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A SPACE-TIME MULTIGRID METHOD FOR PARABOLIC PARTIAL
DIFFERENTIAL EQUATIONS*
G. HORTONt AND S. VANDEWALLE

Abstract. We consider the solution of parabolic partial differential equations (PDEs). In standard time-stepping
techniques multigrid can be used as an iterative solver for the elliptic equations arising at each discrete time step.
By contrast, the method presented in this paper treats the whole of the space-time problem simultaneously. Thus the
multigrid operations of smoothing and coarse-grid correction are defined on all of the space-time variables of a given
grid level. The method is characterized by a coarsening strategy with prolongation and restriction operators which
depend at each grid level on the degree of anisotropy of the discretization stencil. Numerical results for the one- and
two-dimensional heat equations are presented and are shown to agree closely with predictions from Fourier mode
analysis.
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1. Introduction. We consider the problem of numerically computing an approximation
to u(x, t), the solution of the d-dimensional parabolic partial differential equation (PDE)

(1) ut Au f(x, t), X e if2 (0, 1)d 0 < < T

subject to the usual initial and boundary conditions

u(x, O) g(x) x e

u(x, t) h(x, t) x e 0<t<T.

The standard solution procedure is to fully discretize equation (1), obtaining a discrete
elliptic problem at each time step when an implicit scheme is used for the approximation of
the time derivative. These elliptic problems are then solved sequentially using an iterative
method such as successive overrelaxation, conjugate gradients, or multigrid. The potential for
parallelism in this type of computation is limited to the parallelism of the elliptic solver, since
the time dimension is treated strictly sequentially. Ironically, it is often the time dimension
which contains the largest amount of computational work: the number of discrete time steps
can be many times larger than the sidelength of the spatial grid. Thus it seems natural to ask
whether this situation can be remedied and a parallelization strategy for the time-dependent
part of the problem be found.

In [7] Hackbusch proposed a scheme in which the elliptic multigrid method can be exe-
cuted simultaneously on a set of successive time steps. This parabolic multigrid method was
investigated in a series of experiments by Bastian, Burmeister, and Horton 1], [6], [9]. Un-
fortunately, the method only performs satisfactorily under certain conditions; see 14]. In 18]
Womble considered the parallel time-stepping method, a scheme whereby standard iterations
are performed simultaneously on equations at successive time steps. Here the possibility of
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combining parallelism in space and time was also investigated. The success of the method
is due to the possibility of overlapping iterations of the iterative elliptic solver on different
time levels. However, with rapid multigrid solvers requiring just a very small number of
iterations, the potential for time parallelism is rather restricted. Vandewalle and Van de Velde
have recently shown in 16] that the multigrid waveform relaxation method 12], for which the
possibility of space parallelism has already been demonstrated by Vandewalle and Piessens
[15], also permits parallel execution with respect to the time axis. There it was shown that
the addition of time parallelism can considerably improve the utilisation of message passing
multicomputers. A massively parallel parabolic PDE solver based on multigrid waveform
relaxation was presented by Horton, Vandewalle, and Worley in [10]. The algorithm uses
a line relaxation smoother, with lines extending in the time direction. This smoother was
shown to lead to a rapidly convergent multigrid iteration, yet it limited the obtainable parallel
complexity by introducing a logarithmic factor the logarithm of the number of time levels

into the parallel complexity formula.
In the current paper a multigrid algorithm that employs a perfectly parallel pointwise

smoother instead of a line-wise smoother is developed. In the following section we introduce
some notation and show how a standard multigrid approach with point-wise smoothing and
coarsening in space and time is inappropriate for problem (1). In 3 we present the space-time
multigrid method in terms of its individual components, considering several variants. Section
4 gives results obtained by Fourier mode analysis of various multigrid schemes applied to
the model problem. These are compared with results obtained by numerical experiments.
In 5 numerical results are presented for different first- and second-order time-discretization
schemes. The parallel complexity of the method is analysed in 6. In the final section some
conclusions are drawn.

2. Motivation. We consider the one-dimensional heat equation, discretized in space us-
ing central differences on a regular mesh with mesh spacing Ax, and discretized in time with
the backward Euler method on a set of time levels with constant time increment At. This
leads to a large linear system of equations in the unknowns bli, j with lax-
and j T!At that approximate the PDE solution values at the grid points (xi, tj) with
xi Ax and tj j At. The equations are of the form

(2)
(AX)2 Ui-l,j + AX)"2 -t- " bti,j

(AX)2 Ui+l,j --tli,j-1 f (xi, tj)

or, with the parameter . defined by At!Ax2,

(3) ,Ui_l, -- (2) + 1)Ui,j Ui+l,j Ui,j-1 At f(xi, tj)

The parameter ) can be considered as a measure of the degree of anisotropy in the discrete
operator. Note that will usually vary from grid level to grid level within a multigrid scheme.
We shall therefore denote the value of ,k on grid level l, with mesh spacings AXl and Ate,
by l.

Figure shows the convergence rate ofa"standard" multigrid method applied to this model
problem, with the time axis considered as just another spatial axis. This multigrid method on
the o-dimensional space-time grid is characterised by the following components: red-black
smoothing with one presmoothing and one postsmoothing step, standard coarsening (i.e.,
AXl-1 2 AXl and At_ 2 Atl), full weighting restriction, and bilinear prolongation.
The coarse-grid operator is the natural one similar to (3). Multigrid V-cycles are used. Shown
is the averaged convergence factor , which is computed from the I1= norm of the residual
vector. A mesh with a total of six grid levels is used. The convergence is measured over values
of 6 from 2-8 to 28 on a finest grid of size 65 x 65 points.
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FIG. 1. Convergence ofstandard multigrid applied to the space-time problem.

It can be clearly seen that the method is not robust with respect to .. For both 6 < 2-4
and 6 > 22 we have either divergence or extremely slow convergence. Even in the range of
values where the method performs best, the rate of convergence is not particularly fast. Thus
we conclude that a naive approach to applying multigrid to the space-time problem does not
succeed.

The unsatisfactory behaviour of the naive multigrid approach can be understood intuitively
from analysing governing equation (3). For large and small values of L the fully discrete PDE
is a strongly anisotropic problem. Pointwise smoothing combined with standard coarsening
is a notoriously slow procedure for such problems. Certain high frequency error components
are not adequately smoothed out, since pointwise relaxation smoothes only in the direction
of strongest coupling. The standard approach is then to resort to a different smoother, for
example a linewise or incomplete factorization method, or to employ a suitable semicoarsening
technique, with coarsening only in the dimensions where the pointwise smoother is successful.
As the current paper is mainly motivated by parallel computing issues, we will follow here
the second approach, which, most importantly, enables the use of perfectly parallel pointwise
smoothers.

3. The space-time multigrid method. In this section we describe the various compo-
nents of the new space-time multigrid method. For ease ofpresentation we restrict ourselves to
the one-dimensional heat equation, i.e., the two-dimensional space-time problem. The opera-
tors for the three-dimensional space-time problem are defined analogously and are given in the
Appendix. The method chooses a coarsening strategy, together with appropriate prolongation
and restriction operators, which is based on the degree of anisotropy )t on the current grid
level. The overall multigrid cycle will therefore use different strategies on different le-dels.
Motivation for the choice is given by theoretical results described in 4.

3.1. Discretization. We consider central differences for the discretization of the space
derivatives in equation (1) and both first- and second-order methods for the time derivative.
The first-order method is the backward Euler scheme (3), which is equivalent to the first-order
backward differentiation formula (BDF1). It leads to a four-point molecule, which, in stencil
notation, is given by

(4) --l 2).1 + 1 --/’l
0 -1 0
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The stencil notation of constant coefficient operators is explained in 13]. Note that the rows
of the stencil correspond to the space dimension, and the columns to the time-dimension.

Two well-known second-order methods for the approximation of the time derivative will
be analysed: the two-level Crank-Nicolson or trapezoidal method, which is given by the
stencil

(5)
0 0 0

--/’l/2 I + -)t/2
-,k/2 l 1 --l/2

and the three-level second-order backward differentiation method (BDF2), characterised by
the stencil

(6)

0 0 0 0 0
0 0 0 0 0
0 --I 2,kt + 3/2 --l 0
0 0 -2 0 0
o o /2 o o

Note that the latter discretization cannot be used on the first time level of unknowns, since it
requires values of two preceding time steps. There we will use the Crank-Nicolson formula
instead, a purely technical choice which does not seem to impair our numerical results.

The same discretization technique is used to define the discrete operators on all grid levels
in the multigrid hierarchy.

3.2. Smoothing. The smoother is a coloured pointwise Gauss-Seidel relaxation, whereby
the definition of points of a certain colour is with respect to all dimensions of the problem.
This smoother has the advantage of being very efficiently parallelizable. For this particular
problem, other smoothers such as line-relaxation and block-incomplete LU factorization (ILU)
are known to be efficient, but these do not have the above-mentioned property.

A two-colour scheme is used for the BDF1 method. A four-colour scheme and a three-
colour scheme would be adequate for the Crank-Nicolson discretization and for the BDF2
method, respectively. Yet, for simplicity of implementation and analysis we choose to use a
two-colour scheme, whereby updating of grid points is from high t-values to low t-values.
In other words, when a point of a certain colour depends explicitly on other points of the
same colour, the old values at these points are used for smoothing. This scheme has mixed
Gauss-Seidel/Jacobi characteristics and can be easily implemented in parallel.

3.3. Coarsening. We choose an adaptive coarsening strategy based on the current value
of ;l. For each method we select a parameter )crit which is used as a switch for choosing
the coarsening strategy at any particular grid level. We adopt the following strategy: "If
)l < )crit then use semicoarsening in the time dimension, else use semicoarsening in the
space dimension(s)." The value of )crit is motivated by the results obtained by the two-grid
Fourier mode analysis presented in 4. It is the value of )t at which the convergence rates
of semicoarsening in the space and the time dimension are equal. When x-coarsening is
performed we have )1-1 0.25 )t, whereas t-coarsening gives )1_1 2 )l. For comparison
purposes, we shall also analyse the use of standard coarsening in space and time, in which
case l- 0.5

Note that successive semicoarsening steps will ultimately lead to a coarse grid which has
one or more sides of length one. In this case we continue to coarsen in the remaining directions
until a grid consisting of only one variable is reached.
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3.4. Prolongation. The prolongation is coupled to the choice of coarsening at each grid
level. The stencils for the time-coarsening, space-coarsening, and standard-coarsening cases
are given, respectively, by

(7) 0 0 2 2
000 000 000

Note that the prolongation operator for the space-coarsening case is identical to the prolonga-
tion operator used in the multigrid waveform relaxation method [12], [15], and the one used
in the parabolic multigrid method [7]. It is the standard operator used for the elliptic equation.
In the case of time semicoarsening, prolongation is asymmetric, transferring no information
backwards in time.

3.5. Restriction. The choice ofthe restriction operator is likewise coupled to the coarsen-
ing strategy. It is chosen, as usual, as the adjoint of the prolongation operator. The stencils for
the time-coarsening, space-coarsening, and standard-coarsening cases are given, respectively,
by

0 0 121 121(8)
0 0 0 0 0 2

The above observations on the prolongation operators apply equally to the restriction.

3.6. Computational complexity and storage requirements. The computational work
of one multigrid cycle of the space-time multigrid method can be estimated as follows. The
complexity of a multigrid cycle that uses both space and time coarsening is bounded by the
complexity ofthe corresponding cycles that use only space coarsening or only time coarsening.
The complexities ofthese two extremal cycles can be estimated easily. In both cases we assume
a coarsening by a factor of 2 in all relevant directions. In the first case the ratio of the number
of grid points from one grid to the next coarser grid is given by 2d, where d is the spatial
dimension of the problem. In the second case the ratio is 2. We denote by W the ratio of
the work in one cycle on a (large) set of grids and the work on the finest grid. The latter is,
of course, a linear function of the total number of grid points. Approximate values of W can
be derived from Tables 8.3.1 and 8.3.2 in [17] and are presented in Table 1. These values
are obtained when the work on the coarsest grid (i.e., the grid obtained when further space or
time coarsening is no longer possible) is neglected. Note that a dash ("-") indicates that the
complexity of the particular cycle is not a linear function of the total number of grid points. In
the same table, we have also presented the complexity of a nested iteration of a full multigrid
(FMG) algorithm that applies one multigrid V-cycle per grid level. The complexity of this
algorithm is linear in the number of grid points and similar to that of an F-cycle.

The storage requirements ofthe algorithm can be estimated in a similar way by considering
the storage requirements of the two extremal cases. With space coarsening the total number
of storage locations is about 2d/(2d l) times the number of storage locations used to store
the fine-grid variables. With time coarsening, which is the worst case situation, the ratio is
about 2.

4. Analysis of the two-grid method.

4.1. Two-grid iteration operator. We consider a two-grid method for solving the one-
dimensional model problem (1), using a fine grid f2h, defined by

(9) h {X e I[{2 X jh, j (jl, j2), h (hi, h2),

jl O, nl j2 O, n2 hi 1/nl h2 T/n2}
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TABLE
Computational complexity (-values) ofa space-time multigrid V-cycle, F-cycle, and W-cycle, and of the full

multigrid V-cycle algorithm, as afunction ofthe spatial dimension d and the semicoarsening strategy.

d

V
F
W

FMG

x-coarsening t-coarsening

2 3 2

2 4/3 8/7

4 16/9 64/49

2 4/3

2 2 2
4 4 4

4 16i9 64/49 4 4 4

where n and n2 are assumed to be even, and a coarse grid /4, given by

(10) g2/_/-- {x 2 "x JH, J (J1, J2), H (H1, H2),

J1 --0, 1 N1, J2 --0, 1 N2, HI 1/N, H2 T/N2}.

The coarse grid is derived from f2h by either standard coarsening (H (2h, 2h2)),
x-coarsening (H (2hi, h2)), or t-coarsening (H (h, 2h2)). Let u,,l denote an approx-
imation to the PDE solution u(kh, lh2). The difference between the exact discrete solution
k,l and the approximation is the error ek,l Uk,l k,l. By a two-grid cycle an error vector eTM

is transformed into a new error vector enew, with enew MhHeTM, where Mff is the two-grid
iteration matrix. This matrix is given by

(11) Mff S; (lh- lLIffFhLh)
where Sh is the smoothing operator on f2h; v and v2 are the numbers of pre- and post-
smoothing iterations; Ih Ih/4, I4, are the identity, prolongation, and restriction operators. L/4
and Lh are discretized differential operators on the coarse and on the fine grid, respectively.
They have been normalized by multiplication with h2 or H2, so that they are a function of
h (=h2/(h);z) or ,k/-/(=H:/(H)2) only, and not of the particular values of the discretization
parameters h and H. Fh is a constant, introduced to correct for the different normalizations
of the fine- and coarse-grid equations. It has the value in the case of x-coarsening, and the
value 2 otherwise.

4.2. Fourier mode analysis: Definitions and notation. The analysis of the two-grid
algorithm applied to certain model problems, and, in particular, the analysis of the corre-
sponding iteration matrix M/, is often performed in the frequency domain. A comprehensive
model problem analysis for a fairly large class of problems can be found in [13]. It is based
the use of sinusoidal eigenmodes and the knowledge that M leaves certain linear spaces of
sinusoidal modes invariant. Similar analyses can be found, for example, in [5], [8], and 11 ].
This type of analysis, however, is not applicable in the present case since the sine functions are
not eigenfunctions of our discrete operators. In such cases one usually resorts to an analysis
based on exponential Fourier modes. This kind of Fourier analysis was introduced by Brandt
in his seminal paper [2] and made into a rigorous analysis in [4]. A large number of Fourier
results are also presented in [13, Chaps. 9-10]. An exponential Fourier mode analysis is also
pursued in Wesseling’s book 17], where the smoothing properties of many common smooth-
ing algorithms are investigated. In the remainder of this section we shall follow the approach
of the last reference. This analysis can be regarded as an analysis for special model problems,
namely those with periodic boundary conditions on (finite) rectangular domains.

The exponential Fourier mode h (0) withfrequency 0 on f2h is given by

(12) l[rh(O)j exp(i j. 0),
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where "." denotes the usual 2 inner product; is the imaginary unit (--1); and

(13)

(14)

j=(jl, j2), j,=0,1 n,-I (t= 1,2),

0 6 Oh {(01,02) "0 27rk/na, ka -na/2 + 1, -n/2 + 2 n/2}.

Note that the fine-grid Fourier mode aPh (0) when injected into the coarse grid, aliases with
coarse-grid mode P/4 (), with equal to (201,202) in the case of standard coarsening, with
equal to (20, 02) in the case of x-coarsening, arid with 6 equal to (0, 202) in the case of

t-coarsening. (In all three cases equality for each 0-component is up to an integer multiple
of 2zr.)

For any 0 6 (R) Oh f) [--zr/2, zr/2)2, we define 02, 0 3, and 04 by

(15) 02=01-( sign(0)rr ) 03 ( 0 )04 (sign(0)rr)sign(0)r
-0 sign(02)rr =0 0

where sign(t) is -1 if < 0 and +1 otherwise. For any 0 6 (R), we define the vector

kIIh(O (1/th(01), lph(02), lph(03), l[th(O4)) T. Any periodic fine-grid function eh the error,
for example can be written as eh eh,or qh(O), where the summation is over all 0 6 (R)
and where eh,OT is a vector of dimension four. The linear space spanned by qh (0) is invariant

roqh(O) then after application of the two-under the two-grid operator. If the initial error is eh,
qh(O) with ^Ugrid cycle it is given by M(0)eh,0 Mh (0) a 4 4 matrix. The latter is called

the symbol of the two-grid operator. Let h (0), /4 (0), h/_/(0), /h (0), and//4 (0) denote the
symbols of the smoothing operator, restriction operator, prolongation operator, fine-grid PDE
operator, and coarse-grid PDE operator. //(0) is then easily found to be

(16) /Qff (0) 2(0) ( Ih ihH (0) Lh (0) (0) Fh h (0)) 1 (0)

The quality of a particular smoothing method is often judged by its so-called Fourier
smoothingfactor (see, e.g., [17, p. 149])

(17) /z max{tc(Q(O) Sh(O)) O (R)}

where tc is the spectral radius. Matrix Q(O) is a diagonal matrix and expresses the projection
of qh (0) onto the corresponding space of high frequencies. For standard coarsening, for x-
coarsening, and for t-coarsening, respectively, Q(O) is given by diag (6(01) 8(02), 1, 1, 1),
diag (8(0), 1, 8(01), 1), and diag (8(02), 1, 1,8(02)). Function 8(0,) is 0 except when 0
-7r/2, in which case it is 1. An indicative measure of convergence of the entire two-grid
cycle, taking both smoothing and coarse grid correction into account, is given by

(18) p max{x(1Qtff (O)) O (R)}

The value of p is an approximation to the spectral radius of the iteration matrix Mff and
usually shows very good agreement with actual convergence factors obtained on g2h. Its
computation is straightforward, by numerically computing x(llSlff (0)) and by optimizing this
over the discrete set (R)i. (Note that usually 0 0 is excluded from the above range, since,
as mentioned in [4, p. 13],/],/4(0) is most often 0. This causes no problems, however, since

fff (0)/h (0) is rank deficient too, in such a way that lim0__,0 x(ff (0)) is finite.)
Our definitions of/ and p are different from the ones found in [13], [3], and [4]. There,

the following smoothing factor and spectral radius are defined

(19) /2 sup{x(Q(O)Sh(O))’O (R)g} and 3 sup{tc(4(0)) "0 6 (R)e},
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with (R)7 (-zr/2, zr/2)2 One naturally arrives at these formulae by neglecting the bound-
aries and the boundary conditions of the PDE problem and by considering the operators as
operators on infinite grids. The computation of/2 and t5 is more difficult numerically than the
computation of/z and p, since they involve finding a maximum over an infinite set. Obviously,
for the same h and H it follows that/z </2 and p < 3. However, for small enough values of
the mesh width we may expect both to become equal.

4.3. Fourier mode symbols. For the reader’s convenience, we shall recall the precise
formulae for the operator symbols. Let the stencils of Lh, Ln, Ihn, and Iff be given, respec-
tively, by

where k ranges over an index set I C Z2. It is easily verified that the Fourier modes 1/th (0)
and 7t/-/(0) are eigenfunctions of Lh and Lt-I [13, pp. 121-122], with eigenvalues

(21) [,h(O) Sk exp(i k. 0) and /,/-/(0) Sk exp(i k. 0).
kEI kEl

The Fourier symbol of the fine-grid PDE operator is given by

(22) h(O) diag (/h(Ol), /h(O2), /h(O3),

and the Fourier symbol of the coarse-grid PDE operator by

(23) //-/(0)= (//4(6’)), diag (//_/(’),//_/(3)), diag (/, /-/ (01) n(04)),
where the latter is for standard-, x-, and t-coarsening, respectively. Note that (23) is constructed
by taking the coarse-grid aliasing of Fourier modes into account.

A general formula for the red-black smoother’s symbol can easily be derived following
the analysis in 17, pp. 150-151 ]. Red-black smoothing applied to Fourier mode Oh (0) results
in a function the value of which is given by ot (0) /rh (0) at the red points and by/(0)Ph (0) at
the black points, or(O) and/ (0) are given by

(24) or(O) s exp(i k. O)/s(o,o,
klo

(25) [(O)’--(kl=od,d SkOt(O)exp(ik.O)+ Z s exp(i k-0))/s(o,o),07lkl=even

with I0 I \ {(0, 0)} and Ikl Ikll + Ik2l. By some elementary algebra, one obtains

(26)

Ot (01 -t-/ (01 O/(02) fl (02) 0 0
o/(01 -/(01 IY (02) --/ (02) 0 0Sh(O)-

0 0 ly(03)-+-fl(03) O/(04)--fl(04)
0 0 0/(03) --(03 Ol(04)-t-fl(O4

The restriction and prolongation operators connect fine- and coarse-grid Fourier modes.
The following formulae are taken from [13, p. 122]

(27) Ih(O) [/(0)p/-/(0), Ii-I(0) [hI_l(O)Ph(O)
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The summation in the last formula is over the set of fine-grid modes that coincides with apt-/(0)
on the coarse grid. With the stencils of restriction and prolongation given in (20), one finds
[13, p. 122]

(28) [if(O) r exp(i k. 0), [(0)
k6l

hlh2
P-, exp(i k-0).

H1 H2 e,

The Fourier symbols of the prolongation operators for standard-, x-, and t-coarsening are then
given by

(29) ihn (0)

hH (01 ih/_/(01 0 ihH (01 0

i(02) 0 ih/_/(02 0 ihH (02

ih(o3) 0 ih.(o3) ih(03 0

ihH (04) ihH (04) 0 0 ihH(04)
For the operators considered in this paper, it can be verified that the restriction symbol is just
the transpose of the prolongation symbol

(30) i(o) (o)

4.4. Fourier mode analysis results. Exponential Fourier mode analysis was performed
for the two-grid methods with BDF1, BDF2, and Crank-Nicolson discretization. The dis-
cretization scheme dependent values of Lh(O), or(O), and fl(O) are given below. The formula
for,./n(0) is easily found from the one for h(O) by replacing .h by )vn. For the BDF1
method,

(31) Lh(O) + 2h(1 COS(01)) exp(--i02),

(32) or(0) (2)Vh COS(01) -- exp(--i02))/(1 -t- 2).h),

(33) /3(0) =12/2(0);

for the BDF2 method

(34) [-,h(O) 3/2 + 2)vh(1 -cos(01) -t- 1/2exp(-iO2)(exp(-i02) -4),

(35) or(0) (2)Vh COS(01) -- 1/2exp(--i02)(4- exp(-i02))/(3/2 + 2)Vh),

(36) /3(0) (2)h COS(01)O(0) - 1/2exp(-iO2)(4ot(O) -exp(-i02)))/(3/2 + 2)h);

and, finally, for the Crank-Nicolson scheme

(37) Lh(O) (1 -+- )Vh(1 COS(01)))(1 -+- exp(-i02)) 2exp(-i02),

(38) or(0) ()Vh COS(01)(1 -t- exp(--i02)) + (1 )h)exp(--i02))/(l + )Vh),

(39) /3(0) ()h COS(0)(ot(0) -k- exp(--i02)) -+- (1 )h)Ot(O)exp(--i02))/(1 + h).

Smoothing factors/z are presented as a function of kh for each of the three methods in
Fig. 2. They were computed with n n2 128, over the range 2-8 < kh < 28, sampled
at intervals of log2 )h 0.25. In the three pictures we show results obtained with standard
coarsening (dotted line), with x-coarsening (solid line), and with t-coarsening (dashed line).
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FIG. 2. Smoothingfactor lzfor backward Euler method (BDF1), second-order backward differentiation method
(BDF2), and Crank-Nicolson method (CN)" solid line: x-coarsening, dashed line: t-coarsening, dotted line: stan-
dard coarsening.

Figure 3 shows the computed values of the two-grid convergence factor p also determined for
nl =n2= 128.

Figure 4 shows experimentally computed two-grid convergence factors, obtained with an
implementation of the two-grid algorithm. The results prove to be in very close agreement
with the results obtained from the Fourier mode analysis (Fig. 3, top left).

4.5. Discussion. In the case of semicoarsening in space the magnitude of the two-grid
convergence factor is mainly determined by the smoothing characteristics of the red-black
relaxation scheme. The latter follows from the qualitative similarity of the corresponding
solid lines in Figs. 2 and 3. The red-black relaxation method performs very badly for small
values of h. It performs satisfactorily for large .h, with the BDF1 and the BDF2 methods.
With these two discretization methods the fully discrete problem corresponds to a large set of
essentially decoupled Poisson problems, one at each time level. The multigrid method with
red-black relaxation and standard spatial coarsening is known to be a very good solver for
such problems. For one-dimensional problems in particular, it is known to be an exact direct
solver. The latter argument obviously does not hold for the Crank-Nicolson discretization,
for which red-black relaxation fails as a smoother, even for large )h. (High frequency Fourier
error components with 02 re are hardly smoothed.)

When combined with semicoarsening in time, red-black relaxation loses all of its smooth-
ing qualities; see Fig. 2. The fast convergence of the two-grid scheme for small Zh therefore
cannot be explained by standard multigrid arguments. Instead, it is due to the fact that in this
case the PDE degenerates into a set of almost decoupled linear ordinary differential equations
(ODEs). Time discretization with BDF1 and Crank-Nicolson leads, in the limiting case of
kh 0, to a large set of bidiagonal systems, whose equations are of the following form:
(Ui,j Ui,j-l)/h2 jS,j. It can be shown that these equations are solved exactly by the two-
grid method and also by the multigrid method, with our choice of restriction and prolongation
operators, and with the use of red-black relaxation. The method is then essentially equivalent
to a cyclic reduction method. The latter argument does not hold for the BDF2 discretiza-
tion, however. For this method p is very small but different from zero even when .h 0.
Finally, we should point out the rapid growth of p with increasing -h in the Crank-Nicolson
case, which is due to Fourier components 0 (0, 02) with 02 , r/2. Such components
are disproportionally magnified by the coarse grid correction, since Lh(O) O(,h) while
.() o().
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FIG. 3. Two-grid Fourier mode convergencefactor p for backward Euler method (BDF1), second-order back-
ward differentiation method (BDF2), and Crank-Nicolson method (CN), with two smoothing steps (left) and 3
smoothing steps (right); solid line: x-coarsening, dashed line: t-coarsening, dotted line: standard coarsening.
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FIG. 4. Experimentally computed two-grid convergence factor p for BDF1 method with two smoothing steps;
solid line: x-coarsening, dashed line: t-coarsening, dotted line: standard coarsening.
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FIG. 5. Experimental resultsfor BDF1 method with three smoothing stepsfor V-cycle (left) and F-cycle (right),
one space dimension; solid line: 256 x 256, long dashed line: 128 128, short dashed line: 64 x 64, dotted line:
32 x 32.

The method with standardcoarsening in space and in time is nowhere optimal. It performs
very badly, except for a small region of ,h around 1.

5. Numerical experiments. We have implemented the multigrid method described in

3 and applied it to both the one- and two- (space)-dimensional model problems. In our
experiments, the number of smoothing steps used was given by Vl 2 and v2 1. We tested
V, F, and W multigrid cycle types. In order to test for grid-independent convergence rates, we
performed the tests on grids of varying size. The value of )crit was chosen on the basis of the
results of the Fourier analysis as the value at which curves for t-coarsening and x-coarsening
coincide. We use as a performance measure the mean convergence rate 5

(40)

where n is the number of the final iteration in which convergence is achieved. The convergence
criterion used in all cases was Ildll2/N < 10-9, Where N is the total number of variables on
the finest grid.

Figure 5 shows the results obtained for equation (1) with one space dimension using BDF1
for the discretization of the time derivative. The range of ), where ) denotes the "discrete
anisotropy" on the finest grid, is given by -8 < log2 ) < 8, sampled in increments of 0.25.
The rate of convergence ofthe BDF1 scheme using the V-cycle is evidently quite good for
all values of ), peaking at about 0.2. However, the grid sizes tested do not seem to yield a
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F]tG. 6. Experimental resultsfor BDF2 method with three smoothing stepsfor V-cycle (left) and F-cycle (right),
one space dimension; solid line: 256 x 256, long dashed line: 128 x 128, short dashed line: 64 x 64, dotted line:
32 x 32.
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F]tG. 7. Experimental resultsfor BDFI method with three smoothing stepsfor V-cycle (left) and F-cycle (right),
two space dimensions; dashed line: 64 x 64 x 64, dotted line: 32 x 32 x 32.

grid-independent value of tS. The F-cycle result is somewhat better than that of the V-cycle,
indicating that the coarse-grid correction is superior. Here a grid-independent convergence
rate is already achieved on the coarsest grid tested: the results for grids with sidelengths greater
than 64 are indistinguishable. Experiments with W-cycles showed no further improvement
over the F-cycle. For extreme values of . we observed that the method approaches an exact
solver, as expected.

The situation is similar for the BDF2 method (Fig. 6), where, however, the V-cycle con-
vergence rate is not as good, attaining values of as much as 0.4 on the largest grid tested.
Here the curves show pronounced "wiggles," which are due to the variation in the sequence
of semicoarsening directions for different values of . on the finest grid. This demonstrates
a certain degree of sensitivity of the overall convergence speed on a particular choice of
semicoarsening direction within the multigrid cycle. Here again, F-cycles are necessary to
achieve grid-independent convergence rates, which yield t5 0.2 in the worst case. Var-
ious modifications to the V-cycle, including increasing the number of smoothing steps on
coarser grids, although improving the convergence rate, did not result in grid-independent
convergence.

Figures 7 and 8 show analogous results obtained for the three-dimensional (x, y, and
t) model problem. As in the previous case, F-cycles achieve grid-independent convergence
speeds of better than 0.2, whereas the V-cycle returns less good results. The most significant
difference to the previous result is the asymmetry of the curves: the convergence rates for
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FIG. 8. Experimental resultsfor BDF2 method with three smoothing stepsfor V-cycle (left) and F-cycle (right),
two space dimensions; dashed line: 64 64 64, dotted line: 32 32 32.

TABLE 2
Averaged convergencefactor ofspace-time multigrid V(2, 1)-cycle on rectangular grids extending in the time

direction (one-dimensional model problem, BDF1 discretization).

Grid size 32 32 32 64 32 128 32 256 32 512 32 1024
)= 1/64
X= 1/4
X= 1/2

)=2

=4. 64

0.02 0.03 0.05 0.06 0.07 0.09
0.05 0.08 0.11 0.15 0.14 0.14
0.08 0.13 0.14 0.13 0.13 0.13
0.10 0.11 0.12 0.13 0.13 0.12
0.09 0.10 0.10 0.10 0.09 0.08
0.08 0.09 0.09 0.09 0.08 0.08
0.02 0.02 0.02 0.02 0.02 0.02

) > > 1 are no longer close to 0 but approach an asymptotic value of about 0.06. In this
case, the equation degenerates into a set of almost decoupled two-dimensional elliptic Pois-
son equations. The multigrid method treats the system accordingly and achieves the typical
convergence rate for this well-studied problem..

For practical problems, one is often interested in computing a very large number of time
steps. The PDE solution is then to be found on a rectangular space-time grid with many more
grid lines in the time direction than in the spatial directions. The results of such an experiment
are presented in Table 2, for the two-dimensional model problem with BDF1 discretization.
The results show that there is essentially no change in convergence caused when the integration
interval is extended. Thus we conclude that the method performs equally well, regardless of
the length of the time integration.

6. Parallel complexity. Parallel complexity is a theoretical measure of an algorithm
based on the assumption that an unlimited number of processors is available for its execution
and disregarding communication requirements. It describes, under the above assumptions,
the asymptotic dependency of the computation time of the algorithm as a function of the size
of the input.

The multigrid method presented in this paper is designed to be fully parallelizable. This is
achieved by its requiring only pointwise smoothing rather than more sophisticated techniques
such as incomplete decomposition methods. We may therefore assert the parallel complexity
of the multigrid V-cycle to be of the order of

(41) O(log Ns + log Nt),
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where Ns denotes the spatial sidelength of the space-time grid and Nt the sidelength in the time
direction. This is easily seen by observing the parallel complexity of each multigrid operation
at any grid level to be of the order 69(1) and the number of grid levels processed during the
cycle to be O(log Ns + log Nt).

Standard multigrid arguments show the multigrid nested iteration (FMG) to achieve dis-
cretization accuracy with a constant number of V-cycles per grid level, given that the conver-
gence rate is independent of the grid size. Summing the total number of grids visited by the
FMG-V iteration gives an overall parallel complexity of

(42) (.9 ((log N + log Nt)2)
Similarly, we obtain as the parallel complexity of the space-time FMG-F cycle

(43) (_9 ((log Ns + log N/)3)
Note that the same parallel complexities are found when simply performing V-cycles or
F-cycles to convergence.

This result compares favourably with that of the standard time-stepping technique, where
problems at each time step are solved with a parallel elliptic FMG or multigrid cycling scheme,
but the time steps are processed sequentially. For this method parallel complexities of O(Nt
log2 Ns) for V-cycles and (Q(Nt" log N) for F-cycles are obtained. Finally, we wish to recall
the complexity of the multigrid waveform relaxation method. In [10], it is shown that the
complexity of the FMG-V waveform algorithm is given by

(44) (.9 (log2 N. log Nt)
which is a polylogarithmic function of similar order as (43).

7. Conclusions. In this paper a multigrid method for the solution of parabolic PDEs has
been presented. The novelty of the scheme stems from its treatment of the entire space-time
problem, as opposed to the standard time-stepping approach. The method is characterized by
a parameter-dependent choice of coarsening strategy, together with appropriate prolongation
and restriction operators.

Results from Fourier two-grid analysis show that good rates of convergence can be ex-
pected for the scheme and that a naive approach to the problem fails. Numerical results are
presented for the one- and two-dimensional heat equations for both first- and second-order
discretizations of the time derivative. These proved to converge quickly, although at present
the F-cycle seems to be necessary to achieve grid-independent rates.

The algorithm is fully parallelizable in all problem dimensions, i.e., in both space and
time, in contrast to standard time-marching methods. It is shown that this leads to an improved
parallel complexity for parabolic problems. In addition, MIMD implementations ofthe method
will benefit from the increased parallelism and the improved surface-to-volume ratio as has
already been shown, albeit in a slightly different context, in 16].

Further work will include the implementation of the space-time multigrid method on a
massively parallel computer in order to determine whether the theoretically derived parallel
complexities can be achieved in practice. In addition, an FAS-like version of the method will
be developed in order to be able to solve nonlinear problems.

Appendix. We give the prolongation and restriction operators for the three-dimensional
space-time problem. To this end, we adopt the notation that a sequence of stencils is given,
whereby successive stencils are applied to successive time steps. Each stencil has the standard
interpretation on the space grid at one time step.
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Prolongation.
Case 1 (semicoarsening in direction).

0 0 0 0 0 0
0 0 0 0 0 0 0 0 01

Case 2 (semicoarsening in x and y directions).

000 242 0
000 121 0 01

Case 3 (standard coarsening in x, y, and t).

ooo[0 0 0
0 0 0

242
121

242
121

Restriction.
Case 1 (semicoarsening in direction).

2 0 0 0 0 0
0 0 0 0
0 0 0 0

Case 2 (semicoarsening in x and y directions).

000 ]- 24
000 12

2 0 0 0
0 0 0

Case 3 (standard coarsening in x, y, and t).

I122 4 2 2 43- 121 .2
2 0 0 0

0 0 0
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