
Identifying and Resolving Least Privilege Violations in Software Architectures

Koen Buyens, Bart De Win, and Wouter Joosen
IBBT-Distrinet, Katholieke Universiteit Leuven

Belgium
Email: first.last@cs.kuleuven.be

Abstract

The implementation of security principles, like least
privilege, in a software architecture is difficult, as no sys-
tematic rules on how to apply them in practice exist. As a
result, they are often neglected, which lowers the overall se-
curity level of the software system and increases the cost to
fix this later on.

This paper improves the support for least privilege in
software architectures by (i) defining the foundations to
identify potential violations of the principle herein and (ii)
elicitating architectural transformations that ameliorate the
security properties of the architecture. These results have
been implemented and validated in three case studies.

1 Introduction

Least privilege (LP) is a well-known security principle
that survived the test of time. It prescribes that a user is not
assigned permissions that he does not require and, conse-
quently, he cannot execute tasks that he is not allowed to ex-
ecute [17]. Security principles must be considered through-
out the entire software development lifecyle [7]. While sev-
eral techniques exist to reason about the adherence to LP in
software, such as policy reasoning [18] or restructuring [3],
no systematic method is available at the architectural level,
where the consequences are significant [2].

This paper argues that, at the architectural level, LP mini-
mizes the capabilities of a (set of) component(s) that is to be
executed as a single controllable unit (typically a process).
Two important factors in this context are (i) the controllable
units and (ii) the access policy that is to be enforced thereon:
LP will be best adhered to if both the architectural struc-
ture and the policy are adequate (See Figure 1). Indeed, as
shown in the next section, it can be impossible to enforce
LP with an inappropriate architecture (SA). Unfortunately,
to the authors’ knowledge, no systematic techniques exist
today to deal with this problem. One of the factors that
makes this problem challenging is the abstraction level of

a software architecture and, hence, the limited amount of
information available for reasoning about LP.

Requirements

Architecture

Access Policy

Enforce least privilege Enforce least privilege

Controllable unit
Enforce least privilege

Security
Requirements

Figure 1. LP in SA: a combination of architec-
tural structure and access policy.

The approach presented in this paper uses a list of use
cases and an architectural description to predict LP prob-
lems in the final software product. The approach approxi-
mates a worst case assignment of permissions given the set
of use cases. As presented in Figure 1 we are interested in
the architectural structure (without taking into account the
access policy), since this ensures LP adherence in the final
software system. The computed assignment is used to de-
termine (potential) violations of the principle1, which are
then solved by architectural transformations. The contribu-
tions of the paper are: (i) a theoretical underpinning of the
meaning of LP in software architectures, (ii) an algorithm
to identify violations of the principle, (iii) an architectural
transformation to address a category of violations, and (iv)
an implementation of the former in a tool.

The rest of this paper is structured as follows. Section 2
further motivates the problem by means of an example. Sec-
tion 3 presents the formal foundations of the presented ap-
proach. Section 4 uses these to identify LP violations. Sec-
tion 5 presents a transformation to solve a subset of these vi-
olations. Section 6 applies the approach on three case stud-
ies. Section 7 elaborates on the advantages, the drawbacks,
and possible extensions of the approach. Finally, Section 8
discusses related work, and Section 9 concludes.

1LP violations at architectural level are potential in the sense that one
can never be certain about violations until the system has been imple-
mented. However, some problems may persist in the final system.

1

2 Motivating Example

Consider an integrated groupware system that consists of
three main components (See Figure 2). The first, Calendar,
is a component that enables a user to keep track of events
and to find public events to attend. The second, Repository,
is a content management system that allows users to upload
and share files. The third, Tasks, is task management com-
ponent that enables a user to create, update, and delete todo
lists. Two components integrate the functionality of these
main components and act as front-ends for end users: the
Internal Groupware Client is used by employees, while the
External Web Client is used by external users.

External Users use the External Web Client to (i) upload
documents used and verified by employees by means of a
verification task, (ii) create public events and, (iii) confirm
attendance of events organized by Employees. Employees
use the Internal Groupware Client to (i) execute groupware
tasks such as modify events, and to (ii) review input re-
ceived from external users. Table 1 lists tasks that have been
assigned to the different users (i.e. security requirements).

Calendar
Internal

Groupware
Tool

A Component

m1(Rx) Method m1 reads parameter x

m1(Wx) Method m1 writes parameter xX Shared state

Key

Tasks

A B
T1:m1

A depends on m1
of B for task T1

m1[perm1] permission perm1 is required for
execution of m1

External
Webclient Repository

T4: m1
T6: m2

T1: m3 [perm1]

T1: m4 [perm2]

T2: m1

T3: m5

T5: m4 [perm2]

m1: addEvent(WEvent event, Rboolean public)
m2: modifyEvent(WEvent event)
m3: upload(WFile file)
m4: addTask(WTask task)
m5: confirmEvent(WEvent event)

T1: Upload working document
T2: Add public event
T3: Confirm event
T4: Add event
T5: Add task
T6: Modify event

Figure 2. Excerpt from the component dia-
gram of the an integrated calendar system

In order to enforce these requirements, we need to spec-
ify an architectural-level access policy that expresses the
rules in terms of component’s interface methods. Situations
arise in which the architectural structure jeopardizes LP.

First, tasks can overlap such that permissions necessary
for a set of tasks are sufficient to execute another task. For
instance, if an external user has the right to upload a work-
ing document (perm1, perm2 for task T1), he will also be

able to add tasks (perm2 for task T5), even if this is not de-
sirable. More complex overlapping scenarios that are more
difficult to identify manually can arise.

Second, the granularity of rights specification in the ac-
cess policy can be insufficiently fine-grained to grant the
right to execute certain tasks, but not other tasks. This is
the case when the execution of a task depends on method
parameters (rather than methods), or when permissions rep-
resent a collection of methods rather than a single method.
For instance, the system can not grant a user the right to add
public events (T2), but refrain him from add events (T4), as
the difference is represented by a boolean parameter. Note
that this problem can be solved by increasing the granularity
of the access policy, but this is rarely the case in practice.

Third, if two conflicting tasks are able to influence each
other’s operations, then the system might not be able to
enforce LP correctly. Indeed, one can argue that influ-
encing operations of a task is a weak form of having the
permissions to execute it. In the groupware example, the
confirmEvent method might interfere with the modifyEvent
method, since they may use the same event store. Conse-
quently, task T3 might interfere with task T6. This is not
allowed, because external people may not be allowed to
change events based on the company policy.

Solving these issues properly can not be done solely by
editing the access policy: a restructuring of the components
is often required to address these problems.

3 Theoretical underpinnings

In this section, a formal model for software architecture
is introduced to define LP (and violations thereof) at archi-
tectural level. The model, inspired by work of Jie Ren [16],
is modelled in set theory. Only the relevant subset is shown.
The complete model is published as a report [4].

The model focusses on the software architecture’s com-
ponent and connector view. Every component c can be de-
scribed in terms of the actions2 of its interfaces, which are
used to interact with the component. Such an interaction is

2The term action is used instead of operation, since this fits well with
the security-related part of the model.

User Task (use case)
Employee Upload, read, verify working document
Employee Add, modify event
Employee Add task
External User Upload working document
External User Confirm event, add public event

Table 1. Tasks assigned to the users of the
calendar system

2

built into the system to realize a task (or use case).

SA(s) = 〈 components(s), dependencies(s), parents(s) 〉
components(s) = { c1, ..., ck }
c = component = 〈 actions(c), interfaces(c) 〉 ∈

components(s)
interfaces(c) = { I1 ∪ ... ∪ Im }
∀ I ∈ interfaces(c): actions(I) = { ab, ..., aj }
actions(c) = { a | a ∈ actions(I) and I ∈ interfaces(c) }
actions(s) = { a | c ∈ components(s) and

a ∈ actions(c) }
a = 〈 name(a), params(a) 〉 ∈ actions(c)
params(a) = { param1, ..., paramn }
param = 〈 name(param), type(param) 〉
type(param) ∈ { String, int, ... }
users(s) = U = { u1, ..., uq }
tasks(s) = T = { t1, ..., tr }
task = { (a1, a2), ..., (ap, ap+1)} 3 ; ai ∈ actions(s)
UT = { (ui, tj), ..., (ui+f , tj+g) } ⊆ U × T
actions(task) = { a | a ∈ actions(s) and
x ∈ actions(s) and ((x,a) ∈ task or
(a,x) ∈ task) }

tasks(c) = { t | t ∈ T and a ∈ actions(c)
and a ∈ actions(t) }

users(c) = { u | (u,t) ∈ UT and t ∈ tasks(c) }

We now focus on security related definitions. A compo-
nent may personate multiple subjects (and principals) dur-
ing its lifetime, because it may be used by different users to
perform a range of (related) tasks. For now, we assume that
a component represents exactly one subject.

A permission is a representation of the right to perform a
set of actions - components are resources of the system. The
permissions necessary to execute a task is the union of all
permissions needed for the actions that constitute the task.

AP(s) = perm1, ..., permw

perm = { a1, ..., av } ⊆ actions(s)
permissions(action) = { p | p ∈ AP (s) and
action ∈ p }
permissions(task) = { p | p ∈ permissions(action)
and action ∈ actions(task) }

A distinction was made between three types of permis-
sions that will be used for reasoning about LP: required,
internal, and indirect permissions.

The required permissions of a component are the per-
missions that it needs to successfully complete the tasks (or
parts of tasks) it is responsible for. In other words, they are
the permissions associated with the actions the component
depends on for the tasks it provides. A Component is as-
sumed to require permissions for all the actions in the task
that follow his own contribution to the task. For instance,
the External Web Client requires permissions 1 and 2 for
uploading a working document (See Figure 2). Note that
this set is actually equivalent to an ideal access policy.

reqperms(c) = { p | p ⊂ usedactions(c) }
usedactions(c) = { a | t ∈ tasks(c) and
a ∈ actions(t) and a /∈ actions(c) }

3This is an ordered set.

The internal permissions of a component are the permis-
sions linked to its own interfaces. A component is implicitly
granted the permissions to execute all its interfaces’ actions.

internperms(c) = { p | p ⊂ ownactions(c) }
ownactions(c) = { a | t ∈ tasks(c) and
a ∈ actions(t) and a ∈ actions(c) }

The indirect permissions are permissions that might be
obtained by interfering in a component’s shared state. This
is a component’s internal state that is used by its actions.
Since an action might influence another one by changing
the shared state on which the other is dependent, a task can
actually influence the results of another task. This is ex-
amplified in Section 2. In the case of shared state, a com-
ponent is attributed permissions from another component’s
task that is reachable via the shared state of the latter.

indirectperms(c) = { perm | c2 ∈ reachablecs(c)
and t ∈ sharedTasks(c2,c) and
t2 ∈ tasks(c2) \ sharedTasks(c2, c) and
sharedState(t,t2,c2) 6= ∅ and
(perm ∈ internperms(c2) ∪ reqperms(c2)) and
perm ∈ permissions(t2) }

reachablecs(c) = { c2 | c2 ∈ components(s) and
t ∈ sharedTasks(c, c2) and c2 6= c and
before(t,c,c2) }

sharedTasks(c1, c2) = { t |
t ∈ tasks(c1) and t ∈ tasks(c2) }

before(task, c1, c2) ⇔ ∃ a1,a2 ∈ actions(task)
and a1 ∈ actions(c1) and a2 ∈ actions(c2)
and before(a1,a2,task) }

before(a1,a2,task) ⇔ ∃ (a1,a2) ∈ task or
(∃ (a1,x) ∈ task and before(x,a2,task))

perms(c) = indirectperms(c) ∪ internperms(c)
∪ reqperms(c)

We now come to the definition of LP. A system adheres
to LP if all its components adhere to LP. A component does
not adhere to LP if it, based upon the permissions attributed
as described before, is capable of executing tasks it is not
responsible for.

adherestolp(s) ⇔ ∀ c ∈
components(s) | adherestolp(c)

adherestolp(c) ⇔
∀ t1, t2 ∈ executabletasks(c) |
t1, t2 ∈ tasks(c) and executabletogether(t1,t2)

executabletogether(t1, t2) ⇔
∃ u1 ∈ U | (u1, t1), (u1, t2) ∈ UT

executabletasks(c) = { t | t ∈ T and
∀ perm ∈ permissions(t): perm ∈ perms(c) }

This definition is based on the fact that we assume that
all behavior is executed via tasks and that we thus can relate
components to users in the following way. The permissions
attributed to a component determines the tasks that can be
executed by this component. These tasks are related to users
via the user-task assignment set. As such, a component will
act on behalf of a possible set of users.

3

4 Identifying LP Violations

For the identification of LP violations, an algorithm was
constructed based on the formal model. The input provided
to the algorithm is threefold: a component and connector di-
agram, a user-task assignment list, and sequence diagrams
mapping these tasks onto the diagram. The algorithm (See
Figure 3) iterates over the components, attributes permis-
sions to each component, and verifies whether each compo-
nent violates LP. The output of the algorithm lists the LP
violations, specifying the violating component, the permis-
sions causing the violation, and the conflicting tasks.

For each component in components(s)
assign int. perms based on component actions
For each task in tasks(c)
propagate req. perms upward in task
calculate ind. perms for downward components in task

For each component in components(s)
determine LP violations based on assignment

Figure 3. Identification algorithm

The algorithm can been parameterized with several op-
tions, two of which will be discussed here. A first option
is the order in which the components will be iterated over.
This order controls the assignment of indirect permissions,
because these are propagated via the shared state of other
components. Our algorithm currently starts with calculating
permissions for ”leaf node” components. Next, it follows
these tasks in reverse order to determine the one-but-last
components to calculate the permissions of, and so forth.
Other propagation strategies such as root-node propagation
could be considered as well.

Another option is the shared state approximation strat-
egy. This determines the shared state between tasks in a
component and thus controls the indirect permissions that
are assigned to them. At this moment, shared state is deter-
mined by equivalence of name and type of the parameters
of an action: if two methods share an equivalent parame-
ter, they are considered capable of influencing each other.
This is a rough approximation of the shared state.4 This is
illustrated in Figure 2, where the shared state of methods
m1, m2, and m5 in component Calendar is approximated
by the event parameter they all have. Other strategies can
use semantic method annotations (such as pre- and postcon-
ditions) or explicit annotations regarding shared state.

5 Resolving LP Violations

Different strategies exist to accommodate LP in a soft-
ware architectural structure, among which: (i) splitting

4Actually, in case of parameters of primitive types, it probably does not
make much sense to use this type of approximation.

components into several isolated units and lowering privi-
leges assigned to these units, (ii) rewiring the architecture
(i.e. rerouting tasks to other components in order to split
up conflicting privileges), (iii) splitting tasks such that less
privileges have to be attributed to different components, or
(iv) applying well-known solutions (such as sandboxing) to
introduce LP in selected parts of the architecture (see Sec-
tion 8). Due to space constraints, we only elaborate on the
first strategy. The others have been described in a report [4].

One of the challenges in splitting a component is that it
has to be split in a way that preserves the semantics of the
component: semantically related actions must remain adja-
cent after splitting. The knowledge available for splitting
is typically limited to the interfaces of the component, the
actions described in these, and the parameters of these ac-
tions. Our approach uses parameters to approximate related
actions by applying a variant of the shared state approxima-
tion strategy on all possible subsets of the component’s ac-
tions. However, in order to split a component that contains
related actions which are used by violating tasks, we require
extra information in the architectural description: read/write
on the action’s parameters (see transformation).

5.1 Splitting a component

If two tasks are delegated to a component via two ac-
tions, and the internal or required permissions associated
with these actions cause a LP violation, then, based upon
the shared state between the tasks, the component can be
split as follows (See Figure 4). If the shared state is empty,
split the component in two disjunct parts by moving the in-
terfaces/actions that one task uses to new interfaces in a new
component. Update the tasks accordingly. If the shared set
is not empty, and if one task reads state that is written by the
other task, then create a new component containing a copy
of the actions/interfaces of the writing task. Add a new in-
terface on the original component to update the shared state.
Extend the reading task to include the new update actions.

Furthermore, if at least one indirect permission is caus-
ing the violation, then split the component with the shared
state that propagates this permission as described above.

The rule does not work if two tasks both write on the
shared state, because these tasks can still influence each
other via these components. In other words, the indirect per-
missions of both components will not have been decreased.

Based on the model of section 3, it is easy to see that the
privileges will reduce for one of the following reasons.

First, partitioning a component will result in subcompo-
nents each having less internal permissions by definition.

Second, partitioning a component in a way each partition
is responsible for less tasks, will result in partitions requir-
ing less required permissions by definition.

Third, if a component that grants indirect permissions to

4

Figure 4. A component with overlapping read
methods and a write method can be split.

another component is split, then it is possible that these per-
missions will not be granted, because the shared state prop-
agating these permissions does not exist anymore. Hence,
the number of indirect permissions of that other component
is lower or equal than that number before splitting.

Note that the above strategy can lead to multiple solu-
tions, because a set of actions can be partitioned in multi-
ple ways. Therefore, a strategy is needed that searches the
best possible solution. Such a strategy ranks the identified
violations, which can be based on several metrics. For in-
stance, solve the violation whose solution does not signif-
icantly change other architectural qualities such as size or
complexity first (See also Section 6).

6 Applying the results on several case studies

This section presents the validation results of the ap-
proach. The goal was to assess whether the LP properties
of the software architecture improved, while other software
architecture qualities such as size, complexity, or security
properties did not deteriorate. The evaluation was based on
an implementation of the techniques described earlier.

In the rest of the section, one case study is elaborated
upon in order to appreciate the type of problems and solu-
tions that can be addressed in practice. Afterwards, a sum-
mary of the results of applying the approach to several case
studies will be discussed from a broader perspective.

6.1 Detailed validation results

The case study used in this section involves a subset of
a digital publishing system [4]. The system automates the
workflow of a publishing company. Its main features are
input, user, and content management.

Different actors make use of this system, among which
the advertiser, the journalist, and the manager. The adver-
tiser buys commercial space. The journalist uses the sys-
tem to distribute finished content. The manager manages
the company by creating a publishing strategy and assign-
ing tasks to journalists.

The execution of each task is restricted to certain actors.
For instance, a journalist is not allowed to create a corporate
strategy, because that requires too much responsibility.

In the architecture, components responsible for these
features are the following. An Media Advertising System
(MAS) is used by Advertisers to submit produced com-
mercials to be stored in the Content Management System
(CMS). The CMS is responsible for storing and retrieving
content, and a Journalist News Desk is responsible for mak-
ing content ready to be published. The Planning System
(PS) is used by both Journalists and Managers to manage
their planning and assign tasks.

We discuss some of the problems that have been identi-
fied in the Planning System. A first problem is that the Plan-
ning System is responsible for the plan corporate strategy
and plan edition strategy tasks. The former is executed by a
manager, while the latter is executed by a journalist. Having
permissions for both tasks was explicitly forbidden by the
company policy (as illustrated in Figure 5).

Legend
T1: Create corporate planning
T2: Create edition planning

Journalist

Manager

Journalist Desk

Management Desk

Planning System

T1: m1 [perm3]

T1: m3 [perm1]

T2: m2 [perm4]
T2: m4 [perm2]

Problem

Internal: perm1, perm2

Internal: perm4
Required: perm2

Internal: perm3
Required: perm1

Required: perm2, perm4

Required: perm1, perm3

m1: Create corporate planning
m2: Create edition planning
m3: Create corporate planning
m4: Create edition planning

Figure 5. A violation caused by too many in-
ternal privileges.

A second problem is that the advertiser is able to obtain
enough permissions to modify the advertisement workflow
(part of planning tasks) (See Figure 6). The design problem
is that planning system is responsible for both notification
and edition planning tasks.

A solution to these problems can be found by applying
the transformation described in Section 5. The first problem
can be solved by splitting the component in two parts. The
first part contains actions related to corporate strategy, while
the second part contains actions related to edition planning.
The second problem can be solved by decoupling notifica-
tion from creation. As such, the risk of LP violations in the
final software architecture will be greatly reduced.

6.2 Broader validation results

In this section, the quality of the presented approach
is assessed quantitatively. For this purpose, the impact of
our algorithms on size, complexity, and security was mea-

5

Advertiser

Journalist

MAS

Journalist Desk

CMS

Planning System

T1: m1 [perm1]
T1: m2 [perm2]

 T1: m3 [perm3]
T1: m4 [perm4]

T1: m5 [perm5]

T2: m7 [perm7]

 T2: m6 [perm6] Shared state(notify, create)
= content metadata

Required: perm1, perm2, perm3,
 perm4, perm5
Indirect: perm7

Required: perm2, perm3, perm4, perm5
Internal: perm1
Indirect: perm7

Required: perm3, perm4, perm5
Internal: perm2
Indirect: perm7

Required: perm4, perm5
Internal: perm3, perm7

Required: perm5, perm7
Internal: perm4, perm6
Indirect: perm3, perm4, perm5

Required: perm6, perm7
Internal: perm5
Indirect: perm3, perm4, perm5

Problem

Legend
T1: submit commercial
T2: Create edition planning

m1: Submit commercial
m2: Add content
m3: Notify of input addition
m4: Notify of input addition
m5: Notify of input addition

m6: Create edition planning
m7: Create edition planning

Figure 6. A violation caused by too many indirect privileges.

sured. Size and complexity were selected because our so-
lution strategy impacts these explicitly: it creates new com-
ponents, introduces additional dependencies, and so forth.
Size was measured by the number of components, the num-
ber of interfaces per component, and the number of actions
per interface, while complexity was measured by CBMC
[10], connector complexity [20], and McCabe [12]. Secu-
rity was selected because our strategy should improve the
LP properties of a software architecture, but not deteriorate
other security properties such as the size of the attack sur-
face. LP was measured by the number of violating compo-
nents, and the number of tasks causing the violation, while
the attack surface was measured by a (simplified version
of a) metric defined by Manadhata [11].5 Table 2 presents
the results of the application of the approach on three archi-
tectures from three different domains: a modified version
of the small chat application delivered with ArchStudio [5]
(case1), a conference management system [14] (case2), and
(a subset of) the publishing system [4] (ps sub and ps full).

The first analysis examined whether system size (#comp)
worsened after the application of our approach. In gen-
eral, this was indeed the case. While the smaller case stud-
ies growed in size with 1 or 2 components, the publishing
case almost doubled in size. Indeed, large systems might
require more conflicting permissions to solve, because (i)
their components have more actions, and (ii) they support
more tasks. The increase for small systems is still accept-
able, while the increase for the large system is not. Note,
however, that this number can be reduced by lowering the
number of false positives in the violation set or by improv-

5The original metric requires pre- and postconditions associated with
the actions, which our case studies do not provide. Furthermore, two of
the metric’s parameters, trusted data items and direct and indirect entry
points, are estimated by making use of the tasks (data flow).

ing the architectural transformations.
The second analysis examined whether component size

(#inf/#comp and #acts/#inf) worsened after the application
of our approach, which was not the case. Indeed, if a com-
ponent is split, the number of actions per interface decreases
as a subset of these are moved to another component.

The third analysis examined whether complexity
(Mccb.) increased. In general, this was the case. A pos-
sible explanation for this is that dependencies, one of the
main parameters of complexity, between the old set of com-
ponents and the newly created components are introduced.
This increase in complexity is considered acceptable.

The fourth analysis examined whether LP improved
(in terms of the number of violating components (# viol
comps), and tasks causing a violation (#viol tasks) after the
application of our approach. In general, LP did improve.
However, in two cases (case2 and ps full) an improvement
was not noticed. This might be caused by the inability of
the transformation to identify a set of subcomponents that
each contain a different violating action. These numbers
are remarkably high, which might indicate, among others,
that the approximation of indirect permissions produces a
significant number of false positives.

The fifth analysis examined how the attack surface was
impacted. In general, this was not the case, which is plau-
sible since two of the main parameters of attack surface,
indirect entry points and untrusted data items, are not influ-
enced by the transformation. However, in case 2 the attack
surface increased, because it increases the number of indi-
rect entry points by creating shared state update methods
based on existing indirect entry points, which count as indi-
rect entry points as well.

In conclusion, we could say that our detection algorithm
detects least privilege violations, but has a high rate of false

6

Size Complexity Security
Metric #comp #inf #acts #tasks Mccb. #viol comps # viol tasks attack
Case /#comp /#inf (indirect) (indirect) surface
case 1 before 3 1.67 1.2 2 3 1 (0) 2 (0)
case 1 after 4 1.5 1 2 4 0 (0) 0 (0) same
case 2 before 7 1.0 2.9 11 4 6 (5) 11 (8)
case 2 after 9 1.1 2.1 11 6 8 (6) 11 (8) larger
ps sub before 13 2.38 2.65 8 6 4 (0) 6 (0)
ps sub after 20 2.6 1.58 8 7 0 (0) 0 (0) same
ps full before 13 2.38 2.64 22 8 13 (12) 22 (16)
ps full after 13 2.38 2.64 22 8 13 (12) 22 (16) same

Table 2. Measurements of the cases in the three domains and three variants of the publishing case.

positives. Our splitting transformation works if the compo-
nents that have to be split, are divisible in subcomponents,
which mainly depends on the size of the shared state.

7 Discussion

A number of observations driven by the results of our
experiments are worth further discussion. The approach and
transformations have at least the following limitations.

The identified transformations do not always work well:
sometimes it is not possible to split the component in sub-
components, because two violating tasks both use an action
or a group of actions to update shared state. Hence these ac-
tions can not be be part of two components. Possible solu-
tions are (i) using smarter ways for creating subcomponents
(e.g., another shared state identification algorithm), and (ii)
creating transformations that are not based on splitting com-
ponents to solve violations, like splitting tasks.

On the other hand, one should also carefully ponder the
options that influence the result of the identification and
solving algorithm, since naively applying it might lead to
extreme architectures or might cause unwanted side affects.
An extreme architecture is for instance an architecture in
which every component has been split (possibly several
times). It is clear that such architectures are not useful in
practice. Note also that sometimes a component should not
be split when many tasks passes through these components
on purpose. Some security-specific components (like the
Audit Interceptor) exhibit this type of behavior.

Some current assumptions considerably limited the prac-
tical applicability of the approach. First, a process typically
consists of multiple components, while we assume that it
only consists of one. This assumption can be dropped if
other architectural views such as the process or runtime
view is incorporated in our model. Second, not all security
relevant use cases are typically available, while we assume
they are. Furthermore, there are also two limitations in the

current implementation tool: (i) no support for UML (useful
for reading architectural diagrams), and (ii) no meaningful
names for newly created components and interfaces.

An interesting added value of the approach is the abil-
ity to reason about separation of duty (SoD) policies at ar-
chitectural level. Indeed, SoD deals with splitting and dis-
tributing tasks that, when combined, can be harmful. SoD
can be seemlessly integrated in the approach as specific con-
straints that are imposed on particular tasks. As such, one
can easily reason about SoD conflicts at architectural level.

8 Related Work

This work is strongly related to two research domains:
security engineering, and software refactoring. Related
work on security engineering focusses on (i) program sepa-
ration, (ii) model checking, and (iii) execution monitoring.

Program separation, a technique to separate a program in
multiple processes with clean interfaces, has been success-
fully applied in several end-user programs such as qmail [1]
to support LP. Our approach provides a systematic and auto-
mated means for program separation at architectural level.
Another more general approach is privilege separation [3],
a technique that partitions the implementation of an exist-
ing program into two processes: a privileged monitor and
an unprivileged slave. Our approach extends privilege sep-
aration by optimizing the number of privileged processes.

Model checking techniques are used to verify whether a
design meets certain properties, such as LP. In his PhD the-
sis [9], Jürjens explains how one can use his UMLSec ap-
proach to enforce LP by formulating LP requirements and
verifying UMLsec specifications (including policy specifi-
cations) with respect to these requirements. The difference
with our approach is that our approach functions indepen-
dently from the access policy. Rubacon [6] is a tool that
checks UML models and their configuration data for adher-
ence to security policies. Rubacon and our work share a

7

similar idea: identify possible (sub)tasks (transactions) that
can be executed by granted permissions.

Execution monitoring is another technique that limits the
privileges a program is assigned. These techniques block
system calls and access to file and network resources based
on policies. Examples are Systrace [15], and Jain’s sys-
tem call interposition [8]. The main drawback of these
mechanisms that it is hard to specify policies in terms of
application-specific resources and functions, because these
don’t always map on files and system calls [19]. Another
drawback is that the sandbox is assigned a lot of privileges.

A lot of work has been published in the area of software
refactoring. Mens [13] presents a detailed survey. Software
refactoring is generally viewed as the process of improving
the internal structure of a software system without disrupt-
ing its external behaviour. This improvement of the internal
structure can be based on a specific quality goal, such as
modifiability, security, or in our case least privilege. While
refactoring can be applied, no concrete results for LP are
available in this area to the knowledge of the authors.

9 Conclusion

This paper proposes a technique that improves the iden-
tification and resolution of LP violations in software archi-
tectures. To this aim, the concept of architecture-level LP
has been modelled formally. This model was used to create
an algorithm that indicates when an architecture violates LP.
Subsequently, an architectural transformation that solves a
subset of these violations was proposed. The approach has
been validated by means of several case studies which in-
dicate that, overall, properties such as the number of viola-
tions and the average component size improve, while other
software properties such as system size, system complexity,
and attack surface are negatively affected.

While this work is a first milestone in this context, many
opportunities and issues remain. The focus of future work
will be threefold. First, the false positive rate should be fur-
ther reduced such that the outcome of the violation identifi-
cation algorithm is more usable. A first idea in that direction
is to split the different types of permissions and work with
weighted violation detection. Second, other architectural
views can be included in order to make the technique more
applicable. Finally, architectural refactorings that preserve
the architectural semantics, possibly aided by architectural
annotations, can be significantly improved. In that context,
the alternatives described in the paper will be further stud-
ied, implemented and tested throroughly.

Acknowledgment

This research is partially funded by the Interuniversity
Attraction Poles Programme Belgian State, Belgian Science

Policy, and by the Research Fund K.U.Leuven.

References

[1] D. J. Bernstein. Qmail home page. http://cr.yp.to/
qmail.html.

[2] B. W. Boehm. Software Engineering Economics. Prentice-
Hall Englewood Cliffs, NJ, 1981.

[3] D. Brumley and D. Song. Privtrans: Automatically parti-
tioning programs for privilege separation. In Proceedings of
the 13th USENIX Security Symposium, August 2004.

[4] K. Buyens, B. D. Win, and W. Joosen. Identifying and re-
solving least privilege violations in software architectures.
Technical report, Katholieke Universiteit Leuven, 2008.

[5] E. Dashofy, H. Asuncion, S. Hendrickson, G. Surya-
narayana, J. Georgas, and R. Taylor. Archstudio 4: An
architecture-based meta-modeling environment. In ICSE
’07, pages 67–68. IEEE Computer Society, 2007.

[6] S. Höhn and J. Jürjens. Rubacon: automated support for
model-based compliance engineering. In ICSE ’08, pages
875–878, 2008.

[7] M. Howard and S. Lipner. The Security Development Life-
cycle. Microsoft Press, 2006.

[8] K. Jain and R. Sekar. User-level infrastructure for system
call interposition: A platform for intrusion detection and
confinement. In ISOC, 2000.

[9] J. Jürjens. Secure Systems Development With UML.
Springer, 2005.

[10] M. Lindvall, R. T. Tvedt, and P. Costa. An empirically-based
process for software architecture evaluation. Empirical Soft-
ware Engineering, 8(1):83–108, March 2003.

[11] P. K. Manadhata, D. K. Kaynar, and J. M. Wing. A formal
model for a systems attack surface. Technical Report CMU-
CS-07-144, Carnegie Mellon University, 2007.

[12] T. J. McCabe. A complexity measure. In ICSE ’76, page
407. IEEE Computer Society Press, 1976.

[13] T. Mens and T. Tourwé. A survey of software refactoring.
IEEE Transactions of Software Engineering, 30(2):126–
139, 2004.

[14] M. Morandini, D. C. Nguyen, A. Perini, A. Siena, and
A. Susi. Tool-supported development with tropos: The con-
ference management system case study. In AOSE VIII, vol-
ume 4951 of LNCS, pages 182–196. Springer, 2008.

[15] N. Provos. Systrace - interactive policy generation for sys-
tem calls.

[16] J. Ren. A connector-centric approach to architectural access
control. PhD thesis, 2006.

[17] J. H. Saltzer and M. D. Schroeder. The protection of in-
formation in computer systems. Proceedings of the IEEE,
63(9):1278–1308, Sept. 1975.

[18] R. S. Sandhu and P. Samarati. Access control: Principles
and practice. IEEE Communications Magazine, 1994.

[19] F. B. Schneider. Enforceable security policies. ACM Trans.
Inf. Syst. Secur., 3(1):30–50, 2000.

[20] S. M. Yacoub and H. H. Ammar. A methodology for
architecture-level reliability risk analysis. IEEE Transac-
tions on Software Engineering, 28(6):529–547, June 2002.

8

