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Abstract 1 

 The Floc Size Distributions (FSDs) of suspended fine-grained sediment flocs play a prime 2 

role to estimate their own fate and the transport of contaminates attached to the flocs. However, 3 

developing an efficient flocculation model that is capable of simulating continuous and multimodal 4 

FSDs is still a challenge. Recently, the population balance equation solved by the Quadrature-5 

Based Method of Moments (QBMM) with lognormal kernel density functions has been developed 6 

to investigate the aggregation and breakage processes. It coincides with some recent observations 7 

which describe a measured FSD in coastal waters with a set of constituted lognormal distributions. 8 

The newly developed lognormal QBMM was tested with several ideal flocculation kinetic kernels, 9 

none of which, however, was used for interpreting cohesive sediment dynamics. Therefore, it 10 

raised our interest to evaluate the model performance for fine-grained sediments in shear 11 

turbulence dominated environments. In this study, additional validations against two kaolinite 12 

laboratory experiments were tested in the framework of the extended QBMM. It is hypothesized 13 

that these subordinate lognormal distributions share the same value of standard deviation. Different 14 

from the previous methods, the common standard deviation is determined empirically to reduce 15 

the number of tracers and better represent the FSDs. With sediment flocculation kinetics, the 16 

predicted FSDs reasonably reproduce the FSDs observed in both the mixing chamber and the 17 

settling column experiments. Despite the lacking of explicit descriptions of microbial effects at the 18 

current stage, this model has the potential to be implemented into large-scale particle transport 19 

models and deserves a more in-depth study in the future. 20 

       21 

Keywords: population balance equation; cohesive sediments; floc size distribution; subordinate 22 

lognormal distributions; mixing jar; settling column 23 
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1.    Introduction 1 

 Large amounts of suspended particles, such as minerals from physico-chemical and 2 

biogenic origin (e.g., clays, quartz and carbonates), living and non-living organic matters (e.g., 3 

plankton and detritus) and anthropogenic cohesive particles (e.g., microplastics), are trapped on 4 

mudflats, in navigational channels and on continental shelves each year. For example, about 480 5 

million ton suspended sediments are annually loaded from the Yangtze (Changjiang) River in 6 

China (Song et al., 2013) of which 40% may be deposited in the estuary (Milliman et al., 1985). 7 

The reason why such small particles can deposit in these high-energy turbulent environments is 8 

obviously flocculation. That is, the component microparticles, often covered by biofilm, collide 9 

and combine with each other, and as a consequence are aggregated into clusters having larger size, 10 

decreased density and higher settling velocities than their individual constituents. The flocculation 11 

kinetics can also modulate sediment bed exchanges and determine concentration dynamics (Letter 12 

and Mehta, 2011). Thus, it is critical to understand how these processes respond to various 13 

environmental factors in natural (both freshwater and saltwater) systems, since it controls the fate 14 

of the particles themselves, and further to the toxic substances attached to the flocs. Freshwater 15 

flocs in the river are not necessarily smaller than flocs in saline water environments, since stronger 16 

shear stresses in the estuary may be the dominant effect to control the floc size (e.g., along the 17 

Yangtze River, see Guo and He, 2011; He et al., 2015).  Pronounced differences of floc sizes 18 

within a tidal cycle, between spring-neap cycles, or under stormy and calm weather conditions, 19 

also highlight the role of turbulent shear in the flocculation process (Guo et al., 2017, 2018). On 20 

the other hand, Cartwright et al. (2009) point out that in the York River estuary the flocs in the 21 

biologically-dominated mud site (where bioturbation is more prevalent, see Schaffner et al., 2001) 22 

have higher settling velocities than that in the physically-dominated site (where physically-induced 23 
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layering is more commonly observed within the bed), which emphasizes the effects of bioactivities 1 

on flocculation.  2 

 Flocs may range from microscopic (micron) size up to visible particles in units of 3 

millimeters, with a total size range of four orders of magnitude. Thanks to recently developed non-4 

intrusive instruments such as the LISST (Laser In Situ Scattering and Transmissometry, see 5 

Agrawal and Pottsmith, 2000) and various digital camera systems (Benson and French, 2007; 6 

Cartwright et al., 2013; Eisma et al., 1990; Graham and Nimmo Smith, 2010; Keyvani and Strom, 7 

2014; Manning, 2004; Shen and Maa, 2016a; Tang and Maggi, 2015), the Floc Size Distributions 8 

(FSDs) by particle volume or number can be better observed. Nevertheless, although large-scale 9 

field observations are the preferred way to study the sediment transport for engineering and 10 

environmental issues, they are hampered by high cost and geographical spreading. A coupled 11 

hydrodynamic and sediment transport model can complement measurements to cover the entire 12 

study domain. However, currently available three-dimensional (3-D) models are still not able to 13 

make satisfying quantitative predictions of sediment properties. This raises the following question: 14 

Can we do any better for the large-scale modeling of fine-grained sediment transport (Toorman, 15 

2012)? Actually, implementing a flocculation model (with the ability to predict the temporal and 16 

spatial varying FSDs) in sediment transport models, despite the challenge, could be a solution. 17 

One difficulty is that the typical issues we focus on have cell sizes in the order of 0.1 – 10 m in the 18 

vertical and 10 – 1000 m in the horizontal, and have time steps in the order of 0.1 – 10 minutes, 19 

whereas the particle micro-behaviors such as aggregation and breakage occur at smaller scales 20 

which are resolved at a sub-grid scale with a refined spatial resolution and a reduced time step. 21 

This limits the performance of some mesoscale simulations (e.g., Lattice Boltzmann model, see 22 

Zhang et al., 2016, 2017) applicable in large study domains. In reality, it requires that the 23 
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flocculation model is at reasonable cost, and that it has the potential to be extended to include other 1 

floc parameters besides the floc size, such as floc density (or fractal dimension), floc shape and 2 

floc composition that also influence the settling velocities of in-situ biomineral aggregates 3 

(Fettweis and Lee, 2017).   4 

 One candidate of such flocculation model is the Population Balance Equation (PBE) that 5 

is capable of tracking the number density n (L, x, t) for particles with size L at location x = x (x, y, 6 

z) and time t. Floc-growth based single-group PBEs (Winterwerp, 1998, 2002), class-based two- 7 

or three-group PBEs (Lee et al., 2011, 2014; Shen et al., 2018a, 2018b) and quadrature-based 8 

multi-group PBEs (Prat and Ducoste, 2006; Shen and Maa, 2015, 2016b, 2017) are among a few 9 

applications that are successfully coupled with hydrodynamics at least in one-dimensional (1-D) 10 

applications. The floc-growth based PBEs only track the representative size of all the particles, 11 

and thus is unable to address multimodal FSDs which nevertheless are commonly observed in 12 

estuaries and coastal waters (e.g., Manning and Dyer, 2002; Benson and French, 2007; Verney et 13 

al., 2011). By comparisons with several analytical cases, Marchisio et al. (2002) indicates that 14 

quadrature-based PBEs are more desirable than class-based multi-class PBEs after investigating 15 

both the computational time and the accuracy of the representative sizes. Quadrature-based PBEs 16 

also have the advantages of including any measured initial FSD (e.g., Shen and Maa, 2016b) or 17 

including more particle properties (e.g., Vale and McKenna, 2005). Nevertheless, standard 18 

quadrature-based PBEs still lack thorough comparison with field data, especially for multimodal 19 

FSDs.  20 

 Lee et al. (2012) analyzed a large number of in-situ FSDs by floc volumes collected from 21 

the Belgian coastal zone and concluded that the observed FSDs can be approximated best by four 22 

lognormal distributions for primary particles (0.1 - 4 μm), microflocs (4 - 20 μm), macroflocs (50 23 
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- 200 μm) and megaflocs (> 200 μm). The two-class PBE can efficiently and reasonably simulate 1 

the representative sizes of microflocs (with primary particles merged) and macroflocs (with 2 

megaflocs merged) (Lee et al., 2011, 2014). Later, Shen et al. (2018a, 2018b) extended the two-3 

class model into three-class by adding an additional group to better address the appearance of 4 

megaflocs especially during algae bloom period. The simplified two-class or three-class models 5 

have also been successfully coupled with the open TELEMAC modeling system. In their model, 6 

however, only the representative sizes of the component lognormal FSDs are involved. That is, 7 

the simulated FSDs are not continuous, since they do not contain the prediction of the standard 8 

deviation of each lognormal FSD. This leads to the missing of a direct representation of the entire 9 

FSD shape.  10 

 This weakness is a challenge to be dealt with until Nguyen et al. (2016) solved the FSDs 11 

using the Extended Quadrature-Based Method of Moments (Extended QBMM or E-QBMM) 12 

(Yuan et al., 2012) with lognormal kernel density functions (Madadi-Kandjani and Passalacqua, 13 

2015). However, only simple conceptual aggregation and/or breakage kernels within zero-14 

dimensional (0-D) frameworks are tested and compared with the reference work by Vanni (2000). 15 

The tested kernels are not realistic for describing collision and breakage processes of cohesive 16 

aggregates in natural aquatic environments. It is not clear whether the prediction of FSDs of 17 

estuarine mud will benefit from their contributions. Therefore, the objective of this study is to 18 

conduct additional validations for the flocculation processes of cohesive sediments. The common 19 

standard deviation of the constituted FSDs is determined empirically. Two experiments are 20 

employed to evaluate the model performance: (1) a kaolinite mixing jar test by Shen and Maa 21 

(2016a) as a 0-D validation case, and (2) a kaolinite settling column experiment by Maggi et al. 22 

(2007) as a vertical 1-D validation case. The remainder of the paper is structured as follows: 23 
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Section 2 briefly introduces the PBE, the E-QBMM and the solution methods. Section 3 mainly 1 

describes two experiments for model validations. The results and discussion on model predictions 2 

are carried out in Section 4, with some thoughts on the development of a coupled hydrodynamic, 3 

turbulence and flocculation model. The conclusions are presented in Section 5.    4 

 5 

2.    Model description and solution methods     6 

2.1    Moment transport equations  7 

 Consider the following PBE in a vertical 1-D format for describing the evolution of number 8 

density of suspended particles in a carrier fluid (Shen and Maa, 2015, 2016b, 2017):  9 
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           (1) 13 

where n (L, z, t) is the number density of the particles with size L at vertical coordinate z and time 14 

t, ws is the mass-weighted settling velocity, D is the eddy diffusivity, λ is the variable of integration 15 

with dimension of size, α is the collision efficiency, β (L, λ) is the collision frequency between 16 

particles with size L and λ, a (L) is the breakage frequency of particles with size L, and b (L | λ) is 17 

the fragmentation distribution function describing the created number of particles with size L after 18 

the breakage of a parent particle with size λ. The left hand side of Eq. 1 comprise the unsteady 19 

term, the settling term and the diffusion term, respectively. The right hand side consists of the 20 
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flocculation sources and sinks (Shen and Maa, 2015). The advection term may be added in Eq. 1 1 

for strong bulk transport of sediments.  2 

 To avoid tracking a large number of size classes, the FSDs can instead be stored in their 3 

moments by the moment transformation: 4 
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in which mk is the kth order moment of the FSD. Note that m0, m2 and m3 are proportional to the 6 

total number, total surface area and total volume of the solid particles. 7 

 Substituting Eq. 2 into Eq. 1, the governing equation can be rewritten as a set of moment 8 

transport equations (Marchisio et al., 2003a): 9 
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 (k = 0, 1, …)                                                                                                                    (3) 14 

 This equation is unclosed since the FSD should be resolved from its moments to make sure 15 

that the source and sink terms are physical. The moments have to stay in the moment space, which 16 

is the reliability condition of these quadrature-based methods (Wright, 2007; Nguyen et al., 2016; 17 

Laurent and Nguyen, 2017).  In fact, even a suitable closure does not necessarily guarantee a 18 
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realizable FSD, especially at the boundary. Nevertheless, this issue is not always considered, since 1 

approaches that determine if a vector belongs to the moment space (characterized by the Hankel 2 

determinants) are generally unsatisfactory and computationally heavy.  3 

 4 

2.2    Solution method and sediment flocculation kinetics   5 

 In order to close the moment transport equation (Eq. 3), Yuan et al. (2012) proposed that 6 

the number density function can be reconstructed by a weighted superposition of non-negative 7 

functions: 8 
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where δσ (L, Li) is the kernel density function (i.e., the subordinate FSDs), wi and Li are the non-10 

negative weights and corresponding representative sizes (also referred to as “abscissas”, “nodes” 11 

and “pivots”) of the constituted FSDs, N is the number of component FSDs, and σ is a unique 12 

nonnegative parameter shared by all subordinate FSDs. Hereafter we drop symbol z and t in the 13 

number density function n (L) to focus on the FSD at a specific time and location.  14 

 Lee et al. (2012) concluded that an observed FSD of estuarine mud can be decomposed 15 

into two to four lognormal distributions to estimate the settling flux with 3% - 10% errors. Thus, 16 

it is straightforward to select the kernel density function δσ (L, Li) as a lognormal distribution at 17 

first stage in our applications. In this sense, the parameter σ in Eq. 4 becomes the standard deviation 18 

σ of the lognormal distributions (Madadi-Kandjani and Passalacqua, 2015):  19 
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 If σ → 0, )(),(lim
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which can be solved by the standard QBMM (McGraw, 1997; Shen and Maa, 2015). Note that 3 

although a continuous FSD can be approximated by a large number of delta functions in QBMM 4 

(Eq. 6), it is numerically difficult to track the FSD with high order moments. That is, strictly 5 

speaking, the FSDs predicted by the QBMM are usually limited by size classes less than eight. 6 

Selecting lognormal distributions as the kernel density functions, nevertheless, will make the entire 7 

FSD predictions truly continuous.  8 

 For an arbitrary function g(L), the integral with the number density function n (L) as the 9 

weight function can be expressed as (Madadi-Kandjani and Passalacqua, 2015): 10 
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where Li and wi are the primary abscissas and weights (i = 1, 2, …, N), and N is the number of 12 

subordinate lognormal functions. For each lognormal function ),( iLL (Eq. 5), Lij and wij (j = 1, 13 

2, …, Ni ) are the secondary abscissas and weights. In general, Ni ≥ N is required in order not to 14 

lose the accuracy of introducing the second abscissas and weights. 15 

 Selecting g(L) = Lk, and substituting Eq. 7 into Eq. 3, the governing equation can be 16 

expressed as: 17 
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 At each location and time step, the FSD, i.e., the Li (i = 1, …, N) and wi (i = 1, …, N) are 4 

reconstructed from the moments mk, which is referred to as “moment inversion” (e.g., Passalacqua 5 

et al., 2018). It is important to note that in Lee et al. (2012)’s study, the parameter σ varies for each 6 

constituted distribution for a better match of the fitted and measured FSDs; in this study, however, 7 

σ is shared for all subordinate lognormal distributions. With the parameter σ properly selected, the 8 

predictions of the entire FSDs are not significantly deviated (Fig. 1). A common σ can also reduce 9 

the number of tracers. For example, as shown in Fig. 1, if using number of N lognormal FSDs to 10 

approximate the measurement, an unshared σ requires 3N variables while a common σ requires 11 

only 2N+1. If the common σ is further determined empirically (Eq. 10) rather than treated as an 12 

independent tracer, the number of tracers is reduced to 2N. It is hypothesized that the standard 13 

deviation (σ) of the subordinate distribution is enlarged with the increment of the characteristic 14 

mean size d32 until an equilibrium or quasi-equilibrium state. At t = 0, all particles are assumed 15 

concentrated on single size primary particles with σ = 0. Thus, the common σ is given by: 16 
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where d32 (d32 = m3/m2) is the Sauter mean size (Mugele and Evans, 1951; Sowa, 1992), lp is the 18 

size of primary particles and α0 is a fitting constant.  19 

 The kth order moments of the lognormal distribution δσ (L, Li) are (Magnus et al., 1996):  20 
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 (k = 0, 1, …) 4 

 After the common standard deviation σ being found in Eq. 10, the first 2N terms in Eq. 12 5 

can be employed to solve Li and wi (i = 1, …, N): 6 
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 Eq. 13 can be solved by the Chebyshev algorithm given by Wheeler (Wheeler, 1974; Su et 8 

al., 2007; Yuan and Fox, 2011; Shen and Maa, 2015). The main point of Eq. 13 is to find the 9 

eigenvalues and eigenvectors of a real, symmetric, tri-diagonal Jacobi matrix, with the elements 10 

of the matrix computed by the moments from a three term recurrence relation, which is based on 11 

the theory of orthogonal polynomials.  Although Eq. 13 is numerically ill-posed, it is practical to 12 

apply standard QBMM to solve it for low order moments ( 4N ). An adjustable factor may be 13 

included only when more subordinate lognormal distributions are required.   14 

 Therefore, the solution of governing equation (Eq. 8) can be summarized in the following: 15 

(a) At t = 0, compute the initial 2N moments m0, m1, …, m2N−1 for a given initial particle size 16 

distribution (Eq. 2), assuming using number of N subordinate lognormal distributions to 17 

approximate the entire FSD.  18 
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(b) Update the moments, by solving the advection (if necessary), diffusion and settling terms in 1 

Eq. 8. 2 

(c) Estimate the common standard deviation σ (Eq. 10), and extract the primary abscissas Li and 3 

weights wi (i = 1, …, N) from the first 2N moments mk (k = 0,1,…,2N−1) (Eq. 13), using Wheeler’s 4 

algorithm (for unknown kernel density functions). 5 

(d) Find the secondary abscissas Lij and wij (j =1, 2, …, Ni ) for each constituted lognormal FSD δσ 6 

(L, Li), using Gauss-Stieltjes-Wigert quadrature (equivalent to use Wheeler’s algorithm for 7 

lognormal kernel density functions). 8 

(e) Calculates the source and sink terms in Eq. 8, updates the moments, and go to (b) to solve the 9 

transport equation for the next time step. 10 

 In order to address the cohesive sediment properties by solving Eq. 8, the flocculation 11 

kinetics are selected based on previous studies (e.g., Smoluchowski, 1917; Winterwerp, 1998; 12 

Marchisio et al., 2003b; Maggi et al., 2007; Shen and Maa, 2015, 2016b): 13 
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 Fragmentation distribution function: 16 
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where G is the shear rate, Eb is the breakage fitting parameter, Fy is the floc strength, and K 18 

describes the number of daughter flocs created after a parent floc breaks up.  19 

 The settling velocity for each size group is represented as (Winterwerp, 1998): 20 
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where ρs and ρw are the densities of sediment and water, nf is the fractal dimension of flocs, μ is 2 

the fluid dynamic viscosity, g is the gravitational acceleration, and Ref = ws,i ∙Li ∙ρw /μ is the floc 3 

particle Reynolds number. The parameter 
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 1 is the correction factor accounting for 4 

hindered settling (Cuthbertson et al., 2008), where 
3Lc  is the Suspended Sediment 5 

Concentration (SSC), cgel is the gelling concentration, and A is a constant between 2.5 − 5.5 and 6 

set as 4.7 (Richardson and Zaki, 1954). 7 

 8 

3. Case studies  9 

3.1 Case 1: Mixing jar experiments 10 

 Recently a laboratory experiment was carried out by Shen and Maa (2016a) to investigate 11 

the equilibrium FSDs of suspended kaolinite in a five liter cubic mixing chamber for different 12 

sediment concentrations, shear rates, salinities and guar gum dosages. The LIGHTNIN A310 13 

propeller was used to generate the turbulence. The tank averaged shear rate G was controlled by 14 

the rotational speed of the propeller (Nr) which was driven by a DC gear motor, and G was also 15 

influenced by the properties of the propeller as well as the volume of the chamber Vc (Ducoste and 16 

Clark, 1998): 17 
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in which Dr is the diameter of the propeller and Nrp is a propeller specific constant. Sediment 19 

samples were extracted by syringe and weighted after oven-dried overnight to determine the 20 
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sediment concentration (c). The FSDs were observed by a camera and image processing system, 1 

with a resolution of 2×2 pixels to identity a floc with minimum size of 5 μm. The camera 2 

continuously took pictures every 2 s, with the camera and light source trigger controlled by a 3 

programmed microcontroller Teensy 2.0. The FSDs at steady state are reported by an average of a 4 

continuous one hundred images. The image processing procedure was supported by comparison 5 

with commercially available particles (Shen and Maa, 2016a), and later was also reported as “well 6 

correlated” with other image capturing systems (Ramalingam and Chandra, 2017). Such a mixing 7 

chamber and image processing system was placed at Virginia Institute of Marine Science (USA) 8 

from 2013 to 2015.  9 

 Shen and Maa (2016a) have successfully modeled the FSDs in most cases using the 10 

standard QBMM. However, for cases of sediments with guar gums, a strong bimodal FSD were 11 

observed. Their method cannot address the second peak of FSD with a maximum of eight nodes. 12 

In this study, the FSDs were instead estimated by two subordinate lognormal distributions (N = 2). 13 

For each subordinate distributions, a three-node quadrature was used to estimate its moments (Ni 14 

= 3). The settling and diffusion terms in Eq. 8 are neglected to address the average property in the 15 

mixing chamber. The initial kaolinite concentration (c) was 0.52 g/L, the tank-averaged shear rate 16 

(G, calculated by Eq. 18) was 55 s−1, and the guar gum concentrations cguar = {0, 5, 10, 15, 20, 30} 17 

mg/L. For each case, the jar test was carried out independently, and the solution was discarded 18 

before the next test. The propeller rotated at its maximum speed for half an hour to destroy the 19 

flocs, and then was set to the proposed rotational speed to promote flocculation. Thus, all the 20 

particles are assumed in the form of primary particles at t = 0 with lp = 6 μm. The steady state 21 

FSDs were used to calibrate this model.   22 

 23 
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3.2 Case 2: Settling column experiments 1 

 The second validation is to compare the model results with FSD measurements in a settling 2 

column experiment by Maggi et al. (2007). The settling column was designed and manufactured 3 

at Delft University of Technology (Netherlands), with height 5 m (totally 4 m, from surface to 1 4 

m above bottom) and diameter 30 cm. A homogeneous and isotropic turbulent field was generated 5 

by an oscillating grid over the settling section of the column height (e.g., Cuthbertson et al., 2010, 6 

2018; Tang and Maggi, 2015). By comparison with several grid configurations, Maggi (2005) 7 

proposed that the rectangular grid was the optimal selection to compromise both the flow 8 

hydrodynamic behavior and the manufacturing costs. Driving systems controlled the movement of 9 

the grid with a maximum stroke (A0) of 8.4 cm. The shear rate G was linearly correlated and 10 

controlled by the grid frequency, with shear rate G = {5, 10, 20, 40} s−1 corresponding to grid 11 

frequency fg = {0.05, 0.1, 0.25, 0.5} Hz, respectively. The aggregates passed through the settling 12 

section and reach the measuring section which was located at 0.5−1 m above bottom. A small 13 

fraction of the flocs were transferred to a collector, with the FSDs measured by a digital camera 14 

without being affected by large-scale water circulation in the settling column. The aggregates are 15 

illuminated by a laser source and captured in the images with a resolution of 6 μm per pixel. The 16 

bottom 0.5 m was the bed section, with particles passing through the settling and measuring 17 

sections deposited on the bottom. In the experiment, kaolinite suspensions with concentrations c 18 

± 0.015 g/L were maintained by a buffer tank on the top of the settling column. By assuming the 19 

downward flux above and below the measuring section are close, this flocculation process of 20 

suspended kaolinite can be simulated using a 0-D model (Maggi et al., 2007; Mietta et al., 2008; 21 

Shen and Maa, 2015). However, this assumption cannot be verified or argued without additional 22 

measurements. In this section, a vertical 1-D model (Eq. 8) was employed to reproduce the 23 
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experiment, with sediment mass concentration 0.5 g/L at the top boundary and shear rates 5, 10, 1 

20 and 40 s−1 respectively. Although the vertical eddy diffusivity D was not reported in their 2 

experiment, van Leussen (1994) pointed out that its value in such experiment can be determined 3 

by the following relationship: 4 

 
2

0AfD gg            (19) 5 

in which αg is a constant that should be determined from the experiment. Here, it hypothesized that 6 

the energy from the grid bars is dissipated by the fluid of the whole cross section. Therefore, αg 7 

can be estimated by the ratio of grid bar areas to the cross section of the settling column. It results 8 

in αg = 0.19. This value is similar to van Leussen’s experiment with the settling column having 9 

similar column diameter and grid configuration. It is understandable that the energy will be 10 

dissipated rapidly when flocs settled out of the turbulent section, and thus it also assumes that the 11 

eddy diffusivity and the energy dissipation rate rapidly decreases to their minimum value from the 12 

settling-measuring section interface (i.e., 1 m above the bottom) to the bed. The initial and 13 

boundary conditions are in accordance with the following assumptions: (1) at t = 0, all particles 14 

are primary particles with size of 8 μm; (2) at the upper boundary, the sediments released from the 15 

buffer tank are all primary particles with a fixed concentration of 0.5 g/L; (3) at the lower boundary, 16 

sediments are freely deposited without erosion and resuspension; (4) the standard deviation σ in 17 

the bottom cell is set to 0 to avoid numerical instabilities. Finally, the observed FSDs at the 18 

measuring section are used to calibrate and validate the model. 19 

  20 

4. Results and discussion 21 

4.1 Comparison with mixing jar experiments: 0-D test 22 



18 
 

 The parameters for different guar gum concentrations cguar = {0, 5, 10, 15, 20, 30} mg/L 1 

are summarized in Table 1. A value of K = 5 is selected in the fragmentation distribution function 2 

(Eq. 16) for all cases. The errors (E) of predicted and observed FSDs are evaluated using the 3 

following equation (Maggi et al., 2007; Shen and Maa, 2017): 4 

 








 

i

iEiM wwE ,,
2

1
        (20) 5 

In this experiment, the measured number frequencies are given at LE  = {5.27, 7.33, 10.2, 14.2, 6 

19.8, 27.6, 38.4, 53.5, 74.5, 104, 144, 201, 280, 390, 543, 756, 1052} μm. Thus, the differences of 7 

modeled wM and experimental wE at diameter LE are evaluated using Eq. 20, with  
i

iMw 1,

 

and 8 

 
i

iEw 1, . 9 

 The simulated FSDs agree well with the measurements for all guar gum dosages (Fig. 2), 10 

with a maximum error of 0.07 (Table 1). Enhanced model predictions are achieved in this study, 11 

compared with the previous study by Shen and Maa (2016a) that failed to mimic the bimodal FSDs 12 

using an eight-node QBMM. Two subordinate lognormal distributions (N = 2) of microflocs and 13 

macroflocs are employed to represent the entire FSD. This selection is not only for reducing the 14 

number of tracers. Notice that a better prediction is not always guaranteed by increasing the 15 

number of subordinate FSDs. It is influenced by the properties of the flocculation kinetics. Not all 16 

the target FSDs are decomposable into lognormal distributions. Also, it is not suitable to use a 17 

large number of component FSDs to approximate a simple distribution. For example, when no 18 

guar gum is added, it seems that the target FSD may be better predicted by one lognormal 19 

distribution instead of two (Fig. 2(a)). Based on the above concerns, N = 2 for L1 represents 20 

microflocs and L2 represents macroflocs are employed for all cases in this study.  21 
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 The breakage coefficient Eb is in the order of 10−6 in this case, about one order of magnitude 1 

lower than clean sediment for a reduced breakage because of organic matter (Table 1). The ratio 2 

of α/Eb is a critical parameter to exhibit floc growth (Mietta et al., 2011; Furukawa and Watkins, 3 

2012; Shen and Maa, 2016b). A maximum ratio of α/Eb are occurred for guar gum concentration 4 

15 mg/L (Fig. 3(a)), with maximum size of macroflocs (L2 = 151 μm, Fig. 3(c)) and highest weights 5 

(w2 = 0.69, Fig. 3(d)) also at this dosage. It confirms the existence of an optimal cguar dosage (Table 6 

1) for settling flocs in natural environment or waste water treatment. The sizes of microflocs L1 7 

are close to each other (~ 32 μm, Fig. 3(c)), with its minimum weight (w1) also at cguar = 15 mg/L 8 

(Fig. 3(d)). The fractal dimension nf has the smallest value also at this optimal cguar dosage (Fig. 9 

3(b)). An average fractal dimension of 2.7 (Table 1) indicates that the flocs in the mixing chamber, 10 

although with size enlarged, are still relatively compact. In our sensitivity test, a fractal dimension 11 

nf from 2.0 to 2.7 will not significantly alter the size of the major peak; however, the common 12 

standard deviation σ is reduced as nf deceases (Fig. 4(a)). A high nf will decrease the breakup 13 

frequency (Eq. 15), which lead to higher mean size and larger σ. It is essential to note that a 14 

common σ derived from the (2N)th moment (Madadi-Kandjani and Passalacqua, 2015) will lead 15 

to numerical instability and physically to a narrow spread of FSD in our applications, and thus is 16 

not used. With an empirical σ (Eq. 10) related to the mean size of FSD, a better estimation of the 17 

spread of FSD are reached. Although the selected α0 (Eq. 10) and thus σ are close in all cases (Fig. 18 

3(b)(d)), the predicted FSDs are sensitive for the selection of α0 (Fig. 4(b)). Increase of the value 19 

of α0 will increase σ straightforwardly, and therefore make the spread of FSD wider and decrease 20 

the size of main peak (Fig. 4(b)). 21 

 Taking cguar = 15 mg/L as an example, the steady state is achieved after 2 hrs according to 22 

the model (Fig. 5(a)). The total particle number m0 reduced to 0.015 ‰ of initial m0 at steady state. 23 
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The total particle volume m3 was unchanged for volume conservation in 0-D model. The moments 1 

m1 and m2 decrease with time until arriving at steady state, since aggregation dominates at the 2 

beginning and breakage becomes comparable with aggregation after large floppy flocs occurring. 3 

The fourth moment m4 is integrated from the simulated FSDs at each time step. For spherical 4 

particles, m4 is proportional to the total surface area of particles settling per unit time (Mehta, 2013). 5 

Therefore, they are increased due to flocculation until a steady state. The time evolutions of FSDs 6 

are displayed every 15 minutes until steady state (Fig. 5(b)). It shows how a bimodal FSD 7 

generated from point distributed primary particles. Firstly, the major peak remains close while the 8 

standard deviation rapidly increases to yield a wider distribution. After that, the major peak swifts 9 

to the right side and microflocs dominated because of aggregation. Then, a second peak becomes 10 

obvious with time, indicating the occurrence of large macroflocs. The effect of breakage become 11 

important, since larger flocs with more constitute primary particles are easier to destroy. Finally, 12 

the aggregation and breakage arrive at equilibrium to form a FSD with two major peaks. 13 

 14 

4.2 Comparison with settling column experiment: 1-D test  15 

 By trial-and-error, the coefficients α = 0.95 and Eb = 1.05 × 10−5 were selected to best fit 16 

the FSDs observed at the measuring section (Z = 0.75 m). The parameter α0 which controls the 17 

spread of simulated FSDs (Eq. 10) was set as 0.195. Other parameters for the best-quality 18 

simulations are summarized in Table 2. The case of shear rate G = 10 s−1 was used for calibration, 19 

while G = {20, 40} s−1 were adopted for validation. It can be shown that the predicted and observed 20 

FSDs at the measuring section reasonably match for G = {10, 20, 40} s−1 (Fig. 6). It shows a 21 

significant improvement in comparison with that given by Maggi et al. (2007) or Shen and Maa 22 

(2015). The fitted FSDs in Fig. 6 are based on a superposition of two lognormal constituted FSDs 23 
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with different variances by the software DistFit (Chimera Technologies, USA) to better represent 1 

the observations. Notice that for G = 5 s−1, the low oscillating frequency (σg < 0.1 Hz) might lead 2 

to a non-homogenous mixing (Maggi, 2005). Therefore, a reasonable agreement was only attained 3 

by recalibrating the model by a larger collision efficiency α = 1.1 whereas a smaller variance with 4 

α0 = 0.175 (Fig. 6(d)). Note that by definition the α should be less than unity; however, α > 1 is 5 

possible for flocs with low fractal dimensions (Lee et al., 2000; Shen and Maa, 2015).  For all the 6 

cases, the major peaks of the FSD are properly addressed against measured value, while the 7 

secondary peaks for the macroflocs are more or less deviated from the observations. This is 8 

because of the assumption of a common standard deviation σ. The common σ should compromise 9 

a large σ of microflocs and a small σ of macroflocs in this application. 10 

 For G = 10 s−1, the vertical profiles of SSC, weighted settling velocity ws, total particle 11 

number m0 and the arithmetic mean diameter d1,0 (d1,0 = m1/m0) along the column are examined. 12 

The SSC in the upper column decreases as particles are aggregated and settled to the lower section 13 

(Fig. 7(a)). Although sediments at the top are operated by a buffer tank to maintain a constant SSC 14 

around 0.5 g/L, a minimum SSC occurs close to the surface (Z = 4.5 m) with the SSC decreasing 15 

to half of the initial value. The concentration at the measuring section does not vary significantly, 16 

while the SSC at the bed section largely increases (> 1 g/L) since the settled large flocs pass 17 

through the measuring section and are concentrated on the bottom. At the first few minutes, the 18 

settling velocities ws at the bed section (Z < 1 m) are smaller than ws at the upper section (Z = 1 − 19 

4.5 m) (Fig. 7(b)). This is because the oscillating grids only lay in the settling section, and thus 20 

shear rate is largely reduced at the bed section so that it cannot promote flocculation at the 21 

beginning. With time, however, the ws at the bottom section increases since larger flocs are settled 22 

to the bottom, which also leads to an increase of particle diameter d1,0 at the bed section. The 23 
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deviation of settling velocity at the measuring section is small, and the ws gradually decreases until 1 

the surface where primary particles are released from the buffer tank. The relative total particle 2 

number m0(t)/m0(t=0) decreases to 1‰ (Fig. 7(c)) in the measuring section, while the mean size 3 

d1,0 increases to 45 μm at that location (Fig. 7(d)). 4 

  Also for G = 10 s−1, the variation of SSC is merely 5 % at the measuring section (Z = 0.75 5 

m) (Fig. 8(a)), which more or less confirms the assumption of a “constant” sediment concentration. 6 

At column heights at the settling section, however, the sediment concentrations obviously alter 7 

with time. During the simulating period, the concentration at Z = {1.75, 2.75, 3.75} m continuously 8 

decreases. Close to the surface (Z = 4.75 m), the SSC decreases to 0.32 g/L during the first half an 9 

hour and becomes steady thereafter. At all column heights, the mean size d1,0 increases at the 10 

beginning as particle growing, and then arrives at steady state after half an hour (Fig. 8(b)). The 11 

settling velocities ws (Fig. 8(c)) and standard deviation σ follow the same trend of d1,0 (Fig. 8(d)). 12 

In less flocculated areas (Z = 4.75 m) close to the surface, the d1,0, ws and σ reach equilibrium much 13 

faster than in well flocculated areas (Z = 0.75 m).  14 

 The FSDs against different SSCs are also predicted in Fig. 9. A higher SSC of 0.75 g/L 15 

may increase the mean diameter d1,0 up to 57.0 μm, while a SSC of 0.25 g/L will lower d1,0 down 16 

to 32.5 μm (Fig. 9). This is because the flocculation rate is proportional to the particle 17 

concentrations, with higher concentrations resulting in high possibilities of collision. For G = 10 18 

s−1 with different concentrations c = {0.25, 0.5, 0.75} g/L, the sizes of microflocs L1 are close (L1 19 

= 21.1 ± 2.6 μm). Larger standard deviations (σ = {0.42, 0.49, 0.54}) are expected for higher SSCs. 20 

Both the sizes and weights of macroflocs increase as c increases (L2 = {53.1, 59.2, 62.7} μm and 21 

w2 = {0.27, 0.48, 0.7}). These predictions can be tested in future experiments. 22 

 23 



23 
 

4.3  Model evaluation 1 

 In this study, the applications of the E-QBMM are based on the observations that the in-2 

situ FSD can be decomposed into a limited number of lognormal distributions. In general, four 3 

component lognormal FSDs are sufficient to represent a measured FSD (Lee et al., 2012) to 4 

identify groups of primary particles, microflocs, macroflocs and megaflocs. This means, only a 5 

maximum of eight tracers (i.e., their weights and representative sizes) with a common standard 6 

deviation are required in a large scale model. To further reduce the number of tracers for exhibiting 7 

a multimodal FSD, as low as four tracers can be employed as used in this study. Compared with 8 

previous two- or three-class PBEs, this model provides a straightforward percept of the entire 9 

continuous FSD instead of only discrete representative size groups. It avoids reformulation of the 10 

flocculation source and sink terms for different number of size groups, but adopts comparable 11 

number of tracers which will not significantly increase the computational demands. After validated 12 

by more field data, this model has the potential to simulate the spatially and temporally varied, 13 

continuous, and multimodal FSDs within the framework of large-scale simulations.  14 

 Although this method is efficient and powerful to deal with the entire FSD, it has a few 15 

weaknesses based on the assumptions that all the subordinate FSDs share the same standard 16 

deviation σ. The purpose of this selection is to reduce the number of tracer, and to make it possible 17 

to use the Wheeler’s method to solve the “well-studied” low order non-linear equation system (Eq. 18 

13). However, from Lee et al. (2012) we know that the standard deviations of the constituted FSDs 19 

sometimes are largely different. A single σ is merely chosen by matching the simulated and 20 

observed FSD, without exploring its physical meaning by investigating the change of σ with 21 

environmental parameters (such as shear rate, salinity, temperature and bioactivities). In fact, the 22 

standard deviation σ used to characterize the width of the distribution in the model (or in the in 23 
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situ FSD) should also include non-spherical characters of the particles and is thus not only 1 

indicating different sizes of particles. Furthermore, a standard deviation σ does not always exist. 2 

Even treating σ as an additional tracer, none of the iteration methods (Madadi-Kandjani and 3 

Passalacqua, 2015), the Ridders’ method (Press et al., 1992) or the Brent’s method (Press et al., 4 

1992) proposed by recent studies could guarantee a realistic σ. Physically it means that the code 5 

fails to find a single common σ to compromise all the component FSDs when more subordinates 6 

are included. Thus, N = 2 is a practical selection on the first stage. A standard deviation σ derived 7 

from the (2N)th order moment of the FSD (Madadi-Kandjani and Passalacqua, 2015; Nguyen et 8 

al., 2016; Passalacqua et al., 2018), if applicable, results in a narrow spread of FSD in our tests. 9 

This may be because m2N highlights larger particles and underestimates the value of σ due to 10 

rounding-off errors. This part can be improved if a better method to find the optimal σ to minimize 11 

the simulated and measured FSDs is available. It is also noticeable that the subordinate lognormal 12 

FSD assumption is based on the data collected in well-mixed Belgian coastal zones (Lee et al., 13 

2012; Fettweis and Lee, 2017; Fettweis e t al., 2016). Few measured data from other areas, 14 

especially stratified regions, are available to evaluate this decomposition. Another issue is that the 15 

current flocculation kinetic equations are decoupled with transport terms, and are always solved 16 

explicitly in each time step. That is, at time t, the tracer source and sink terms are estimated using 17 

the values at time t−dt. Therefore, better numerical schemes should be developed to accommodate 18 

both explicit and implicit time stepping.  19 

Moreover, although flocculation dynamics in rivers and estuaries is strongly dependent on 20 

microbial activities (Wolanski and Elliott, 2016), this model does not explicitly include these 21 

effects, because it may result in an endless chain of processes at the current stage. Actually, even 22 

the most recently published papers still mainly focus on clean sediments without biology (e.g., 23 
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Cuthbertson et al., 2018; Mhashhash et al., 2018; Tran et al., 2018; Zhang et al., 2018; Zhu et al., 1 

2018). In fact, even easier parts of ecosystems, such as organic matter, phytoplankton and biofilms, 2 

are still not fully understood and quantifiable.  It is possible to include an ecohydraulics library, 3 

such as AED2 (the Aquatic EcoDynamics modeling library, 4 

http://aed.see.uwa.edu.au/research/models/AED/), which can be used by the TELEMAC system 5 

(http://www.opentelemac.org/), but the chance for gain in accuracy is only achieved by decreasing 6 

the involved processes, due to their high degree of empiricism and uncertainty on the model 7 

parameters. Indeed, the accumulation of errors due to parameter uncertainty may outweigh the 8 

hoped-for increase in accuracy by including more processes. This problem of overparameterization 9 

is well documented in other fields (Reichert et al., 1996; Schoups et al., 2008) 10 

 It is also critical to note that there are different methods to measure in situ FSDs but they 11 

may not give the same results. The size is only well defined if the particle is a sphere. However, 12 

natural particles are seldom spheres and have irregular shapes and this introduces - when measured 13 

- intrinsically a size distribution. If we measure the size of a large amount of the similar but 14 

irregular particles (e.g., ellipsoids), the result is a distribution. A model that has been calibrated for 15 

a LISST derived FSD will not be able to reproduce the same flocs measured by a digital camera 16 

(e.g., Mikkelsen et al., 2005), meaning that the outcome of even the best flocculation model is only 17 

as good as the measuring system that is used to collect the FSDs. The measuring technique has 18 

weaknesses that are reflected in the FSDs. Generally camera systems cannot resolve the fine 19 

particles smaller than 10 µm, while LISST has a limited size range for the fine and the very large 20 

particles. Out of range particles are influencing the size distribution. Nowadays, there is still no 21 

good way for correcting FSDs for these spurious data, but it should be aware that the very large 22 

(megaflocs) and the very small particles (primary particles) maybe under-represented or over-23 
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represented in the in situ LISST derived FSDs. In reality, even if the size distributions in situ and 1 

in the model are well resolved, there are still uncertainties involved in the estimation of the density 2 

and the settling velocity (the ultimate parameter for the model). For example, when using fractal 3 

theory to estimate the floc density, small changes in fractal dimension may induce large changes 4 

in the settling velocity. The calculation of the settling velocity is still subject to calibration (e.g., 5 

by using SSC values). Given the uncertainty of the measured FSDs, further studies are required to 6 

better represent particles from measuring points. 7 

 8 

5. Conclusions 9 

In this study, the multimodal FSDs of suspended cohesive sediments are successfully 10 

predicted by using the E-QBMM with sediment flocculation kinetics, assuming the target FSDs 11 

consisting of a set of subordinate lognormal distributions. The main conclusions are: 12 

(1) Earlier studies usually fail to simulate the entire FSDs of the cohesive sediments in aquatic 13 

environments even with a large number of size classes. In this study, however, the FSDs are 14 

reasonably represented by the weight (wi) and the representative size (Li) of each component 15 

lognormal FSD, with a common standard deviation (σ). 16 

(2) In our validations against two laboratory experiments, two subordinate lognormal distributions 17 

for microflocs and macroflocs are employed to reproduce the observed FSDs in the mixing 18 

chamber and the settling column. This selection only introduces four tracers (i.e., L1, L2, w1 and 19 

w2), makes this method efficient, and has the potential to be implemented into large-scale sediment 20 

transport models. 21 

(3) The common standard deviation σ is modeled empirically as a function of the mean size of the 22 

entire FSD, the elementary particle size and a constant. In our applications, better agreements of 23 



27 
 

the modeled and measured FSDs are achieved by using an empirical σ rather than extracting σ 1 

from the (2N)th moment of FSD. 2 

(4) High accuracy and robustness is not necessarily guaranteed if representing a simple FSD with 3 

excessive subordinate FSDs. It depends 4 

on whether the shape of FSD is truly suitable to decompose into sub-components with the same σ. 5 

(5) Future studies are needed to investigate the subordinate FSDs in stratified estuaries. Microbial 6 

processes or a second internal property (such as the floc density) in the PBE might be helpful to 7 

better address the properties of biomineral suspended particulate matters. Besides, numerical 8 

schemes of both explicit and implicit treatment of the flocculation kinetic terms are expected to 9 

coincide with the transport terms of the fluid and carrying particles. 10 

  11 
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Table 1  Summary of model parameters and results for different guar gum dosages in the mixing 1 

jar tests, with initial suspended sediment concentration c = 0.52 g/L and tank averaged shear rate 2 

G = 55 s−1. 3 

Case 
Cguar 

(mg/L) 
α Eb α0 nf 

L1 

(μm) 

L2 

(μm) 
w1 w2 σ 

D50 

(μm) 

FSD 

Error 

1 0 0.8 4.8E−6 0.162 2.8 32.9 110.0 0.73 0.27 0.5874 21.6 0.0714 

2 5 0.8 3.5E−6 0.162 2.7 34.2 104.3 0.65 0.35 0.5794 23.7 0.0552 

3 10 0.8 2.4E−6 0.166 2.65 31.9 100.5 0.45 0.55 0.6168 24.4 0.0490 

4 15 0.8 1.0E−6 0.150 2.6 37.1 151.2 0.31 0.69 0.6297 32.6 0.0587 

5 20 0.8 2.0E−6 0.165 2.7 29.8 113.3 0.34 0.66 0.6605 24.4 0.0367 

6 30 0.8 3.9E−6 0.181 2.8 25.1 85.8 0.43 0.57 0.6872 18.3 0.0285 

 4 

  5 
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Table 2  Parameters used in the best-quality simulation for the settling column experiment. 1 

Symbol Value Description 

c 0.5 Initial suspended sediment concentration (g/L) 

G 5, 10, 20, 40 
Shear rate generated by the oscillating grids in the settling 

section (s−1) 

Nd 2 Number of lognormal distributions 

Ndi 3 Number of pivots for each subordinate lognormal distribution 

α 0.95† Collision efficiency 

Eb 1.05E−5 Breakage fitting parameter 

α0 0.195† 
Coefficient for computing the shared standard deviation for all 

subordinate lognormal distributions 

nf 2.3 Fractal dimension 

K 5 Coefficient in the fragmentation distribution function 

lp 8 Size of primary particles (μm) 

cgel 40 Gelling concentration (g/L) 

Fy 1.0E−10 Floc strength (Pa) 

Δt 0.1 Time step (s) 

Δz 0.1 Vertical resolution (m)  

nz 50 Number of cells in the vertical direction. 

 2 

† For shear rate G = 5 s−1, model results are recalibrated by setting α = 1.1 and α0 = 0.175.  3 
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Figures 1 

 2 

3 

Fig. 1 An example of decomposing a measured FSD into three lognormal distributions for 4 

microflocs L1, macroflocs L2 and megaflocs L3. Subordinate FSDs (a) with varying standard 5 

deviations (σ1, σ2, σ3) and (b) with a common standard deviation σ are compared. The bars represent 6 

a typical FSD collected by LISST at site MOW1 at Belgian coast. Dashdotted lines are subordinate 7 

FSDs and the solid line is the superposed FSD. The entire FSD f1(L) in subfigure (a) is also plotted 8 

in subfigure (b) for comparsion. 9 

 10 
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1 

Fig. 2 Comparison of simulated and observed FSDs for guar gum concentration cguar = {0, 5, 10, 2 

15, 20, 30} mg/L in the mixing jar experiments. Symbols are measurements and dark solid lines 3 

are the modeled FSDs, with two subordinate lognormal distributions marked with dashdotted lines. 4 

 5 
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1 

Fig. 3 Model parameters of (a) the ratio α/Eb, (b) the fractal dimension nf and the standard deviation 2 

computing coefficient α0, (c) the predicted representative sizes Li, and (d) the corresponding 3 

weights wi and the common standard deviation σ, for cguar = {0, 5, 10, 15, 20, 30} mg/L in the 4 

mixing jar experiments.   5 

 6 
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1 

Fig. 4 Sensitivity tests of (a) fractal dimension nf and (b) standard deviation computing coefficient 2 

α0, for cguar = 15 mg/L in the mixing jar experiment.   3 

 4 
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1 

Fig. 5 (a) Time evolutions of the predicted moments mk (k = 0, 1, 2, 3, 4) and (b) the predicted 2 

FSDs shown every 15 mins, for cguar = 15 mg/L in the mixing jar experiment. 3 

 4 
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1 

Fig. 6 Comparison of simulated and measured FSDs in the settling column tests for initial 2 

sediment concentration c = 0.5 g/L and shear rate G = {5, 10, 20, 40} s−1. Symbols are 3 

measurements, dotted lines are fitted FSDs by software DistFit (treated as reference FSDs), dash-4 

dotted lines are two modeled subordinate FSDs and the dark solid lines are the superposed 5 

predictions.  6 
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1 

Fig. 7 Vertical profiles of (a) SSC, (b) settling velocity (ws), (c) total particle number (m0) and (d) 2 

mean size (d1,0), for shear rate G = 10 s−1 in the settling column experiment. 3 
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1 

Fig. 8 Time evolutions of (a) SSC, (b) means size (d1,0), (c) settling velocity (ws) and (d) standard 2 

deviation (σ) at column height Z = {0.75, 1.75, 2.75, 3.75, 4.75} m, for shear rate G = 10 s−1 in the 3 

settling column experiment. The symbol in subfigure (b) is the observed d1,0 at the measuring 4 

section. 5 
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1 

Fig. 9 Predicted FSDs for initial sediment concentrations (a) c = 0.25 g/L and (b) c = 0.75 g/L. 2 

The dark solid line is the modeled FSDs, with two subordinate FSDs marked with dash-dotted 3 

lines. 4 
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