling the entire
system, while stochasticity in the inputs is taken into account. Results are presented
for various integration scenarios, including a classical integrated simulation for ref-
erence and co-simulations involving different master-algorithms within Dymola and
DACCOSIM 2017. Scenarios are compared in terms of speed-up and accuracy of
principal physical quantities representing key performance indicators such as indoor
temperature, current and voltage at building’s connection. The analysis shows that
co-simulation can run up to 90 times faster than the integrated simulation for 24
buildings, while ensuring acceptable accuracy.

KEYWORDS
Co-simulation; District Energy System; low-voltage grid; Modelica; Functional
Mockup Interface; Efficient Simulation; Large-scale Model

1. Introduction

On November 2016, European commission updated the energy efficiency policies, includ-
ing a new 30% energy efficiency target for 2030 (European Commision 2016), reinforcing
the 2012’s targets (European Union 2012). Specific measures and policies are directed
toward all the energy chain, from production to consumers. New legislation enforces
for instance: a renovation rate for public buildings, free data access on consumption
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through smart metering, increasing the share of renewable energy or promoting circular
economy (by means of co-generation or recycling waste energy). In this context, District
Energy Systems (DES) are at the forefront of the engineering research.

A DES consists of all components enabling production, storage and distribution of
energy to the buildings of a district. It may refer to electricity, gas, heating and/or
cooling networks (Carvalho et al. 2016; Frederiksen and Werner 2013). Classical DES
are facing deep changes, mainly introduced by distributed renewable energy generation,
highly efficient technologies or smart control such as model predictive control.
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As a consequence, research has directed efforts on models and simulation to assess
energy performance, controls and sizing of the future DES. For these systems, an inte-
grated modeling platform is required, capable of simultaneously considering numerous
heterogeneous buildings, the dispatch of energy through the network and all the com-
munication signals related to smart meters or controls. Detailed and multi-physical
simulation of a large DES is challenging. Several bottlenecks are usually encountered,
such as : multi-physical phenomenons, multiple time-space scales and dynamics, imple-
mentation of controllers, stochasticity (Baetens and Saelens 2016) and interoperability.
For this purpose, different modeling approaches are possible. In the following, we pro-
pose to describe two classical methodologies together with the co-simulation approach
illustrated in fig. 1.

An illustration of a fully integrated approach is proposed in fig. 1(a). Regardless of
the type of DES (electrical and/or thermal), all interactions between the buildings and
the network are technically possible, including physical interaction, feedback control or
data signals.

The paradigm of integrated modeling using detailed physics-based models (white-box
models) attracted researchers’ attention and has reached certain maturity on the build-
ing level, especially regarding available models and tools (Fritzson 2015). In Wetter,
Bonvini, and Nouidui (2016), the authors highlight advantages of equation-based mod-
eling languages, such as Modelica, for symbolic manipulation and multi-physical inte-
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gration. In 2017, a coordinated project entitled “ New generation computational tools for
building and community energy systems based on the Modelica and Functional Mockup
Interface standards” came to an end, linking different contributions and developing an
open-source core library called (Wetter et al. 2015). Likewise, Baetens et al. (2015) pro-
pose an open framework for district energy simulation. These libraries, fully based on
the Modelica language, aim to tackle the known issues of DES such as multi-physical
modeling, generation of controls and efficient code for simulation and optimisation.

The use of white box models is widely accepted in research and various validation
studies demonstrated their reliability at the building level (Nouidui et al. 2012; Jensen
1995; Kersken, Heusler, and Strachan 2014). But, whereas multi-physical integration
issues were circumvented by the use of open source libraries and white box models, re-
searchers are facing other types of challenges, related to computation time and upscaling
of the computational complexity. In a multi-physical context, Casella (2015) presents
a detailed list of known issues with large scale models, related to compilation, memory
allocation or solvers. The most important are :

e the calculus of the Jacobian matrix and the inversion of the Hessian matrix for
implicit solvers, which grows as O(N?) with N the number of states,

e the memory allocation of those matrices,

e non-linear algebraic loops, between buildings and grid for instance, that requires
iterative calculus,

e localized activities that impose to reduce the time steps and span the entire sys-
tem, or events that requires iterative calculus of the system until convergence,
and

e widely different time scales, requiring small enough steps to stay within the allowed
error tolerance for the fastest dynamic.

All these issues are combined within the DES. In particular, we denote different
dynamics (thermal, electrical, fluids), numerous algebraic loops, mainly due to the elec-
trical connection between grid and buildings and local activities since the occupancy
behaviour are different for each building. As a result, the use of integrated DES models
for control or optimization applications may be compromised on large scale systems
(Privara et al. 2013). In additions, DES simulations usually consider stochastic inputs
for assessing local and general effects on a wide spectrum of scenarios multiplying the
number of needed simulations and the computational cost.

To overcome this scalability issue and try to speed-up simulations, some model sim-
plifications may be introduced. Depending on whether the focus lies on the network or
building, either simplified thermal structures or an ideal grid are considered. Most of
these simplified thermal structures are based on the concept of grey-box models and
stochastic linear differential equations (Melgaard 1994; Madsen 2007). In this context,
Kim et al. (2014) presented a reduction technique for building envelope models in ur-
ban simulations to ensure a good trade-off between computation time and precision. In
2015, Nytsch-Geusen and Kaul developed a tool that generates populations of low-order
models based on geographic information and statistical methods to calculate energy de-
mand. A similar approach of generation and validation of grey-box models can be found
in (De Coninck et al. 2015). Existing tools, like CitySim, allow dynamic simulation on
a urban scale. The later uses the 3D geometry of the building to derive a dynamic ther-
mal model based on equivalent electric circuit as described in Robinson et al. (2009). It
was recently compared to the Building Energy Simulation Test (BESTEST) validation
procedure in (Walter and Kampf 2015). Likewise, TEASER has been developed to gen-
erate dynamic simulation of thousands of buildings with low inputs requirement. The
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work-flow consists of several steps, including data acquisition from CityGML models for
instance, data enrichment and generation of reduced order model based on AixLib or
Annex 60 Modelica libraries (Miiller et al. 2016; Saelens, Wetter, and van Treeck 2017).

Those approaches proved to be efficient for total energy use or thermal demand
Reinhart and Davila (2016). However, due to unmodelled inputs or simplifications, a
significant bias on the output still exists, and may reduce the use of such methods for
control strategies, topology or sizing optimization for districts. On the building level,
an assessment of white-box and grey-box models is done for model predictive control
(MPC) (Zhang et al. 2015). Results show a significant difference in the energy savings
between both approaches.

An alternative to building or network simplifications for simulation speed-up is to re-
duce interactions. As a result, a decoupled approach emerged that may consider detailed
models for both district and building levels and simulates the DES in two steps. An
illustration of this method is proposed in fig. 1(b). First, building loads are computed in
detailed, considering stochastic occupancy profiles, heterogeneous structures, decentral-
ized energy generation, etc. Then, the network behavior is simulated by applying the
building loads to assess energy quality, such as voltage drops and thermal constraints.
This last method proved to be useful for statistical analysis and energy policy assess-
ment (Protopapadaki and Saelens 2017; Protopapadaki, Baetens, and Saelens 2015).
Nevertheless, in this case, interaction between building and grid can only be one-sided,
prohibiting any kind of feedback control or data communication during run-time. For
instance, decentralized load control for voltage regulation is limited.

A compromise between the fully integrated and the decoupled approach is possible,
insuring communication and feedback control, while the buildings and network are sim-
ulated almost independently or in parallel. This method is called co-simulation. Such
approach is illustrated in fig. 1(c). It allows a coherent integration of a decomposed
system, by assigning a specific solver to each sub-component, while exchanging data
during run-time. The first challenge of such approach is to create tools and algorithms
enabling decomposition and simulation of the different parts. Several solutions have
been developed for building and district simulation, such as the BCVTB (Wetter 2011),
EnergyPlus (Nouidui, Wetter, and Zuo 2014) or DACOSSIM (Galtier et al. 2015).

In 2008, the Modelisar project begun to develop an open-source and community
driven standard for co-simulation and model exchange named Functional Mock-up In-
terface (FMI) (Blochwitz et al. 2011). Initially developed for the automotive industry,
its aim was to facilitate exchange between partners and different platforms. The FMI
aims to standardize and facilitate the interface for general purpose co-simulation. It
is now largely used and allows exporting and importing models to and from numer-
ous platforms. One can find an exhaustive list of compatible environments along with
various literature online !.

Several building-level applications of co-simulation through FMI standards can be
found in (Nouidui, Wetter, and Zuo 2014; Raad et al. 2015). On the contrary, only few
applications of co-simulation at district level are available. G. Zucker et al. achieved a
co-simulation of a large district heating system involving low-order buildings models in
(Zucker et al. 2016). The co-simulation work-flow couples the Ptolemy II (Ptolemacus
2014) environment to the FMI++ library (Widl et al. 2013) along with EnergyPlus
for model exportation. Recently, Vialle et al. (2017) implemented the co-simulation of
a district within the DACCOSIM environment to demonstrate the feasibility of such
large simulation on a cluster of computers (Galtier et al. 2015).

Ihttps://www.fmi-standard.org/
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Only few studies deal with co-simulation and scalability using white box district mod-
els. To fill this gap, we propose a methodological assessment of co-simulation methods
in the district context (fig. 1(c)), in terms of speed-up, scalability and accuracy. The
present paper proposes a co-simulation approach for DES simulation using the FMI
standards and the Modelica language. The aim is twofold: First, validate this approach,
by comparing it to the state-of-the-art integrated method (fig. 1(a)), and secondly,
quantify and compare the scalability performance of the co-simulation (fig. 1(c)). Be-
cause the decoupled method (illustrated in fig. 1(b)) does not allow feedback control or
data exchange, it is considered out of scope for the comparison in this paper.

An integrated model for DES is created for a growing number of buildings along
with its adaptation to the co-simulation approach. Consequently, this study also in-
cludes practical aspects of DES co-simulation, such as decomposition, parameterization
and adaptations. Particular attention will be paid to the management of resources, i.e.
the weather and occupancy data, to ensure genericity and a minimum use of mem-
ory. At the same time, the present paper also considers different master-algorithms.
Indeed, the latter are responsible for orchestrating of the co-simulation, and their im-
plementations may have significant impact on the scalability results. In the scope of this
article, Dymola and DACCOSIM environments will be compared. Dymola, because it
is a widely used Modelica environment and DACCOSIM, because it allows more ad-
vanced implementations, such as clustering, adaptive communication steps and parallel
computing.

This article is structured as follows: Methodology and tools are presented in section 2,
along with a description of models, scenarios and adaptations for co-simulation purposes.
Section 3 presents the comparative results in terms of accuracy and scalability. Finally,
overview and conclusion are developed in section 4.

2. Methodology and models

As a first assumption, we limit our study to an electrical low-voltage distribution grid
and a variable number of detailed buildings. Our main results may be extended to other
DES technologies in future work, such as district heating systems. Both the integrated
simulation and the co-simulation approach are implemented using the same models such
that any differences can only be input to the integration scheme. These core models
are first described in section 2.2. Then, some adaptations on the models are presented
in section 2.3 for co-simulation purposes, such as decomposition and boundary condi-
tion integration. After that, various scenarios are proposed to build the comparison and
co-simulation assessment. The accuracy of each case is estimated using classical error
indicators for current, voltage and room temperature profiles. Key performances indica-
tors related to the computation time are also defined, and finally, scalability is estimated
based on the speed-up and its evolution with respect to the number of buildings.

2.1. Tools

All models and their components are implemented using Modelica language and the
IDEAS library v1.0.0. They are compiled and exported as FMU using Dymola 2017
(64bits) coupled with the Visual Studio VC++ express compiler. All simulations are
done within Dymola while co-simulation is handled either by Dymola or by DACOSSIM.
Compilation and simulation were run on a laptop composed of a dual-core i7-6600U CPU
2.8 GHz and 8 GB of RAM, operated by Windows 7 Pro. 64 bits.
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2.1.1. Modelica tools

IDEAS is a free open-source library with models for buildings, district energy systems
and control (Baetens et al. 2015). It allows a complete integration of dynamic simulation
at both building and district level. Since v1.0.0, the IDEAS library fully integrates
the Annex60 library which has been developed within the Annex 60, project? of the
International Energy Agency’s Energy in Buildings and Communities Program (Wetter
et al. 2015; Saelens, Wetter, and van Treeck 2017). The latter project is to be continued
as the IBPSA Project 13.

2.1.2.  Functional Mock-up Interface and Master Algorithm

As stated in the introduction, the FMI is a general and independent specification for co-
simulation and model exchange. It has become a state-of-the-art standard for dynamic
model export and is available in numerous modeling environments. In practice, the
Functional Mock-up Unit (FMU) includes as a set of C-functions composing the model,
and an XML file defining internal variables, inputs, outputs and their dependencies.
Sub-components are first exported as FMUs, and act like black-box models. These
can be instantiated, combined, interconnected and co-simulated within a compatible
environment as illustrated in fig. 1(c).

In order to take into account the co-simulation implementation in the assessment, two
different co-simulation environments will be used. First, Dymola which uses a fixed step
master-algorithm (MA), and secondly DACCOSIM 2017 (Galtier et al. 2015), which
allows more advanced implementation such as adaptive communication step and parallel
computing. Simulation scenarios and MA settings will be detailed in section 2.4.

2.2. Building and feeder modeling

A detailed district model using a variable number of buildings connected to an electrical
feeder has been implemented. This feeder represents the reference case for simulation
result comparisons. Figure 2 gives a schematic representation of the described DES
model: an ideal medium voltage source is connected to a 400 kVA transformer, feeding
a three-phase grid. Buildings are alternatively connected one after the other to differ-
ent electrical phases. A schematic representation of the multi-zone building models is
given in fig. 2, involving thermal envelope, ventilation, occupancy behavior and heating
system. The FMI adaptation block that allows the FMU exportation of the component
for co-simulation will be detailed in section 2.3.1. For each building, we consider 3 ther-
mal zones that correspond to the ground, first and second floor, and an ideal individual
heat-pump (HP) with a fixed coefficient of performance (COP). The main building char-
acteristics are summarized in table 1. For more details, one can freely access the model
in IDEAS (2017). The building structure and heating system are assumed to be identi-
cal for all buildings in this study. However, to simulate load variability, heterogeneous
occupancy profiles describing temperature set points, electrical and hot-water demands
are used, which are derived from a stochastic model (Baetens and Saelens 2016). The
electrical grid model is also available in IDEAS (IDEAS 2017) and was developed in
Verbruggen et al. (2011); Baetens (2015). The cable section stays fixed regardless of the
amount of buildings. More characteristics are available in table 1(b).

2http://www.iea-annex60.org/
Shttps://ibpsa.github.io/projecti/
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Figure 2. Representation of the district energy system model.

Table 1. Characteristic of the considered District Energy System.

(a) Building (b) Grid
description value  unit description value  unit
Number of zones 3 - Cable Resistance 0.461 mQ.m=!
Inner surface 771 m? Cable Reactance 0.0723 mQ.m~!
Windows to wall ratio 0.15 - Cable Section 70 mm?
Glazing U-value 1.0 W/(m?.K) Cable Nominal current 125 A
Glazing g-value 0.598 — Transformer Nominal 100 kVA
Wall U-value 0.30 W/(m?K) Power
HP nominal power 15 kW
copP 3.0 -

2.3. Adaptation for co-simulation

2.3.1. Decomposition

Co-simulation of the DES is based on an a priori decomposition of the system which
allows simulators to be executed while exchanging data for a coherent integration. This
decomposition can have a significant impact on the performance of the integration, and
it attempts to achieve the following:

e privilege the exchange of slow quantities to maximize the communication time
step,

e adapt specific solvers to sub-components in order to improve and speed-up each
integration,

e break algebraic loops to make sub-models simpler to solve, and

e create equivalent-size sub-systems to optimize the CPU usage in case of parallel
or cluster computing.

Consequently, a large amount of possible combinations for decomposition exists. To
our knowledge, there is no method or tools to optimize such problem. Additionally,
it depends on the case and relies on the number of states, the incidence matrix and
the hardware architecture of the computer or the computer cluster that will run the
co-simulation. However, the use of Modelica language usually makes the decomposi-
tion straightforward, since it is a component-oriented modeling language that explicitly
declares decomposition, inputs, outputs and ports of each sub-component. Moreover,
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DES typically consist of many similar components that are repeated and linked to each
other. As a consequence, one could consider creating communications between clusters
of buildings, individual buildings or, deeper, between each heating system, thermal en-
velope, and the grid. As a starting point, the grid and each building were treated as
separate FMUs as illustrated in fig. 1(c). The interest is twofold: first, it breaks the
algebraic loop that may occur between the current and the voltage in the electrical
connection and secondly, it creates equivalent size sub-systems since all buildings are
similar. Other finer decomposition schemes, for instance, between the thermal struc-
ture, the HVAC of each building and the grid, could be considered in future work. The
benefit of such a decomposition would be to decouple the rather slow thermal response
of the building envelope and the heating system, which might involve fast dynamics or
numerous events.

FMI specifications do not support all the Modelica interfaces, especially flow /effort
connectors, such as electrical, fluid or heat ports. As a result, some modifications are
needed to comply to the standards concerning inputs and outputs of sub-components.
This can be achieved by adding adaptation blocks that translate flow /effort to classical
block connectors. An example for the electrical connector is proposed in code 1, where
the connector Modelica.Electrical.QuasiStationary.SinglePhase.Interfaces.PositivePin is con-
verted to tree connectors using the Modelica standard library: Modelica.ComplexBlocks.|
nterfaces.ComplexOutput, Modelica.ComplexBlocks.Interfaces.Complexinput and Modelica.
Blocks.Interfaces.Reallnput. Note that this adapter imposes causality in order to comply
with the FMI specification: the current is imposed as an output whereas frequency and
voltage are inputs. It is a flow source and can be adapted to the building outputs for
instance (c.f. fig. 2). An analogue block was also developed for the network with an
opposite causality, 7.e. imposing frequency and voltage and getting current as input.

connector Outlet "Complex connector for quasi—stationnary electrical model"
output Modelica.Slunits.ComplexVoltage v;

input Modelica.Slunits.ComplexCurrent i;

input Modelica.Blocks.Interfaces.Reallnput freq;

model Pin2FMI "adapts PositivePin to real and complex outputs for FMU export"
Inlet inlet;

Modelica.Electrical.QuasiStationary.SinglePhase.Interfaces.PositivePin positivePin;
equation

outlet.v = positivePin.v;

outlet.i = positivePin.i;

end Pin2FMI_current;

Code 1: Modelica model of electrical adapter for FMU export. Exposing the current as
complex output and frequency and voltage to real input and complex input respectively.

2.8.2.  Handling boundary conditions

Concerning external resources, weather data should be delegated to a single FMU
because of inconsistency risks. Whereas, occupancy, hot water demand, and all the
building-related data could be implemented in the FMU of the associated house. In-
deed, those data usually come from stochastic modeling (Baetens and Saelens 2016)
and logically differ from one building to another. Three possibilities are available:

(1) create one FMU data-reader for all the buildings,
(2) create an FMU data-reader for each building,
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(3) embed data reading into each building’s FMU.

The first solution is straightforward, but artificially creates dependencies between
buildings where there is no need to. As a result, it introduces numerous communica-
tions that will affect computation time. Both the first and second options are partially
incompatible with the boundary condition management of the IDEAS library, where
boundary conditions are propagated inside each subcomponent using inner and outer
models. Moreover, its introduce additional FMU, and concurrent computations (Vialle
et al. 2017) with a severe complexity difference (reading values in a file vs. solving large
scale ODE). Thus, those solutions would have introduced some structural modifications
and would have produced a significant overhead.

Consequently, the third option was chosen, namely embedding data reading in each
sub-component. The solution we developed automatically changes the resource path of
each individual data reader during the instantiation of the FMU, by casting an integer
parameter to the path’s string. Code 2 shows an excerpt of the generic building model
named GenBuigrid where the resource path is defined.

model GenBuigrid

[...]

parameter Integer idOcc = 36;

inner StrobelnfoManager strobe(
FilNam_P="P/P_"+String(idOcc)+".txt",

filDir = Modelica.Utilities.Files.fullPathName("C:/Data/Inputs/"));
[...]

Code 2: Handling of the occupant resources in the building model

In this model, the inner instance strobe is a boundary condition manager dedicated
to reading the occupancy profiles. The tunable parameter idOcc refers to the profile
identification key. More information about StROBe (short for ‘Stochastic Residential
Occupant Behaviour’) can be found in Baetens and Saelens (2016). In this particular
example, the resource path points to C:/data/Inputs/P/P_36.tat. This way, the result-
ing FMU is still generic, i.e. we can change the data profile by changing the parameter
idOcc, and the instantiation of the FMU only load one data profile, limiting the memory
usage to the minimum.

2.4. Scenarios

This comparative study involves a detailed district energy system composed of a sin-
gle low voltage distribution feeder supplying a variable number of building, Ny. More
specifically, we consider 6 different cases, by setting NV, € {3,6,9, 12,24, 48}. For each
case, we implemented 6 comparative integration methods called scenarios. Those are
based on 3 simulations and 3 co-simulations described in table 2.

Simulation #1 is the scenario that serves as reference for accuracy, and it represents
the integrated simulation with the smallest integrator error tolerance of 1075.
Simulation #2 consists in a state-of-the-art setup, using a tolerance of 1075, that is
usually encountered in the literature (Protopapadaki and Saelens 2017; Protopapadaki,
Baetens, and Saelens 2015).

Simulation #3 uses a lower tolerance (of 1073) in order to quantify speed-up and
accuracy, and highlight the limits of the trade-off between tolerance and accuracy.
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Table 2. Description of the scenarios.

Simulation Co-simulation

# label logqo(tol.)  dt(s)  solver | log;o(FMItol.) Otcom(s) MA*
- =+ 1 dym-sim-ref -8 60 Cvode - - -
— 2 dym-sim-6 -6 60 Cvode - - -
-« 3 dym-sim-3 -3 60 Cvode - - -
—+ 4 dym-co-f120 -6 120 Cvode -6 120 Fixed
-e- 5 dac-co-f120 -6 120 Cvode -6 120 Fixed
- - 6 dac-co-e60 -6 - Cvode -6 € [60,900]  Euler

* Master-algorithm

Co-simulation #4 uses the MA implemented in Dymola which uses a fixed communi-
cation step. The latter is fixed to 120s, small enough to capture the extrema of voltage
and current quantities. This scenario will allow to assess the speed-up introduced by
the co-simulation (without parallel computing).

Co-simulation #5 has the same setting as the scenario #4 but is implemented in
DACCOSIM, which allows parallel computing. This scenario will allow to assess the
speed-up introduced by parallel computing.

Co-simulation #6 is also implemented within DACCOSIM. The selected MA uses
an adaptive communication time step controlled by one-step methods (Galtier et al.
2015).

With regard to the integration solver, only the Cvode algorithm is considered, both
for the simulation and for the FMU exportation. It is a state-of-the-art variable step size
algorithm for stiff systems. Although it may be interesting to use different integration
algorithms for the sub-components, it is considered out of scope for the comparison in
this paper.

2.5. Key performance indicators

The impact of the co-simulation is evaluated in terms of accuracy. To this end, a set
of state-of-the-art simulation together with co-simulation scenarios has been defined
and the comparison is realized based on root-mean-square error (RMSE), normalized
root-mean-square error (NRMSE) and cross-correlation on three main quantities. These
quantities, 7.e. norm of the current |I|, voltage |V| at the connection point and indoor
temperature at the ground floor, are compared to the results of simulation #1. RMSE,
NRMSE and Cross-correlation are defined in egs. (1) to (3).

LS~ (1) — y(1)? (1)

t
_ RMSE(g,y)

Ymax — Ymin

@*y)(k) =D 9(O)y(t + k) (3)
t=1

RMSE(j,) = | -

NRMSE(j, y)

where § and y are the simulated values of the tested and reference simulation respec-
tively, and ¢ denotes the conjugate of . Note that both sequences must be zero-padded
for cross-correlation computation. ¢ and k are respectively the time and the lag. In the
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following, we normalize the cross-correlation results by the auto-correlation of reference
simulation #1 for k£ = 0, such that :

3. Co-simulation performance

In this paper, we propose a two-step approach of the accuracy and scalability analysis.
First we will dedicate a detailed comparative study to the 3-buildings case, i.e. N = 3 in

section 3.1. Then, scalability experiments will be presented for N € {3,6,9,12, 24,48}
in section 3.2.

3.1. Three grid-connected buildings case

A first numerical experiment is conduced for a small amount of building in order to
quantify the scalability of the co-simulation. To this end, simulation and co-simulation of
three grid-connected buildings where conduced based on scenarios described in table 2.
For computational reasons, the following results consider one week horizon.

%)
=]

10

Current (A)

293

Indoor Temperature (K)

06:00 09:00 12:00 15:00 18:00 21:00

N S e S
time (hh:mm) NENENENEN INENENENEN

Figure 3. Dynamic simulation of the three grid-connected dwellings. On the left side, current, voltage and
operational temperature of the first building are plotted for one day horizon. At the right side, the same
quantities are displayed on a smaller time range (filled in gray on the left plots). - -+ 1 dym-sim-ref , —
2 dym-sim-6 , -« 3 dym-sim-3, 4~ 4 dym-co-f120 , —-e- 5 dac-co-f120, - - 6 dac-co-e60.

As a first result, plots of physical results are displayed on fig. 3 for one day time
horizon. Current and voltage at the connection point, along with the operational tem-
perature of the first floor zone, are displayed for the six simulation settings. To analyze
the results on a closer range, one can refer to the right side plots. The heating sys-
tem controls the inner temperature to follow the reference. The later is defined by the
stochastic occupancy profile derived from StROBE (Baetens and Saelens 2016). In this
case, one can see that the heating system is triggered in the morning and induces a hight
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power demand from 9h20 to 9h45. Differences between scenarios are not straightforward,
mainly because we are focusing on numerical issues. But it is possible to pinpoint some
deviations, principally on the voltage for the co-simulation scenarios (#4, 5 and 6) and
on the low tolerance simulation (#3). These deviations and delays will be analyzed and
quantified in the following.

Table 3. Three grid-connected buildings case - Accuracy of scenarios defined in Table 2, with respect
to the norm of the current, the voltage and indoor temperature at the ground floor for the first building.

[11] [Va| TOp1,1

# label NRMSE* (1) RMSET (A) NRMSE (1) RMSE (V) NRMSE (1) RMSE (°C)
« =+ 1 dym-sim-ref - - - - _ _
— 2 dym-sim-6 7.83x107° 1.81x1073 6.98x107°% 3.47x107° 3.63x107°% 5.88x107°
-4 3 dym-sim-3 3.70x10=2  8.56x10~* 3.18x1072 1.58x1072 1.13x10~* 1.83x10~*!
— 4 dym-co-f120 1.76x10=2  4.08x10~* 5.65x1072 2.81x1072 2.83x1073  4.58x1073
-o- 5 dac-co-f120 1.76x1072  4.08x107 ! 5.65x1072 2.81x1072 2.83x107%  4.59x1073
- - 6 dac-co-e60 1.62x1072  3.76x10" ! 3.60x1072 1.79x1072 5.62x1073 9.12x1073

* Normalized root mean square error defined in eq. (2)
T Root mean square error defined in eq. (1)

Table 3 presents the main comparative results between scenarios in the case of Ny, = 3.
Note that the CPU simulation time does not include compilation, FMU export nor (co)-
initialization elapse time for a fair comparison. In particular, RMSE and NRMSE are
presented for the ground-floor operative temperature of the first building, and the norm
of the current and voltage at that building’s connection. CPU time results are included
in table 4 for both absolute and relative simulation times. In terms of accuracy, one
can see that simulation #2 is highly accurate with respect to the reference, whereas
simulation #3 performs the worst and may not be suitable for DES assessments. It
appears that co-simulations #4 and #5 don’t yield significant differences, because fixed
communication time step master-algorithms are similar in both Dymola and DAC-
COSIM. Finally, co-simulation #6 provides the second most accurate results. In case
of co-simulation scenarios, the lowest accuracy is observed for the voltage.

Table 4. Three grid-connected buildings case - CPU time
and speed-up with respect to the scenarios

CPU time*  Speed-up
# | (min,s) (1)

-1 (40, 39) [ ]

—2 (21,43) I 188
-3 (16,28) I 250
-+ 4 (31,57) [ Y

-5 (21,05) I 196

e 6| (714 S s

*

extrapolated CPU simulation time for one year horizon
(without compilation nor (co-)initialization elapse time).

In the following, the speed-up is defined as the ratio of the reference CPU time
to the CPU time of the examined scenario. In table 4, we observe a small speed-up
when comparing simulation to co-simulation scenarios using few buildings. Even in
this particularly small case, the overhead introduced by the FMU communications are
totally overcome by the co-simulation. From 3 dwellings, time savings are foreseen to
be always positive. The effect of parallel computing can be highlighted comparing co-
simulations #4 and #5. Indeed, we note a speed-up of 1.96/1.27 ~ 1.54 that can be
directly linked to the implementation of the master algorithm in DACCOSIM. In this
case, parallel computing introduces a speed-up of 1.54 (with dual core CPU). At this
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stage, simulation #6 provides a good compromise between accuracy and computation
time with a speed-up of 2.38.

As RMSE and NRSME don’t allow a fair comparison between delayed signals, we
propose a cross-correlation analysis on fig. 4, based on the definition given in eq. (4).
Figures 4(a) to 4(c) display normalized cross-correlation of the current, voltage and
operative temperature with respect to the reference simulation #1 as a function of
displacement k. Peaks of the cross-correlation function with respect to the displacement
denote a high dependence between signals. For k = 0 (zero lag), the normalized cross-
correlation function shows the correlation between the 2 signals. The zoomed inset
region displays this correlation for the results of the different scenarios compared to the
reference. As expected, this value is close to 1, with the larger deviation coming from
simulation #3. On the three physical quantities, one can note peaks at k = 0 for the
simulation scenarios (#2 and #3) and at k = —120 s and k = —60 s for co-simulation
#4, #5 and #6 that denotes a delay. In the detail of fig. 4(b), the delay on the voltage
introduced by the co-simulation master algorithm (MA) can be observed. This is due
to the fixed communication time step that delays the variable exchange. No similar
delay is visible on current or temperature, however. We denote a general delay of 120s
for both scenarios #4 and #5, and about 60s for co-simulation #6, which correspond
to the communication step time. Taking this delay into account, a cross-correlation up
to 0.98 is reached for co-simulations #4-6, whereas the cross-correlation for simulation
#3 is below 0.96. These results put into perspective the RMSE and NRMSE results of
table 3, which don’t take into account the delay introduced by the MA.

Delays on exchanged variables during DES simulations may be problematic for some
situations. Hence, large communication time steps can incur errors, for control or event
handling. Thus, a special attention must be paid for setting an adequate communication
step size.

3.2. Scalability analysis

In the building simulation context, scalability is the capacity of a given simulation
method or model to handle growing complexity. As stated in the literature review, this
aspect is the main bottleneck of DES simulation. In this paper, the scalability analysis
has been led on all scenarios defined in table 2 for a variable amount of grid-connected
buildings, i.e. Ny € {3,6,9,12,24,48}, on a one-week time horizon. Unfortunately, due
to computational limits, results for NV, = 48 are only available for the co-simulation
scenarios #4-6. At the time of the numerical experience, using Dymola 2017 and 8 Go
of RAM, the integrated simulations #1-3 are reaching memory limit for N, = 48. This
is related to the known issues that we already described in the introduction. These
issues may be remedied using more RAM or exploiting the high degree of sparsity of
the jacobian and the hessien matrices to save memory (Casella 2015). But in the scope
of this comparison, this was not addressed.

We first compare accuracy, in terms of RMSE and NRMSE, for all scenarios by means
of box plots on fig. 5. On the x-axis, all scenarios are grouped with respect to the number
of buildings. On the y-axis, using a logarithmic scale, one can see the errors of the main
quantities, i.e. current, voltage and operative temperature. Boxes depict the group of
all simulated buildings through their quartiles.

From fig. 5 it is possible to deduce a coherent trend for errors on voltage, where the
RMSE appears to increase by one order of magnitude as the number of buildings grows
to 24. This is mainly explained by an increasing stress on the grid, leading to greater
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Figure 4. Simulation of 3 grid connected buildings - Cross-correlation of the physical quantities with respect
to the reference simulation for the first building. Insert plots are zooming on small range around zero. - - - 1 dym-
sim-ref , — 2 dym-sim-6 , -« 3 dym-sim-3, =4~ 4 dym-co-f120 , -~ 5 dac-co-f120, - = 6 dac-co-e60.
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Figure 5. Box plot of the Root Mean Square Error (RMSE) and Normalized RMSE (NRMSE) for the main
physical quantities with respect to the reference simulation and grouped by number of buildings.
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variation in the voltage. As such, the NRMSE remains relatively constant because the
range of voltage Viae — Vinin increase as well. For more buildings, if the cable is sized
appropriately to handle the loads, co-simulation is not expected to introduce important
errors. Co-simulation #6 results in higher error than scenarios #2 and #4-5, about 2
order of magnitude for the current and N € {3, 6, 12}, for instance. This is actually
surprising, since it uses a smaller communication time step than co-simulations #4-5.
One could explain this difference by the error that re-sampling introduces, given the
variable communication step size.

The computation time comparison between scenarios with respect to the number
of buildings is shown on fig. 6. In this figure, we plot the computation time and the
speed-up with respect to the reference simulation, where both, z and y axes are in
logarithmic scale. Computational time includes elapsed time during initialization and
integration for both simulation and co-simulation scenarios. For all scenarios, elapsed
time during (co)-initialization is between 1 and 8 s, which represent less than 1% of
the total computational time for two weeks time horizon. The computation time does
not consider compilation. The latter can be significant for integrated scenarios because
the compiler used in Dymola does not exploit repetitive structures. For co-simulation
approach however, the modeler can easily export one generic FMU and instantiate it
several times. This effect can be a significant advantage for co-simulation approach,
when the model involves numerous repetitive structures.

Speed-up calculations are not available for N, = 48, because the reference simulation
couldn’t be carried out, due to memory limitations.

With regard to the integrated simulations, we note a linear increase in simulation
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Figure 6. CPU time and speed-up for one week time horizon

time with respect to Np. For N, = 24, simulations #1-3 are particularly slow, requiring
respectively 3h08, 1h47 and 1h49 for a week-long simulation. Differences in computation
time between these simulations can mainly be attributed to the difference in tolerance.
Speed-up of about 2.0 can be achieved when decreasing the error tolerance for more
than 9 buildings. However, it is not straightforward to explain why the CPU time
becomes similar for simulations #2 and #3. Memory writing and reading may become
predominant in this case, such that it is not possible to spot a significant difference.

Co-simulations #4-6 also display a linear behavior with respect to Ny, but with better
scalability performance. Compared to the reference simulation, the speed-up is linearly
and ranges from 2.22 for N, = 3, to about 90 for N, = 24. Based on those results, one
could extrapolate speed-up for a number of dwellings higher than 24.

Among co-simulations, scenario #6, using parallel computing and adaptive commu-
nication step size, has the best scalability performance. Scenario #5 offers a fairly
constant speed-up around 1.5-2 compared to #4. This speed-up could be attributed to
the DACCOSIM implementation, which uses a parallel computing scheme.

4. Conclusion

This article quantifies the scalability of co-simulation algorithms in the context of dis-
trict energy systems. First, it tackles practical aspects of co-simulation of DES using the
Modelica language and FMI standard. It involves decomposition, adaptation for FMU
components and handling of input data. In particular, we introduce a method to deal
with external data inputs using casting to generate heterogeneous occupancy data and
save memory during the FMU instantiation.

Secondly, to analyze the possibilities that co-simulation offers, a comparative study
involving 3 to 48 grid-connected buildings, heterogeneous input data, different master-
algorithms and two co-simulation environments has been performed. This comparison
not only determines the reduction in CPU time, but also evaluates the accuracy for the
main outputs. Co-simulation shows a better scalability compared to simulations for 3 to
48 buildings and the computation time seems proportional to the amount of buildings.
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Moreover, we note a significant time saving using parallel computing: CPU usage is
divided by a factor of about 2.0 using dual-core CPU. It cannot be directly attributed
to the co-simulation method itself, but could be considered as a positive side effect,
since co-simulation facilitates the implementation of parallel computing. This study
also highlights the advantages of the adaptive communication step size algorithm im-
plemented in DACCOSIM, which shows good scalability results while ensuring good
accuracy. Globally, we note a higher performance of the DACCOSIM master algorithm
than the Dymola 2017 implementation. At the same time, co-simulations maintain a
good level of accuracy for the main quantities of interest, namely current, voltage and in-
door temperature. Nevertheless, attention should be paid to the small delay introduced
by co-simulation algorithms, which might influence control.

Within the limits of the studied case in this paper, co-simulation has proven to
significantly mitigate scalability issues of district energy systems, reaching a speed-up
of 90 for a 24-dwellings district. Moreover, the speed-up is quickly increasing with the
number of dwellings which indicates good performance can be expected also for larger
DES.

Co-simulation for DES offers many future work opportunities. In terms of methodol-
ogy, parallel computing and superFMU — an FMU containing inner co-simulation and
parallel computing schemes — seem promising in terms of CPU usage and interoperabil-
ity. Moreover, deeper studies on the impact of decomposition are required, especially
on the building level where different dynamics and controls are involved. Finally, a
wider spectrum of test cases would give more insight into scalability of realistic DES
co-simulation. For instance, cases with heterogeneous building structures and systems
could be considered.
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