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Biomechanical loading during running: can a two mass-spring-damper 1 

model be used to evaluate ground reaction forces for high-intensity 2 

tasks? 3 

Abstract: Running impact forces expose the body to biomechanical loads leading 4 

to beneficial adaptations, but also risk of injury. High-intensity running tasks 5 

especially, are deemed highly demanding for the musculoskeletal system, but 6 

loads experienced during these actions are not well understood. To eventually 7 

predict GRF and understand the biomechanical loads experienced during such 8 

activities in greater detail, this study aimed to 1) examine the feasibility of using 9 

a simple two mass-spring-damper model, based on eight model parameters, to 10 

reproduce ground reaction forces (GRFs) for high-intensity running tasks and 2) 11 

verify whether the required model parameters were physically meaningful. This 12 

model was used to reproduce GRFs for rapid accelerations and decelerations, 13 

constant speed running and maximal sprints. GRF profiles and impulses could be 14 

reproduced with low to very low errors across tasks, but subtler loading 15 

characteristics (impact peaks, loading rate) were modelled less accurately. 16 

Moreover, required model parameters varied strongly between trials and had 17 

minimal physical meaning. These results show that although a two mass-spring-18 

damper model can be used to reproduce overall GRFs for high-intensity running 19 

tasks, the application of this simple model for predicting GRFs in the field and/or 20 

understanding the biomechanical demands of training in greater detail is likely 21 

limited. 22 

Keywords: GRF modelling, Model parameter optimisation, Training load 23 

monitoring, Whole-body loading, Biomechanical demands  24 
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Introduction 26 

In running-based sports, the different structures of the body are repetitively 27 

exposed to biomechanical loads. These loads can lead to beneficial adaptations on the 28 

one hand (Couppe et al., 2008; Timmins, Shield, Williams, Lorenzen, & Opar, 2016), 29 

but also risk of injuries (Gabbett & Ullah, 2012). High-intensity running tasks 30 

especially (e.g. accelerating, decelerating, sprinting) (Akenhead, French, Thompson, & 31 

Hayes, 2014; Vigh-Larsen, Dalgas, & Andersen, 2018), are deemed highly demanding 32 

for the musculoskeletal system, but the biomechanical loads experienced during these 33 

actions are not well understood (Vanrenterghem, Nedergaard, Robinson, & Drust, 34 

2017). Therefore, measuring and monitoring the ground reaction forces (GRFs) for 35 

these movements in non-laboratory settings would allow for a more detailed 36 

understanding of the biomechanical demands of training. 37 

GRFs resulting from collisions with the ground during running are absorbed and 38 

returned by the body in a spring-like manner. Therefore, simple mass-spring models 39 

(single point mass attached to a spring) have been used to investigate various GRF 40 

characteristics (e.g. Blickhan, 1989; Dutto and Smith, 2002; Morin et al., 2005). The 41 

sinusoidal GRF profiles predicted by this model do however not accurately represent 42 

the typical double-peak GRF profiles of running (Alexander, Bennett, & Ker, 1986; 43 

Bullimore & Burn, 2007). These characteristic force peaks can substantially deviate 44 

between various tasks and are thus essential for examining the specific whole-body 45 

loads experienced during different running tasks. Based on the distinct contributions of  46 

the lower limb and upper body segments to the GRF during running (Bobbert, 47 

Schamhardt, & Nigg, 1991; Clark, Ryan, & Weyand, 2017), a two mass-spring-damper 48 

model can be used to describe the distinct impact and active peaks during simple elastic 49 

movements, i.e. steady running (Alexander et al., 1986; Derrick, Caldwell, & Hamill, 50 

2000). However, the ability of this model (which is based on eight parameters that 51 



describe simple mechanical characteristics of the body) to reproduce GRF profiles for 52 

high-intensity running tasks is yet completely unknown.  53 

If a simple two mass-spring-damper model can reproduce GRFs for non-elastic high-54 

intensity tasks, while retaining physically meaningful model parameters, this might 55 

eventually be used to predict GRF in the field and understand the biomechanical 56 

demands of such activities in greater detail. Therefore, this study aimed to use a two 57 

mass-spring-damper model to reproduce GRF profiles for activities that are frequently 58 

performed during running-based sports. It was hypothesised that 1) this model could 59 

accurately replicate measured GRF and loading characteristics for high-intensity 60 

running tasks, and 2) that its model parameters could be used to evaluate the 61 

biomechanical demands of these activities. 62 

Methods 63 

Fifteen healthy and physically active team-sports athletes participated in this 64 

study. Participants provided informed consent according to Liverpool John Moores 65 

University ethics regulations. After a warm-up, participants performed rapid 66 

accelerations from standstill to sprinting, decelerations from sprinting to standstill, and 67 

running trials at constant speeds from 2 m/s to maximal sprinting speed (~6-9 m/s, 68 

individual specific), with 1 m/s stepwise increases. For each trial, GRF data were 69 

collected at 3000 Hz with a force platform (9287B, Kistler Holding AG, Winterthur, 70 

Switzerland), filtered using a 50 Hz second-order Butterworth low-pass filter and 71 

normalised to body mass. To evaluate the total magnitude of load experienced during 72 

the different running tasks, resultant GRFs (overall whole-body loading) were 73 

calculated from the three force components and used for this investigation.  74 

A two mass-spring-damper model described by eight natural model parameters (Figure 75 



1) was used to reproduce measured GRFs (Alexander et al., 1986; Derrick et al., 2000). 76 

The model consisted of a lower mass m2 on a spring and damper, representing the 77 

support leg, with an upper mass m1 on a spring on top, representing the rest of the body. 78 

The positions of the upper and lower mass without any external load was described by 79 

x1 and x2, while l1 and l2 were the natural lengths of the upper and lower springs 80 

respectively. The linear spring stiffness constants for the upper and lower spring were 81 

defined as k1 and k2, while c was the damper’s damping coefficient. From these nine 82 

parameters the eight natural parameters were derived according to Equations 1-8 (Table 83 

1), with BM being the total body mass. The model’s motion was described by the 84 

accelerations of its upper and lower mass (Table 1, Equation 9 and 10), in which a1,2, 85 

v1,2 and p1,2 were the upper and lower mass accelerations, velocities and positions 86 

respectively, λ the upper mass ratio relative to the lower mass, ω1 and ω2 the natural 87 

frequencies of the upper and lower spring, ζ the damper’s damping ratio, and g the 88 

gravitational acceleration (-9.81 m/s2). For each trial, a unique parameter set to fit 89 

modelled GRFs to measured GRFs was determined by solving Equations 9 and 10 90 

(Table 1). The equations were solved with a purpose-written Python optimisation script, 91 

which included the L-BFGS-B numerical optimisation algorithm (Python, 2017; SciPy, 92 

2017). Starting conditions for the optimisation were as described in Appendix A and 93 

parameters following from the optimisation process were used to calculate modelled 94 

GRFs (Table 1, Equation 11). Optimal model parameter combinations were determined 95 

by minimising the sum of the root mean square error (RMSE) of the GRF and its 96 

gradient, between modelled and measured GRF curves.  97 

Modelled GRF accuracy was evaluated by RMSE and errors of relevant GRF loading 98 

characteristics impulse (area under the GRF curve), impact peak (force peak during the 99 

first 30% of stance) and loading rate (average GRF gradient from touch-down to impact 100 



peak). Error metrics were averaged across trials and participants for each task, i.e. 101 

accelerations, decelerations, and running at constant low (2-3 m/s), moderate (4-5 m/s) 102 

and high (>6 m/s) speeds. RMSE was rated very low (<1 N/kg), low (1-2 N/kg), 103 

moderate (2-3 N/kg), high (3-4 N/kg) or very high (>4 N/kg). GRF loading 104 

characteristic errors were rated very low (<5%), low (5-10%), moderate (10-15%), high 105 

(15-20%) or very high (>20%). Furthermore, correlation analyses were performed 106 

between modelled and measured impulses, impact peaks and loading rates, and rated as 107 

very weak (R2<0.1), weak (R2=0.1-0.3), moderate (R2=0.3-0.5), strong (R2=0.5-0.7), 108 

very strong (R2=0.7-0.9) or extremely strong (R2=0.9-1) (Hopkins, Marshall, 109 

Batterham, & Hanin, 2009). 110 

Results 111 

GRF profiles were reproduced with high accuracy across tasks (Figure 2; Table 112 

2). RMSE was very low for accelerations, as well as low- and moderate-speed running, 113 

but increased for high-speed running and especially decelerations. Furthermore, 114 

impulses were modelled with very high accuracy (errors <1%). Consequently, the 115 

correlation between measured and modelled impulses was extremely strong (p<0.001) 116 

across tasks (Figure 3A) while errors were independent of task and magnitude (Figure 117 

3B and C). 118 

Since not all trials contained a distinct measured impact peak (e.g. accelerations (Figure 119 

2A) or forefoot-strike sprints (Figure 2G)) and for several trials the impact peak could 120 

not be modelled (Figure 2B, F and H), only a select number of trials were included in 121 

the impact peak and loading rate analysis (Table 2). Impact peaks were modelled with 122 

low to moderate errors for constant speed running, but high to very high for 123 

accelerations and decelerations. Similarly, modelled loading rate errors were high to 124 



very high across tasks. Nevertheless, modelled and measured impact peaks and loading 125 

rates had an extremely strong correlation across tasks (Figure 3D and G). Absolute 126 

errors significantly (p<0.001) increased for higher impact peaks and loading rates 127 

(Figure 3E and H), but relative errors remained constant independent of task and 128 

magnitude (Figure 3F and I).  129 

Despite the accurately reproduced GRF curves, all model parameters varied strongly 130 

between and within tasks (Figure 4; Table 3). Especially motion (p1, p2, v1, v2) and mass 131 

(λ) related parameters were highly variable for decelerations, while ω1 and ω2 strongly 132 

varied for all tasks. Although ζ varied less between tasks, within task variability was 133 

large. 134 

Discussion and Implications 135 

The purpose of this study was to investigate whether a simple two mass-spring-136 

damper model can reproduce GRFs for high-intensity running tasks, while retaining 137 

physically meaningful parameters. Across tasks, GRF curves could be reproduced with 138 

low to moderate curve errors. The slightly higher errors observed in decelerations were 139 

likely due to the distinct GRF profiles. The model typically underestimated the high 140 

impact peaks and loading rates but overestimated the much lower second (active) peak 141 

(Figure 2C and D). Previous studies also reported increased modelled curve errors in 142 

tasks (Nedergaard, 2017) and individuals (Derrick et al., 2000) with considerably higher 143 

impact peaks. Nedergaard (2017) suggested higher curve errors to be due to lower 144 

spring stiffnesses, which reduces the magnitude of the impact peak (Derrick et al., 2000; 145 

Nedergaard, 2017). Moreover, Derrick et al. (2000) showed that to increase the impact 146 

peak, higher values are required for spring stiffnesses ω1 and ω2, upper mass velocity v1 147 

and mass ratio λ, together with a reduced damping ratio ζ. In this study, mean v1 and λ 148 



values were indeed substantially higher for decelerations compared to other tasks, but 149 

ω1, ω2 and ζ were in a similar range as other tasks (Figure 4; Table 3). For GRF profiles 150 

with high impact peaks, the model likely needs to adjust as many parameters as possible 151 

to reproduce this first peak, while maintaining an accurate representation of the rest of 152 

the curve characteristics (e.g. active peak, stance time).  153 

Impulses were modelled with very high accuracy (≈0.01 Ns/kg) and had a perfect 154 

correlation (R2=1) with measured impulses. These results are in accordance with errors 155 

(≈0.01 Ns/kg) and correlations (R2=0.98-1) found by Nedergaard (2017), but much 156 

lower than Derrick et al. (2000) who reported impulse errors of 5.5-8.5 Ns (≈0.08-0.12 157 

Ns/kg). Since the latter study only optimised ω1, ω2 and p2, the better results in the 158 

present study are likely the result of including all model parameters in the optimisation 159 

process. Therefore, the two mass-spring-damper model can give very good estimates of 160 

overall loading across tasks.  161 

In contrast to overall loads, subtle loading characteristics (impact peak and loading rate) 162 

were modelled less accurately. The initial force peak due to the lower limb colliding 163 

with the ground (Clark et al., 2017), is typically followed by a slight decrease in GRF 164 

before gradually increasing to the active peak caused by the upper body (Bobbert et al., 165 

1991). For accelerations and steady running this force decrease is small and forms a 166 

minor part of the whole GRF profile. Since curve gradients and RMSEs were used as 167 

model parameter optimisation criteria, a continuously rising curve from touch-down to 168 

mid-stance (thus ignoring the impact peak) affected these criteria minimally. This 169 

explains that for 99% of the decelerations, in which the impact peak dominates the GRF 170 

profile, impact peaks were visible in the modelled curves, compared to only 34-48% for 171 

accelerations and steady running. Moreover, impact peaks (and loading rates) were 172 

typically underestimated with errors increasing for higher impact peaks. In general, 173 



differences between measured impact and active peaks increased for higher impact 174 

peaks (compare for example Figures 2C and D). Most model parameters affecting the 175 

impact peak influence the active peak simultaneously (Derrick et al., 2000). Therefore, 176 

the model likely underestimated the higher impact peaks more, to limit the 177 

overestimation of the second peak.  178 

Despite the higher errors, correlations between measured and modelled impact peaks 179 

and loading rates were extremely strong (R2=0.96-0.97) (Figure 3D and G). These 180 

correlations are stronger than Udofa et al. (2016), who used a two mass model to 181 

reproduce GRFs found correlations of R2=0.82 between measured and modelled impact 182 

peaks, across different running speeds (3-6 m/s) and loading conditions. The strong 183 

linear relationships observed in this study (Figure 3A, D and G) might be used to adjust 184 

modelled impact peaks and loading rates to get more accurate estimates of these loading 185 

characteristics.    186 

A limitation of the two mass-spring-damper model is the assumption of spring-like 187 

(elastic) behaviour, meaning a constant spring stiffness during stance. Moreover, the 188 

model’s damper absorbs energy while energy producing elements are not included. The 189 

leg is however known to be stiffer during landing than take-off (Blickhan, 1989), while 190 

the muscle-tendon units produce more work during the push-off phase (Cavagna, 2006). 191 

Although the high-intensity tasks investigated in this study seriously violated these 192 

model assumptions, reproduced GRF profiles were fairly accurate. The model likely 193 

overcompensates for the absence of active elements by substantially increasing its 194 

stiffness (i.e. higher ω1 and ω2), in accordance with reduced energy requirements for 195 

higher leg stiffness (Dutto & Smith, 2002; McMahon & Cheng, 1990). This might 196 

explain why higher stiffness was observed for accelerations and high-speed running, 197 

where the muscles need to produce more energy, compared to decelerations, where 198 



energy is primarily absorbed (Figure 4; Table 3). Due to the strong variability within 199 

tasks however, parameters should be interpreted with caution.  200 

Another limitation of this study is the complexity of model parameter combinations. As 201 

described above, different parameters represent multiple physical aspects (e.g. leg 202 

stiffness) and affect various GRF characteristics (e.g. impact peak, stance time) at the 203 

same time (Derrick et al., 2000). During the optimisation process, numerical solvers 204 

searched for optimal modelled GRF solutions in the highly complex eight-dimensional 205 

parameter space. Therefore, numerous similarly good solutions might be found for 206 

comparable GRF curves, leading to the high parameter variability and physically 207 

unrealistic parameter values observed across trials (Table 3). For example, many 208 

modelled GRF solutions were found to have λ values larger than 20, meaning that for 209 

those trials the lower mass (support leg) was negligible relative to the rest of the body. 210 

Model parameters found in this study therefore have little physical meaning, limiting 211 

the biomechanical interpretability of the model. Moreover, an exploration during which 212 

the parameter search spaces were restricted to physically meaningful values did not lead 213 

to more consistency in parameter values within or between tasks, while the accuracy of 214 

modelled GRF profiles was reduced (Appendix B).     215 

A possible explanation for the limited model parameter interpretability described above, 216 

is the choice to reproduce a three-dimensional (resultant) GRF with a one-dimensional 217 

model. The authors chose to reproduce the total force magnitude to allow for 218 

investigating the overall whole-body load experienced during the different running 219 

tasks. Consequently, horizontal segmental movements leading to the horizontal forces 220 

included in the resultant GRF, had to be accounted for by the vertical motion in the 221 

model. Since vertical motion was described by the eight model parameters, this might 222 

have contributed to the inconsistent parameter values observed and the lack of physical 223 



meaning. Horizontal movements and forces are, however, relatively small compared to 224 

the vertical components, and are thus unlikely to have considerably affected the results 225 

in this study. Moreover, exploratory work revealed that using the vertical component of 226 

GRF only, did not noticeably improve the reproduced GRF profiles or enhance the 227 

interpretability of the model parameters. 228 

In this study, GRFs were reproduced by adjusting model parameters to fit measured 229 

GRFs. However, in applied sport settings (e.g. football pitch, running track, etc.), 230 

measured GRF is not available and other methods are required to estimate model 231 

parameters and predict GRF. Since the two mass-spring-damper model’s motion is 232 

described by the acceleration of its masses, currently popular body-worn accelerometers 233 

(Akenhead & Nassis, 2016; Cardinale & Varley, 2017) might be used to estimate the 234 

parameters and predict GRFs in the field. However, the large variability and minimal 235 

physical meaning of the model parameter values likely limit the usefulness of this 236 

approach. 237 

Conclusion 238 

This study aimed to use a two mass-spring-damper model to reproduce GRF 239 

profiles for activities that are frequently performed during running-based sports. As 240 

hypothesised, the model could be used to reproduce overall GRF profiles for high-241 

intensity running tasks. However, the required model parameters varied strongly 242 

between trials and had minimal physical meaning, rejecting our second hypothesis. 243 

Therefore, the application of this specific two mass-spring-damper model for predicting 244 

GRFs in the field and/or understanding the mechanical aspects of the running tasks 245 

investigated in greater detail is likely limited.  246 
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Appendix A 321 

The model parameter optimisation process for accurately reproducing ground 322 

reaction forces (GRFs) described in this study, requires the definition of starting 323 

conditions for the different parameters. Therefore, a pilot analysis was performed with 324 

the model parameters as defined by Derrick et al. (2000), who used the two mass-325 

spring-damper model for constant speed running at 3.83 m/s (± 5%) (Table A1). To 326 

verify if these parameters were appropriate as starting conditions for reproducing the 327 

GRF profiles for the high-intensity tasks investigated in this study, GRF data for these 328 

tasks were modelled for four randomly selected participants. The parameter values 329 

reported by Derrick et al. (2000) were used as initial starting conditions for the 330 

parameters. After this optimisation process, the resulting median model parameters 331 

(Table A1) from this analysis were then used as starting conditions for the whole data 332 

set. 333 

  334 



Appendix B 335 

The two mass-spring-damper model parameters found in this study varied 336 

strongly within and between tasks and had little physical meaning, limiting the model’s 337 

interpretability. However, due to the highly complex eight-dimensional parameter 338 

space, several parameter combinations might result in similarly accurate modelled 339 

ground reaction force (GRF) solutions. If the model can accurately replicate GRF 340 

profiles across tasks within a range of values that are more physically meaningful, this 341 

may improve the interpretability of the model parameters. Therefore, GRF profiles were 342 

reproduced with the two mass-spring-damper model within a predefined range of model 343 

parameter values. The model’s mass ratio λ was fixed at a value of 3 au (i.e. lower mass 344 

~25% of the total body mass), which was estimated from previously described 345 

segmental properties of the foot, shank, thigh and pelvis (Dempster, 1955). In addition, 346 

the remaining parameter search windows were limited to a range of values that was 347 

deemed theoretically reasonable and physically meaningful (note: p2 was calculated 348 

from v2). 349 

- p1  = -0.4 – 0.1 m 350 

- v1  = -3 – 1 m/s 351 

- v2  = -0.5 – 2 m/s 352 

- ω1  = 0 – 50 N/m/kg 353 

- ω2  = 0 – 174 N/m/kg 354 

- λ  = 3 au 355 

- ζ  = 0.1 – 1.5 au 356 

Root mean square errors (RMSE) of the reproduced GRF profiles from a limited range 357 

of parameter values increased for accelerations (+106%), decelerations (+6%) and 358 

running at constant low (+29%), moderate (+10%) and high (+20%) speeds, compared 359 



to using free parameters search windows. Moreover, the model parameters required to 360 

reproduce the measured GRF profiles strongly varied within the defined parameter 361 

boundaries (Figure B1). There was no consistency of parameters values within or 362 

between any of the parameters or tasks. Moreover, many trials required parameter 363 

values equal to the set upper or lower limit of different parameters, indicating the need 364 

for higher or lower values than physically reasonable. Therefore, it was concluded that 365 

the two mass-spring-damper model cannot be used to replicate GRF profiles with high 366 

accuracy across a range of running tasks, using physically meaningful model 367 

parameters.  368 



Tables 369 

Table 1 Equations describing the eight natural parameters of the two mass-spring-

damper model 

Initial position of the upper mass p1 =  x1 – l1 –  l2 Equation 1 

Initial position of the lower mass p2 =  x2 – l2 Equation 2 

Initial velocity of the upper mass v1 = p1̇ Equation 3 

Initial velocity of the lower mass v2  =  p2̇ Equation 4 

Mass ratio λ =
m1

m2

 Equation 5 

Natural frequency of the upper 

spring 
ω1 = √

k1

m1

= √
(1 + λ) ∙ k1

λ ∙ BM
 Equation 6 

Natural frequency of the lower 

spring 
ω2 = √

k2

m2

= √
(1 + λ) ∙ k2

BM
 Equation 7 

Damping ratio of the damper ζ =
c

2 ∙ √k2 ∙ m2

 Equation 8 

Acceleration of the upper mass a1 = −ω1
2 ∙ (p1 − p2) + g Equation 9 

Acceleration of the lower mass 

a2 = −ω2
2 ∙ p2 + ω1

2 ∙ λ ∙ (p1 − p2) − 

2 ∙ ζ ∙ ω2 ∙ v2 + g 

Equation 10 

Ground reaction force GRF = −
BM ∙ ω2

1 + λ
∙ (ω2 ∙ p2 + 2 ∙ ζ ∙ v2) Equation 11 

  370 



Table 2 Modelled ground reaction force curve and loading characteristics errors 

 RMSE Impulse error 
Impact peak 

error 
Loading rate error 

 N/kg % Ns/kg % N/kg % N/kg/s % 

Accelerations (n=189) 
0.69 

±0.47 

9.9 

±6.4 

0.01 

±0.01 

0.6 

±0.5 

2.43 

±1.49 

18.9 

±11.7 

487 

±342 

31.3 

±19.9 

Decelerations (n=240) 
2.48 

±1.17 

33.9 

±28.3 

0.01 

±0.01 

0.7 

±0.5 

7.43 

±4 

20.6 

±13.7 

431 

±276 

18.7 

±9.4 

Constant speed running         

     Low (2-3 m/s; n=126) 
0.48 

±0.22 

7.6 

±5.8 

0.01 

±0 

0.4 

±0.3 

1.53 

±1.25 

10.2 

±8.5 

200 

±116 

19.1 

±9.8 

     Moderate (4-5 m/s; n=126) 
0.78 

±0.25 

9.4 

±3.9 

0.01 

±0 

0.3 

±0.2 

1.54 

±0.86 

7.5 

±4.2 

254 

±101 

20.8 

±6.9 

     High (>6 m/s; n=176) 
1.21 

±0.56 

13.6 

±7.1 

0.01 

±0 

0.3 

±0.2 

2.99 

±1.74 

12 

±8.1 

287 

±156 

18.4 

±9.7 

All tasks (n=857) 
1.28 

±1.06 

17 

±19.1 

0.01 

±0.01 

0.5 

±0.4 

5.74 

±3.85 

17.4 

±12.2 

385 

±247 

20.3 

±10.7 

Mean ± standard deviations for root mean square errors (RMSE), impulse, impact peak and loading rate errors 

of the modelled GRF profiles for different tasks. Values are either absolute or relative errors compared to the 

measured GRF. Impact peak and loading rate (grey shaded) was modelled for 34%, 99% and 48% of the 

acceleration, deceleration and constant speed running trials respectively. 
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Table 3 Mean ± standard deviation values for the eight model parameters for the different 

tasks 

 
p1  

(m) 

p2  

(m) 

v1  

(m/s) 

v2  

(m/s) 

ω1  

(N/m/kg) 

ω2  

(N/m/kg) 

λ  

(au) 

ζ  

(au) 

Accelerations 
0.09 -0.7 16.5 0.37 32 102 0.4 0.9 

±8.19 ±5.47 ±146.03 ±5.03 ±27 ±155 ±2.29 ±3.9 

Decelerations 
-12.97 -0.33 80.98 45.87 24 114 161.4 0.4 

±26.35 ±1.18 ±184.71 ±132.34 ±32 ±91 ±474.73 ±0.5 

Constant speed running         

     Low (2-3 m/s) 
0.63 0.07 -2.89 -0.12 31 72 5.87 0.9 

±3.14 ±1.22 ±56.17 ±1.22 ±28 ±78 ±5.9 ±2.4 

     Moderate (4-5 m/s) 
0.91 0.09 12.67 -0.2 37 101 4.16 0.6 

±5.2 ±0.8 ±137 ±1.13 ±35 ±106 ±6.34 ±1.1 

     High (>6 m/s) 
-2.21 -1.74 -1.83 0.98 34 134 1.93 1.9 

±13.37 ±10.31 ±115 ±12.62 ±35 ±148 ±4.99 ±7 

All tasks 
-4 -0.57 28.49 13.71 31 109 49.38 0.9 

±17.12 ±5.32 ±146.94 ±74.86 ±32 ±129 ±267.09 ±3.7 
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Table A1 Initial conditions for the model’s eight parameter values for reproducing GRF 

 
p1  

(m) 

p2  

(m) 

v1  

(m/s) 

v2  

(m/s) 

ω1 

(N/m/kg) 

ω2  

(N/m/kg) 

λ  

(au) 

ζ  

(au) 

Derrick et al. 

(2000) 
0.015* 0.0074 -0.73 -0.66 207** 626** 2 0.35 

Optimised -0.01 0.00 -1.29 -0.19 18.33 58.32 2.81 0.31 

The starting parameter values for the model optimisation process as described by Derrick 

et al. (2000) and those following from a pilot analysis using data for high-intensity running 

tasks. New (optimised) starting parameters are median values. 

* The upper mass position p1 was not reported and its value was estimated to be double 

that of the position p2 of the lower mass. 

** The natural spring frequency values were estimated from the reported spring stiffness 

values k1 and k2. 
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Figure captions 375 

Figure 1 The two mass-spring-damper model consisted of a lower mass (m2) 376 

representing the support leg and an upper mass (m1) representing the rest of the body. 377 

Both masses were given an initial position (p1, p2) and velocity (v1, v2), and the mass 378 

ratio λ was defined as the upper mass relative to the lower mass (m1/m2). The stiffnesses 379 

of the upper and lower spring were defined by their natural frequencies (ω1, ω2) and the 380 

model was damped by a damping coefficient ζ. The model’s motion was described by 381 

the acceleration of its two masses (a1, a2) based on the eight natural model parameters, 382 

from which the modelled GRF was calculated.  383 



Figure 2 Typical examples of measured (black continuous line) and modelled (red 384 

dotted line) ground reaction force (GRF) profiles including the root mean squared error 385 

(RMSE) between both curves.  386 



Figure 3 Errors for relevant ground reaction force (GRF) loading characteristics 387 

impulse, impact peak and loading rate for accelerations (blue circles), decelerations (red 388 

triangles), and running at a constant low (light grey crosses), moderate (dark grey 389 

crosses) and high (black crosses) speed. Negative errors are an underestimation of the 390 

measured value and positive errors and overestimation.  391 



Figure 4 Model parameter values for accelerated, decelerated, and low-, moderate- and 392 

high-speed running. Means (black dotted line) and standard deviations (grey dashed 393 

line) were taken across tasks.  394 



Figure B1 Model parameter values for accelerated, decelerated, and low-, moderate- 395 

and high-speed running. Mass ratio λ was fixed at 3 au, while the other parameters were 396 

bound to a range of values deemed physically reasonable. 397 


