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Summary 

Despite the potentially large gains from intensification and agricultural productivity growth 

in Sub-Saharan Africa (SSA), yields of staple crops, such as maize are far below attainable 

yields. Depletion of soil fertility associated with low and inappropriate use of nutrients play a 

crucial role in this. Yet, fertilizer use is low in SSA, which partly relates to information 

constraints. Relaxing such constraints via agricultural extension interventions is expected to 

produce positive outcomes but do not always result in the intended effects, which may be 

connected with the highly heterogeneous smallholder farming systems. Yet, traditional 

extension systems in SSA countries, including Nigeria, provide general fertilizer use 

recommendations, which do not account for the substantial variation in production 

conditions. A potential intervention in this regard is site-specific nutrient management 

(SSNM) paradigm. In light of the rapid digital transformation, digital decision support tools 

(DSTs) can be leveraged to allow provision of SSNM extension advice. There are research 

gaps in the theoretical and empirical literature on design, adoption and impact of DST-

enabled site-specific extension services, and in the broader literature related to fertilizer use 

in maize. This PhD thesis focuses on a nutrient management DST for maize ‘Nutrient Expert’ 

in northern Nigeria, and addresses some of the gaps.   

In chapter 2, I analyze farmers’ preferences for intensification of maize production 

supported by DST-enabled SSNM recommendations in the maize belt of Nigeria. I use data 

from a choice experiment (CE) among farmers, and estimate different econometric models to 

control for attribute non-attendance and account for preference as well as scale heterogeneity. 

The findings show that overall, farmers have strong preferences to switch from general to 

DST-enabled SSNM recommendations, which lend credence to the inclusion of digital tools 

in agricultural extension. Also the findings show two latent classes or preference groups of 

farmers, early and late adopters of intensified maize production, and the heterogeneous 

preferences can be related to the farmers’ resource endowment, sensitivity to risk and access 

to services and institutions. The findings imply that improving the design of DSTs to enable 

provision of information on the riskiness of expected investment returns and flexibility in 

switching between low- and high-risk recommendations will help farmers to make better 

informed farm decisions.  

In chapter 3, I analyze preferences of extension agents for the design of a nutrient 

management DST for extension, and their willingness to use such tool. I use data from a CE 

among extension agents, and estimate different models to capture preference heterogeneity 
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and account for attribute non-attendance. The findings show that the extension agents in 

general have a high willingness to use DSTs for SSNM extension advice, which supports the 

emerging policy interest in design of such DSTs for maize. They prefer a DST with a more 

user-friendly interface that requires less time to generate an output but have substantial 

heterogeneous preferences for other design features. The findings also show two preference 

groups of extension agents, the more committed agents – who prioritize the effectiveness-

related features of DSTs, and the more pragmatic agents – who care more about practical 

features of DSTs. The differences in observed characteristics between the two groups are 

very small, which suggests that unobservable characteristics likely play a role in explaining 

preference heterogeneity. The findings imply that accommodating preference differences may 

facilitate the adoption of DSTs by extension agents and thus enhance the scope for such tools 

to impact the production decisions of farmers. 

In chapter 4, I analyze the impact of farmers’ access to SSNM recommendations for 

maize enabled by a DST on fertilizer use rates, fertilizer management practices, maize yield 

and revenue. I implement a randomized controlled trial with two treatment groups, T1 

without and T2 with additional information on variability of expected returns and a control 

group. I use three-period panel data to estimate the impact. The findings show that SSNM 

recommendations bring about improvements in fertilizer management practices, yield and 

gross revenue after one-year treatment but not fertilizer use for T1. This suggests that optimal 

management practices can improve yield and revenue by reducing technical inefficiencies. 

The findings also show that yield and revenue gains are quite similar for the two treatment 

groups despite considerable increase in fertilizer by T2 over T1. This suggests that the 

increase in fertilizer does not result in substantial revenue gains, which may be connected to 

low yield responses to higher fertilizer levels. The findings also show that SSNM 

recommendations, combined with additional information on the distribution of expected 

returns, appears to induce more fertilizer use after one year and foster continued fertilizer 

investment after two years. In addition, the findings show that there are only gradual 

increases in investment, maize yield and especially net revenue after two years.  

Overall, this dissertation shows that there is high adoption potential of nutrient 

management DSTs for maize by extension agents, and of extension advice from such DSTs 

by farmers, which aligns with the widespread interest and investments in site-specific and 

digital tools for agricultural applications in developing countries. Yet, the findings show 

economically small but significant effects of DST-enabled SSNM recommendations on 

intensification of maize production. This underscores the need for more research with longer 
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periods and with complementary interventions to allow better understanding of the impact of 

DST-enabled site-specific recommendations in the long run while accounting for other 

shortcomings.  
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Samenvatting 

Ondanks de potentieel grote winsten uit intensivering en productiviteitsgroei in de landbouw 

in Sub-Sahara-Afrika (SSA), liggen de opbrengsten van de voornaamste gewassen, zoals 

maïs, ver onder de haalbare opbrengsten. Uitputting van de vruchtbaarheid van de bodem 

door het lage en niet-optimale gebruik van meststoffen spelen hierin een cruciale rol. Het 

gebruik van meststoffen blijft laag in SSA, deels omwille van informatie beperkingen. Het 

opheffen van dergelijke beperkingen via landbouwadviesinterventies wordt verondersteld een 

oplossing te bieden, maar heeft niet altijd het beoogde effect. Dit kan gerelateerd zijn aan de 

diversheid van kleinschalige landbouwsystemen. Traditionele landbouwadviesinterventies in 

SSA landen, waaronder Nigeria, geven algemene aanbevelingen in verband met gebruik van 

kunstmest, die de aanzienlijke variatie in de productieomstandigheden niet in rekening 

nemen. Een mogelijke oplossing in dit opzicht is het site-specifieke nutriëntenbeheer (SSNM) 

paradigma. Door de snelle digitale transformatie kunnen digitale beslissingsondersteunende 

hulpmiddelen (decision support tools, DSTs) worden ingezet om SSNM advies mogelijk te 

maken. Er zijn leemtes in de theoretische en empirische literatuur over het ontwerp, de 

adoptie en de impact van DST-ondersteunde site-specifieke adviesdiensten, en in de bredere 

literatuur met betrekking tot het gebruik van kunstmest in maïs. Dit proefschrift richt zich op 

een nutriëntenbeheer DST voor maïs 'Nutrient Expert' in het noorden van Nigeria, en vult een 

aantal van de hierboven vermelde onderzoek leemtes.  

In hoofdstuk 2 analyseer ik de voorkeuren van landbouwers voor intensivering van de 

maïsproductie op basis van DST-ondersteunde SSNM aanbevelingen in de maïsgordel van 

Nigeria. Ik maken gebruik van gegevens uit een keuze-experiment bij de boeren, en schatten 

verschillende econometrische modellen om te controleren voor attribuut verzuim en om 

preferenties en heterogeniteit in schaal in rekening te nemen. De bevindingen tonen aan dat 

boeren een sterke voorkeur hebben om over te schakelen van algemene naar DST-

ondersteunde SSNM aanbevelingen, wat wijst op het potentiele succes van digitale 

hulpmiddelen in landbouwadvies. De bevindingen tonen ook twee latente klassen of 

voorkeurgroepen van boeren, vroege en late adopters van geïntensiveerde maïsproductie. 

Deze heterogene voorkeuren kunnen worden gerelateerd aan de beschikbare hulpbronnen, de 

gevoeligheid voor risico’s en de toegang tot diensten en instellingen van boeren. De 

bevindingen impliceren dat verbeteringen aan het ontwerp van DSTs die voorziening van 

informatie over de risico's van de verwachte rendementen en flexibiliteit bij het schakelen 
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tussen lage en hoge risico aanbevelingen mogelijk maken, de boeren zullen helpen om beter 

geïnformeerde beslissingen te nemen.  

In hoofdstuk 3 analyseer ik voorkeuren van landbouwadviseurs voor het ontwerp van 

een nutriëntenbeheer DST, en hun bereidheid om een dergelijke tool te gebruiken. Ik maken 

gebruik van gegevens uit een keuze-experiment onder adviseurs, en schatten verschillende 

modellen om de heterogeniteit in preferenties vast te leggen en attribuut verzuim in rekening 

te nemen. De bevindingen tonen aan dat de adviseurs over het algemeen een grote bereidheid 

hebben om DSTs voor SSNM adviesinterventies te gebruiken, wat de opkomende politieke 

belangstelling in dergelijke DSTs voor maïs ondersteunt. Ze geven de voorkeur aan een DST 

met een gebruiksvriendelijke interface die minder tijd vraagt om resultaten te genereren, maar 

voor andere ontwerpelementen zijn de voorkeuren zeer heterogeen. De resultaten wijzen ook 

op twee groepen adviseurs, de meer betrokken agenten die prioriteit geven aan de 

effectiviteit-gerelateerde functies van DSTs, en de meer pragmatische agenten die meer 

waarde hechten aan de praktische eigenschappen van DSTs. De verschillen in waarneembare 

kenmerken tussen beide groepen zijn heel klein, wat suggereert dat niet-waarneembare 

kenmerken waarschijnlijk een rol spelen bij het verklaren van de heterogeniteit in 

voorkeuren. De bevindingen impliceren dat men het gebruik van DSTs kan vergemakkelijken 

door rekening te houden met verschillen in voorkeuren bij adviseurs en dat men daarmee het 

potentieel van dergelijke tools om de productie beslissingen van boeren te beïnvloeden kan 

vergroten. 

 In hoofdstuk 4 analyseer ik de impact van de toegang van boeren tot SSNM 

aanbevelingen voor maïs met behulp van een DST op het gebruik van kunstmest, kunstmest 

managementpraktijken, de opbrengst van maïs en inkomsten. Ik implementeren een 

gerandomiseerd onderzoek met controlegroep en twee behandelingsgroepen, zonder (T1) en 

met (T2) aanvullende informatie over de variabiliteit van de verwachte rendementen. We 

maken gebruik van panel data over drie periodes om de impact te schatten. De bevindingen 

tonen aan dat SSNM aanbevelingen leiden tot verbeteringen in de meststof 

managementpraktijken, in de opbrengst en in de bruto-inkomsten na één jaar behandeling, 

maar niet in het gebruik van kunstmest voor T1. Dit suggereert dat optimale 

managementpraktijken de opbrengst en inkomsten kunnen verbeteren door het reduceren van 

de technische inefficiënties. De resultaten tonen ook aan dat de groei in opbrengst en 

inkomsten zeer vergelijkbaar is tussen de twee behandelingsgroepen ondanks de aanzienlijke 

stijging van de meststof gebruik door T2 in vergelijking met T1. Dit suggereert dat een hoger 

gebruik van kunstmest niet leidt tot een aanzienlijke groei in inkomsten, wat gerelateerd kan 
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zijn met lage effect van hogere kunstmest niveaus op opbrengsten. De resultaten tonen ook 

aan dat SSNM aanbevelingen, in combinatie met aanvullende informatie over de verdeling 

van de verwachte rendementen, meer gebruik van kunstmest blijken te veroorzaken na één 

jaar en continue kunstmest investeringen na twee jaar blijken te bevorderen. Daarnaast tonen 

de bevindingen dat er slechts een geleidelijke toename is van investeringen, opbrengst van 

maïs en in het bijzonder netto-inkomsten na twee jaar.  

Tot slot, dit proefschrift laat zien dat er een groot potentieel is van nutriëntenbeheer 

DSTs voor maïs bij landbouwadviseurs, en van advies uit dergelijke DSTs bij boeren. Dit 

sluit aan bij de wijdverspreide interesse en investeringen in site-specifieke en digitale 

hulpmiddelen voor landbouwapplicaties in ontwikkelingslanden. Echter, de bevindingen 

tonen economisch kleine maar significante effecten van DST-ondersteunde SSNM 

aanbevelingen op de intensivering van de productie van maïs. Dit onderstreept de noodzaak 

van meer onderzoek over langere periodes en met aanvullende interventies om tot een beter 

begrip van de impact van de DST-ondersteunde site-specifieke aanbevelingen op de lange 

termijn te komen, rekening houdend met de andere tekortkomingen. 
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 Chapter 1 

General Introduction 

1. Agricultural intensification for sustainable development in Sub-Saharan Africa 

Agriculture is very important for the development of Sub-Saharan Africa (SSA) and other 

developing regions – in terms of its contribution to GDP, employment, and export earnings. It 

is considered to have a central role in spurring industrial growth and achieving economic 

growth, particularly in early stages of development (World Bank, 2007; Byerlee et al., 2009; 

Binswanger-Mkhize et al., 2010; Diao et al., 2010; Dercon and Gollin, 2014; Tomich et al., 

2019). More importantly, agricultural productivity growth in SSA is widely recognized as 

instrumental to reduction of rural poverty and food insecurity since a high share of its poor 

population live in rural areas and are mostly dependent on agriculture for their livelihoods 

(Haggblade et al., 2007; Christiaensen et al., 2011; Otsuka and Muraoka, 2017; Ligon and 

Sadoulet, 2018). While other regions of the world have made notable progress in addressing 

poverty and hunger, SSA lags behind and now accounts for about half of the world’s 736 

million extreme poor and over one-fifth of the world’s 822 million hungry people1 (World 

Bank, 2018a; FAO, 2019). The crucial role of agricultural productivity growth in realizing 

the twin goals of eradicating extreme poverty and hunger in SSA (Sustainable Development 

Goals 1 and 2) and more broadly in facilitating structural transformation cannot be 

overemphasized (Barrett et al., 2018; Mason-D’Croz et al., 2019; Dawson et al., 2019). 

Despite the potentially large gains from intensification and agricultural productivity 

growth – documented by the Green Revolution in Asia – agricultural productivity is on 

average low and has virtually stagnated in SSA (Evenson and Gollin, 2003; Pingali, 2012; 

Bulte et al., 2014; Otsuka and Muraoka, 2017). In particular, the yields of major food crops, 

such as maize and cereals in general, are lagging behind yields in other parts of the world and 

are often far below their potential, leading to substantial yield gaps, e.g. on-farm maize yields 

are around 1 to 2 tons per ha despite potential yields of up to 7 tons per ha (Tittonell et al., 

2013; van Ittersum et al., 2016; Guilpart et al., 2017). This contributes to slow agricultural 

growth, persistent rural poverty and food insecurity, and continuous dependence on food 

                                                 
1 Extreme poor in this context refers to people who live on less than 1.9 USD a day based on 2011 purchasing 

power parity (PPP) dollars (World Bank, 2018a), while hungry people refers to people who are undernourished, 

i.e. lack sufficient dietary energy for a normal, active, healthy life (FAO, 2019). 



 

 

2 

 

imports (Barrett and Bevis, 2015; Vanlauwe et al., 2015a; Komarek et al., 2017). Low 

adoption of agricultural technologies, particularly inorganic fertilizer and improved 

management practices by farmers is often cited as one of the key factors that contribute to the 

persistence of low productivity (de Janvry and Sadoulet, 2010; Emerick et al., 2016; 

McAuthor and McCord, 2017). 

Given the rapid expansion of demand for food by a growing population and the 

limited opportunities for agricultural growth via cropland expansion in SSA, a focus on 

increasing agricultural productivity via intensification of agriculture is almost inevitable2 

(Headey et al., 2014; Jayne et al., 2014; Binswanger-Mkhize and Savastano, 2017; 

Droppelmann et al., 2017). A widespread adoption of modern inputs and management 

practices is a key pathway for raising agricultural productivity and narrowing the yield gap 

between SSA and the rest of the world (Beaman et al., 2013; Sheahan et al., 2013; Burke et 

al., 2017). Agricultural productivity growth can contribute enormously to rural incomes, and 

create indirect benefits, including lower staple food prices, employment creation and other 

multiplier effects (de Janvry and Sadoulet, 2002; Zeng et al., 2015; Alwang et al., 2019). It is 

still unclear why the adoption of seemingly promising technologies, notably inorganic 

fertilizer, by farmers remains low in SSA – which is often referred to as an agricultural 

technology adoption puzzle (de Janvry et al., 2017; Abay et al., 2018; Michler et al., 2019). 

Several constraints have been put forward in the theoretical and empirical agricultural 

technology adoption literature to explain the low adoption of productivity-enhancing inputs 

(inorganic fertilizer) and management practices in many parts of SSA. These include low and 

heterogeneous returns to investment (Suri, 2011; Chianu et al., 2012; Holden, 2018), risk 

(Feder et al., 1985; Dercon and Christiaensen, 2011; Karlan et al., 2014; Benson and Mogues, 

2018), low quality of inputs (Bold et al., 2017), cash or credit constraints (Croppenstedt et al., 

2003; Lambrecht et al., 2014; Koussoube and Nauges, 2017; Jama et al., 2017), high 

transaction costs (Minten et al., 2013), time-inconsistent behavior (Duflo et al., 2011), low 

and variable yield responses (Burke et al., 2017; Jayne et al., 2019) and lack of relevant or 

reliable information (Foster and Rosenzweig 1995; Conley and Udry, 2010; Magruder, 2018), 

among others. This has resulted in a growing number of policy interventions – extension, 

                                                 
2 Although intensification, i.e. increasing crop yields on currently cultivated cropland is highly desirable, and is 

a core goal in SSA, it has to be done in a sustainable way by reducing its negative environmental impacts, which 

was a pitfall of the Asian Green Revolution (Pingali, 2012; Godfray, 2015; Rockström et al., 2017; Jayne et al., 

2019). To this end, van Loon et al. (2019a) suggest that increases in nutrient inputs in SSA should be associated 

with good nutrient management to improve nutrient use efficiency, and foster sustainable intensification. 
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input subsidy, credit, insurance, savings, contracts and postharvest interventions to help lift 

some of these constraints that farmers face.  

1.1 Agricultural extension and soil fertility management 

Depletion of soil fertility due to poor soil fertility management strongly contributes to the 

substantial yield gap in SSA, particularly for cereals such as maize (Sanchez, 2002; Barrett 

and Levis, 2015; Tittonell and Giller, 2013; Ragasa and Chapato, 2017; Berazneva et al., 

2018; ten Berge et al., 2019). The often cited soil nutrient deficiencies include macronutrient 

(nitrogen (N), phosphorus (P) and potassium (K)) deficiencies, especially N, as well as 

secondary nutrient and micronutrient deficiencies (Kihara et al., 2016a; Vanlauwe et al., 

2015b; Shehu et al., 2018; ten Berge et al., 2019). Yet, the use of fertilizer to address the soil 

nutrient deficiencies remains on average low in most parts of SSA (Xu et al., 2009; Harou et 

al., 2017; Njogore et al., 2018; Theriault et al., 2018; Jayne et al., 2019). In addition, the 

traditional fallow system to replenish soil fertility is no longer possible in most areas while a 

continuous cropping system without adequate soil management results in mining of soil 

nutrients and soil degradation (Bamire and Manyong, 2003; Tarfa et al., 2017; Berazneva et 

al., 2019). This calls for more intensified use of external inputs, particularly inorganic 

fertilizer as a vital entry point for soil fertility management and yield improvement (Sanginga 

and Woomer, 2009; Vanlauwe et al., 2015b; Sheahan and Barrett; 2017; Holden, 2018).  

Information constraints – including imperfect information about the existence, 

availability, proper use of a technology (know-how), and the (expected) benefits of its use are 

often considered important barriers to farmers’ optimal adoption decisions (Lambrecht et al., 

2014; Beaman and Dillon, 2018; Buehren et al., 2019; van Campenhout et al., 2019; 

BenYishay and Mobarak, 2019). In the context of fertilizer, information constraints on 

correct fertilizer use (e.g. what rate to apply, what sources, when to apply, and how to apply) 

can contribute to explaining the limited use of fertilizer and the returns for smallholder 

farmers (Asfaw and Admassie, 2004; Abdoulaye and Sanders, 2005; Duflo et al., 2008; 

Chianu et al., 2012; Marenya and Barrett, 2009; Harou et al., 2017; Benson and Mogues, 

2018; Jayne et al., 2019). Agricultural extension (advisory) services are expected to be 

instrumental in relaxing the production and market-related information constraints of 

smallholder farmers and allow of better informed farm investment decisions (Bernet et al., 

2001; Genius et al., 2014; Fu and Akter, 2016; Pan et al., 2018; Shikuku, 2019). Yet, 

extension services do not always produce the intended effects in terms of improvements in 
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knowledge, technology adoption, market participation, productivity and farmer welfare 

(Feder et al., 2004; Davis et al., 2008; Fafchamps and Minten, 2012; Ragasa and Mazunda, 

2018; Mitra et al., 2018; Buehren et al., 2019; Camacho and Conover, 2019).  

The limited effects of some extension interventions, soil fertility improvement 

interventions in particular, may be connected with the substantial spatial and temporal 

heterogeneity in biophysical and socio-economic conditions of smallholder farmers in SSA3 

(Tittonell et al., 2010; Vanlauwe et al., 2015b; Njoroge et al., 2017; MacCarthy et al., 2018). 

Localized policy interventions are often suggested for smallholder farmers over one-size-fits-

all interventions (Bernet et al., 2001; Birner et al., 2009; Giller et al., 2011; Kihara et al., 

2016a, Droppelmann et al., 2017; Valdivia et al., 2017; Barrett et al., 2017; Theriault et al., 

2018; Gars and Ward, 2019). Conversely, interventions to promote the use of modern inputs, 

particularly fertilizer, without accounting for heterogeneity assumes a uniform production 

function among smallholders, which may contribute to explaining the low adoption of 

modern inputs in most parts of SSA (Suri, 2011; Abay et al., 2018; Otsuka and Muraoka, 

2017).  

Yet, traditional extension systems in most SSA countries, including Nigeria, provide 

generalized or ‘blanket’ fertilizer use recommendations to farmers across highly 

heterogeneous environments (Xu et al., 2009; Kihara et al., 2016a; Shehu et al., 2018; 

Njoroge et al., 2018; Amapu et al., 2018; Burke et al., 2019; Tovihoudji et al., 2019; Ichami 

et al., 2019; van Loon et al., 2019b). Such recommendations are often provided to farmers at 

scales beyond the farm, village, district, province, state or region, and do not account for the 

substantial variation in production conditions, particularly the heterogeneity in soil quality 

and microclimate (Smale et al., 2013; Vanlauwe et al., 2015b; Njoroge et al., 2017; 

MacCarthy et al., 2018; Jayne et al., 2019). A typical example is the general extension 

recommendation to use 120 kg N, 60 kg P2O5 and 60 kg K2O per ha for maize in northern 

Nigeria (Amapu et al., 2018; Shehu et al., 2018). The use of this generalized recommendation 

corresponds to an optimal fertilizer rate for an average plot, and may result in fertilizer rates 

that are economically sub-optimal for many farmers because the expected yield responses to 

fertilizer are likely not the same across diverse plots.  

                                                 
3 The pronounced diversity of agro-ecological conditions in SSA in comparison with Asia explain in part the 

limited success of Green revolution in SSA (Evenson and Gollin, 2003; Pingali, 2012). 
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Given the highly variable smallholder farming systems, site-specific extension 

services are increasingly considered for effective soil fertility management (Vanlauwe et al., 

2015b; Wossen et al., 2019). These are extension services that are tailored to the crop-, site- 

and season-specific conditions of individual farmers, and a typical example in the context of 

fertilizer use is the concept of Site-Specific Nutrient Management (SSNM) recommendations 

(Pampolino et al., 2007; Pampolino et al., 2012; Johnston and Bruulsema 2014; Xu et al., 

2016). SSNM is a science-based approach that entails 4Rs of nutrient management, which 

includes promoting application of the right fertilizer rate, with the right fertilizer source, at 

the right time, and in the right place, and allows for dynamic adjustment of fertilizer 

application based on crop need for a given plot, and in a given cropping season (Pampolino et 

al., 2007; Pasuquin et al., 2014; Singh, 2019). The approach is management- and knowledge-

intensive and requires proper knowledge to be implemented by smallholder farmers, which 

implies a crucial role of extension services. The use of SSNM under researcher-managed 

trials has been shown to produce improvements in yield response to fertilizer and agronomic 

returns while reducing negative environmental externalities associated with loss of unutilized 

nutrients – potentially supportive of sustainable agricultural intensification (Wang et al., 

2001; Dobermann et al., 2002; Pampolino et al., 2007; Satyanarayana et al., 2011; Xu et al., 

2014; Sapkota et al., 2014; Banayo et al., 2018; Buresh et al., 2019). 

Apart from the neglect for plot-specific yield response to fertilizer, generalized 

fertilizer use recommendations are based on predicted average expected economic returns 

and do not provide additional information about the variability or riskiness of the expected 

fertilizer investment returns associated with variation in climate and/or market (output price) 

conditions. The sources of stochastic variation – climate and market fluctuations across 

seasons induces uncertainty about the returns to investment for smallholder farmers as 

documented in both theoretical and empirical agricultural technology adoption literature 

(Feder and Umali, 1993; Marra et al., 2003; Magruder, 2018; Rosenzweig and Udry, 2019). 

Output price variation can be of interest to smallholder farmers in SSA, where the seasonal 

price variation for maize is largest among cereal crops (Gilbert et al., 2017). Unlike the 

market for rice, domestic maize markets are poorly integrated to the international market in 

SSA and Nigeria in particular (Hatzenbuehler et al., 2017; Pierre and Kaminski, 2019). 
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1.2 Digital agricultural extension decision support tools 

Diffusion of information about improved technologies and management practices in SSA was 

traditionally led by public (government) agricultural extension systems and operated under 

the supply-driven Training and Visit (T&V) extension approach (Feder et al., 1986; Ander 

and Feder, 2007; Davis et al., 2008; Birner et al., 2009; de Janvry et al., 2016). This approach 

entails transfer of information by village extension agents from the domain of research to 

contact (lead) farmers, who in turn transfer the extension messages to their peers – i.e. lab to 

farm diffusion of technologies and management practices (Kondylis et al., 2017; Niu and 

Ragasa, 2018; Shikuku, 2019; BenYishay and Mobarak, 2019). This approach has largely 

been modified to allow of more effective decentralized and demand-driven extension 

services, yet the use of contact farmers is still part of most extension systems (Davis et al., 

2008; de Janvry et al., 2016). In recent years, there has been a rise in private sector 

participation in provision of agricultural extension services – e.g. from input suppliers, input 

service providers, agro-dealers, community-based organizations and non-governmental 

organizations (Adebayo et al., 2015; de Janvry et al., 2016; Davis and Spielman, 2017).  

Apart from the face-to-face extension agent-farmer contact (direct extension visits), 

other approaches to facilitate dissemination of information have evolved over time, including 

the use of farmer field schools, demonstration plots, field days, social networks and farmer-

to-farmer extension using peer farmers (Feder et al., 2004; Beaman and Dillon, 2018; Nakano 

et al., 2018; Takahasi et al., 2019; Shikuku et al., 2019). There is a rapid advancement in 

Information and Communication technologies (ICTs), which has led to a growing policy 

interest in the use of digital innovations in agriculture, particularly in provision of production 

and market-related extension services (Nakasone et al., 2014; Beuermann, 2015; Aker and 

Ksoll, 2016; Janssen et al., 2017; Verma and Sinha, 2018; Camacho and Conover, 2019). 

This includes the use of ICT platforms, such as radio, television, video, and telephone (for 

Short Messaging Services (SMS) and Interactive Voice Responses (IVR)), which are 

considered low-cost approaches for provision of extension messages to farmers and can 

facilitate wider extension coverage (Aker et al., 2011; Fu and Akter, 2016; Larochelle et al., 

2019; van Campenhout et al., 2019).   

Despite the evolution of different extension approaches, the challenge of providing 

locally-tailored extension services under heterogeneous production conditions has not been 

adequately addressed by extension systems, who often lack the capacity to do so (Smale et 
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al., 2013; Ande et al., 2017; de Janvry et al., 2017). Conversely, most extension systems have 

not been seen as efficient in addressing site- and management-specific information 

constraints of individual smallholder farmers, i.e. they still largely rely on dissemination of 

general extension recommendations (Naswem and Ejembi, 2017). In more recent times, the 

use of computer-based decision support tools (DSTs), particularly via modern digital 

technologies, such as smartphones and tablets, which accommodates software applications – 

web applications (web apps) or mobile applications (mobile apps) is increasingly considered 

in provision of information for optimal decision making4. Such digitally-supported DSTs are 

promoted in agricultural extension for more effective delivery of agronomic advice tailored to 

the site-specific conditions of individual farmers (Bernet et al., 2001; Rose et al., 2016; 

Vanlauwe et al., 2017; Ogunti et al., 2018; MacCarthy et al., 2018; Jayne et al., 2019). In 

general, DSTs usually guide end-users through different steps – collect data about farm(er) 

conditions, analyze the data and generate outputs (evidence-based recommendations), which 

can allow of better informed production and market-related decisions by smallholder farmers 

(Kragt and Llewellyn, 2014; Rose et al., 2016). Conversely, agricultural extension DSTs 

allow of data-driven optimal on-farm decisions but also learning opportunities about specific 

farm management subjects (as a learning tool) by extension agents and farmers (Evans et al., 

2017; Lundstrom and Lindlbom, 2018). 

While the development of agronomic advisory DSTs in developed countries has been 

in place for quite some time (Cox 1996; Bernet et al., 2001; Welch et al., 2002; Small et al., 

2015; Rossi et al., 2014; Ravier et al., 2016), it is gradually emerging in developing regions, 

particularly in SSA. Despite the potential gains of DSTs, their use by farmers and extension 

agents has been less than expected at scale (Hochman and Carberry, 2011; Cerf et al., 2012; 

Prost et al., 2012; Ravier et al., 2016; Rose et al., 2016; Lindblom et al., 2017). A lack of co-

design in the development process, i.e. ignoring active engagement of all stakeholders, 

including farmers and extension agents in the development of a DST, can substantially 

contribute to low take-up (Rose et al., 2016; Ditzler et al., 2018).  

In the context of soil fertility management, a nutrient management extension DST for 

maize ‘Nutrient Expert (NE)’ has been co-developed in Nigeria, Tanzania and Ethiopia to 

enable extension service providers to transition from the provision of generalized fertilizer 

                                                 
4 Although, a DST is considered as any software-based tool enabled by mobile electronic devices in recent times 

to enhance optimal decision making by end-users, DST platforms broadly include conventional computers, such 

as desktop and laptop computers, and paper-based platforms, such as maps and charts (Rose et al., 2016). 
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use recommendations to SSNM extension recommendations5. The description and 

development process of the Nutrient Expert tool are discussed in detail in Section 3.3, and 

this thesis substantially focuses on the tool – from the design stage to the farm-level impact 

evaluation stage in Nigeria.  

2. Research gaps and objectives 

I identify specific research gaps in the current theoretical and empirical literature on design, 

adoption and impacts of digital and site-specific extension services, and in the broader 

agricultural technology adoption literature related to fertilizer use in maize production. First 

and foremost, the empirical literature on design of digital agricultural extension DSTs is thin, 

and most of the previously documented literature is based on case studies of DSTs in 

developed country context (e.g. Antonopoulou et al., 2010; Kragt and Llewellyn, 2014; Small 

et al., 2015; Lacoste and Powles, 2016; Lundstrom et al., 2017; Lundstrom and Lindlbom, 

2018; Oliver et al., 2017; Rose et al., 2016, 2018, among others). Despite the think pieces 

about DSTs, the empirical literature is still sparse in SSA, and in particular for nutrient 

management DSTs for maize, which may be connected to the fact that design of digital DSTs 

began only recently in the region. In response to the challenges posed by the substantial 

heterogeneity of smallholder farming systems, and the opportunities created by the recent 

advances in digital technologies, the design of digital DSTs is likely to increase. This thesis 

complements and builds on the nascent literature, and aims at informing the design of 

advisory DSTs in SSA. 

Second, the existing literature on agricultural technology adoption in general and soil 

fertility management in particular includes a large stream of ex-post studies that deal with 

farmers’ adoption behavior after technologies and crop management practices have been 

introduced (e.g. Lambrecht et al., 2014; Mponela et al., 2016; Morello et al., 2018). Very few 

ex-ante studies address farmers’ adoption behavior in the design stage of a technology (e.g. 

Lambrecht et al., 2015; Dalemans et al., 2018; Tarfasa et al., 2018). Yet, none of these studies 

focus on farmers’ preferences for intensification of maize production that is supported by 

DST-enabled site-specific extension services ex-ante, i.e. before the introduction of DSTs for 

nutrient management advice for maize in SSA. Conversely, the current literature does not 

empirically analyze how farmers trade off specific attributes of a high-input, -output, -

                                                 
5 A growing number of extension DSTs are being developed or have recently been developed for crop variety 

selection, weed management, plant density guide, water management and fall army worm management in SSA. 
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investment and -risk production system, in the context of extension recommendations, 

particularly in the design stage of a nutrient management DST for maize. In chapter 2, I use 

data from a discrete choice experiment (CE) among maize producing households in northern 

Nigeria, where a DST for nutrient management was being developed to address this 

shortcoming in the literature, and generate ex ante insights for optimizing the design of DSTs. 

In addition, while several empirical studies that use CE do not account for scale heterogeneity 

and/or attribute non-attendance, which are potential sources of bias in CE, I address both 

issues using different econometric models.  

Third, the current literature on design of DSTs does not adequately address the 

preferences of extension agents for the design of nutrient management DSTs and their 

willingness to use such tools in an ex ante quantitative way, except for Kragt and Llewellyn 

(2014). The latter assess the preferences of extension agents for the design of a DST for weed 

management in Australia. I build on this study in various ways: a focus on a DST for nutrient 

management for maize, on a different farming system and on a developing country context. 

In addition, I build on the method by using more recent data and a much larger sample of 

extension agents and by addressing attribute non-attendance (ANA), which was not 

considered in the previous study. Apart from Kragt and Llewellyn (2014), other studies only 

investigate the uptake of DSTs by extension agents in an ex post qualitative way (Rose et al., 

2016, 2018). In chapter 3, I implement a discrete choice experiment among extension agents 

in the design stage of a nutrient management DST in the research area to address the 

limitations in the current literature. This allows us to have an ex-ante understanding of the 

potential uptake of DSTs and the specific practical and effectiveness-related design features 

that are more (or less) appealing to extension agents towards improving the design and uptake 

of DSTs.  

Fourth, there is an increase in the application of discrete choice experiments in the 

agricultural economics literature, primarily with a focus on farmers and food consumers (e.g. 

Breustedt et al., 2008; Asrat et al., 2010; Jaeck and Lifran, 2014; Lambrecht et al., 2015; 

Coffie et al., 2016; Van den Broeck et al., 2017; Dalemans et al., 2018; Gamboa et al., 2018; 

Arora et al., 2019). Yet, the use of CEs to inform agricultural extension initiatives ex ante is 

still very limited – only Kragt and Llewellyn (2014) has implemented a CE among extension 

agents to my knowledge. In chapter 3, I contribute to the scant literature on application of CE 

among extension agents, which can open up further research along this direction in SSA and 



 

 

10 

 

elsewhere. The use of CE method in this way can generate useful ex-ante insights to inform 

research, development and policy initiatives for the design of other DSTs towards improving 

the efficiency of extension systems. 

Fifth, a large stream of literature points to the implication of the highly heterogeneous 

conditions of smallholder farmers in limiting generalized interventions (e.g. Tittonell et al., 

2010; Giller et al., 2011; Tittonell et al., 2011; Berkhout et al., 2011; Kihara et al., 2016b; de 

Janvry et al., 2017; Njoroge et al., 2017; MacCarthy et al., 2018; Shehu et al., 2018; van 

Loon et al., 2019b). In the context of soil fertility, the use of SSNM extension interventions in 

the agronomic literature is considered potentially more relevant to smallholder farmers than 

generalized extension recommendations (Pampolino et al., 2012; Xu et al., 2014). On the 

other hand, the rapid transformation in digital technologies offers opportunity for the use of 

digital DSTs to provide site-specific recommendations (Fu and Akter, 2016; Larochelle et al., 

2019). Yet, it remains unclear whether, and to what extent the use of site-specific extension 

interventions enabled by digital DSTs can stimulate the adoption of agricultural technologies 

and management practices, and the associated yield and revenue gains in SSA. In addition, it 

is unclear whether information interventions about fertilizer management practices provided 

to farmers in the context of SSNM can substantially address technical inefficiency. I address 

these gaps in the current literature in Chapter 4. To do this, I implement a randomized 

controlled trial and estimate the farm-level causal effects of the information interventions 

using panel data of three household survey rounds. 

Lastly, some theoretical and empirical studies suggest that smallholder farmers are 

more likely to give up productivity gains for stability in returns to investments in the face of 

uncertainty about the expected returns (e.g. Feder et al., 1985; Asrat et al., 2010; Dercon and 

Christiaensen, 2011; Musaka, 2018). Conversely, it has become important to consider not just 

the mean outcomes of technology adoption but also the variability of the expected outcomes 

(Silehi et al., 2010; Bulte et al., 2014; Musaka, 2018; Vanlauwe et al., 2019a). Some studies 

suggest that additional information about the use of a technology can reduce uncertainty 

about the expected outcomes, and enhance adoption decisions (e.g. Just and Zilberman, 1983; 

Feder and Umali, 1993; Saha et al., 1994; Marra et al., 2003; Koundouri et al., 2006; Genius 

et al., 2014). To this end, farmers may be more likely to make better informed fertilizer 

investment decisions if provided with additional information about variability of the expected 

investment returns and not only the expected level of returns but this remains an empirical 
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question in the literature. To my knowledge, there are no studies that empirically test whether 

provision of complementary information about variability of the expected returns (i.e. 

uncertainty induced by variation in market and climatic conditions across seasons) as a way 

to lift uncertainty impacts farmers’ responses to DST-enabled SSNM recommendations. In 

chapter 4, I address this limitation in the literature by using three-period panel data from a 

randomized controlled trial among maize producing households in the research area.  

In summary, the overall objective of this PhD thesis is to analyze in detail the design, 

adoption and impact of a nutrient management DST for site-specific extension services in the 

maize belt of northern Nigeria. I specifically look at farmers’ preferences for extension 

recommendations enabled by DSTs, extension agents’ preferences for the design of a nutrient 

management DST, and farm-level impact of DST-enabled SSNM extension 

recommendations. To achieve this, I focus on both farmers and extension agents as the 

research subjects of the thesis, and I use different methods and an extensive database, 

including data from two discrete choice experiments and three-period panel data from a 

randomized controlled trial in the research area. Ultimately this PhD thesis contributes to 

different strands of the scientific literature, including literature on digital DST design, 

agricultural technology adoption, discrete choice experiments, experimental impact 

evaluation, crop yield gap, agricultural extension in general and digitally-supported extension 

in particular. 

3. Background of the research  

In this section, I specifically provide detailed background information about Nigeria, 

including maize production, fertilizer use, TAMASA project and description of the research 

area. 

3.1 Maize production in Nigeria 

Maize (Zea mays L.) is one of the most important staple food crop for millions of people and 

has gradually become a cash crop due to its increasing industrial demand, especially in the 

livestock feed industry (Iken and Amusa, 2004; Olaniyan, 2015; Abdoulaye et al., 2018). It is 

widely cultivated across diverse agro-ecologies, including the rainforest and savanna agro-

ecologies, and much higher production potential is in the savannas, particularly in northern 

Guinea savanna (Carsky et al., 1998; Ibrahim et al., 2014). The high yield potential is because 

it offers more favorable environmental conditions, especially higher solar radiation and lower 
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night temperatures (Badu-Apraku et al., 2011). Maize is produced under rainfed system 

mainly by smallholder farmers who cultivate an average of less than 2 ha (Liverpool-Tasie et 

al., 2017, Gil et al., 2019).  

Over the last five decades, there has been substantial maize improvement research by 

collaborative efforts of international and national agricultural research institutes, resulting in 

several improved maize varieties and agronomic practices in general (Badu-Apraku et al., 

2013; Olaniyan, 2015). Especially the development of early and extra-early maturing maize 

varieties for Sudan savanna, where the length of growing period is very short, has contributed 

to the widespread cultivation of maize, even in drier agro-ecologies (Badu-Apraku et al., 

2018). In addition, maize farmers receive relatively more extension support and have better 

access to inputs, subsidized fertilizer and improved seeds, in comparison with farmers 

cultivating other food crops in Nigeria and SSA in general (Smale et al., 2013; Ibrahim et al., 

2014; Liverpool-Tasie et al., 2017). 

In spite of the food and cash prospects of maize cultivation, and the considerable 

research and extension efforts, empirical findings show that yields on farmers’ fields 

generally stagnate around 1 to 2 tons per ha (Wossen et al., 2017; Abdoulaye et al., 2018; 

Baiyegunhi et al., 2018; Oyinbo et al., 2019a). This falls short of the potential yield of over 7 

tons per ha. More specifically, rainfed maize has both the greatest yield potential and the 

largest yield gap relative to other cereals in Nigeria as in other countries in SSA (van Ittersum 

et al., 2016). Over the years, maize production increased substantially in terms of area 

harvested from 1.4 million ha in 1961 to 6.5 million ha in 2017, and in terms of production 

quantity from 1.1 million tons in 1961 to 10.4 million tons in 2017 (Fig. 1.1 and 1.2). By this, 

the maize area harvested is the largest in Africa and the production volume is the second 

largest – second to South Africa (FAOSTAT, 2018).  
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 Fig. 1.1: Maize area harvested and production quantity trend in Nigeria, 1961 – 2017. Source: 

Author’s computation based on data from FAOSTAT. 

 

Fig. 1.2: Map of Nigeria showing the distribution of maize harvested area across the 36 states of 

Nigeria and the federal capital territory. The area highlighted in blue holds about 60% of entire 

maize planted area in Nigeria. Source: Constructed in ArcGIS by TAMASA project team.  

Average yield has rather stagnated over the same period, moving from 0.8 tons per ha 

in 1961 to 1.6 tons per ha in 2017, and has been lagging behind average yield in the rest of 
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the world (Fig. 1.3). While Nigeria ranked high in maize area harvested and the production 

volume in 2017, yield is much lower than in several other countries in Africa (FAOSTAT, 

2018). The substantial increase in production volume over the years is due to extensification, 

which may be limited by population pressure and declining per capita farm size. There is the 

need for intensification of maize production to close the yield gap, which in turn can 

contribute substantially to food security (Smith et al., 1994; Gil et al., 2019). Low and 

inappropriate use of nutrients plays a crucial role in limiting yields. Apart from the soil 

fertility-related constraints, other notable biophysical constraints include drought and pest 

infestation, such as Striga hermonthica, particularly in the savannas, and poor agronomic 

practices, such as improper planting density (Kamara et al., 2014).  

 Fig. 1.3: Maize yield trend in Nigeria, Africa and the World, 1961 – 2017. Source:  
Author’s computation based on data from FAOSTAT. 

3.2 Fertilizer use in Nigeria 

There is a long history of fertilizer use in Nigeria: experimental trials were conducted as far 

back as 1937 (Tarfa et al., 2017; Amapu et al., 2018). The promotion efforts for farmers to 

use fertilizer date back to the 1970s (Liverpool-Tasie et al., 2017; Wossen et al., 2017). While 

the share of farmers using fertilizer in SSA is generally considered low, the share of farmers 

applying fertilizer on maize is relatively high, particularly in Nigeria (Sheahan and Barrett, 

2017; Liverpool-Tasie et al., 2017). The use of fertilizer is more widespread in northern 

Nigeria, where more than 90% of cultivated plots receive fertilizer (Manyong et al., 2001; 

Maiangwa et al., 2007; Sanni and Droppler, 2007). A number of factors, including relatively 
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active agricultural extension services – mainly driven by donor support, more investment in 

fertilizer subsidy, and lower inherent fertility of soils in the region – compared to southern 

Nigeria have been put forward to explain this (Mustapha, 2003; Liverpool-Tasie and 

Takeshima, 2013).  

Despite the seemingly widespread and long tradition of fertilizer use, the application 

rates are generally low on average. The annual average nutrient application rates on arable 

land in Nigeria over the years lag behind the average rates in Africa, which in turn lags far 

behind the rest of the world (Fig. 1.4). In 2016, the application rate was 5.5 kg per hectare of 

arable land – lower than the average of 16.2 kg per hectare of arable land for SSA 

(FAOSTAT, 2018).  Given such low fertilizer application rates, it is not surprising that 

Nigeria also has considerable crop yield gaps. Application rates for maize are generally 

higher than for other cereals – 40 to 50 kg N per hectare – but are still far below the rates 

which are generally recommended for the region, i.e. 120 kg N per hectare (Sanni and 

Droppler, 2007; Liverpool-Tasie et al., 2017; Abdoulaye et al., 2018).  

 
Fig. 1.4: Fertilizer application trend in Nigeria, Africa and the World, 2002 – 2016. Source: 

Author’s computation based on data from FAOSTAT. 

Fertilizer use has been stimulated directly through different fertilizer subsidy 

programs by successive national (Federal) and subnational (States) governments in Nigeria 

(Liverpool-Tasie, 2014). This evolved from the traditional government-led procurement and 

distribution of subsidized fertilizer (1970 to 2011) to an e-voucher scheme where 

procurement and distribution of subsidized fertilizer is led by the private sector (2012 to 

2015) (Takeshima and Nkonya, 2014; Wossen et al., 2017). Other indirect measures that have 
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been taken include programs on extension services for soil fertility management and 

improvement of farmers’ access to credit (Liverpool-Tasie et al., 2017). In recent years, there 

have been increased policy interventions to induce farm-level investments in fertilizer, raise 

productivity and improve farmer welfare. This follows the 2006 African fertilizer summit in 

Nigeria, where African countries committed to increasing fertilizer use to 50 kg nutrients per 

ha by 2015, and reinvigorated by the Malabo declaration in 2014 (Vanlauwe et al., 2015b, 

Sheahan and Barrett, 2017). Yet, on-farm fertilizer use rates have not substantially improved 

– fall short of the 2015 target in Nigeria and many other countries, and are on average below 

economically optimal rates (Sheahan et al., 2013; Ragada and Chapato, 2017; Theriault et al., 

2018).  

Starting from 2017, the Federal Government of Nigeria stopped the direct provision 

of subsidized fertilizer, i.e. smallholder farmers no longer receive 50% subsidy on two 50 kg 

bags of fertilizer (one NPK and one urea) per farmer per annum. This is largely connected to 

the huge financial burden of the subsidy program. The government has shifted focus on 

improving availability and affordability of quality fertilizer by providing an enabling 

environment for local blending and distribution of fertilizer in the country via a fertilizer 

policy ‘Presidential Initiative on Fertilizer (PFI)’ flagged-off in December 2016. Overall, the 

PFI seeks to end the importation of fully blended fertilizer into Nigeria, which has been the 

norm over the years, reduce the retail price of fertilizer, improve fertilizer use by smallholder 

farmers and in turn enhance their productivity and welfare. The expected reduction in 

fertilizer prices aligns with Smale et al. (2013) and Liverpool-Tasie and Takeshima (2013) 

who document that the cost of fertilizer importation into SSA contributes substantially to the 

high price of fertilizer.  

The strong emphasis on increased application of fertilizer is based on the assumption 

that the marginal return to fertilizer is very high, but this is not always the case as yield 

response is often low and highly variable (Xu et al., 2009; Liverpool-Tasie, 2017; Burke et 

al., 2017; Koussoube and Nauges, 2017; Theriault et al., 2018; Macours, 2019). This holds in 

particular for maize production in Nigeria, where yield response to fertilizer (marginal 

physical product of applied N or agronomic efficiency of applied N) is even lower than in 

other parts of SSA. Empirical findings show that the maize yield response to fertilizer is on 

average 8 kg maize per kg of N for Nigeria (Liverpool-Tasie et al., 2017), 16 kg for Zambia 

(Xu et al., 2009), 17 to18 kg for Kenya (Marenya and Barrett, 2009; Sheahan et al., 2013), 21 
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to 25 kg for Uganda (Matsumoto and Yamano, 2013), 22 to 26 kg for Ghana (Ragasa and 

Chapoto, 2017) and 19 to 24 kg for Burkina Faso (Koussoube and Nauges, 2017; Theriault et 

al., 2018)6. The low yield response to applied N can contribute to explain the low profitability 

and low fertilizer use rates widely observed in the literature (Jayne et al., 2019). In fact, a low 

response rate can be more important in some cases than market-related constraints, and a 

focus on improving efficient fertilizer use, which requires better nutrient management 

extension services, can be more rewarding (Jayne et al., 2018; ten Berge et al., 2019).   

3.3 TAMASA project 

This thesis is undertaken within the framework of the Taking Maize Agronomy to Scale in 

Africa (TAMASA) project. TAMASA is a 4-year project with an overall objective of 

improving productivity and profitability of maize for smallholder farmers in Nigeria, 

Tanzania and Ethiopia by using innovative approaches to transform agronomy. It is funded 

by the Bill and Melinda Gates foundation and led by the International Maize and Wheat 

Improvement Centre (CIMMYT) across the three countries and supported in Nigeria by the 

International Institute of Tropical Agriculture (IITA) and the Centre for Dry land Agriculture 

(CDA), Bayero University Kano, Nigeria. It focuses on four gaps necessary to transform 

agronomy at scale: data gap, knowledge gap, adoption gap and capacity gap (Fig. 1.5). In line 

with its specific objectives: use available geospatial soil, climate and socioeconomic datasets, 

work with service providers (government and private extension organizations, input suppliers 

and agro-dealers) to co-develop systems that transform the available dataset into products and 

build capacity in national programs, the co-development of a nutrient management DST 

known as Nutrient Expert was put forward at the outset of the project.  

The co-development of the tool was led by the International Institute of Plant 

Nutrition (IPNI) in collaboration with CIMMYT and the national partners, including service 

providers and farmers. The tool development process essentially consists of data collection 

phase (multi-location nutrient omission trials), model development (algorithm, decision rules 

and programming) and field validation (on-farm model testing and refining). This leads to 

packaging of the SSNM paradigm into the nutrient management software, i.e. Nutrient Expert 

tool. The final version of the tool is a tablet- or smartphone-based DST that allows extension 

                                                 
6These are survey-based estimates, i.e. based on survey data from farmer-managed plots and not potential yield 

responses from on-farm or research-station trials. Also, these are average yield responses, which are likely to 

mask substantial heterogeneity in responses across plots due to variation in management, soil and microclimate 

(Jayne et al., 2018). Hence, the response rates for individual plots can be much lower or higher than the 

averages.  
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agents to generate fertilizer recommendations tailored to the specific situation of an 

individual farmer’s field. It is based on the SSNM: 4R principles of nutrient management – 

the right rate, the right fertilizer source, the right placement and the right time of application, 

and allows adjusting fertilizer application based on crop-, plot- and season-specific conditions 

(Pampolino et al., 2012; Johnston and Bruulsema, 2014). In the use of the tool by an 

extension agent to provide advice to a farmer, the inputs required include farmer-supplied 

information about his previous season’s crop management practices on the plot (use of 

inorganic fertilizer and organic resources, seed type, cropping system, yield, etc.), 

characteristics of the growing environment (water availability, incidence of drought, flood, 

etc.), a target maize yield and the prices of inputs and maize. Additional information on soil 

characteristics (color, texture, etc.) is elicited through physical observation of the soil in the 

plot by the extension agent, and a Geographical Positioning System (GPS)-based plot area is 

recorded. A target yield is defined as the attainable or optimal yield for a farmer’s specific 

location estimated by the tool using the information on the farmer’s current crop management 

practices and characteristics of the growing environment. The tool can allow a farmer to 

choose a yield lower than the attainable yield as the target yield – in this way it can take into 

account the financial situation of farmers by allowing the fertilizer rate to be adjusted 

according to the farmer’s available budget. The outputs of the tool include SSNM 

information –  plot-specific optimal nutrient rates and fertilizer sources that supply these 

nutrients as well as general advice on nutrient management practices, such as timing of 

fertilizer application (in particular on splitting the nitrogen application to match nutrient 

demands at different stages in the maize growth cycle) and fertilizer application method (in 

particular spot application is recommended as this reduces nutrient losses and ensures optimal 

nutrient uptake by the plant). The tool recommends a site-specific nutrient rate for an 

individual farmer’s plot based on the farmer’s target yield and the expected yield responses, 

and it relies on the QUEFTS (Quantitative Evaluation of the Fertility of Tropical Soils) model 

to predict maize yield responses (Pampolino et al., 2012). The model was calibrated for the 

study area using nutrient omission trials data collected in two seasons, 2015 and 2016. In 

addition, the tool provides a simple profit analysis to compare farmers’ current practice and 

the recommended practices.  
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Fig. 1.5: Overview of the gaps addressed by TAMASA. Source: TAMASA project  

3.4 Research area 

The research area covers three states in northern Nigeria (Fig. 1.6), where maize is grown in a 

smallholder rainfed system under different agro-ecological conditions. More specifically, the 

states are in the north-west geopolitical zone – the zone with the highest percentage of 

extreme poor out of the six zones in Nigeria (World Bank, 2016; Otekunrin et al., 2019). The 

states are Kaduna, Kano and Katsina, and the agro-ecological zones of the specific research 

locations are southern Guinea, northern Guinea and Sudan savannas. Rainfall pattern is uni-

modal across the agro-ecologies but the amount and distribution varies. On average, the 

amount of annual rainfall and the length of the growing season in southern Guinea savanna 

are 1200 to 1500 mm and 181 to 210 days respectively. In northern Guinea savanna, it is 900 

to 1200 mm and 151 to 180 days respectively, and it is 500 to 900 mm and 91 to 150 days 

respectively in the Sudan savanna (Manyong et al., 2001; Akpa et al., 2016). The three agro-

ecologies and two others (i.e. derived and Sahel savannas) constitute the Nigeria savanna, 

which covers about 700,000 km2 of its total land area of 923,768 km2 (Tarfa et al., 2017). 

Soils in the area have a large sand content – sandy loam to loam – a low organic carbon and a 

low water retention capacity (Ekeleme et al., 2014; Shehu et al., 2018). The estimated 

populations of Kaduna, Kano and Katsina States in 2018 are 8.4, 12.7 and 7.9 million people 

respectively based on the Nigeria population census of 2006 and the annual population 

growth rates (World Bank, 2018b). In addition, their population densities are high – 182, 640 

and 329 people per km2 respectively.  
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Fig. 1.6: Map of the study area showing the study states and communities. Source: Constructed in 

ArcGIS by TAMASA project team 

The predominant cropping system in this area is a cereal-legume system with maize, 

sorghum and millet as the main cereal crops and cowpea, groundnut and soybean as the main 

legumes. The legumes are sometimes intercropped with cereals and sometimes grown in 

rotation. In light of the N-fixation capacity of these legumes and the fact that N is the most 

limiting nutrient for maize, their cultivation is increasingly promoted in the area and 

elsewhere in SSA as a way of improving soil fertility in cereal-dominated farming systems 

(Vanlauwe et al., 2019b). Other crops cultivated in the area include vegetables, such as 

tomatoes, pepper, onion and cabbage, and roots and tubers, such as yam and sweet potatoes. 

Livestock production is also common in the cropping system, including cattle, sheep, goat, 

chicken, duck and rabbit production. Farm-households who own cattle often use them for 

agricultural purposes – for animal traction, for transportation and as a source of manure.  

Low soil fertility is one of the major constraints to crop production in the area. The 

cropping system is characterized by low levels of external input use, especially inorganic 

fertilizer and low yields. The use of organic fertilizer, such as animal manure and compost is 
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common but the application rates are often too low to supply considerable nutrients 

(Manyong et al., 2001; Chianu and Tsujii, 2005). Hence, the large majority of farmers apply 

only inorganic fertilizer or both inorganic and organic fertilizer (Akinola et al., 2010). On-

farm retention of crop residues, which helps in improving soil organic matter is not a very 

common practice, as farmers often use the residues for livestock feed and/or fuel (Akinola et 

al., 2015). The practice of fallow system, a traditional way of restoring soil fertility has 

become very rare, which may be due to an increase in land pressure (Sanni and Droppler, 

2007). Apart from nutrient-related constraints, pest infestation is an important biotic 

constraint that farmers face in the cropping system. The parasitic witchweed, Striga 

hermonthica is a common pest in maize fields (Baiyegunhi et al., 2018). There is an emerging 

infestation of fall army worm, Spodoptera frugiperda in maize fields in the area following the 

outbreak of the pest in 2016 (Goergen et al., 2016). Drought stress is an important abiotic 

constraint to rainfed crop production, such as maize, in the area (Kamara et al., 2019).  

The dominant ethnic group of the farm-households in the area is Hausa, and the large 

majority of them are Muslims. Polygamy is very common in the area and the household 

members often live in the same compound. Cultural norms of the dominant ethnic group 

limits the active participation of women in on-farm activities, particularly in rural 

communities where seclusion of married women is still strongly adhered to, and their role is 

mainly reproductive (Baba and van der Horst, 2018). Men are predominantly responsible for 

the productive activities of their households, particularly crop production while women are 

largely engaged in crop processing activities within the compound of their households. The 

men also engage in off-farm business activities, including petty trading, carpentry, tricycle 

and motorcycle transportation, meat processing, and tailoring among others. 

There are several agricultural research institutes and centres in the area, including 

Institute for Agricultural Research (IAR), National Agricultural Extension and Rural Liaison 

Services (NAERLS), Centre for Dryland Agriculture (CDA), International Crops Research 

Institute for the Semi-Arid Tropics (ICRISAT) and IITA. Extension service providers in the 

area are mainly the public extension system – Kaduna State Agricultural Development 

Agency (KADA), Katsina State Agricultural and Rural Development Authority (KTARDA) 

and Kano State Agricultural and Rural Development Authority (KNARDA). Extension 

coverage by the public extension system is relatively low due to a gross inadequacy of 

extension personnel (1 extension agent for about 5,000-10,000 farmers) in the area (Davis et 
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al., 2019). This contributes to limiting farmers’ access to extension services, and in particular 

one-on-one extension agent-farmer interaction in the area. This situation has given rise to 

other extension service providers, including non-governmental organizations, such as 

Sasakawa-Global 2000, and private sector extension providers, such as input suppliers and 

agro-dealers in recent years. The extension service providers often work in close 

collaboration with research institutes and donor-funded projects, especially in on-farm testing 

of technologies and management practices. In addition, they are responsible for the 

dissemination of agronomic advice stemming from such collaborations. For instance, the 

general fertilizer use recommendations that the extension system disseminates to farmers 

were derived from fertilizer trials conducted over three decades ago and the recommendations 

are made for the sub-national levels – i.e. agro-ecological zones (Chude et al., 2012; Amapu 

et al., 2018).  

4. Data collection 

The data for this thesis were collected in four phases over the period of 2016 to 2018. I was 

personally involved in all the data collection phases and I was equally the main responsible 

person for coordinating and supervising the data collection. In this thesis, I use three main 

sources of data: 1/ primary data from a discrete choice experiment (CE) among farmers, 2/ 

primary data from a CE among extension agents, and 3/ primary data from a three-period 

panel survey associated to a randomized controlled trial (RCT)7. I implemented all the data 

collection activities by means of digital data collection using the Open Data Kit (ODK) 

software on tablets. 

 The first phase had two components, a CE and a baseline survey, which includes plot-

, household- and village-level surveys that were conducted in September to October 2016 

using a structured quantitative questionnaire. The CE was implemented first and lasted on 

average 20 minutes per interview. Then, the baseline survey was implemented and took about 

3 hours, depending on the distance of maize plots from the homestead. Prior to this, in July 

2016, I conducted three focus group discussions with farmers in two villages that did not 

belong to the selected sample. This was done to identify attributes and attribute levels for the 

design of the CE. In addition, I implemented a pilot version of the CE among 30 farmers in a 

village that was not sampled for the survey in August 2016. The pilot survey was 

                                                 
7 In TAMASA project implementation across the three countries, the panel survey is referred to as Agronomy 

Panel Survey (APS).   
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implemented to help fine-tune the setup of the CE and generate priors to improve the 

efficiency of the CE design.  

I used a two-stage sampling design to sample the maize-producing farm-households. 

In the first stage, I randomly generated 22 sampling grids of 10 by 10 km across the primary 

maize-producing areas in the three states to ensure spatial representativeness of the areas 

(Fig. 1.7). These grids include 99 randomly selected communities across 17 local government 

areas (LGAs) – the administrative units below the state. In this stage, I worked very closely 

with the post-doctoral research fellow (geospatial analyst) in the project who assisted me with 

the construction of the sampling grids, compilation of the GPS coordinates of the selected 

communities and all the maps used in this thesis. With the GPS coordinates, I was able to 

make my first visit to all the communities, and explain the purpose of the research to all the 

community heads. In the second stage, I constructed a sampling frame of maize-producing 

farm households in the communities with the assistance of the community heads and the 

extension agents operating the areas. I randomly selected eight households from each selected 

village, which results in a final sample of 792 households.   

The data collection was implemented by 32 enumerators and 8 supervisors (4 teams 

of 8 enumerators with each team headed by 2 supervisors). All the enumerators had a 

minimum of bachelor degree and majority of them studied an agriculture-related course. The 

supervisors had a minimum of MSc. degree in a field of agriculture, and were mostly staff of 

a university in the area. I intensively trained the enumerators and the supervisors at IITA, 

Kano-station for one week with the support of Jordan, and we had pre-test sessions during the 

training in two communities that are not part of the survey sample. All the enumerators and 

the supervisors are fluent in the local language – Hausa, and majority of them had prior 

experience in digital data collection. Each enumerator was only allowed to interview two 

households in a day to allow of better data quality control. I am also very fluent in the local 

language and this enabled me to participate actively in the survey and render technical 

support to the enumerators and the supervisors across the 4 teams of the survey.  

For the plot survey, detailed data were collected for the focal maize plot cultivated by 

the household – which is the plot the household head considers to be most important for the 

household food security and/or income generation. The structured questionnaire that I used 

had different modules on: plot size measurement – farmer self-reported estimate and GPS-

based estimate by a mobile app ‘UTM area measure app’, soil samples at two depths and crop 
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cut where possible on the plot. The modules of the questionnaire for the household survey 

include household demographic characteristics, farm-level crop production and input 

investment, land market, household assets, fertilizer availability, fertilizer recommendations, 

social capital, extension, credit, income sources, food security, fertilizer use and crop 

management on the focal plot. The data were mostly collected for the last 12 months prior to 

the survey. The data were generally collected at the household level except for household 

demographic characteristics which were collected at individual level. For the community 

survey, the questionnaire had modules on community demographics, prices of inputs and 

outputs, access to institutions and services, and the respondent was usually the community 

head or the leader of farmers in the community. GPS coordinates of the focal maize plots, 

homesteads and central locations of all the communities were recorded. 

In the second phase, a discrete choice experiment was implemented among extension 

agents (EAs) in November 2016 and was accompanied by a survey. I sampled EAs from both 

public and private extension service providers who directly advise farmers, and are in turn the 

expected users of extension DSTs. I randomly selected 278 EAs from the public extension 

service providers – KADA, KTARDA and KNARDA, and 42 EAs affiliated to private 

extension providers, which results in a final sample of 320 EAs. For the survey, I used a 

structured quantitative questionnaire, comprising of modules on: demographic characteristics 

of the EAs, work environment of EAs, fertilizer recommendations, income sources, time and 

risk preferences. The data collection was implemented by a team of 8 enumerators and 3 

supervisors from the survey team that participated in the first phase of data collection. I 

trained the enumerators and the supervisors at IITA, Kano-station for three days, including a 

pre-test of the questionnaire with some EAs. The data collection was much easier because 

most of the EAs were educated and the survey team had good experience about CE 

implementation from the first phase.  

In the third phase, the second round of the panel survey, i.e. first follow-up survey 

was conducted in September to October 2017. This survey follows the first implementation of 

SSNM information interventions using Nutrient Expert DST in April to May 2017 in the 

area. For the survey, I used the same structured questionnaire that was used in the first round 

but I made some modifications to the questionnaire in response to the randomized controlled 

trial, and I dropped some variables that are time-invariant. The data collection was 

implemented by 24 enumerators and 6 supervisors, i.e. 3 teams of 8 enumerators and 2 
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supervisors per team and about 90% of them participated in the first survey round. I trained 

the enumerators and the supervisors at IITA, Kano-station for five days, including a pre-test 

of the questionnaire in a community outside the survey sample. I collected data from 788 

households out of the survey sample of 792 households, which results in an attrition rate of 

0.5%. The households who cultivated maize on their focal plot were 690 households, which 

results in a balanced panel of 690 households who cultivated maize on their focal plot for the 

2016-2017 period.  

In the fourth phase, I implemented the third round of the three-period panel data 

collection – second follow-up survey in September to October 2018. This is a follow up to 

the second implementation of the SSNM information interventions in April to May 2018. In 

addition, a CE was implemented in this phase to assess farmers’ willingness to pay for 

agronomic advice in response to the debate for a market-led extension but this is not part of 

this thesis.  The structured questionnaire that was used in the first follow-up survey was used 

for the survey with some little changes. The survey was implemented by a team of 24 

enumerators and 6 supervisors and all of them participated in the first or second round except 

one enumerator and one supervisor. The training of the survey team was at the Centre for 

Dryland Agriculture, Bayero University Kano for five days. At the end of the survey, the 

attrition rate was 0.8% because data were only collected from 786 households out of the 

original sample, and I had a balanced panel of 666 households who cultivated maize on their 

focal plot for the 2016-2018 period.  

The summary of the different data collection activities, databases and the outputs 

produced is presented in Fig. 1.8. While the baseline survey data were associated with the 

RCT and also complemented the CE data from the farmers in the first phase, data from the 

first and second follow-up surveys were only associated with the RCT in this thesis. I provide 

an overview of the RCT setup in Fig. 1.9. The advantage of the CE method is that it allows us 

to ex-ante quantify the respondents’ preferences regarding specific features of nutrient 

management DSTs and of extension advice from such DSTs to support maize intensification, 

before introducing the DSTs into the extension systems. In this way, the use of CE in 

agricultural economics can help to provide insights to better inform the design, fine-tuning 

and delivery of technologies, extension initiatives or policy interventions to improve the 

efficiency and efficacy of extension systems. The major limitation of the CE method is that it 

is susceptible to hypothetical bias because of its hypothetical nature (Loomis, 2014). Yet, 
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there are different approaches to mitigate this, including the use of a cheap talk script, 

honesty priming and opt-out reminder. The advantage of the RCT (often regarded as the 

‘gold standard’ of impact evaluation) is that it allows us to clearly identify the causal effects 

of site-specific nutrient management advice with or without complementary information on 

variability of fertilizer investment returns by virtue of the randomization mechanism. In this 

way, the use of RCT in agricultural and development economics allows to rigorously test the 

effectiveness of interventions and provide evidence-based information to development and 

policy interventions8. One of the criticisms on the use of RCTs is the issue of limited external 

validity, which is still open to debate in the literature (Deaton and Cartwright, 2018).  

 
Fig. 1.7: Map of the study area showing the 10 by 10 km sampling grids. Source: Constructed in 

ArcGIS by TAMASA project team. 

 

                                                 
8This line of experimental approach in development economics earned the trio, Professors Abhijit Banerjee, 

Esther Duflo and Michael Kremer the 2019 Nobel Prize for economics. 
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Fig. 1.8: Schematic overview of data collection. Source: Author’s own sketch 

DATA COLLECTION DATABASE DATA USE 

Sep – Oct 2016:  

Choice experiment among farmers 

 

Sep – Oct 2016:  

First round of quantitative plot, 

household and village survey 

 

Nov 2016:  

Choice experiment among extension 

agents and quantitative survey 

 

Sep – Oct 2017:  

Second round of quantitative plot, 

household and village survey   

 

Sep – Oct 2018:  

Third round of quantitative plot, 

household and village survey 

 

Primary data:  

Data on 792 households in 99 villages 

across three states 

 

Primary data:  

Data on 792 households in 99 villages 

across three states 

 

Primary data:  

Data on 320 (278 public & 42 private) 

extension agents across three states 

 

Primary data:  

Data on 788 households in 99 villages 

across three states 

 

Primary data:  

Data on 786 households in 99 villages 

across three states 
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Fig. 1.9: Schematic overview of the setup of the randomized controlled trial in this thesis. Source: Author’s own sketch
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5. Outline of the dissertation 

In chapter 2, I analyze farmers’ preferences for intensification of maize production supported 

by DST-enabled site-specific nutrient management recommendations in the maize belt of 

Nigeria in an ex ante quantitative way. To do this, I implement a discrete choice experiment 

among farmers in the research area. I use different econometric models to control for attribute 

non-attendance and account for preference as well as scale heterogeneity. In chapter 3, I ex-

ante assess preferences of extension agents for the design of a nutrient management DST for 

extension services, and their willingness to use such tool. I implement a discrete choice 

experiment among extension agents in the design stage of a new DST for site-specific 

nutrient management recommendations for maize, the Nutrient Expert in northern Nigeria. I 

estimate conventional and validation attribute non-attendance models that allow us to account 

for attribute non-attendance. In addition, I estimate mixed logit and latent class models to 

account for preference heterogeneity for the design features of a nutrient management DST. 

In chapter 4, I rigorously evaluate the impact of farmers’ access to DST-enabled site-specific 

nutrient management recommendations on fertilizer use rates, take-up of fertilizer use 

management practices, yield and revenue. I implement a randomized controlled trial with two 

treatment groups and a control group. Using three-period panel data, I estimate the causal 

effects of the site-specific nutrient management interventions with a difference-in-difference 

(DiD) estimation. I perform several robustness checks, including estimation of DiD with and 

without baseline controls, robustness checks to potential attrition bias, and to alternative 

statistical inference and to corrections for multiple hypotheses testing. In addition, I explore 

heterogeneity of treatment effects across the outcome distribution and across seasons. Finally 

in chapter 5, I conclude by summarizing the main findings of the thesis and put forward the 

research and policy implications of the thesis.  
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Chapter 2 

Farmers’ preferences for high-input agriculture supported 

by site-specific extension services: Evidence from a choice 

experiment in Nigeria9 
  

                                                 
9 This chapter is published as Oyinbo, O., Chamberlin, J., Vanlauwe, B., Vranken, L., Kamara, A.Y., Craufurd, 

P. & Maertens, M. (2019). Farmers’ preferences for high-input agriculture supported by site-specific extension 

services: Evidence from a choice experiment in Nigeria. Agricultural Systems, 173, 12-26. 
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1. Introduction 

The yields of major food crops, such as maize, in Sub-Saharan Africa (SSA) are lagging 

behind yields in other parts of the world, and are often far below their potential (Tittonell and 

Giller, 2013; Vanlauwe et al., 2015a; Guilpart et al., 2017). This contributes to persistent 

poverty among smallholder farmers, slow agricultural growth and dependency on food 

imports, and food insecurity among a rapidly growing population (Barrett and Bevis, 2015; 

van Ittersum et al., 2016; Komarek et al., 2017; Ragasa and Mazunda, 2018). Poor soil 

fertility is a major biophysical factor limiting maize yields in SSA in general (Kihara et al., 

2016a) and in Nigeria in particular (Shehu et al., 2018). Nutrient-related constraints in maize 

production include macronutrient (nitrogen (N), phosphorus (P) and potassium (K)) 

deficiencies, especially N, as well as secondary nutrient and micronutrient deficiencies and 

soil acidity (Kihara et al., 2016a; Vanlauwe et al., 2015b).  

Improving soil fertility is challenging because of the large spatio-temporal 

heterogeneity in biophysical and socio-economic conditions of smallholder farming systems 

(Tittonell et al., 2010; Vanlauwe et al., 2015b; Njoroge et al., 2017; MacCarthy et al., 2018). 

Given an average low level of input use, it is often argued that smallholder farmers in SSA 

need to intensify the use of external inputs, especially inorganic fertilizer, in order to improve 

yields and productivity (Chianu and Tsujii, 2005; Duflo et al., 2011; Wiredu et al., 2015; 

Sheahan and Barrett, 2017). Yet, empirical findings for Nigeria (Liverpool-Tasie et al., 

2017), Kenya (Sheahan et al., 2013) and Zambia (Burke et al., 2017) show that this argument 

does not always hold and that it is not always profitable for farmers to increase their 

application rates of inorganic fertilizer in maize production, primarily because of a low maize 

yield response to fertilizer application in some areas. These studies argue that a low marginal 

physical product of applied N is a more important factor limiting the profitability and the use 

of fertilizer in some regions than market-related and institutional constraints such as high 

transaction costs, and imperfections in credit and input markets. Extension services on soil 

fertility management that are adapted to the local context of individual farmers may 

contribute to improving the yield response to fertilizer and the marginal physical product of 

applied fertilizer (Vanlauwe et al., 2015b).  

Yet, in SSA, and elsewhere, agricultural extension most often entails general 

recommendations for improved soil fertility management that are disseminated to farmers in 

a large growing area, covering e.g. a region, a district or a province (Tittonell and Giller, 
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2013; Kihara et al., 2016a; Shehu et al., 2018). Such agricultural extension practices fail to 

take into account the heterogeneous and complex biophysical and socio-economic conditions 

of smallholder farming (MacCarthy et al., 2018; Kihara et al., 2016a). Site-specific 

agricultural extension, on the other hand, includes recommendations that are tailored to the 

situation of an individual farmer or field. Such recommendations might be more effective to 

bring about yield and productivity improvements than conventional extension practices 

(Ragasa and Mazunda, 2018). To improve the capacity of agricultural extension providers in 

the delivery of site-specific extension recommendations to farmers, information and 

communication technology (ICT) driven decision support tools (DSTs) offer great potential 

(Kragt and Llewellyn, 2014; Vanlauwe et al., 2015b; Vanlauwe et al., 2017). The role of 

digital technologies in agriculture in developing countries is increasing (Bernet et al., 2001; 

Fu and Akter, 2016; Verma and Sinha, 2018) and these technologies might provide a cost-

effective and innovative way to providing site-specific fertilizer recommendations to 

smallholder farmers (Njoroge et al., 2017).  

In this chapter, we analyze farmers’ preferences for high-input production systems 

supported by site-specific nutrient management (SSNM) recommendations for maize 

provided by an ICT-based extension tool called Nutrient Expert (Pampolino et al., 2012). The 

Nutrient Expert tool is being developed for extension in the maize belt of Nigeria and ex-ante 

insights on farmers’ preferences for the expected information content and recommendation 

alternatives from the tool can contribute to optimize its development. We use a choice 

experiment to provide ex-ante insights on the adoption potentials of site-specific advisory 

services enabled by digital tools from farmers’ perspectives, identify heterogeneous 

preference classes and the drivers of farmers’ preferences.  

We contribute to the general literature on agricultural technology adoption, and 

specifically to the literature on DSTs for improved soil fertility management. Our findings 

add insights to the R4D literature and are relevant for the development community. The 

current empirical literature includes ex-post studies that analyze farmers’ adoption behavior 

after technologies have been introduced (e.g. Lambrecht et al., 2014; Mponela et al., 2016; 

Morello et al., 2018) and a growing number of ex-ante studies that use choice experiments to 

analyze farmers’ adoption behavior in the design stage of a technology (e.g. Lambrecht et al., 

2015, Mahadevan and Asafu-Adjaye, 2015; Dalemans et al., 2018; Tarfasa et al., 2018). 

However, none of the available studies focuses on farmers’ adoption of site-specific 

extension recommendations and also farmers’ willingness to accept such recommendations 
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from ICT-based extension tools has not been researched (Fu and Akter, 2016; Verma and 

Sinha, 2018). The only available empirical study on preferences for ICT-based extension 

tools focuses on the extension providers rather than the ultimate beneficiaries (farmers) 

(Kragt and Llewellyn, 2014). Building on Kragt and Llewellyn (2014), we also contribute to 

the choice experiment literature by extending the application of the methodology in 

optimizing design of DSTs but with a more rigorous empirical estimation. We specifically 

take into account both farmers’ response error and attribute non-attendance using different 

econometric models, which is an advancement in comparison with previous choice 

experiment studies that address only one of these issues (e.g. Kragt, 2013; Coffie et al., 2016; 

Dalemans et al., 2018; Campbell et al., 2018; Caputo et al., 2018).   

The remainder of the chapter is organized as follows. In Section 2 we provide some 

background on maize production, soil fertility and conventional extension in Nigeria as well 

as the development of a Nutrient Expert tool. In Section 3 we explain the methodological 

approach of the paper. In Section 4 we report the results of the empirical analysis and provide 

a discussion of the results in section 5. Section 6 concludes the paper. 

2. Background 

2.1 Maize production in Nigeria 

A crop of notable interest for food security and the most widely grown in SSA is maize (van 

Ittersum et al., 2016). As in other countries in SSA, maize is a very important crop in Nigeria, 

where it is largely cultivated by smallholder farmers (Abdoulaye et al., 2018). Yet, on-farm 

yields are low and far below attainable yields in experimental stations, leading to a 

substantial yield gap (Shehu et al., 2018). Maize yields in Nigeria have consistently lagged 

behind those in the rest of the world – with maize yield in Nigeria being only one fourth of 

the average global yield in 2016 – and are currently even lagging behind on the average yield 

in Africa (Fig. 2.1).  
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Fig. 2.1: Maize yield trend in Nigeria, Africa and the world at large (FAOSTAT, 2018).  

2.2 Soil fertility and conventional extension 

The average low maize yield in Nigeria is related to inherent poor soil fertility, and 

continuous cropping and mining of soil nutrients (Tarfa et al., 2017; Ande et al., 2017). Soil 

nutrient deficiencies are common with N as the most limiting nutrient for maize production in 

the Nigerian savannas (Chianu and Tsuji, 2005; Shehu et al., 2018). Fertilizer use to address 

nutrient deficiencies is low. Average fertilizer use on arable land is estimated to be 8.3 kg 

nutrient per ha in 2015 (FAO, 2017). This is despite the commitment of Nigeria and other 

African countries to increase fertilizer use from 8 to 50 kg nutrients per ha by 2015 (Sanginga 

and Woomer, 2009; Vanlauwe et al., 2015b). Low fertilizer use has been attributed to market 

constraints such as a lack of fertilizer availability during the season, high cost of fertilizer, 

low access to credit, high transportation costs, behavioral constraints such as risk and time 

preferences, poor knowledge of fertilizer use, as well as to a poor yield responses to fertilizer 

applications (Chianu and Tsuji, 2005; Sanni and Droppler, 2007; Ande et al., 2017; Tarfa et 

al., 2017). Although the agricultural extension system is generally weak in Nigeria, 

considerable extension services are directed to maize production because of its importance 

for food security (Ande et al., 2017). The extension system provides general fertilizer 

recommendations, which is 120 kg N, 60 kg P2O5 and 60 kg K2O per ha for maize in the 

northern Guinea savanna of Nigeria (Shehu et al., 2018; Tarfa et al., 2017). Yet, maize 

farmers use on average only between 40 to 45 kg N per ha, about 15 kg P2O5 per ha and 15 kg 

K2O per ha (Liverpool-Tasie et al., 2017), which is less than half the recommendation of 120 
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kg N per ha. The use of this general recommendation is not consistent with the principle of 

dynamically adjusting fertilizer application based on crop need, and field- and season-specific 

conditions (Pampolino et al., 2007). In addition, general recommendations may result in 

fertilizer rates that are sub-optimal from an economic point of view because (expected) 

marginal returns to fertilizer application are not the same across farmers and fields. Site-

specific recommendations may result in fertilizer application rates that allow to better align 

marginal costs and benefits of fertilizer application, and better account for farmers risk 

preferences. 

2.3 Nutrient Expert tool  

The project ‘Taking Maize Agronomy to Scale in Africa (TAMASA)’ is co-developing a 

user-friendly, scalable nutrient management extension tool, known as Nutrient Expert, with 

the aim of providing site-specific soil fertility management recommendations to maize 

farmers in Nigeria, Tanzania and Ethiopia10. This effort is expected to result in a mobile 

phone-based, easy-to-use and interactive tool that will be used by extension agents to 

generate fertilizer and management recommendations adapted to the specific situation of an 

individual farmer’s field in real-time (Pampolino et al., 2012). The tool is based on SSNM 

principles of applying fertilizer according to crop needs by promoting the right fertilizer 

source (i.e. the type of fertilizer needed), at the right rate (i.e. the amount of fertilizer), at the 

right time (i.e. the timing of fertilizer application), in the right place (i.e. the placement of 

fertilizer) (4R’s of nutrient use). The tool relies on the quantitative evaluation of the fertility 

of tropical soils (QUEFTS) model to predict the yield responses (Janssen et al., 1990). The 

inputs required to generate recommendations include a target maize yield, farmer’s current 

crop management practices (inorganic and organic fertilizer use, variety type, yield etc.), 

characteristics of the growing environment (water availability, risk of flood/drought etc.), soil 

characteristics (soil texture, soil color, history of manure use etc.) and prevailing market 

prices of inputs and maize. A target yield is the attainable yield for a farmer’s location 

estimated by the tool using the information on current crop management practices and 

characteristics of the growing environment provided by the farmer. However, a farmer has 

the option of choosing a yield lower than the attainable yield as the target yield. The outputs 

of the tool include information on SSNM (N, P, K application guide and associated crop 

                                                 
10 The development of the Nutrient Expert tool is a collaborative effort of International Plant Nutrition Institute 

(IPNI), International Maize and Wheat Improvement Centre (CIMMYT), International Institute of Tropical 

Agriculture (IITA), extension service providers, national institutes, government agencies, input dealers and 

farmers with IPNI leading the process.  
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management practices) to achieve the target maize yield and a simple profit analysis to 

compare farmers’ current practice and the recommended practices. The tool can take into 

account the financial situation of farmers by allowing recommendations to be adjusted 

according to their available budget. The tool development process is expected to consist of 

data collection (multi-location nutrient omission trials), model development (algorithm, 

decision rules and programming) and field validation (model testing and refining) 

(Pampolino and Zingore, 2015).  In this paper, we examine farmers’ preferences for high-

input maize production that is supported by site-specific extension recommendations. This 

allows to analyze how farmers trade off specific attributes of a high-input, -output, -

investment and -risk production system, and generates insights for optimizing the design of 

the Nutrient Expert tool.  

3. Methodology 

3.1 Research area and sampling  

The research was conducted in the maize belt of northern Nigeria which covers the northern 

Guinea, southern Guinea and Sudan savannas, and where agro-ecological conditions are 

diverse. In this region maize is mainly grown under a smallholder rain-fed cereal-legume 

cropping system. The predominant cropping system in this area is a cereal-legume system 

with maize and sorghum as main cereal crops and cowpea, soybean and other legumes often 

intercropped with cereals and sometimes in rotation. The tillage practice in the system is 

mostly traditional tillage that involves the use of a hoe and animal traction. Retention of crop 

residues on fields is not very common because residues are often used as livestock feed and 

fuel (Manyong et al., 2001; Akinola et al., 2015).  The cropping system is characterized by 

low levels of external input use, such as inorganic fertilizer, and low yields.  For example, the 

application rate of fertilizer is on average less than 50 kg N per ha for maize, which is low in 

comparison with the general recommendation of 120 kg N per ha. Yields are on average 

around 2 tons per ha while the potential maize yield in this area has been estimated to be 

more than 5 tons per ha (Manyong et al., 2001; Sanni and Droppler, 2007; Liverpool-Tasie et 

al., 2017; Abdoulaye et al., 2018).  The low-input low-output cropping systems relates to a 

low yield response to fertilizer and to constraints faced by farmers, including information 

constraints on optimal input use, high cost of fertilizer, low access to credit, and high 

transaction costs in acquiring inputs (Manyong et al., 2001; Chianu and Tsuji, 2005; Sanni 

and Droppler, 2007; Liverpool-Tasie et al., 2017).   
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For this study, the states of Kaduna, Katsina and Kano (Fig. 2.2) were purposively 

selected because of their strategic position in maize production and to pilot research activities 

for the development of the Nutrient Expert tool. A two-stage sampling design was used to 

sample households in these states. In the first stage, 22 sampling grids of 10 x 10 km were 

randomly generated across the primary maize areas in the three states with geospatial inputs 

to ensure spatial representativeness. These 22 sampled grids include 99 randomly selected 

villages belonging to 17 local government authorities (LGAs), the administrative unit below 

the state. All these villages were included in the sample. In the second stage, a sampling 

frame of maize-producing farm-households was constructed for each of the selected 99 

villages. In each of the villages, eight households were randomly selected from a village 

listing of maize-producing farm-households, which results in a total sample of 792 

households. All the selected farm-households are male-headed. Crop production activities in 

the research area are predominantly carried out by men while women are largely engaged in 

crop processing activities. Cultural norms such as seclusion of married women among the 

dominant Hausa ethnic group in most rural communities of the research area is one of the 

main factors that limit the active participation of women in on-farm activities (Baba and van 

der Horst, 2018). Also women’s poor access to and control over productive resources hinders 

an active participation and leading role of women in crop production. There is a general 

believe in the research area that women do not farm (Manyong et al., 2001). The focus on 

male-headed households limits a detailed consideration of gender issues in this study. 
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 Fig. 2.2: Map of the study area  

3.2 Design and implementation of a choice experiment 

In this research area, we implemented a discrete choice experiment (CE) with the 792 

sampled farmers during the maize harvest period of 2016 and complemented the CE data 

with a farm-household survey. A discrete CE is a survey-based method for eliciting 

preferences of respondents. These preferences are derived from respondents’ repeated 

choices between two or more discrete alternatives of a ‘good’, ‘service’ or ‘course of action’ 

described by various levels of specific attributes of these products (Pouta et al., 2014). This 

approach makes it possible to evaluate farmers’ preferences for high-input agriculture 

supported by SSNM recommendations prior to the development of the Nutrient Expert tool 

and take into account these preferences in designing, fine-tuning and delivering the tool. CEs 

first emerged in marketing studies and now cut across several disciplines, including 

agricultural sciences where CEs are increasingly applied in ex-ante agricultural technology 

adoption studies (Mahadevan and Asafu-Adjaye, 2015; Lambrecht et al., 2015; Coffie et al., 

2016; Kassie et al., 2017; Tarfasa et al., 2018; Dalemans et al., 2018). Theoretically, the CE 
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method is based on Lancaster’s economic theory of value (1966) and random utility theory 

(McFadden, 1974). Practically, collecting CE data entails the identification of relevant 

attributes, the identification of levels for each of these attributes, an experimental design into 

different choice sets, the construction of choice cards with these choice sets, and the 

implementation of the CE among respondents. We discuss these steps below.  

3.2.1 Identification of attributes and attribute levels   

To identify relevant attributes or technology traits associated with SSNM, we consulted 

several scientists within and outside the project team and conducted three focus group 

discussions with farmers11. Ten relevant attributes were identified namely fertilizer 

application rate, fertilizer application method, fertilizer application timing, fertilizer sources, 

fertilizer quality, seed type, planting density, expected yield, yield variability, cost of 

fertilizer and seed. A clear description of these attributes and the range of possible levels of 

the attributes to be included in the CE were elicited from review of soil fertility management 

literature and during the consultations.  However, only the six most important attributes, as 

revealed from a ranking of attributes during the focus group discussion and the consultations 

with scientists, were included in the CE in order to reduce the complexity of the choice tasks 

from inclusion of too many attributes and limit the occurrence of random non-deterministic 

choices by farmers (Beck et al., 2013). The attributes and their levels are summarized in table 

2.1. The first two attributes directly relate to fertilizer use in the context of SSNM. The first 

attribute is ‘fertilizer application rate’, defined as the quantity of inorganic fertilizer required 

to supply the necessary nutrients to achieve a target maize yield on a specific field. This is 

described by three levels: the farmer’s current application rate (not site-specific), a site-

specific rate below the current rate, and a site-specific rate above the current rate. The second 

attribute is ‘fertilizer application method’, which relates to how fertilizer is applied to 

guarantee optimal uptake of nutrients by maize plants and ensure that desired maize yields 

are attained. The levels of this attribute are broadcasting and dibbling/spot application.  

The third and fourth attributes relate to returns in terms of yield and variability in 

yield associated with using SSNM. The third attribute is ‘expected yield’, expressed as 

                                                 
11 This includes personal communication with a scientist from IPNI who is leading the tool development 

activities in Nigeria and four other scientists who are working in the research area.  During focus group 

discussions, farmers were asked about fertilizer use in general (e.g. questions on whether they use fertilizer, at 

what rate, how often, with what method, awareness/use of fertilizer recommendations, yield with and without 

fertilizer, fertilizer use constraints etc.) and the range of attributes they consider relevant for soil fertility 

management.   
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average yearly maize yield expected on a hectare over a production period of 5 years. This 

attribute is defined by five levels, ranging from 1 to 6 tons/ha, carefully selected within the 

range of attainable maize yields in the research area. The fourth attribute is ‘yield variability’ 

or yield risk, i.e. the probability of a bad production year. This attribute is described by five 

levels expressing the number of production years, ranging from 0 to 4 out of 5, maize yield 

will be below one ton per hectare.  

The fifth attribute ‘seed type’ relates to type of maize seed, a vital complementary 

input in addition to fertilizer to improve maize yields. Fertilizer recommendations are often 

combined with recommendations on improved seed in extension services due to interaction 

effects of fertilizer and improved seeds, especially as promoted in integrated soil fertility 

management (Vanlauwe et al., 2015b). The levels of this attribute are improved seed variety 

and traditional seed variety.  

The last attribute is a monetary attribute defined as the ‘cost of fertilizer and seed’ in 

local currency (Nigerian Naira - NGN) per hectare. This represents the fertilizer and seed 

investment cost associated with adopting a given extension recommendation. This attribute is 

defined by five levels, ranging from 35,000 to 85,000 NGN (115 to 279 USD) per hectare, 

that were determined based on a range of actual costs incurred on fertilizer and seed during 

the 2016 growing season, for which information was obtained through focus group 

discussions and a pilot survey.  

Table 2.1: Attributes and attribute levels  

Note: 305 NGN (Nigerian Naira) is equivalent to 1 USD at the survey time. 

3.2.2 Experimental design and choice cards 

Based on the selected attributes and attribute levels, the choice experimental design was 

implemented in Ngene 1.1.2 software to combine the various attribute levels into different 

Attributes Attribute levels 

Fertilizer application rate  Current rate (not site-specific) 

Site-specific fertilizer rate (SSFR): below current rate  

Site-specific fertilizer rate (SSFR): above current rate 

Fertilizer application method (FAM) Broadcasting, Dibbling  

Expected yield 1 to 2, 2 to 3, 3 to 4, 4 to 5, 5 to 6 tons/ha 

Yield variability (yield risk) 

 

0 (0 in 5 years), 1 (1 in 5 years), 2 (2 in 5 years), 

3 (3 in 5 years), 4 (4 in 5 years) 

Seed type (ST) 

Cost of fertilizer and seed (CFS) 

Traditional variety, Improved variety  

35000, 45000, 55000, 65000, 75000, 85000 NGN/ha 
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pairs of mutually exclusive hypothetical options of soil fertility management (i.e. choice sets 

or situations) that will be evaluated by farmers. For the experimental design we use a 

fractional factorial design to allocate the attribute levels into choice sets; more specifically a 

Bayesian D-efficient design which minimizes the D-error and improves efficiency of the 

design. As proposed by Scarpa et al. (2013), and to improve efficiency, we conducted a pilot 

version of the CE with 30 farmers prior to the actual design. For this pilot CE we used an 

orthogonal design in which priors are fixed to zero. With the data from this pilot CE, a 

multinomial logit model was estimated and parameter estimates were used as Bayesian priors 

(random priors distribution) in generating the ultimate D-efficient design. This design 

resulted in 12 paired choice sets that were randomly blocked into two blocks of six choice 

sets such that each farmer can easily evaluate six choice sets. The blocking facilitates the 

implementation among farmers as it reduces the cognitive burden of evaluating too many 

choice sets and improves the quality of responses.  

Twelve laminated choice cards were constructed for the 12 paired choice sets – see an 

example in Fig. A1 in appendix. In order to make the CE more comprehensible among less 

educated farmers in the sample, we include pictures for different attributes in the choice 

cards. Each choice card consists of two generic scenarios or alternatives (options A and B) of 

SSNM recommendations. Each option is defined by six attributes but differs in some attribute 

levels. A status quo option which represents the current practice of farmers is included in all 

choice cards as option C. This makes the CE more realistic as farmers have the option of 

choosing their current practice if it appears superior and reduces potential bias arising from 

forced choices for options A and B (Lancsar et al., 2017).  

3.2.3 CE and survey implementation 

In the CE implementation, the experimentally designed hypothetical options of fertilizer 

recommendations were provided to each farmer in the form of choice cards. Farmers were 

asked to carefully evaluate the options on each choice card and to choose the most preferred 

option for each choice card. Each farmer was presented six distinct choice cards and each 

choice card had three options of fertilizer recommendations (options A, B and C). Within the 

set of six choice cards presented to each farmer, options A and B vary within and between the 

cards but option C which represents the farmer’s current practice is fixed. The choice of one 

option (e.g. option B) over the others (options A and C) on a choice card implies that the 

expected utility of the chosen option exceeds the utility of the other options.  Prior to the CE, 
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there was an introductory session in which farmers were sensitized on its purpose, contents 

and how to correctly participate. As part of the introduction, we used a short cheap talk script 

(Cummings and Taylor, 1999) to explain to farmers the importance of making truthful 

choices and thereby limit hypothetical bias arising from divergence between choices made in 

the hypothetical CE scenarios and (unobserved) actual choices when exposed to site-specific 

recommendations from ICT-based tools. The text that was used in this cheap talk script is 

included in Appendix. After the introductory session, the six choice cards were presented one 

after the other to each farmer by an enumerator and each farmer was specifically asked to 

carefully examine the three options on each card, and freely make a choice between the three 

options on each of the six cards. This is on the premise that the technology option that offer 

the largest expected utility for the farmer will be chosen among the different options 

available.  

The CE was complemented with a farmer survey. The survey questionnaire consists 

of plot-, household- and community-level components. The modules of the questionnaire 

include household demographics, access to services, assets, income, fertilizer use, crop 

production and access to community infrastructure. To improve the quality and timely 

availability of the data, the survey was implemented using computer-assisted personal 

interviewing software and tablets.  

3.3 Econometric framework 

The random utility theory behind CEs assumes that the utility of farmer i of choosing 

alternative 𝑗 among all alternatives offered in a choice set 𝑠 is given by an indirect or 

unobservable utility which consists of deterministic (explainable) and random 

(unexplainable) components as follows:  

𝑈𝑖𝑗𝑠 = 𝑉𝑖𝑗𝑠 +  𝜀𝑖𝑗𝑠  =  𝐴𝑆𝐶 + ∑ 𝛽𝑖𝑘𝑥𝑖𝑗𝑘𝑠

6

𝑘=1

+ 𝜀𝑖𝑗𝑠    𝑖 = 1, … . , 𝑁; 𝑗 = 1, … . , 𝐽;  𝑠 = 1, … . , 𝑆              (1) 

Where 𝑈𝑖𝑗𝑠 is the 𝑖𝑡ℎ farmer’s indirect or latent utility, 𝑉𝑖𝑗𝑠 is the systematic part of the utility 

function, 𝒙𝑖𝑗𝑠 is a vector of six attributes describing alternative 𝑗 with associated preference 

parameters 𝜷𝑖, 𝜀𝑖𝑗𝑠 is an unobserved random term that is independently and identically 

distributed (iid) across individuals and alternatives, 𝐴𝑆𝐶 is an alternative-specific constant  

which represents preferences for the status quo option. 
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Drawing upon this model, we estimate a latent class model (LCM) with our empirical 

data. In the context of this study, the LCM assumes that a heterogeneous population of 

farmers belongs to a discrete number of preference classes, known as latent classes, with each 

farmer having a positive probability of membership of each class (Kragt and Llewellyn, 

2014). The preference parameters in equation 1 become class-specific parameters 𝜷𝑐. This 

implies that preferences are homogeneous within each latent class 𝑐 but heterogeneous across 

classes. Hence, the probability of farmer 𝑖 choosing alternative 𝑗 in choice set 𝑠 is conditional 

on the farmer’s membership of latent class 𝑐.  

𝑃𝑟𝑖𝑗𝑠|𝑐 =  
exp(𝜷𝑐

′ 𝒙𝑖𝑗𝑠)

∑ exp(𝜷𝑐
′ 𝒙𝑖𝑡𝑠)𝐽

𝑡=1

                                                                                                              (2) 

The class membership probability is modeled using a multinomial logit specification 

as a function of farmer-specific characteristics12 known to be relevant for soil fertility-related 

technology adoption from theory and the empirical literature (Feder et al., 1985; Foster and 

Rosenzweig, 2010; Chianu and Tsuji, 2005; Lambrecht et al., 2014; Wiredu et al., 2015; 

Mponela et al., 2016; Morello et al., 2018). The selected variables are age and education level 

of the farmer, household labor (human capital), membership in a farmer association (social 

capital), access to off-farm income, access to agricultural credit (financial capital), the value 

of assets (physical capital), access to extension services and distance to a tarmac road (access 

to institutions and infrastructure).  

 𝑃𝑟𝑖𝑗𝑠|𝑐 =  
exp(𝜸𝑐

′ 𝒛𝑖)

∑ exp(𝜸𝑞
′ 𝒛𝑖)𝐶

𝑞=1
                                                                                                                       (3) 

Where 𝒛𝑖 is a vector of farmer-specific characteristics and 𝜸𝑐
′  is a vector of parameters of 𝒛𝑖. 

Both choice and membership probabilities are jointly estimated with the assumption that 

scale parameters are normalized to one, as required for identification (Boxall and 

Adamowicz, 2002).  

The ASC is dummy-coded as 1 for the current practice and 0 otherwise. A negative 

coefficient for the ASC implies a positive utility of moving away from the current practice to 

                                                 
12 Some authors advocate the estimation of LCMs without a class membership function (Van den Broeck et al., 

2017; Dalemans et al., 2018). With our data, this results in convergence problems and less intuitive results – the 
results of models without a membership functions are shown in Table A1 in appendix but are not discussed in 

the text.   
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following ICT-enabled SSNM. The categorical attributes are dummy-coded for ease of 

interpretation of coefficients (Van den Broeck et al., 2017). To improve the explanatory 

power of the model, we use farmer-specific status quo attribute levels in the estimation 

(Kings et al., 2007).  

A growing body of literature shows that choice modeling can produce biased 

estimates of preferences if scale and preference parameters are confounded (Louviere and 

Eagle, 2006). The implication is that the LCM can yield spurious classes with heterogeneity 

largely an issue of scale (random choices) and less of taste (preference) (Vermunt and 

Magidson, 2014). As a robustness check, we estimate a scale-adjusted LCM (SALCM) to 

address this issue of potential confounding of scale (𝜆𝑑) and preference (𝛽𝑐) parameters. The 

choice probability then becomes conditional on an individual farmer’s membership of latent 

preference class 𝑐 and scale class 𝑑.  

𝑃𝑟𝑖𝑗𝑠|𝑐, 𝑑 =  
exp(𝜆𝑑𝜷𝑐

′ 𝒙𝑖𝑗𝑠)

∑ exp(𝜆𝑑𝜷𝑐
′ 𝒙𝑖𝑡𝑠)𝐽

𝑡=1

                                                                                                     (4) 

Another source of bias is violation of the continuity axiom of choice. This axiom 

implies that respondents consider all the attributes of the alternatives in their choice process, 

i.e. all information about the alternatives are taken into account by respondents in making 

their choices (Kragt, 2013; Coffie et al., 2016). Violation of this axiom is commonly referred 

to as attribute non-attendance (ANA) and implies non-compensatory decision making 

behavior of respondents. In the context of this study, farmers may not make the expected full 

trade-offs between all attributes of the various alternatives. We rely on self-reported or stated 

ANA responses of farmers elicited at the end of the CE (Serial-based ANA) and estimate two 

stated ANA models to check the robustness of our results. The first approach referred to as 

the conventional ANA model involves constraining parameters of ignored attributes to zero 

in the utility function, implying that failure to attend to an attribute by a respondent leads to 

zero marginal utility for that attribute (Kragt, 2013; Campbell et al., 2018; Caputo et al., 

2018).  

𝑈𝑖𝑗𝑠|𝑐 = 𝐴𝑆𝐶 + ∑ 𝛽𝑐𝑘𝑥𝑖𝑗𝑘𝑠

6−𝜏

𝑘=1

+ 𝜀𝑖𝑗𝑠                                                                                                    (5) 
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Where 𝜏 are ignored attributes, as self-reported by farmers. The specialized literature shows 

that ANA does not necessarily imply zero utility weight for an attribute but often indicates 

that respondents assign a lower importance to the attribute, and is best captured by a lower 

magnitude of the marginal utility for non-attenders than attenders (Hess and Hensher, 2010; 

Kragt, 2013). This motivates the estimation of a second ANA model known as validation 

ANA model. This model involves estimating two parameters for each attribute depending on 

whether the attribute is reported to be considered or ignored by respondents in their choice 

making (Hess and Hensher, 2010; Scarpa et al., 2013; Alemu et al., 2013; Caputo et al., 

2018). Following Caputo et al. (2018), the utility coefficients conditional on attendance is 

indicated with the superscript 1 (𝛽𝑐
1) and those conditional on non-attendance with superscript 

0 (𝛽𝑐
0). 

𝑈𝑖𝑗𝑠|𝑐 = 𝐴𝑆𝐶 + ∑ 𝛽𝑐𝑘
1 𝑥𝑖𝑗𝑘𝑠

6−𝜏

𝑘=1

+ ∑ 𝛽𝑐𝑘
0 𝑥𝑖𝑗𝑘𝑠

𝜏

𝑘=1

+ 𝜀𝑖𝑗𝑠                                                                        (6) 

This approach helps to validate the first ANA model. Based on the validation method, choice 

behavior of respondents is expected to be in line with their self-reported ignored attributes if 

the estimated coefficients of ignored attributes are not significantly different from zero.  

In summary, we estimate the following models: a standard latent class model (LCM) 

in STATA 15, a scale-adjusted latent class model (SALCM) in Latent Gold Choice 5.1, a 

conventional attribute non-attendance model (conventional ANA), and a validation attribute 

non-attendance model (validation ANA) in NLOGIT 5.  

4. Results   

4.1. Descriptive results 

Table 2.2 describes individual-, household- and farm-level characteristics of sampled 

farmers. Farmers are on average 44.7 years old and have an average of 5.2 years of schooling. 

Farm-households include on average 1.7 adult men, 1.9 adult women and 5.6 children. 

Farmers have on average 3.2 ha of land and 19 years of farming experience. About 21% of 

the sampled farmers have access to credit, 34% are member of a farmer association, 16% 

produce maize under a contract-farming arrangement and 37% have extension experience 

from government and/or non-government extension service providers. On average farmers 
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apply 127 kg of NPK fertilizer per ha, and 89 kg of urea per ha and 28% of farmers use 

improved maize seeds, resulting in an average input cost of 39,000 NGN (128 USD) and an 

average maize yield of 2.1 tons per ha. The application of NPK (15:15:15 and 20:10:10) and 

urea (46 N) is equivalent to 61 kg N, 19 kg P2O5 and 19 kg K2O per ha, which is below the 

general recommendation. Farm-households live on average 4.08 km from the nearest tarmac 

road and the large majority (81%) is located in the northern guinea savanna agro-ecological 

zone. 

Fig. 2.3 shows the distributions of fertilizer application and maize yield of sampled 

farmers. The distributions are rather skewed, with a long tail towards larger values of 

fertilizer application rates and maize yields, especially for NPK fertilizer application rates. In 

addition, the distributions suggest considerable variation in farmers’ fertilizer application 

rates and associated maize yields. Fig. 2.4 shows that there is a positive correlation between 

NPK fertilizer application rates and maize yield, and between urea fertilizer application rates 

and maize yield.  
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Table 2.2: Summary statistics of farmers’ characteristics (N=792) 

 Description of variable Mean SD 

Age (years) Age of household head  44.70 12.03 

Education (years) Years of schooling attained by household head 5.16 6.01 

Health of head (%)1 Health status of household head  96.43  

Male adults (no.) Number of male adults in a household  1.70 1.02 

Female adults (no.) Number of female adults in a household  1.87 1.22 

Children (no.) Number of children in a household 5.88 4.49 

Credit (%) Household have access to agricultural credit  20.7 0.40 

Member of association (%) Household belong to a farmer association 33.71  

Maize contract farming (%) Household produce maize under contract-farming 16.37  

Extension (%)2 Household have access to extension services 37.28  

Farming experience (years) Years of maize farming attained by household  19.11 0.43 

Off-farm income (%) Household have access to off-farm income 94.98  

Farm assets3 (1,000 NGN) Value of farm assets a household owns 51.36 11.45 

Transport assets (1,000 NGN) Value of transport assets a household owns 201.85 459.05 

Livestock assets (1,000 NGN) Value of livestock assets a household owns 394.51 586.67 

Durable assets4 (1,000 NGN) Value of durable assets a household owns 22.66 52.86 

Annual income5 (1,000 NGN) Income earned during the past one year 177.63 221.35 

Total farm area (ha) Size of household total farmland 3.23 3.63 

Maize focal plot area6 (ha) Size of household maize focal plot  0.82 1.04 

Use improved seed (%) Household cultivate improved maize seed 28.04  

NPK fertilizer (kg/ha) Quantity of NPK fertilizer applied per hectare 126.96 102.84 

Urea fertilizer (kg/ha) Quantity of urea fertilizer applied per hectare 88.79 95.09 

Input cost/ha7 (1,000 NGN) Cost of fertilizer and seed  38.61 25.11 

Maize-legume intercrop (%) Maize plot intercropped with a legume  30.15  

Maize yield (tons/ha) Output of maize per hectare  2.05 0.91 

Distance to tarmac road (km) Distance from homestead to nearest tarmac road 4.08 5.15 

Northern guinea savanna (%) Northern guinea savanna agro-ecological zone 80.71  

Southern guinea savanna (%) Southern guinea savanna agro-ecological zone 3.40  

Sudan savanna (%) Sudan savanna agro-ecological zone 15.88  
1 Percentage of farmers who self-report to be healthy during the past one year,  
2 Extension experience through a face-to-face contact with extension agents, on-farm trials, field demonstrations 

or any extension-related training from both government and non-government extension services in the last three 

years, 
3 Value of non-land assets, including farm equipment and machinery,  
4 Value of durable assets such as TV, radio, refrigerator, mobile phone, sewing machine, etc.,  
5 Per-adult equivalent household annual income from all sources,  
6 Maize focal plot is defined as the plot a household considers as their most important maize plot,  
7 Input cost only refers to cost of fertilizer and seed for maize in the 2016 season,   

NGN: 305 NGN (Nigerian Naira) is equivalent to 1 USD at the survey time. 
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Fig. 2.3: Kernel density distributions of fertilizer application and maize yield 

 
Fig. 2.4: Correlation between fertilizer application and maize yield
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4.2. Econometric results 

We estimate four LCMs with two to seven latent classes in order to sufficiently represent the 

preference heterogeneity in our data. Based on the Akaike Information Criteria (AIC) and the 

Bayesian Information Criteria (BIC) (Boxall and Adamowicz, 2002), a two-class model is 

selected as the one with the best fit. Before discussing the results in detail, we elaborate on 

scale heterogeneity and ANA. First, scale heterogeneity is addressed in the SALCM. In this 

model, the scale factor of scale class one is fixed to unity for identification purposes while 

that of scale class two is estimated. The latter is very small (0.13), indicating that farmers in 

scale class two make less consistent choices resulting in higher error variance. As the large 

majority of farmers (96%) belong to scale class one (and make consistent choices) and the 

parameter estimate of the scale factor is weakly significant, we can conclude that there is only 

weak evidence of heterogeneity in scale across the two classes. 

 Second, the descriptive information in table 2.3 shows that 42% of farmers ignored at 

least one attribute, which justifies the estimation of the ANA model. The results of the 

validation ANA model show that the choice behavior of farmers in the CE corroborates their 

self-reported ANA as almost all parameter estimates of the self-reported ignored attributes 

are not significantly different from zero. This implies that self-reported ANA does not bias 

the results in the conventional ANA model and that restricting the parameters of ignored 

attributes to zero works well for our data. This is line with the findings of Caputo et al. (2018) 

and in contrast to Alemu et al. (2013) on ANA validation models at choice task and serial 

levels respectively.  

Table 2.3: Descriptive information on stated ANA  

# ignored 

attributes 

Share of 

respondents (%) 

Ignored attributes Share of 

respondents (%) 

0 57.7 Fertilizer application rate 15.1 

1 10.4 Fertilizer application method 30.3 

2 14.4 Expected yield 4.4 

3 16.9 Yield variability 9.1 

4 0.7 Seed type 20.4 

  Cost of fertilizer and seed 13.1 

The results of the estimated LCMs with two latent classes are presented in table 2.4, 

including the LCM, SALCM, conventional ANA and validation ANA models. The parameter 

estimates are consistent across the different models, implying robust results. The SALCM has 

the best fit according to the AIC and BIC but has a weakly identified ASC as indicated by a 
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very large standard error. As this is associated with imprecise estimates (Vermunt and 

Magidson, 2014)13, we base our discussion primarily on the standard LCM which is the 

second best fit and results in estimates that are comparable with the other models. 

The results of the LCM show that the estimated coefficient of the ASC is highly 

significant and negative for both latent classes of farmers. This implies that overall, farmers 

have positive preferences for site-specific fertilizer recommendations over the current 

extension practice. Only in 3% of the choices farmers chose the opt-out, implying they prefer 

the current practice over the site-specific scenarios of soil fertility management. Both classes 

have significant positive preferences for site-specific fertilizer application rates. Latent class 

one farmers (LC1) have a significant positive preference for a site-specific fertilizer rate that 

is above their current fertilizer application rate, which indicates a preference for moving to a 

high-input high-output production system. Latent class two farmers (LC2) have a significant 

positive preference for a site-specific fertilizer rate that is below their current application rate, 

which indicates a low willingness to move to a high-input high-output production system. 

The coefficients for seed type show that only LC1 farmers have a positive preference for 

using an improved seed variety; for LC2 farmers this coefficient is not significant. In 

addition, in LC1 there is a positive preference for a higher fertilizer and seed cost while in 

LC2 this is negative. The latter is consistent with the law of a downward sloping input 

demand curve. The former is not and may seem counterintuitive. This results likely stems 

from the failure to account for the quality of inputs in the design of the choice experiment, 

and the intuitive association farmers make between cost and quality of inputs while eliciting 

their choices during the implementation of the choice experiment. The positive preference for 

a higher input cost is consistent with a willingness to pay more for higher quality farm inputs. 

This is in line with Palma et al. (2016) and Lambrecht et al. (2015) who note that a positive 

cost preference can represent a cue for quality in choice modeling. The coefficient on 

fertilizer application method (dibbling) is significantly negative in LC2, which indicates these 

farmers prefer to apply fertilizer through broadcasting rather than through dibbling. The 

significant positive preference for maize yield and the significant negative preference for 

yield variability in both classes implies that farmers are interested in site-specific 

                                                 
13 The issue of weak identification is common in LCM and often results from model estimation algorithm 

converging on local maxima instead of global maximum. As recommended and implemented in other empirical 

studies that used SALCM (Vermunt and Magidson, 2014; Thiene et al., 2012), we tried various values of 

starting sets and iterations per set to achieve convergence on global maximum but ASC was still weakly 

identified. 
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recommendations that result in higher and more stable yields, which is in line with the a 

priori expectations and with farmers being risk averse. 

  



  

52 

 

Table 2.4: Results of different latent class models estimating farmers’ preferences for ICT-based site-specific extension  

 
LCM SALCM conventional ANA 

validation ANA 

 AC AI AC AI 

Class LC1 LC2 LC1 LC2 LC1 LC2 LC1 LC2 

Class probability 64% 36% 65% 35% 63.5% 36.5% 66%  34%  

ASC -5.667*** 

(0.703) 

-5.263*** 

(0.609) 

-24.105 

(31.319) 

-9.381 

(10.611) 

-5.694*** 

(0.652) 

-5.367*** 

(0.562) 

-5.693*** 

(0.680) 

 -5.268*** 

(0.583) 

 

SSFR  

(Below current rate) 

0.058 

(0.077) 

0.579*** 

(0.180) 

0.073 

(0.079) 

0.562*** 

(0.191) 

0.029 

(0.082) 

0.483*** 

(0.168) 

0.029 

(0.078) 

0.300* 

(0.174) 

0.499*** 

(0.186) 

0.811** 

(0.363) 

SSFR  

(Above current rate) 

0.246*** 

(0.076) 

-0.156 

(0.280) 

0.249*** 

(0.079) 

-0.190 

(0.291) 

0.258*** 

(0.080) 

-0.297 

(0.241) 

0.295*** 

(0.079) 

0.097 

(0.172) 

-0.508 

(0.399) 

0.513 

(0.386) 

Dibbling -0.073 

(0.057) 

-0.351*** 

(0.126) 

-0.085 

(0.059) 

-0.333** 

(0.132) 

-0.052 

(0.065) 

-0.398*** 

(0.133) 

-0.068 

(0.064) 

-0.132 

(0.091) 

-0.396*** 

(0.143) 

-0.182 

(0.209) 

Expected yield 0.046** 

(0.020) 

0.243*** 

(0.071) 

0.045** 

(0.020) 

0.270*** 

(0.074) 

0.034* 

(0.020) 

0.233*** 

(0.048) 

0.044** 

(0.019) 

0.071 

(0.079) 

0.289*** 

(0.081) 

0.169 

(0.183) 

Yield variability  -0.054** 

(0.024) 

-0.528*** 

(0.073) 

-0.059** 

(0.025) 

-0.542*** 

(0.077) 

-0.046* 

(0.023) 

-0.519*** 

(0.065) 

-0.056** 

(0.023) 

-0.061 

(0.058) 

-0.561*** 

(0.088) 

-0.629*** 

(0.130) 

Improved seed 0.253*** 

(0.060) 

0.154 

(0.147) 

0.252*** 

(0.062) 

0.178 

(0.157) 

0.233*** 

(0.064) 

0.057 

(0.141) 

0.246*** 

(0.063) 

0.327*** 

(0.113) 

0.093 

(0.167) 

-0.067 

(0.258) 

CFS (10000 NGN) 0.029* 

(0.017) 

-0.068* 

(0.038) 

0.028* 

(0.017) 

-0.067* 

(0.040) 

0.038** 

(0.017) 

-0.089*** 

(0.034) 

0.030* 

(0.016) 

-0.041 

(0.049) 

-0.071 

(0.044) 

0.195** 

(0.092) 

N  14256 14256 14256 14256 

Log likelihood -2375.63 

4803.27 

4993.46 

-2369.74 

4793.48 

4912.95 

-2406.18 

4864.40 

5026.00 

-2365.50 

4811.00 

5059.70 
AIC 

BIC 
LCM = standard latent class model, SALCM = scale-adjusted latent class model; conventional ANA = conventional attribute non-attendance model; validation ANA = validation 

attribute non-attendance model; LC = latent class; AC= attributes considered or attended to, AI= attributes ignored or non-attended to,  

The SALCM model has two scale classes: scale class 1 with a probability of 96% and a scale factor set to unity; scale class 2 with a probability of 4% and a scale factor of 0.13.  

Standard error reported between parentheses. Significant coefficients at * p < 0.1, ** p <0.05 and *** p <0.01
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To gain better insights on the trade-off farmers make between attributes and improve 

the interpretation of the results, we estimate marginal rates of substitution (MRS) (Green and 

Hensher, 2003; Lancsar et al., 2017). With a positive parameter for the cost attribute in LC1, 

the estimation of MRS in monetary terms is not meaningful for this class. Instead, we 

estimate MRS in terms of yield variability as a benchmark in order to provide information on 

the relative importance of attributes. Table 2.5 shows the estimated MRS which have to be 

interpreted as the yield risk farmers are willing to accept for an increase in another attribute. 

The results show that in both classes farmers are willing to accept some yield variability for a 

higher average yield, but for LC1 farmers this trade-off is on average larger, as revealed from 

the difference in magnitude of the estimated mean MRS. In addition, LC1 farmers are willing 

to accept an increased yield risk with the investment in improved seeds and higher fertilizer 

use stemming from site-specific recommendations, while LC2 farmers are not. The latter 

farmers are only willing to accept increased yield risk with reduced investment in fertilizer. 

In summary, LC1 farmers are willing to bear more risk of taking up intensification 

technologies to improve their maize productivity.  

Table 2.5: Marginal rate of substitution (MRS) between yield variability and other attributes 

for two latent class groups of farmers  

 
Expected 

yield 

SSFR 

(below 

current rate) 

SSFR 

(above 

current rate) 

Dibbling 
Improved 

seed 

LC 1      

Mean  0.860 - 4.572 - 4.693 

95% ll 0.056 - 1.093 - 1.572 

95% ul 4.179 - 22.673 - 22.108 

LC 2      

Mean  0.46 1.097 - -0.296 - 

95% ll 0.238 0.443 - -1.166 - 

95% ul 0.642 1.989 - 0.985 - 
MRS is calculated as the negative of the ratio of each attribute coefficient to the yield variability coefficient, 

ll=lower limit, up= upper limit, 95% confidence intervals are estimated using the Krinsky and Robb method 

with 2000 draws, MRS is not reported for insignificant coefficients as indicated by ‘-’.  

 

The results of the multinomial logit models estimating the membership in latent 

classes are reported in table A2 in the appendix – these results shows that age, education, 

farmer association, assets, access to agricultural credit, access to extension and distance to 

road significantly influence class membership. Yet, the estimates of the membership function 

do not imply causal relationship. Table 2.6 shows the differences in individual-, household- 

and farm-level characteristics between the two classes of farmers defined based on their 
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preferences for ICT-enabled SSNM. We find statistically significant differences in most of 

the characteristics, which contributes to explaining the differences in preference pattern 

between the latent classes. The results show that in comparison with LC2, farmers in LC1 are 

relatively younger, invest more in farm inputs and are generally better-off in terms of access 

to resources (including income and different types of assets) and access to services and 

institutions such as credit, farmer associations, contract farming arrangements, and extension 

services. This is in line with a large part of the technology adoption literature pointing to 

more-endowed farmers being more likely to adopt improved farm technologies and to the 

importance of association membership and extension services in driving technology adoption 

(Kuehne et al., 2017; Lambrecht et al., 2014). Farmers in LC2 appear better-off in terms of 

education and access to roads. Education is often (but not always) associated with a higher 

likelihood of adopting new technologies – it is not in our case. The benefits of education in 

enhancing learning processes of a new technology might be minimal for technologies with 

traits that are familiar to the end-users, which likely applies for fertilizer use. Access to roads 

is often observed to benefit technology adoption because of reduced transport costs in input 

purchase but it may have no effect for technologies that are less input intensive. In terms of 

farming experience, there are no significant differences between the two classes of farmers. 

Given the observed differences, we can describe LC1 farmers as more resource endowed 

farmers and LC2 farmers as less resource endowed, and further explain the observed 

preference patterns.  
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Table 2.6: Farmer characteristics by preference classes 

 Latent class 1 (N=507) Latent class 2 (N=285)  

Mean  SD Mean  SD Sig. 

Age of head  43.52 11.64 46.90 12.41 *** 

Education of head  4.37 5.68 6.63 6.30 *** 

Health of head  96.51  96.30   

Male adults 1.70 1.15 1.68 0.71  

Female adults  1.89 1.31 1.81 1.04  

Children  6.02 4.72 5.62 3.99 *** 

Access to credit  26.68  9.72  *** 

Member of association  40.40  21.30  *** 

Maize contract farming  17.96  13.43  *** 

Farming experience  19.12 10.48 19.10 10.68  

Extension experience  39.65  32.87  *** 

Access to off-farm income  96.51  92.13  *** 

Farm assets  60.68 132.35 34.40 67.70 *** 

Transport assets  227.01 489.86 158.01 394.69 *** 

Livestock assets  439.94 651.94 292.57 382.21 *** 

Durable assets  24.41 63.65 19.41 20.51 *** 

Annual income  192.72 244.84 149.62 165.07 *** 

Total farm area  3.19 3.48 3.32 3.86 * 

Maize focal plot area  0.80 1.04 0.84 1.03 ** 

Use improved maize  30.92  22.69  *** 

NPK fertilizer  125.4 101.83 129.85 104.41 ** 

Urea fertilizer  94.59 94.42 78.01 95.18 *** 

Input cost/ha  39.51 25.64 36.93 23.94 *** 

Maize-legume intercrop  28.93  32.41  *** 

Yield 2.1 0.92 2.0 0.90 *** 

Distance to tarmac road  4.78 5.95 2.81 2.71 *** 

Northern guinea savanna  81.55  79.17  *** 

Southern guinea savanna  3.24  3.70   

Sudan savanna  15.21  17.13  *** 

 * p < 0.1, ** p <0.05, *** p <0.01 independent sample t-tests of significant differences between the two classes 

of farmers, Variables are as described in table 2. 

5. Discussion 

We find that farmers are in general favorably disposed to site-specific extension over the 

traditional extension practice of disseminating general recommendations. This suggests that 

farmers recognize that their production conditions are heterogeneous and that they are open 

to soil fertility management recommendations that are tailored to their specific growing 

conditions and derived from DSTs (Rose et al., 2016). However, farmers have heterogeneous 

preferences for SSNM recommendations and this observed heterogeneity is correlated with 

farmers’ resource endowments and access to services. We identify two groups of farmers 

(latent classes) with different preferences. The first group (LC1 representing 64% of the 

sample) includes innovators or strong potential adopters of SSNM recommendations. 

Farmers in this group are generally better-off, less sensitive to risk, are more willing to invest 
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in a high-input maize production system, and have no aversion for more labor-intensive 

production techniques with higher expected returns. This is in line with the expectation that 

better-off farmers are more responsive to new technologies despite the riskier outcomes of 

new technologies (Foster and Rosenzweig, 2010). The second group (LC 2 representing 36% 

of the sample) includes more conservative farmers or weak potential adopters. Farmers in this 

group have lower incomes and lower productive assets, are more sensitive to yield variability, 

and prefer less capital and labor-intensive production techniques.     

Both the strong and weak potential adopters exhibit strong positive preferences for 

higher yield, which is consistent with other CE studies that reveal maize farmers’ preferences 

for high yielding technologies (Ortega et al., 2016; Kassie et al., 2017). In addition, they both 

exhibit disutility for risk, which signals a safety-first behavior to smooth income and 

consumption (Feder et al., 1985). Yet, the weak potential adopters are less willing (or able) to 

accept increased yield risk for an increase in yield level (or more willing to forego yield gains 

for stability in yield) than the strong potential adopters. This is likely related to the 

observation that weak potential adopters have less resources such as income and assets, and a 

lower access to services such as credit and extension services. They are therefore likely less 

able to accept riskier recommendations compared to the strong potential adopters. This 

implies that the adoption behavior of farmers and their fertilizer investment decisions are not 

only influenced by expected profits, which is determined by an increased input cost and an 

expected yield response to fertilizer, but also by the expected risk exposure associated with 

high-input high-output production systems. This is in line with the finding of Coffie et al. 

(2016) on the negative effect of risk exposure in farmers’ preferences for agronomic 

practices.  

The weak potential adopters show an aversion for labor-intensive fertilizer application 

methods and higher yielding intensification options with high cost implications. This is in 

line with the findings of Coffie et al. (2016) and reaffirms the issue of labor constraint for 

agricultural technology adoption. The strong potential adopters prefer high yielding 

intensification options with high investment costs which indicate their willingness to invest in 

high-input high-output production systems. These findings imply that less endowed and more 

risk averse farmers are better served with cost-saving recommendations and yield-stabilizing 

technologies, while better endowed and less risk averse farmers are more likely to follow 

extension advice that follows a high-input high-output logic.  
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From a methodological point of view, we show that it is worthwhile to ensure 

robustness of results by addressing issues of heterogeneity in error variances and ANA in CE 

studies. As differences in scale imply differences in choice consistency (Lancsar et al., 2017), 

this should motivate studies to take into account scale heterogeneity to avoid biased estimates 

of preferences and spurious preference classes (Thiene et al., 2012; Dalemans et al., 2018). 

We find that the majority of farmers exhibit consistent choices, which is not surprising as 

they are largely familiar with the attribute and attribute levels presented in the CE and can 

readily express their preferences. This is in line with Czajkowski et al. (2015) who note that 

respondents have a more deterministic choice process from an appreciable level of 

information and experience on the attributes of a product being valued. Failure to account for 

ANA is an additional possible source of bias in discrete CEs (Kragt, 2013; Coffie et al., 2016; 

Hess and Hensher, 2010; Caputo et al., 2018). The estimation of an ANA model validates our 

finding on the preference for higher yielding recommendations with higher investment costs 

for the strong potential adopters. Such result could also stem from non-attendance to the cost 

attribute (as in Campbell et al., 2018) but this is ruled out in the ANA model.  Overall, our 

results are consistent across all the models, which suggests that any possible bias from scale 

and ANA issues is relatively small. However, this may not always be the case for other 

studies that do not account for these issues.  

Finally, our results entail some specific implications for the development of the 

Nutrient Expert and similar tools as well as broader policy implications. The direct 

implication of the farmers’ homogenous preferences for high yielding recommendations and 

risk aversion for the design of ICT-based extension tools is that in the development process, 

more attention should be paid on ensuring that tools are robust in estimating the expected 

yields for farmers. Most importantly, our results strongly indicate the need to optimize design 

of tools to allow of a feature/module for providing information on yield variability (riskiness 

of expected outcomes) and not only on attainable yield levels to help farmers make better 

informed decisions. This is rarely taken into account as most DSTs are designed to produce 

recommendations for farmers on the basis of an expected yield level without providing 

further information on the uncertainty of the expected outcomes. Therefore, improving the 

design of extension tools to enable provision of information on the riskiness of expected 

yields will be more rewarding for farmers. This is especially the case for farmers who are 

more risk averse, are less resource-endowed, are not associated in farmer groups, and have no 

access to credit and other services. In addition, our results point to the need for extension 
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services that are designed to take into account the heterogeneity in farmers’ behavioral 

responses (Lopez-Ridaura et al., 2018). This implies flexibility in extension tools to switch 

between low-investment low-risk recommendations, and high-investment high-risk 

recommendations, depending on the risk and investment profile of the individual farmer. In 

terms of broader policy implications, farmers’ general interest in site-specific 

recommendations from ICT-based tools lends credence to the theoretical motivation for 

addressing information inefficiencies in agriculture using digital technologies (Janssen et al., 

2017; Verma and Sinha, 2018). Digital inclusion policies to bridge the digital divide can 

include fostering the use of digital technologies in providing quality extension to farmers. 

The use of ICT-based extension tools that are farm- and field-specific and flexibly take into 

account farmers’ needs may integrate complementary services – such as credit provision, 

subsidized inputs and insurance schemes – that are well-targeted and increase the uptake of 

extension recommendations by farmers as well the efficiency of service provision to farmers.  

6. Conclusion 

In this chapter, we analyze farmers’ preferences for high-input maize production supported 

by site-specific nutrient management recommendations provided by ICT-based extension 

tools such as Nutrient Expert that is being developed for extension services in the maize belt 

of Nigeria. We use a discrete choice experiment to provide ex-ante insights on the adoption 

potentials of ICT-based site-specific extension services on soil fertility management from the 

perspective of farmers and with the aim to inform the design of DSTs. The choice experiment 

was carried out, along with a farmer survey, among 792 farmers in three states in the maize 

belt of Nigeria. Different econometric models are used to control for attribute non-attendance 

and account for class as well as scale heterogeneity in preferences. The findings reveal that 

farmers have strong preferences to switch from general to ICT-enabled site-specific soil 

fertility management recommendations. We find substantial heterogeneity in farmer 

preferences for extension recommendations and distinguish between strong and weak 

potential adopters of more intensified maize production. Strong potential adopters are better-

off farmers with higher incomes, more assets and better access to services; they are less 

sensitive to risk and have higher preferences for investing in farm inputs and more capital- 

and labor-intensive production systems with higher expected return, even at a higher risk in 

terms of yield variability. Weak potential adopters are more conservative farmers with lower 

incomes and less productive assets; they are more sensitive to yield variability, and prefer 
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less capital- and labor-intensive production techniques with a lower but more stable return. In 

general, our findings imply that farmers in the research area support the use of ICT-based 

site-specific extension services, which calls for agricultural extension programs to contribute 

to closing the digital divide through the inclusion of ICT-based technologies in the extension 

system. More specifically, our findings document the importance of flexible extension 

systems that take into account the willingness and ability of farmers to invest in high-input 

production systems and take risk, and inform farmers correctly on expected yield and returns 

as well as on the variability in yield and potential losses.   
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 Appendix 

 

Script for implementation of choice experiment  

 

Dear farmer,  

In a bid to serve you with SITE-SPECIFIC extension services in which recommendations are 

tailored to your field-specific conditions instead of the conventional GENERAL extension 

recommendations, your inputs are highly needed to optimize the design of an ICT-enabled 

extension tool ‘‘Nutrient Expert” that is being developed. This tool will enable extension 

service providers easily deliver site-specific nutrient management (SSNM) recommendations 

to you which will help you make better informed decisions on soil fertility and crop 

management. I will guide you through an exercise in which you will have the opportunity to 

choose soil fertility management options for your maize production. These options are 

defined using six attributes namely fertilizer application rate, fertilizer application method, 

expected yield, yield variability, seed type and cost of fertilizer and seed. (At this point, 

kindly show the farmer a card containing the six attributes and attribute levels and also, 

sample of a choice card with explanations to ensure that the farmer fully understands the 

choice experiment). I will now offer you six distinct choice cards one after the other and each 

choice card contains two hypothetical scenarios of SSNM (options A and B) and your current 

practice (option C). The aim is for you to choose one option that you prefer from the three 

options on each card and this will require you to objectively reflect on the attribute levels of 

the two hypothetical scenarios of SSNM in comparison with your current practice. You are to 

carefully go through and evaluate the options on each card that I will present to you and 

indicate the option you prefer between the three options on each of the cards. Even though 

this exercise entails hypothetical options of soil fertility management, kindly make very 

truthful choices as if these were real choices that have real cost implications. This is to ensure 

that the choices an individual makes in this hypothetical exercise are not different from the 

actual choices if such individual were exposed to real site-specific recommendations from the 

extension tool being developed.    
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Fig. A1: Example of a choice card 
 

 

 

 

 

 

OPTION A OPTION B OPTION C 
FERTILIZER 

APPLICATION 
RATE 

 

SITE-SPECIFIC: ABOVE CURRENT RATE SITE-SPECIFIC: BELOW CURRENT RATE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Neither A nor B 
 

Prefer my 
current practice 

FERTILIZER 
APPLICATION 

METHOD 

  

EXPECTED 
YIELD 

  

YIELD 
VARIABILITY 

 

YIELD < 1 TON 3 IN 5 YEARS 
 

YIELD < 1 TON 1 IN 5 YEARS 
SEED TYPE 

  

FERTILIZER 
AND SEED 

COST 

  

I PREFER: 
   

BROADCASTING 

2 to 3 tons/ha 

IMPROVED SEED TRADITIONAL SEED 

N65000 N55000 

DIBBLING 

3 to 4 tons/ha 
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Table A1: Latent class model of farmers’ preferences for ICT-based site-specific extension (without membership function) 1  

 LCM SALCM conventional ANA validation ANA 

       AC   AI AC   AI 

Class LC1 LC2 LC1 LC2 LC1 LC2          LC1         LC2 

Class probability 63% 37% 80% 20% 64% 36% 61%  39%  

ASC2 -4.748*** 

(0.388) 

-20.051 

(393.955) 

-60.379 

(48.411) 

-124.727 

(180.966) 

-4.782*** 

(0.387) 

-35.647 

(0.2D+07) 

-5.502*** 

(0.747) 

 -5.501*** 

(0.669) 

 

SSFR  

(Below current rate) 

0.125 

(0.084) 

0.328* 

(0.177) 

0.445*** 

(0.145) 

-0.434 

(0.539) 

0.111 

(0.090) 

0.227 

(0.200) 

0.065 

(0.090) 

0.258 

(0.192) 

0.304* 

(0.171) 

0.846** 

(0.342) 

SSFR  

(Above current rate) 

0.270*** 

(0.082) 

-0.229 

(0.297) 

0.426** 

(0.179) 

-0.531 

(0.719) 

0.271*** 

(0.084) 

-0.357 

(0.281) 

0.339*** 

(0.090) 

0.056 

(0.203) 

-0.467 

(0.364) 

0.545 

(0.417) 

Dibbling -0.081 

(0.061) 

-0.303** 

(0.129) 

-0.402*** 

(0.129) 

-0.978 

(1.187) 

-0.074 

(0.071) 

-0.355** 

(0.148) 

-0.080 

(0.071) 

-0.125 

(0.101) 

-0.294** 

(0.138) 

-0.149 

(0.192) 

Expected yield 0.047** 

(0.022) 

0.220*** 

(0.063) 

0.147*** 

(0.037) 

1.476* 

(0.814) 

0.040* 

(0.022) 

0.216*** 

(0.051) 

0.037* 

(0.022) 

0.0674 

(0.095) 

0.250*** 

(0.072) 

0.162 

(0.186) 

Yield variability  -0.047* 

(0.026) 

-0.512*** 

(0.086) 

-0.478*** 

(0.098) 

0.121 

(0.546) 

-0.040 

(0.028) 

-0.532*** 

(0.093) 

-0.036 

(0.029) 

-0.075 

(0.067) 

-0.512*** 

(0.090) 

-0.522*** 

(0.127) 

Improved seed 0.279*** 

(0.063) 

0.031 

(0.154) 

0.116 

(0.122) 

5.534** 

(2.563) 

0.273*** 

(0.067) 

-0.080 

(0.184) 

0.290*** 

(0.072) 

0.317** 

(0.123) 

-0.023 

(0.156) 

-0.001 

(0.224) 

CFS (10000 NGN) 0.032* 

(0.017) 

-0.070* 

(0.040) 

-0.052 

(0.036) 

0.207 

(0.129) 

0.037** 

(0.019) 

-0.089** 

(0.038) 

0.034* 

(0.019) 

-0.051 

(0.055) 

-0.063 

(0.039) 

0.182** 

(0.090) 

Log likelihood -2405.50 

4845.00 

4969.36 

-2391.00 

4820.00 

4904.07 

-4067.06 

4895.20 

5000.90 

-4067.06 

4856.90 

5049.60 
AIC 

BIC 
LCM = standard latent class model, SALCM = scale-adjusted latent class model; conventional ANA = conventional attribute non-attendance model; validation ANA = validation 

attribute non-attendance model; LC = latent class; AC= attributes considered or attended to, AI= attributes ignored or non-attended to,  
1 Without membership function, the signs and significance of coefficients as well as latent classes closely compares to the results with membership function except for SALCM,  
2 ASC is weakly identified in SALCM and class 2 of the other models as can be seen from the large values of the estimates due to a non-convergence challenge,  

Number of observations is 14256,  

SALCM has two scale classes.  Scale class 1 has class probability of 48% and a scale factor set to unity. Scale class 2 has class probability of 52% and a scale factor of 0.08,  

Standard error reported between parentheses,  

Significant coefficients at * p < 0.1, ** p <0.05 and *** p <0.01.  
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Table A2: Results of multinomial logit models estimating membership function  

 
LCM SALCM 

conventional 

ANA 

validation 

ANA 

Constant 

 

-2.953*  

(1.587) 

-1.526* 

(0.813) 

-2.818* 

(1.511) 

-2.214      

(1.440) 

Age  

 

-0.046*** 

(0.015) 

-0.024*** 

(0.008) 

-0.043***       

(0.014) 

-0.049*** 

(0.014) 

Education 

 

-0.089*** 

(0.030) 

-0.046*** 

(0.016) 

-0.079*** 

(0.026) 

-0.088*** 

(0.026) 

Labor 

 

0.105  

(0.102) 

0.066 

 (0.052) 

0.093 

(0.110) 

0.108 

(0.093) 

Farmer association 

 

0.747**  

(0.372) 

0.410**  

(0.193) 

0.776** 

(0.336) 

0.794** 

(0.336) 

Off-farm income 

 

0.699  

(0.596) 

0.345  

(0.306) 

0.539 

(0.591) 

0.565 

(0.563) 

Assets 

 

0.318*** 

(0.130) 

0.181*** 

(0.066) 

0.312*** 

(0.119) 

0.279** 

(0.113) 

Agricultural credit 1.175*** 

(0.452) 

0.620*** 

(0.229) 

1.068** 

(0.423) 

1.188*** 

(0.432) 

Extension 

 

0.671** 

(0.315) 

0.331**  

(0.162) 

0.460 

(0.296) 

0.729** 

(0.300) 

Distance to road 

 

0.132*** 

(0.049) 

0.060*** 

(0.023) 

0.112*** 

(0.043) 

0.124*** 

(0.044) 

Significant coefficients at * p < 0.1, ** p <0.05 and *** p <0.01, Latent class 2 as reference class. 
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Chapter 3 

Design of digital agricultural extension tools: Perspectives 

from extension agents in Nigeria14 

  

                                                 
14 This chapter is based on Oyinbo, O., Chamberlin, J. & Maertens, M. (2019). Design of digital agricultural 

extension tools: Perspectives from extension agents in Nigeria. Revised and resubmitted to Journal of 

Agricultural Economics.  
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1. Introduction 

Traditional extension systems in Sub-Saharan African (SSA) provide very general agronomic 

advice, such as fertilizer use recommendations, across wide and highly heterogeneous 

environments (Theriault et al., 2018; Shehu et al., 2018). Such information fails to take into 

account the spatial and temporal variability in biophysical and socio-economic conditions 

within a given national or regional context (MacCarthy et al., 2018; Jayne et al., 2019). The 

use of digital decision support tools (DSTs), enabled by modern information and 

communication technology such as smartphones and tablets, is increasingly promoted for 

more effective delivery of agronomic information tailored to the site-specific conditions of 

individual farmers (Bernet et al., 2001; Kragt and Llewellyn, 2014; MacCarthy et al., 2018). 

A growing number of DSTs are being developed or have recently been developed in SSA, 

including tools specific for maize (‘Maize-Variety-Selector’, ‘Maize-Seed-Area’), for rice 

(‘RiceAdvice’, ‘WeedManager’), for cassava (‘Akilimo’), for cocoa (‘CanOvaLator’) and for 

crops in general (‘Farmbook’, Fertilizer Optimizer’, ‘FAMEWS’).    

Despite the potential of DSTs to improve information delivery, their use at scale is 

low (Rose et al., 2016). Constraints are posed not only by farmers who might be reluctant to 

take up extension advice delivered through such tools, but also by extension agents who 

might be reluctant to use such tools to provide extension advice to farmers (Hochman and 

Carberry, 2011; Ravier et al., 2016; Rose et al., 2016). While farmers are the ultimate 

recipients of DST-supported extension advice, extension agents are most often (in SSA and 

elsewhere) the actual users of DSTs. Some advocate that encouraging uptake of DSTs would 

require design of DSTs to be driven by user-defined preferences via a co-design approach 

(Botha et al., 2017; Ditzler et al., 2018; Rose et al., 2018).  

In this paper, we analyze the preferences of extension agents for the design of DSTs 

and their willingness to use such tools. We implement a discrete choice experiment (CE) 

among 320 extension agents in northern Nigeria, at the design stage of a new DST for site-

specific nutrient management recommendations for maize, the ‘Nutrient Expert’ tool. This 

allows us to have an ex ante understanding of the potential uptake of DSTs and the specific 

practical and effectiveness-related design features that are more (or less) appealing to 

extension agents. In addition, it allows us to gain insights on the heterogeneous preferences 

for the design of DSTs, and the underlying sources of heterogeneity.  
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The contribution of this paper to the literature is twofold. First, to the best of our 

knowledge, there is only one quantitative ex ante study of extension agents’ preferences for 

DSTs (Kragt and Llewellyn, 2014). A main contribution of our paper is the extension and 

application of this type of research. While Kragt and Llewellyn (2014) provide evidence on a 

DST for weed management in Australia, we build on this with evidence on a DST for nutrient 

management in maize farming systems in Nigeria. In particular, the developing country 

context is innovative. Extension agents in developing countries are likely more constrained in 

the uptake of DSTs, e.g. because of a lower level of education and ICT skills among 

extension agents; a lower level of education among recipient farmers, resulting in difficulties 

or more time needed to explain more detailed and more complicated extension advice to 

farmers. Farming conditions are very heterogeneous in our research area, which makes 

nutrient management more challenging, especially for maize – a major staple crop in Nigeria 

and in most SSA countries. The specific application of DSTs for nutrient management advice 

for maize in Nigeria is different from the application of DSTs for weed management in a 

developed country context. Extension agents’ preferences for DSTs might also vary across 

locations and contexts.  In addition, in comparison with Kragt and Llewellyn (2014), we use 

more recent data and a larger sample of respondents (about 200% larger). Other studies on 

DSTs such as Rose et al. (2016, 2018) analyze the uptake of DSTs among farmers and 

extension agents in an ex post qualitative way, and Ditzler et al. (2018) put forward a 

theoretical framework to assess extension tools. Our paper complements this literature 

through an ex-ante quantitative assessment of the preferences of extension agents for the 

design of DSTs.   

Second, this study contributes to the CE literature by adding to the scant empirical 

studies that implement CEs among extension agents instead of the more common use of CEs 

for farmers and food consumers in agricultural economics. CE studies are gaining importance 

in agricultural economics; they are increasingly used to assess farmers’ preferences for 

agricultural technologies prior to the spread of new technologies, and inform agricultural 

research (Breustedt et al., 2008; Asrat et al., 2010; Jaeck and Lifran, 2014; Lambrecht et al., 

2015; Coffie et al., 2016; Van den Broeck et al., 2017; Dalemans et al., 2018; Geussens et al., 

2019). Yet, the use of CEs to inform agricultural extension ex ante is still very limited. Some 

studies use CEs to assess farmers’ preferences for extension advice from DSTs (Oyinbo et al., 

2019) but none specifically focus on extension agents except for Kragt and Llewellyn (2014). 

Yet the latter did not account for attribute non-attendance (ANA), a phenomenon where 
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respondents do not consider all attributes in a CE, i.e. they make incomplete trade-offs which 

may lead to biased estimates (Caputo et al., 2018). Our study extends the application of CE 

among extension agents and considers ANA, and can potentially open up further digital 

extension-related CE research. 

2. Research background and methods 

2.1 Research area 

The study area includes three states in northern Nigeria – Kaduna, Katsina and Kano – where 

maize is an important staple crop (Fig. 3.1). It is grown across the northern Guinea, southern 

Guinea and Sudan savanna agro-ecological zones under a smallholder rain-fed cropping 

system. Maize yields on farmers’ fields in the area are low, on average 1 to 2 tons per hectare 

despite potential yields of 5 tons per hectare and above (Shehu et al., 2018; ten Berge et al., 

2019). A low and inappropriate use of fertilizer and other management practices contribute to 

low yield, and information constraints play a role in this (Shehu et al., 2018). Traditionally, 

provision of extension services rests on the public sector extension systems, implemented at 

the state level (Naswem and Ejembi, 2017). In our study area, these are the Kaduna state 

agricultural development agency (KADA), the Katsina state agricultural and rural 

development authority (KTARDA) and the Kano state agricultural and rural development 

authority (KNARDA). The relatively low extension coverage of the public extension systems 

has given rise to other non-governmental extension providers in recent years. Examples 

include increased private sector participation in the provision of advisory services (e.g. from 

input suppliers, agro-dealers, etc.) as well as non-governmental organizations such as 

Sasakawa-Global 2000 (Davis and Spielman, 2017; Gizaki and Madukwe, 2019). The 

extension system largely provides generalized agronomic recommendations across 

heterogeneous locations in our study area, and in Nigeria at large. Such a system might be 

inefficient as it fails to address site-specific information constraints (Naswem and Ejembi, 

2017). A typical example is the provision of a general recommended fertilizer application rate 

of 120 kg N, 60 kg P2O5 and 60 kg K2O per ha for maize in much of northern Nigeria (Shehu 

et al., 2018), which may be sub- or supra-optimal for the site-specific conditions of individual 

farmers. The development of DSTs such as the Nutrient Expert and similar tools could 

enhance the capacity of the extension system, and allow of the provision of site-specific 

agronomic recommendations. 
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Fig. 3.1: Map of the study area 

2.2 Data collection and sampling  

Data were collected through a discrete choice experiment (CE) and an accompanying survey 

among individual extension agents in November 2016. A structured questionnaire was 

developed for the survey, with modules on extension agent demographics, work environment, 

experience with ICT, fertilizer recommendations and income sources. The CE and survey 

were implemented using computer assisted personal interviewing, face-to-face with 

individual extension agents. Prior to this implementation, the aim of the interview and the set-

up of the CE were explained to extension agents in introductory group sessions, including all 

sampled extension agents in a specific survey location.  The CE is explained in the next 

section. We used a one-stage random sampling design to select 320 extension agents. The 

study area comprises three extension institutions, including 10 governmental zonal extension 

offices (4 from KADA, 3 from KTARDA and 3 from KNARDA) and one major private 

extension provider. We randomly selected 30% of the extension agents from each of these 

institutions, based on a full list of frontline extension agents – i.e. extension agents who 

directly advise farmers in the field – provided by each of the extension offices.  
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2.3 Choice experiment design and implementation 

We use a discrete CE as a stated preference elicitation method to ex-ante assess extension 

agents’ preferences and willingness to use DSTs, before introducing the Nutrient Expert tool 

in the extension systems. Respondents were presented with a sequence of choice sets, each 

having two discrete hypothetical alternatives of a nutrient management DST, and asked to 

choose their most preferred alternative. The hypothetical alternatives are described by 

different attributes of the DST with levels that vary over the alternatives.  

Based on consultations with a number of scientists involved in the development of the 

Nutrient Expert tool for Nigeria, a detailed review of DST design literature and a series of 

meetings with extension agents, we identified six relevant attributes (table 3.1). These include 

practical attributes – level of user-friendliness, delivery platform, delivery language and time 

cost – and attributes related to the content and effectiveness of the extension advice – level of 

detailed output and predictive power. The first attribute ‘level of user-friendliness’, relates to 

the interface ease-of-use of a DST, i.e. the ease of navigating through tool modules to 

generate an extension output. The second attribute, level of detailed output, relates to the 

number of different recommendations that result from the DST and that should be explained 

by the extension agent to the farmers as different options. Both are described by three levels: 

low, moderate, and high levels of user-friendliness and detailed output. The third attribute 

‘predictive power’ relates to the accuracy of a DST in formulating fertilizer recommendations 

for a farmer to achieve a certain yield. It is expressed as the percentage of farmers that 

actually achieve expected yields after applying the DST-enabled fertilizer recommendations 

received from extension agents. We include five levels ranging from less than 31% to more 

than 90%. The fourth attribute ‘delivery platform’ relates to the format or platform in which 

extension recommendations are delivered. This is defined by three levels: non-mobile 

platforms (desktops/laptops), quick guides (paper-based) and mobile platforms 

(smartphones/tablets). The fifth attribute ‘delivery language’ relates to the operating language 

of the tool and the recommendation output. The levels are: English only, native only and both 

English and native. The sixth attribute ‘time cost’ describes the amount of time needed for an 

extension agent to generate a fertilizer recommendation with the DST. This attribute is 

defined by four levels, ranging from 15 to 60 minutes per farmer. These levels were chosen 

based on a possible range of time that some agents expressed as acceptable during a meeting 

with the extension providers.  
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Table 3.1: Attributes and attribute levels used in the choice experiment 

Note: awe use midpoints of the attribute level ranges in the estimation,  

A more detailed description of the attributes and attribute levels is given in the script used to introduce and 

explain the CE to respondents (see appendix). 

We use a D-efficient design, which minimizes the number of choice sets, compared to 

a full factorial design, and improves the efficiency of parameter estimates (Hensher et al., 

2015). Where a pilot is not feasible, prior information, such as the expected signs, can be 

obtained from the empirical literature, from theory and/or from expert judgement (Rose and 

Bliemer, 2009). If the expected size is completely unknown, taking small priors (close to 

zero) with the expected signs can still allow of a more efficient design over the use of null 

priors (Bliemer et al., 2016; van Cranenburgh and Collin, 2019). Based on this reasoning and 

on empirical applications (e.g. Van den Broeck et al., 2017; Dalemans et al., 2018; Meyerhoff 

et al., 2019) we use small positive and negative priors (0.001 and -0.001) depending on 

whether we expect a positive or negative sign. These expectations informed by discussions 

with some extension agents and by a review of the literature. We use Ngene software to 

generate the design, resulting in 12 paired choice sets randomly blocked into two blocks of 

six choice sets (D-error = 0.058, A-error = 0.255). The number of choice sets was informed 

by practical considerations on reducing the cognitive burden of evaluating several choice sets 

and allowing a minimal number of blocks to facilitate the CE implementation. From the 

choice sets, we constructed 12 laminated choice cards (an example is given in Fig. 3.2) each 

consisting of two unlabeled hypothetical options of a nutrient management DST (options A 

and B) and an opt-out (option C). An opt-out option is included to avoid forcing the extension 

agents to accept the use of a DST, which corresponds to the reality of holding onto the use of 

the current traditional extension methods (Hensher et al., 2015). As described in Scarpa and 

Rose (2008) and implemented in Caputo et al. (2018), we report ex-post efficiency measures 

Attributes Attribute levels 

User-friendliness  Low, Moderate, High 

  

Detailed output Low, Moderate, High 

  

Predictive powera < 31%, 31 – 50%, 51 – 70%, 71 – 90%, > 90% 

  

Delivery platform 

 

Non-mobile (desktops/laptops), 

Quick guides (paper-based version), 

Mobile (smartphones/tablets) 

  

Delivery language English only,  Native only, English + native 

  

Time cost 15, 30, 45, 60 minutes per recommendation 
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of our design using the true parameter estimates – D-error = 0.063, A-error = 0.280. Taking 

the ex-ante and ex-post measures together, our design performs well with an efficiency of 

92% and 91% for D- and A-errors respectively.   

 
Fig. 3.2. Example of a choice card used in the choice experiment  

In the CE implementation, we started with an introductory session in group to explain 

the purpose of the CE, the attributes and attribute levels and the hypothetical set-up. A cheap 

talk script was used to stress the need to give truthful responses and to minimize hypothetical 

bias (Cummings and Taylor, 1999). The same script was used for all group sessions to allow 

of a uniform explanation across extension agents and avoid informational bias. The script is 

included in the appendix. Questions were allowed after the introduction but we made sure our 

answers were only for clarification about the CE and did not prime their responses.  

Subsequently, each agent separately was presented six choice cards in a random order by an 

enumerator, and was asked to choose the most preferred option. At the end of the CE, 

respondents were questioned about which attributes they ignored, which corresponds to 

serial-based attribute non-attendance, and about individual-specific and work-related 

characteristics. 

 

OPTION A OPTION B OPTION C 

 

User-

friendliness 

Moderate 

 
High 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I don’t want  

options 

A and B 
 

 

 

Neither A nor B 

 

 
 

 

Detailed 

output 

Low 

 

High 

 

Predictive 

power 

51 – 70%  31 – 50% 

 

Delivery 

platform  
Non-mobile 

 
Mobile 

 

Delivery 

language 

 

 

 

 

 

 

 

English  +  native 

 

 

 
 

 

 
 

English only 

 

Time cost 
 

Minutes 

 

Minutes 
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3. Econometric analysis 

Choice experiments are rooted in random utility theory; the rationale is that utility is derived 

from the underlying attributes of a good or service rather than from the good or service per se 

(Lancaster, 1966) and that respondents choose those alternatives that offer the largest 

expected utility (McFadden, 1974). Hence, the utility 𝑈𝑖𝑗𝑠 of extension agent i choosing 

alternative 𝑗 in choice set 𝑠 is given by an indirect utility consisting of a deterministic and a 

random component:  

𝑈𝑖𝑗𝑠 = 𝐴𝑆𝐶 + ∑ 𝛽𝑖𝑘𝑥𝑖𝑗𝑘𝑠

6

𝑘=1

+ 𝜀𝑖𝑗𝑠    𝑖 = 1, … . , 𝑁;  𝑗 = 1, … . , 𝐽;  𝑠 = 1, … . , 𝑆                            (1) 

The vector of attributes 𝒙𝑖𝑗𝑠 describes alternatives 𝑗 with associated individual-specific 

parameters 𝜷𝑖. The idiosyncratic error term 𝜀𝑖𝑗𝑠 is assumed to be independently and 

identically distributed (iid). 𝐴𝑆𝐶 is an alternative-specific constant to capture preferences for 

the opt-out option. 

First, we estimate a mixed logit (MXL) model to account for preference heterogeneity 

across extension agents (Train, 2009). All parameters are specified to be random with a 

normal distribution. The ASC is coded as 1 for the opt-out option and 0 for all hypothetical 

DST options, which implies that a negative parameter for the ASC corresponds to a 

willingness to adopt DSTs. For ease of interpretation, all categorical variables are dummy-

coded. 

Second, we estimate two models to account for attribute non-attendance (ANA) – i.e. 

a situation where respondents ignore some attributes when making choices – which can be an 

important source of bias in the parameter estimates (Kragt, 2013; Alemu et al., 2013; Coffie 

et al., 2016). With serial stated ANA data, derived from the respondents at the end of the CE, 

we account for ANA in the MXL models by estimating a conventional ANA model and a 

validation ANA model as described in Caputo et al. (2018). In the conventional ANA 

method, the parameters of attributes that are reported as ignored by respondents are 

constrained to zero. The utility function can then be expressed as: 

𝑈𝑖𝑗𝑠 = 𝐴𝑆𝐶 + ∑ 𝛽𝑖𝑘𝑥𝑖𝑗𝑘𝑠

6−𝜏

𝑘=1

+ 𝜀𝑖𝑗𝑠                                                                                                       (2) 

where 𝜏 are attributes self-reported as ignored. In the validation method, two parameters are 

estimated for each attribute depending on whether the attribute is reported to be ignored or 
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not by respondents (Alemu et al., 2013; Scarpa et al., 2013; Caputo et al., 2018; Oyinbo et al., 

2019). This helps to validate the stated ANA responses and the conventional ANA model. 

The utility function is expressed as: 

𝑈𝑖𝑗𝑠 = 𝐴𝑆𝐶 + ∑ 𝛽𝑖𝑘
1 𝑥𝑖𝑗𝑘𝑠

6−𝜏

𝑘=1

+ ∑ 𝛽𝑖𝑘
0 𝑥𝑖𝑗𝑘𝑠

𝜏

𝑘=1

+ 𝜀𝑖𝑗𝑠                                                                            (3) 

where the utility coefficients conditional on attendance are indicated with the superscript 1 

(𝛽1) and those conditional on non-attendance with superscript 0 (𝛽0). 

Third, we estimate a latent class model (LCM) to further unravel preference 

heterogeneity and to better explain the potential sources of heterogeneity. A LCM assumes 

that a heterogeneous population of extension agents consists of a discrete number of 

preference classes (latent classes) (Hensher et al., 2015). Preferences are assumed to be 

homogeneous within each latent class 𝑐 but heterogeneous across classes. The probability of 

extension agent 𝑖 choosing alternative 𝑗 in choice set 𝑠 is conditional on the agent’s 

membership of latent class 𝑐:  

𝑃𝑖𝑗𝑠|𝑐 =  ∏
exp(𝜷𝑐

′ 𝒙𝑖𝑗𝑠)

∑ exp(𝜷𝑐
′ 𝒙𝑖𝑡𝑠)𝐽

𝑡=1

𝑆

𝑠=1

                                                                                                          (4) 

where 𝜷𝑐
′  is the vector of class-specific parameter estimates. The class membership 

probabilities are modeled using a multinomial logit with class-specific constant terms and no 

respondent-specific characteristics:  

𝑃𝑖𝑐 =  
exp(𝑧𝑖)

∑ exp(𝑧𝑖)
𝐶
𝑐=1

                                                                                                                               (5) 

This implies that class membership probabilities are estimated solely taking into account the 

sequence of choices made by the extension agents. Respondents are then allocated to the 

preference classes for which they have the largest probabilities15. We characterize the 

preference classes through a comparison of means of a large set of individual- and work-

related characteristics of the extension agents. We follow recent empirical CE applications 

(e.g. Van den Broeck et al., 2017; Dalemans et al., 2018; Guessens et al., 2019) and opt for a 

LCM without inclusion of respondent-specific covariates in the membership function. This 

allows of better inferences about heterogeneous preference classes, conditioned only by the 

observed choice patterns, and avoids a potential bias in selecting relevant covariates in the 

                                                 
15 This is implemented using STATA estimation and post-estimation commands, lclogit and lclogitpr with the 

cp option (Pacifico and Yoo, 2013).  
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membership function that explain observed preferences. Given that limited information is 

available in the literature on the preferences of extension agents and the underlying 

characteristics explaining these, this method suits our CE.  

The joint probability of observing a sequence of choices (𝑦𝑖𝑗𝑠) over all classes is the product 

of (4) and (5), and the panel formulation of the model is: 

𝑃𝑦𝑖𝑗𝑠
=  ∑ [

exp(𝑧𝑖)

∑ exp(𝑧𝑖)
𝐶
𝑐=1

] [∏
exp(𝜷𝑐

′ 𝒙𝑖𝑗𝑠)

∑ exp(𝜷𝑐
′ 𝒙𝑖𝑡𝑠)𝐽

𝑡=1

𝑆

𝑠=1

]

𝐶

𝑐=1

                                                                      (6) 

We estimate LCMs with two to five latent classes in order to sufficiently represent preference 

heterogeneity in our data. Selection of the optimal number of classes is based on the Akaike 

Information Criteria (AIC) and the Bayesian Information Criteria (BIC) (Boxall and 

Adamowicz, 2002).  

Fourth, to meaningfully compare the relative importance of the different attributes we 

need to take into account differences in scale (Greene and Hensher, 2003). To this end, we 

estimate marginal rates of substitution (MRS) between time cost and other attributes using 

Krinsky-Robb method with 2000 draws (Krinsky and Robb, 1986). The MRS is interpreted 

as the willingness to accept a higher time cost and by extension, more effort in the use of a 

DST for an increase in the utility of another attribute. The MRS estimation is based on the 

results of the LCM, as this model allows of a better interpretation in terms of differences in 

the magnitude of trade-offs between time costs and other attributes across the classes of 

extension agents.     

4. Results  

Table 3.2 describes the individual- and work-related characteristics of the extension agents, 

which are used to explain observed preference heterogeneity (as described later in this 

section). The large majority (95%) of the extension agents are male. Their age is on average 

40 years, and they had on average 18.9 years of schooling. About three fourths of the 

extension agents report to be proficient in the use of smartphones and/or tablets but only 44% 

owns a smartphone and only 2% owns a tablet. Also, the majority (87%) is affiliated to the 

public extension system. The average extension experience is 12.7 years in the sample. About 

30% of the extension agents have ICT-based extension experience and 72% report to be 

aware of site-specific nutrient management advice. Respectively 72% and 21% report to have 

received training on respectively soil fertility issues and ICT aspects in the last 12 months 
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prior to the survey. Only 48% of the extension agents have access to a vehicle, motorcycle or 

bicycle to carry out their extension work. More than 90% of the extension agents agree that 

they receive adequate supervision and timely remuneration, and more than 80% agree to 

receive regular promotion.   

 
Table 3.2: Summary statistics of extension agents’ characteristics 

Variables Description of variables Mean Std. 

Dev. 

Individual-specific characteristics    

Male (yes=1) Gender of extension agent 0.95 0.35 

Age (years) Age of extension agent 39.58 10.48 

Married (yes=1) Marital status of extension agent 0.82 0.39 

Education (years) Years of schooling attained  18.88 1.82 

Engage in agriculture (yes=1) Self-reported engagement in agriculture  0.88 0.32 

Proficient in the use of a  

smartphone/tablet (yes=1) 

Self-assessed proficiency in the use of a 

smartphone/tablet 

0.74 0.44 

Own a smartphone (yes=1) Ownership of a smartphone 0.44 0.50 

Own a tablet (yes=1) Ownership of a tablet 0.02 0.15 

Work-related characteristics     

Affiliated to public extension (yes=1) Affiliation of extension agent 0.87 0.34 

Extension experience (years) Years of working in the extension system 

attained by extension agent 

12.74 10.27 

ICT-based extension experience (yes=1) Self-reported experience on the use of 

digital technologies, such as smartphones 

and tablets for extension purpose 

0.29 0.45 

Soil fertility-related training (yes=1) Self-reported access to training on soil 

fertility the past one year 

0.72 0.45 

ICT-related training (yes=1) Self-reported access to training on ICT 

the past one year 

0.21 0.41 

Access to transport facilities (yes=1) Self-reported access to transport 

facilities, such as bicycle, motorcycle or 

vehicle for extension purpose 

0.48 0.49 

Receive adequate supervision (yes=1) Self-assessed adequacy of supervision 0.95 0.22 

Receive regular promotion (yes=1) Self-assessed regularity of promotion 0.83 0.38 

Receive timely remuneration (yes=1) Self-assessed timeliness of remuneration 0.96 0.20 

Perceive job to be secure (yes=1) Self-assessed job security 0.93 0.25 

% of working time devoted to soil 

fertility-related issues (%) 

Self-estimated share of time devoted to 

soil-fertility related issues 

63.22  

Aware of site-specific nutrient 

management (yes=1) 

Self-reported awareness of site-specific 

nutrient management 

0.72 0.45 

Farmers often request for soil fertility-

related advice (yes=1) 

Self-reported farmers’ request for soil 

fertility-related advice 

0.98 0.16 

Observations  320  

 

Table 3.3 reports the results of the mixed logit (MXL) models, including the standard 

MXL without controlling for ANA, the conventional ANA and validation ANA models. 

Thirty three percent of the extension agents report to have ignored at least one attribute, 

which supports the estimation of ANA models. The estimated conventional ANA model is 
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qualitatively similar to the standard MXL model in terms of expected signs of the 

coefficients.  Also the model fit using the AIC and BIC information criteria is similar across 

the models. This implies that results are robust to potential ANA bias16. This is corroborated 

by the results of the validation ANA model, which show that coefficients for ignored 

attributes are not significantly different from zero – except for predictive power. This implies 

that the choice behavior of the extension agents is consistent with their stated ANA 

information, and that hence the conventional ANA and the MXL results are not biased due to 

ANA (Scarpa et al., 2013; Caputo et al., 2018). Overall, the ANA models do not clearly 

outperform the MXL model. A plausible explanation for this relates to the fact that individual 

respondents ignore only a few attributes and the ignored attributes vary in the sample (table 

A1 in appendix). This may also reflect limitations related to ‘measurement errors’ in serial 

ANA models, as mentioned by Caputo et al. (2018). Therefore we base our discussion on the 

MXL results.   

The ASC coefficient estimate is significantly negative, which indicates that the 

extension agents generally prefer the use of DSTs for site-specific extension advice on 

nutrient management. This supports the ongoing efforts to develop such DSTs for maize in 

the research area. In general, the extension agents prefer DSTs with a higher level of user-

friendliness, more detailed output, and a higher predictive power. In addition, they prefer a 

mobile platform in the native or a combination of English and the native language. DSTs that 

have a higher time demand per output and paper-based DST platforms are disliked by the 

extension agents. The standard deviations are statistically significant for most of the 

attributes. This implies that there is preference heterogeneity across extension agents – e.g. 

the large majority prefer DSTs with lower time demand (84%), with moderate user-

friendliness (81%), with higher predictive power (84%), with both English and the native 

language (68%), and dislike paper-based platforms (61%).  We observe that the preferences 

between agents with and without access to smartphones only vary slightly (table A2). Also, 

we find no major differences in preferences between agents across the three study states 

(table A3). Yet, to allow better insights into preference heterogeneity and infer practical 

implications for DST design and targeting, we look beyond the general findings and consider 

distinct sub-groups of agents defined by their choice behavior via a LCM.  

  

                                                 
16 One cannot compare the magnitude of coefficients between models because of scale differences (Greene and 

Hensher, 2003), and so we make no claim about similarity in terms of magnitude of coefficients 
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Table 3.3: Results of mixed logit models, with and without control for attribute non-attendance (ANA) 

 MXL Conventional ANA Validation ANA 

    Considered attributes Ignored attributes 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

ASC -3.41*** 1.37** -3.78***       1.55*** -3.59***       1.60***   

 (0.61) (0.54) (0.64)    (0.51) (0.69)     (0.59)   

Time cost (minutes/output) -0.01** -0.01* -0.01***       0.01*** -0.01**        0.01** -0.01         0.00 

 (0.00) (0.01) (0.00)     (0.00) (0.00)     (0.01) (0.01) (0.02) 

User-friendliness: moderate 0.48*** 0.55*** 0.56*** 0.58***       0.49***       0.60***       0.53          0.09          

 (0.12) (0.17) (0.12) (0.18)      (0.13)      (0.18)      (0.36)      (0.59)       

User-friendliness: high 0.47*** 0.28 0.55***       0.26     0.50***       0.25          0.29          0.47          

 (0.11) (0.39) (0.11)      (0.32)       (0.12)      (0.39)       (0.39)       (0.69)       

Detailed output: moderate 0.34*** -0.03 0.28***       0.24          0.37***       0.26         -0.13          0.06          

  (0.10) (0.47) (0.10)      (0.33)       (0.11)      (0.34)      (0.45)      (0.63)       

Detailed output: high 0.28*** 0.29 0.29***       0.30        0.28**        0.41*           0.57          0.14          

 (0.10) (0.33) (0.10)      (0.31)      (0.11)      (0.24)      (0.46)      (1.51)       

Predictive power 0.01*** -0.01*** 0.01*** 0.00        0.01***       0.01*        0.01***       0.02***       

 (0.00) (0.00) (0.00)      (0.00)      (0.00)      (0.00)      (0.01)      (0.01)      

Platform: paper -0.20** 0.71*** -0.21*         0.80***       -0.23**        0.90***       0.06          0.02         

 (0.10) (0.17) (0.11)     (0.17)      (0.11)     (0.17)      (0.37)       (0.37)       

Platform: mobile 0.40*** -0.36 0.38***       0.31**        0.41***       0.40*        0.53          0.58          

 (0. 09) (0.22) (0.09)      (0.26)      (0.09)      (0.23)      (0.36)      (0.57)      

Language: native 0.19* -0.20 0.20*         0.22         0.23*         0.15          -0.25          0.40          

 (0.10) (0.29) (0.10)      (0.27)       (0.11)      (0.36)      (0.35)      (0.68)      

Language: English + native 0.36*** 0.79*** 0.32**        0.84***       0.43***       0.92***       -0.09          0.00         

 (0.14) (0.17) (0.13)      (0.16)      (0.15)      (0.17)      (0.38)      (0.70)       

N 5,760 5,760 5,760 

Log likelihood -1348.12 -1354.12 -1333.95 

AIC 2740.25 2752.20 2751.90 

BIC 2886.75 2874.60 2985.40 

Notes: Asterisks ***, **, and * denote any variable significant at 1%, 5%, and 10% levels respectively.  

Standard errors reported between parentheses.  
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Table 3.4 presents the results of a latent class model, which allows to further explore 

heterogeneity in preferences, and gain better insights on how the extension agents trade off 

the attributes of DSTs. We selected a model with two latent classes based on a comparison 

of the information criteria across models with two up to five classes (table A4). Preference 

class one (PC1) includes 52% of the sampled extension agents and preference class 2 (PC2) 

48%. In both classes, extension agents are in general willing to accept the use of DSTs, and 

have strong preferences for DSTs that limit the time demand per recommendation output 

and that have a moderately to highly user-friendly interface. Yet, we observe substantial 

heterogeneity in preferences between the two classes for the other attributes. Extension 

agents of PC1 prefer DSTs with highly detailed output and a strong predictive power while 

those in PC2 are indifferent to these attributes. Extension agents of PC2 prefer DSTs on 

mobile devices that use the native language or a combination of the native language and 

English, and dislike paper-based tools while those in PC1 are indifferent to these attributes.  

Table 3.4: Results of latent class models 

 Preference class 1 = 52% Preference class 2 = 48% 

Coefficient Std. error Coefficient Std. error 

ASC -2.15*** 0.40 -3.66*** 0.93 

Time cost (minutes/output) -0.01* 0.00 -0.01* 0.01 

User-friendliness: moderate 0.39** 0.18 0.67*** 0.25 

User-friendliness: high 0.19 0.18 1.02*** 0.31 

Detailed output: moderate  0.26 0.18 0.35 0.25 

Detailed output: high 0.45*** 0.16 -0.12 0.28 

Predictive power 0.01*** 0.00 0.00 0.00 

Platform: paper 0.21 0.19 -0.66* 0.35 

Platform: mobile 0.15 0.15 0.59*** 0.15 

Language: native 0.15 0.16 0.46* 0.25 

Language: English + native -0.19 0.27 1.14** 0.56 

N 5,760    

Log likelihood -1344.04    

AIC 2734.07    

CAIC 2910.23    

BIC 2887.22    

Notes: Asterisks ***, **, and * denote any variable significant at 1%, 5%, and 10% levels respectively.  

To explore the sources of preference heterogeneity, we compare individual- and 

work-related characteristics of extension agents between the two PCs (table 3.5). The results 

show that PC2 extension agents have a significantly higher education, a lower likelihood to 

engage in agriculture, and a higher likelihood to be proficient in the use of smartphones 

and/or tablets, to have experience with ICT-based extension, to receive regular promotion 

and to be paid timely. This might explain their strong preferences for DSTs with mobile 
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platforms. Yet, they appear to care less about the level of detail and accuracy of extension 

advice, which suggests that the appeal for these attributes is not necessarily correlated with 

education and ICT proficiency of extension agents, and with receipt of timely remuneration 

and regular promotion. Overall, the differences in observed characteristics between the two 

PCs are significant but very small, which implies that unobservable characteristics, such as 

motivation and ability, likely play a role as well in determining preference heterogeneity.  

Table 3.5: Profile of extension agents characteristics across latent preference classes 

 PC1 = 52%  PC2= 48%   

Mean  Std. 

Dev. 

Mean  Std. 

Dev. 

Sig. 

Individual-specific characteristics      

Male  0.95  0.95   

Age  39.64 10.49 39.51 10.49  

Married  0.79 0.41 0.85 0.36  

Education  18.71 1.88 19.06 1.73 * 

Engage in agriculture  0.91 0.29 0.85 0.36 * 

Proficient in the use of a smartphone/tablet   0.70 0.46 0.78 0.41 * 

Own a smartphone  0.40 0.49 0.48 0.50  

Own a tablet  0.01 0.11 0.03 0.18  

Work-related characteristics       

Affiliated to public extension  0.87 0.33 0.86 0.35  

Extension experience  12.78 10.45 12.69 10.09  

ICT-based extension experience  0.23 0.42 0.35 0.48 ** 

Soil fertility-related training  0.75 0.44 0.69 0.46  

ICT-related training 0.19 0.39 0.24 0.42  

Access to transport facilities  0.49 0.50 0.46 0.50  

Receive adequate supervision  0.95 0.23 0.95 0.22  

Receive regular promotion  0.80 0.40 0.87 0.34 * 

Receive timely remuneration  0.93 0.25 0.98 0.14 ** 

Perceive job to be secure  0.94 0.24 0.93 0.26  

% of working time devoted to soil fertility-related issues  63.0  63.5   

Aware of site-specific nutrient management  0.74 0.44 0.69 0.46  

Farmers often request for soil fertility-related advice  0.98 0.13 0.97 0.18  
 Notes: Two-sided t-tests of mean differences between extension agents in PC 1 and 2, asterisks ***, **, and * 

denote significant differences at 1%, 5%, and 10% levels respectively, Variables are as described in table 3.2. 

Table 3.6 reports the estimated MRS between time cost and other attributes. The 

MRS estimates show that in both classes extension agents are willing to accept a higher time 

cost for a more user-friendly interface, but this trade-off is on average larger in PC2. In 

addition, extension agents in PC1 are willing to accept a higher time cost for a more detailed 

and more accurate output while extension agents in PC2 are not. The latter are willing to 

accept a higher time cost for a mobile delivery platform in the native language, or a 

combination of English and the native language. This is plausible as some of the extension 

agents may have a low English language proficiency.    
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Table 3.6: Marginal rate of substitution (MRS) between time cost and other attributesa 

 Preference class 1 Preference class 2 

Mean 

(95% confidence interval) 

Mean 

(95% confidence interval) 

User-friendliness: moderate 66.86 

(-313.20 – 498.99) 

74.31 

(-203.49 – 360.52) 

User-friendliness: high 33.37b 

(-92.89 – 283.70) 

113.42 

(-193.98 – 465.70) 

Detailed output: moderate  45.19b 

(-123.32 – 256.86) 

38.78b 

(-55.37 – 144.69) 

Detailed output: high 78.84 

 (-254.35 – 489.48) 

-13.10b 

(-144.38 – 93.13) 

Predictive power 1.45  

(-7.20 – 10.55) 

0.02b 

(-1.37 – 1.49)  

Platform: paper 36.75b 

(-164.65 – 316.66) 

-73.51 

(-295.43 – 91.49) 

Platform: mobile 26.28b 

(-82.00 – 180.73) 

65.50 

(-147.91 – 288.33) 

Language: native 26.48b 

(-110.71 – 203.32) 

51.20 

(-52.04 – 204.79) 

Language: English + native -32.54b 

(-349.82 – 203.83) 

126.41 

(-106.89 – 467.53) 
Notes: aEstimated based on coefficients in the latent class model in table 3.4, bNot discussed as coefficients are 

insignificant  

5. Discussion and conclusion 

We find that extension agents in the maize belt of Nigeria are in general willing to accept 

the use of DSTs for site-specific extension services on nutrient management for maize. 

While extension agents in the sample prefer DSTs with a more user-friendly interface that 

require less time to generate an output, we observe substantial preference heterogeneity for 

the other design features of DSTs, and identify two groups of extension agents with a 

different preference pattern. Extension agents in PC1 (52%) care more about attributes 

related to the effectiveness of the extension advice resulting from a DST, such as a more 

detailed and more accurate output. These extension agents can more likely be motivated to 

use DSTs through a careful explanation of the underlying science and evidence-base aspects 

of DSTs. Extension agents in PC2 (48%) care more about the practical attributes of DSTs 

such as the platform, the language and the user-friendliness of the interface. These extension 

agents are likely more easily convinced about the use of DSTs if the practical and 

operational aspects of DSTs are taken care of. Reflecting on the sources of heterogeneous 

preferences, the role of observed characteristics is quite small and hence, unobservable 

characteristics, e.g. motivation and ability, likely play a role in explaining the differences in 
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preferences. Yet, we cannot analyze the role of motivation and ability more in-depth as we 

do not have proxy variables for these typically unobservable characteristics in our data. 

Our finding that extension agents prefer DSTs with a user-friendly interface and a 

lower time requirement is partly consistent with Kragt and Llewellyn (2014), who report 

preferences for low time cost in a weed management DST in a developed country context 

but did not consider interface ease-of-use. In addition, our results are in line with the extant 

literature on the design of user-friendly interfaces to stimulate the use of such tools (Bernet 

et al., 2001; Hochman and Carberry, 2011; Rose et al., 2016). Our finding of a strong 

preference by the extension agents PC2 for DSTs on mobile devices such as smartphones 

and tablets contrasts with Kragt and Llewellyn (2014), who find that extension agents prefer 

a spreadsheet-based platform. The result that some extension agents prefer the use of native 

or a combination of native and English language is consistent with Tata and McNamara 

(2016), who opine that the use of local languages in the design of ‘farmbook’, an ICT-based 

extension tool, is more beneficial to farmers. This will likely facilitate better communication 

with the majority of farmers who do not understand English, and reduce the likelihood of 

misinterpreting the inputs and outputs of DSTs. Our findings on the strong preferences of 

extension agents for DSTs that provide a more accurate and more detailed output are 

consistent with some studies that considered these attributes. For example, Kragt and 

Llewellyn (2014) find that a DST that generates more accurate output is strongly desired 

across the groups of extension agents identified in their study, whereas we find this only to 

be the case for the extension agents in PC1. Qualitatively, Hochman and Carberry (2011) 

find that the use of DSTs that allow of the provision of a wide range of options to farmers is 

keenly considered by tool users in a developed country setting. The fact that the sources of 

observed heterogeneous preferences in our study appear to derive from unobservable 

characteristics is consistent with Kragt and Llewellyn (2014) who find that observed 

demographic characteristics were not significant in explaining preferences. 

We provide some specific policy implications of our findings. Our results imply that 

there is high potential demand for ICT-enabled DSTs for site-specific extension services in 

our study area – a finding which aligns with the currently widespread interest and 

investments in site-specific and ICT-enabled extension tools for agricultural applications in 

developing countries. Our results imply that a user-friendly interface and a reduced time 

effort needed to generate extension advice are important to pay attention to in the design 
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process of a DST. To stimulate uptake and facilitate better targeting, a more effective design 

will likely require DSTs to be differentiated along dimensions of their practical attributes 

such as the platform and the language. Yet, differentiating DSTs according to effectiveness 

attributes is in our view unacceptable as this would result in quality differentiation among 

farmers of the extension advice they receive. The effectiveness of the advice should be 

strongly considered in the design stages of DSTs to allow of higher-quality agronomic 

advice to all farmers. Extension agents who are indifferent to DSTs that can offer a more 

accurate and more detailed output – i.e. those in PC2 – may need to be better disposed to the 

quality of extension advice from DSTs beyond the practical features of DSTs. This may 

require improved capacity building for such agents (Davis and Spielman, 2017; Makate and 

Makate, 2019). In terms of methodological reflections, there is a growing scholarly interest 

on ANA in the CE literature. While we account for ANA using a serial stated ANA 

approach and do not find significant improvements in model fit, future CEs among 

extension agents in developing countries can explore other approaches less prone to 

measurement errors, such as choice task stated ANA, eye tracking  and inferred ANA. 

Finally, our empirical findings have direct implications for the development of the 

nutrient management DST for maize ‘Nutrient Expert’ in Nigeria17. Our findings have 

contributed to informing the choice of delivery language and selection of the tool delivery 

platform among propositions for a paper-based platform, quick guides and other possible 

platforms. Our results show that the tool user-friendliness and time required to generate 

farm-specific advice are actually important for extension agents. The practical implication is 

that DST development should consider time optimization – for example through tweaking 

the color-text-image combinations of the interface of the tool and directly engaging 

extension agents in testing of interface alternatives, and identifying the specific amount of 

time that is acceptable for the use of the tool in a given context. In addition, the engagement 

of extension agents is required in testing variants of DST outputs with varying levels of 

detail in the output to optimize a DST in line with extension agents’ preferences. An 

attractive DST should not only optimize the output in terms of accurate nutrient 

management advice but also balance this with optimizing user- and convenience-related 

features. 

                                                 
17 The institution responsible for developing the tool in this project – the International Plant Nutrition Institute 

(IPNI) – ceased operations in April 2019. A new institution – the African Plant Nutrition Institute (APNI) – 

has been created to build on the IPNI’s plant nutrition research and education in Africa. It is not yet clear to 

what extent or how APNI will continue development of the Nutrient Expert tool for maize in Nigeria.   
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Appendix 

 

Appendix A: Script for implementation of choice experiment among extension agents 

In a bid better serve farmers with SITE-SPECIFIC extension services in which 

recommendations are tailored to site-specific conditions of individual farmers instead of the 

conventional GENERAL extension recommendations, your inputs are highly needed to 

optimize the design of a nutrient management decision support tool for maize ‘‘Nutrient 

Expert”. The design is expected to result in an extension tool that can enable you to provide 

site-specific nutrient management (SSNM) recommendations to farmers, which will help 

them make better informed decisions on soil fertility and crop management. We (referring to 

supervisors and enumerators) will guide you through an exercise in which you will have the 

opportunity to choose different hypothetical options of nutrient management decision 

support tools for maize, and the options will be presented in the form of a card called choice 

card. These options are defined using six features called attributes, namely level of user-

friendliness, level of detailed output, predictive power, delivery platform, delivery language 

and time cost. Each of the six attributes has different levels called attribute levels (At this 

point, the attributes and attribute levels are described in detail).  

Description of attributes  

1. Level of user-friendliness 

This attribute relates to the user-interface of a nutrient management DST and the ease of 

navigating through tool modules (i.e. the necessary steps) to generate an extension output 

for a farmer. In other words, it describes the ease with which an extension agent can interact 

with a tool via the interface. This is defined by three levels, namely low, moderate and high 

levels of user-friendliness where a high level of user-friendliness is rated above a moderate 

level, and a moderate level is rated above a low level. To distinguish between the three 

levels in a choice card, an image showing only a command-line interface, a combination of 

command-line and graphical user interfaces and only a graphical user interface will be used 

to depict low, moderate and high levels of interface ease-of-use respectively. At this point, a 

sample of a card that shows the three levels is presented to the extension agents to enable 

them see in practice how the attribute levels will be depicted in the choice cards.  
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2. Level of detailed output 

This attribute relates to the number of different recommendations that result from a nutrient 

management DST and that should be explained by an extension agent to a farmer as 

different options of fertilizer use recommendations. In other words, the level of information 

set that can be produced from a DST for a farmer. This is described by three levels, namely 

low, moderate and high levels of detailed output where a high level of detailed output is 

rated above a moderate level, and a moderate level is rated above a low level. To distinguish 

between the three levels in a choice card, an image with a larger portion being blurred 

(smaller portion with text), halfway blurred and halfway with text, and all portion with text 

will be used to depict low, moderate and high levels of interface detailed output from a DST 

respectively. At this point, a sample of a card that shows the three levels is presented to the 

extension agents to enable them see in practice how the attribute levels will be depicted in 

the choice cards.  

3. Predictive power 

This attribute relates to the accuracy of a DST in formulating fertilizer recommendations for 

a farmer to achieve a certain yield. It is expressed as the percentage of farmers that actually 

achieve expected yields after applying the DST-enabled fertilizer recommendations received 

from extension agents. This is defined by three five levels, < 31%, 31 – 50%, 51 – 70%, 71 

– 90% and > 90% where < 31% indicates the % of farmers who realize the expected yields 

associated with a fertilizer use recommendation from a DST. The same interpretation apples 

to 31 – 50%, 51 – 70%, 71 – 90% and > 90%. To distinguish between the five levels in a 

choice card, different versions of an image of a group of farmers with different extent of 

blurry portions as a sign of differences in realizing the expected yields will be used to depict 

the different levels of the predictive power of a DST. At this point, a sample of a card that 

shows the five levels is presented to the extension agents to enable them see in practice how 

the attribute levels will be depicted in the choice cards.  

4. Delivery platform 

This attribute relates to the format or platform in which extension recommendations are 

delivered to farmers from a nutrient management DST. This is defined by three five levels, 

including the use of non-mobile platforms, such as desktop and laptop computers, the use of 

quick guides, i.e. paper-based platforms, and the use of mobile platforms, such as 
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smartphones and tablets. To distinguish between the three levels in a choice card, an image 

of desktop and laptop computers, an image of a paper extension guide and an image of 

smartphones and tablets will be used to depict the three levels of a delivery platform. At this 

point, a sample of a card that shows the three levels is presented to the extension agents to 

enable them see in practice how the attribute levels will be depicted in the choice cards.  

5. Delivery language 

This attribute relates to the operating language of a nutrient management DST and the 

recommendation output of the DST. This is defined by three five levels, namely the use of 

English language only, the use of native language only, and a combination of English and 

native language. To distinguish between the three levels in a choice card, an image showing 

some text in only English language, in only native language and in both English and native 

languages will be used to depict the three levels of a DST delivery language. At this point, a 

sample of a card that shows the three levels is presented to the extension agents to enable 

them see in practice how the attribute levels will be depicted in the choice cards.  

6. Time cost 

This attribute describes the amount of time needed for an extension agent to generate a 

fertilizer recommendation with a nutrient management DST. This is defined by six levels, 

namely 15, 30, 45, 60 minutes per recommendation from a DST. To distinguish between the 

four levels in a choice card, an image showing the different amount of time in minutes will 

be used to depict the four levels of time cost of using a nutrient management DST to offer 

extension advice to a farmer. At this point, a sample of a card that shows the four levels is 

presented to the extension agents to enable them see in practice how the attribute levels will 

be depicted in the choice cards.  

After the group introductory session, we will have a face-to-face interview with each 

extension agent. In the interview, each agent will be offered six distinct choice cards one 

after the other and each choice card contains two hypothetical scenarios of nutrient 

management decision support tools (options A and B) and a third option (option C) that 

reflects your current extension approach. The aim is for you to choose one option that you 

prefer from the three options on each card, and this will require you to objectively reflect on 

the attribute levels of the two hypothetical scenarios of nutrient management decision 

support tools in comparison with your extension approach. You are to carefully go through 
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the cards and evaluate the options on each card that we will present to you, and then select 

the option you prefer between the three options on each of the cards. Even though this 

exercise entails hypothetical options of nutrient management decision support tools, you are 

expected to kindly make very truthful choices as if these were real choices that have real 

cost implications. This is to ensure that the choices you make in this hypothetical exercise 

are not different from the actual choices if you were exposed to real nutrient management 

decision support tools. At this point, a sample of a choice card is shown to the extension 

agents with a description of the rows and columns of the card.  
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Table A1: Self-reported information on ANA – serial stated ANA 

# of ignored 

attributes 

Share of extension 

agents (%) 

Ignored attributes Share of extension 

agents (%) 

0 67.5 Level of user-friendliness  6.9 

1 22.2 Level of detailed output 3.8 

2 9.4 Predictive power 13.7 

3 0.9 Delivery platform 5.6 

  Delivery language 6.6 

  Time cost 7.2 

 

Table A2: Results of MXL models showing heterogeneity in preferences for DST features by 

access to smartphones 

 Agents with smartphones Agents without smartphones 

Mean Std. Dev. Mean Std. Dev. 

     

ASC -4.93*** 

(1.44) 

2.46** 

(1.08) 

-2.7*** 

(0.73) 

-0.86 

(0.86) 

Time cost (minutes/output) -0.01*** 

(0.00) 

0.02** 

(0.01) 

-0.00 

(0.00) 

-0.00 

(0.00)  

User-friendliness: moderate 0.81*** 

(0.27) 

0.99*** 

(0.34) 

0.38** 

(0.16) 

0.62*** 

(0.21) 

User-friendliness: high 0.91*** 

(0.24) 

-0.37 

(0.37) 

0.28* 

(0.15) 

-0.50* 

(0.27) 

Detailed output: moderate  0.39* 

(0.22) 

1.01***  

(0.39) 

0.39***  

(0.14) 

-0.11 

(0.37) 

Detailed output: high 0.34* 

(0.20) 

-0.41 

(0.36) 

0.26* 

(0.15) 

-0.37 

(0.34) 

Predictive power 0.01**  

(0.00) 

0.01*** 

(0.00) 

0.01*** 

(0.00) 

0.01**  

(0.00) 

Platform: paper -0.60** 

(0.24) 

0.97*** 

(0.32) 

-0.07 

(0.14) 

0.74***  

(0.23) 

Platform: mobile 0.60*** 

(0.20) 

-0.61* 

(0.33) 

0.40***  

(0.12) 

0.47* 

(0.24) 

Language: native 0.07 

(0.20) 

-0.82** 

(0.29) 

0.28** 

(0.14) 

0.12 

(0.34) 

Language: English+ native  0.25 

(0.26) 

1.21*** 

(0.04) 

0.51***  

(0.19) 

-0.78*** 

(0.21) 

N 2520  3240  

Log likelihood -571.81  -763.52  

AIC 1187.61  1571.03  

BIC 1315.92  1704.86  

Notes: Asterisks ***, **, and * denote any variable significant at 1%, 5%, and 10% levels respectively.  

Standard errors reported between parentheses. 
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Table A3: Results of MXL models showing heterogeneity in preferences for DST features by the states where extension agents work in the  

research area  

 Agents in Kaduna  Agents in Katsina  Agents in Kano 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

ASC -3.52*** -0.72  -2.15*** 0.19  -4.12*** -2.04*** 

 (0.76) (0.94)  (0.66) (1.36)  (1.11) (0.69) 

Time cost (minutes/output) -0.02*** 0.02**  -0.00 0.01  -0.00 0.00 

 (0.01) (0.01)  (0.00) (0.01)  (0.00) (0.01) 

User-friendliness: moderate 0.67** 0.66  0.52** 0.57  0.45** 0.71*** 

 (0.26) (0.42)  (0.26) (0.37)  (0.19) (0.24) 

User-friendliness: high 0.44* -0.88**  0.72*** 0.05  0.49*** 0.49* 

 (0.25) (0.35)  (0.25) (0.48)  (0.17) (0.29) 

Detailed output: moderate 0.30 0.83**  0.04 0.07  0.59*** 0.04 

 (0.22) (0.34)  (0.23) (0.60)  (0.17) (0.41) 

Detailed output: high 0.27 0.46  0.37 0.42  0.31* -0.11 

 (0.22) (0.45)  (0.24) (0.46)  (0.17) (0.39) 

Predictive power 0.01 -0.00  0.01 -0.00  0.01*** 0.01*** 

 (0.00) (0.01)  (0.00) (0.01)  (0.00) (0.00) 

Platform: paper -0.15 1.37***  -0.22 0.16  -0.29* 0.65** 

 (0.23) (0.33)  (0.22) (0.92)  (0.16) (0.28) 

Platform: mobile 0.63*** 0.95***  0.40** 0.47  0.42*** -0.22 

 (0.22) (0.32)  (0.20) (0.37)  (0.13) (0.43) 

Language: native -0.15 0.94***  0.51** -0.12  0.30* 0.11 

 (0.23) (0.30)  (0.22) (0.56)  (0.16) (0.31) 

Language: English+ native 0.31 1.12***  0.59** 0.61  0.39* 0.73*** 

 (0.28) (0.35)  (0.30) (0.39)  (0.21) (0.25) 

N 2196   1080   2484  

Log Likelihood -511.85   -245.15   -564.492  

AIC 1067.71   534.31   1172.99  

BIC 1192.99   643.97   1300.97  

Notes: Asterisks ***, **, and * denote any variable significant at 1%, 5%, and 10% levels respectively.  

Standard errors reported between parentheses.
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Table A4: Criteria for the selection of optimal number of preference classes (N=5760) 

Classes Log-likelihood 

(LL) 

# of 

parameters 

(k) 

Akaike 

information 

criterion (AIC) 

Consistent 

Akaike 

information 

criterion (CAIC) 

Bayesian  

information 

criterion (BIC) 

2 -1344.04 23 2734.08 2910.23 2887.23 

3 -1321.49 35 2712.99 2981.03 2946.03 

4 -1308.49 47 2710.98 3070.94 3023.94 

5 -1293.10 59 2704.20 3156.06 3097.06 

Notes: N is the number of observations on choice responses from 320 extension agents (3 alternatives × 6 choice 

sets × 320). The AIC is calculated as −2LL + 2k, the CAIC as −2LL + k ln(N+1), and the BIC as −2LL + k 

ln(N).  
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Chapter 4 

Site-specific digital extension advice and farm 

performance: Experimental evidence from Nigeria18 

  

                                                 
18 In preparation for submission to a Journal as: Oyinbo, O., Chamberlin, J., Abdoulaye, T. & Maertens, M. 

(2019). Site-specific digital extension advice and farm performance: Experimental evidence from Nigeria.  
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1. Introduction 

Crop yields in Sub-Saharan Africa (SSA) are far below attainable yields and below yields in 

other regions (Tittonell and Giller, 2013; Benson and Mogues, 2018; ten Berge et al., 2019). 

Depletion of soil fertility contributes to this situation (Sanchez, 2002; Barrett and Bevis, 

2015; Theriault et al., 2018). Yet the use of fertilizer is low in most parts of SSA (Xu et al., 

2009; Harou et al., 2017; Burke et al., 2017), which partially relates to information 

constraints (Marenya and Barrett, 2009; Benson and Mogues, 2018; Jayne et al., 2019). 

Traditional agricultural extension systems typically provide general or ‘blanket’ fertilizer 

recommendations across wide and heterogeneous areas (Shehu et al., 2018; Theriault et al., 

2018; Burke et al., 2019). Such recommendations are not tailored to the site-specific 

conditions of individual farmers and do not account for spatio-temporal variation in 

biophysical and socioeconomic conditions (Vanlauwe et al., 2015b; Jayne et al., 2019). In 

addition, they are based on average expected returns and do not provide information on the 

variability in returns stemming from yield and/or market risk and uncertainty.  

In this article, we analyze the impact of farmers’ access to site-specific nutrient 

management (SSNM) recommendations for maize production in Nigeria, provided through 

an ICT-enabled decision support tool (DST) or Nutrient Expert tool, on fertilizer use, 

fertilizer management practices, maize yield and revenue. We analyze the impact of SSNM 

versus blanket nutrient management recommendations, and the impact of providing 

complementary information about variability of expected returns. We implement a cluster 

randomized controlled trial (RCT) among 792 households in the maize belt of northern 

Nigeria. The RCT includes two treatment groups of farmers who are exposed to SSNM 

information interventions, the first group without and the second group with additional 

information on variability of expected returns, and a control group of farmers who do not 

receive an SSNM information intervention. We use three-period panel data to estimate the 

immediate (after 1 year) and longer-term (after 2 years) effects of the interventions on 

farmers’ investment and management decisions and the outcomes in terms of yields and 

revenue. We relate the empirical findings to a conceptual framework to explain causal 

pathways.  

We contribute to the general literature on agricultural extension and return to fertilizer 

use in Africa, which includes non-experimental studies (e.g. Marenya and Barrett, 2009; 

Liverpool-Tasie et al., 2017; Burke et al., 2017; Theriault et al., 2018) as well as 
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experimental studies (e.g. Duflo et al., 2008; Beaman et al., 2013; Harou et al., 2017).  Our 

specific focus on the impact of SSNM recommendations reveals what part traditional 

extension approaches with general fertilizer recommendations play in limiting the 

profitability of fertilizer use in Africa. We provide innovative evidence on how DST-enabled 

delivery of plot-specific technical recommendations affects investments and management 

decisions of smallholder farmers in a developing country setting. Our research complements 

on-farm evaluations of nutrient expert tool for maize under researcher-managed trial 

conditions (Pampolino et al., 2012; Xu et al., 2016). In addition, we add new insights on the 

role of relaxing uncertainty in the uptake of agronomic recommendations (Feder et al., 1985; 

Saha et al., 1994; Koundouri et al., 2006; Genius et al., 2014). We provide evidence on how 

information about the variability of expected returns to fertilizer investment influences the 

uptake of fertilizer recommendations. Finally, in contrast to most agriculture-related RCTs 

that rely on a single post-intervention round, we use multiple rounds of post-intervention data 

to evaluate impact (c.f. Beaman et al., 2013; de Brauw et al., 2018; Vandercasteelen et al., 

2018; Hossain et al., 2019; Omotilewa et al., 2019). With this approach, we are able to 

observe effects and outcomes under different weather realizations over time, and to describe 

inter-temporal heterogeneity in treatment effects.  

2. Theoretical framework  

We present a simple graphical theoretical framework that explains how relaxing information 

constraints through DST-enabled site-specific agronomic advice changes farmers’ fertilizer 

investment decisions and associated yields and revenues. The framework is based on 

Magruder (2018), who uses a two-period model in which fertilizer use decisions at planting 

time are subjected to uncertainty about the return to fertilizer at harvest time. The framework 

fits the situation of our research area with smallholder farmers who market their output, but 

use fertilizer in a suboptimal way and attain yields which are low relative to potential yields.    

In Fig. 4.1 we depict an initial situation in which a farmer does not reach technical 

efficiency because of sub-optimal fertilizer management practices19. Given the marginal 

                                                 
19 Technical efficiency refers to the maximum attainable level of maize output for a given level of farm inputs, 

such as fertilizer, given the range of altervative technologies available to a farmer. This reflects the highest 

possible production frontier that a farmer can operate on. Other related efficiency measures include allocative 

and economic efficiency. The former refers to the adjustment of inputs (e.g. fertilizer) and output (e.g. maize) to 

reflect their relative prices (i.e. fertilizer-maize price ratio), the technology of production already chosen while 

the latter refers to the simultaneous achievement of both technical and allocative efficiency (Ellis, 1998; Coelli 

et al., 2005).  
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factor cost of inputs (i.e. the market price of fertilizer), the farmer operates on a lower 

production function 𝑇𝑉𝑃𝑆𝑃 (total value of production with sub-optimal fertilizer management 

practices), either in point 𝑋0 corresponding to allocative efficiency20 and total value 𝑌0 or in 

point 𝑋0
′  corresponding to sub-optimal fertilizer input and total value 𝑌0

′. The latter situation 

may emerge due to cash constraint – associated with low savings and/or limited access to 

credit. Providing extension information about optimal fertilizer management practices – 

including information on the right nutrient sources, the right timing of application, and the 

right application method – enables farmers to move to a higher production function 𝑇𝑉𝑃𝑂𝑃 

that corresponds to optimal management practices and technical efficiency (Anderson and 

Feder, 2007; Ellis, 1998; Pan et al., 2018). This will result in an increase in yield and 

revenue, either from 𝑌0
′ to 𝑌1

′ for the cash constrained farmer or from 𝑌0 to 𝑌1 for the 

allocative efficient farmer. In the latter case, the farmer has an immediate incentive to expand 

fertilizer use from 𝑋0 to 𝑋1, which is associated with a further increase in revenue to 𝑌2 and 

with economic efficiency. The cash constrained farmer may not be able to immediately 

expand fertilizer use to an allocative efficient level but the increase in revenue to 𝑌1
′ may 

allow the farmer to gradually expand fertilizer use from 𝑋0
′  to a higher level. 

 

Fig. 4.1: The effect of relaxing information constraints about optimal fertilizer management 

practices on fertilizer use, yield and revenue     

                                                 
20 Allocative efficieny is depicted in Fig. 4.1, 4.2 and 4.3 as the points of tangency of the parallel lines and the 

𝑇𝑉𝑃 curves, which corresponds to the points where the marginal value product of applied fertilizer (i.e. slope of 

𝑇𝑉𝑃) equals the marginal factor cost/price of fertilizer. In other words, the points where the marginal physical 

product of applied fertilizer equals the fertilizer-maize price ratio.  
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In Fig. 4.2 we depict a situation in which farmers use fertilizer inputs either according 

to a general fertilizer recommendation rate 𝑋0𝐴 used by extension agents in a wide area – 

such as the general extension recommendation to use 120 kg N, 60 kg P2O5 and 60 kg K2O 

per ha for maize in northern Nigeria (Shehu et al., 2018) – or according to cash constraints 

that limit fertilizer inputs to 𝑋0
′ . Agro-ecological conditions may vary across farms and plots, 

which causes 𝑇𝑉𝑃 to vary as well. This variation is depicted through an upper 𝑇𝑉𝑃𝐻, a lower 

𝑇𝑉𝑃𝐿 and an average 𝑇𝑉𝑃𝐴 function. This aligns with the findings of Suri (2011) on 

substantial heterogeneity in returns to improved technologies across farmers, and the 

underlying mechanism, such as plot-level soil variation, in explaining marginal returns to 

fertilizer (Marenya and Barrett, 2009). In Fig. 4.2 the general fertilizer recommendation rate 

𝑋0𝐴 corresponds to economic efficiency on 𝑇𝑉𝑃𝐴 or an optimal fertilizer level for the average 

farm or plot. Revenues will vary between 𝑌0𝐿 and 𝑌0𝐻, depending on how conducive agro-

ecological conditions are, or between  𝑌0𝐿
′  and 𝑌0𝐻

′  if cash constraints are binding. Farmers 

face site-specific technical uncertainty if they are uncertain about the production function that 

corresponds to their site- and management-specific context (Magruder, 2018; Burke et al., 

2019). General recommendations, based on an average response rate, result in sub-optimal 

fertilizer application rates for many farmers (Giller et al., 2011; Vanlauwe et al., 2015b; 

Kihara et al., 2016b). Providing site-specific fertilizer recommendations that correspond to 

allocative efficiency of the specific plot can reduce this uncertainty for farmers. Such site-

specific rates may be below, at or above the general recommendation, and vary between 𝑋1𝐿 

and 𝑋1𝐻. If agro-ecological conditions are good (𝑇𝑉𝑃𝐻), the site-specific recommendation 

will induce farmers to increase fertilizer use from 𝑋0𝐴 to 𝑋1𝐻, which will be associated with a 

substantial increase in yield and revenue from 𝑌0𝐻 to 𝑌1𝐻. Under less conducive agro-

ecological conditions (𝑇𝑉𝑃𝐿), site-specific recommendations may result in a decrease in 

fertilizer use from 𝑋0𝐴 to 𝑋1𝐿, and be associated with a small decrease in yield and revenue 

from 𝑌0𝐿 to 𝑌1𝐿. The average effect of site-specific recommendations on fertilizer use may be 

zero because the positive response of farmers operating under good conditions (𝑋1𝐻 - 𝑋0𝐴) 

and the negative response (𝑋1𝐿 - 𝑋0𝐴) of farmers operating under less suitable conditions may 

cancel each other out. However, the average effect on yields and revenue is likely positive 

because the loss from decreasing fertilizer use for farmers operating on 𝑇𝑉𝑃𝐿 (𝑌0𝐿 - 𝑌1𝐿) is 

smaller than the gain from increasing fertilizer use for farmers operating on 𝑇𝑉𝑃𝐻 (𝑌0𝐻 - 

𝑌1𝐻). If binding cash constraints limit fertilizer use to 𝑋0
′ , providing site-specific fertilizer 

recommendation (without lifting cash constraints) will not immediately change farmers’ 



 

 

95 

 

fertilizer use nor their yield or revenue which remains between 𝑌0𝐿
′  and 𝑌0𝐻

′  depending on 

agro-ecological conditions.  

 

Fig. 4.2: The effect of site-specific fertilizer recommendations on fertilizer use, yield and 

revenue   

In Fig. 4.3 we build on the situation depicted in Fig. 4.2 by adding seasonal variation 

in climate and/or market conditions. We only depict the situation for farmers for whom the 

recommended site-specific fertilizer rate 𝑋1𝐻 is above the average or general 

recommendation rate 𝑋0𝐴. In Fig. 4.3 the fertilizer rates 𝑋1𝐻 and 𝑋𝑂𝐴 corresponds to 

allocative efficient outcomes on 𝑇𝑉𝑃𝐻,𝑎𝑣𝑒𝑟𝑎𝑔𝑒  and 𝑇𝑉𝑃𝐴,𝑎𝑣𝑒𝑟𝑎𝑔𝑒, which represent production 

outcomes in an average year in terms of market prices or climate conditions for farmers 

operating under respectively good and average agro-ecological conditions. Market (output) 

prices or climate conditions may vary across seasons, which causes 𝑇𝑉𝑃𝐻 to vary between 

𝑇𝑉𝑃𝐻,𝑔𝑜𝑜𝑑 and 𝑇𝑉𝑃𝐻,𝑏𝑎𝑑. This seasonal variation in return is uncertain to a farmer lacking 

experience with high fertilizer levels. A farmer who increases fertilizer use from a general 

recommendation 𝑋𝑂𝐴 to a higher site-specific recommendation 𝑋1𝐻 will experience a large 

increase in revenue, from an average level of 𝑌0,𝑎𝑣𝑒𝑟𝑎𝑔𝑒 to 𝑌1,𝑔𝑜𝑜𝑑 in case market and climate 

conditions are good. This large revenue increase likely motivates the farmer to continue 

producing at higher fertilizer levels in line with the site-specific recommendations. Yet, when 

market and climate conditions are bad (e.g. low output price or local weather shocks – early-, 

mid- and/or late-season drought) after the farmer expands fertilizer use from 𝑋𝑂𝐴 to 𝑋1𝐻, the 
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change in revenue from 𝑌0,𝑎𝑣𝑒𝑟𝑎𝑔𝑒 to 𝑌1,𝑏𝑎𝑑 will be much smaller (as depicted in Fig. 4.3) or 

could even be negative (not depicted in Fig. 4.3). This might cause disappointment with the 

realized outcome and the fertilizer recommendation, and result in dis-adoption of the site-

specific recommendation. Dis-adoption of fertilizer use or agricultural practices and 

technology in general, is often observed (Moser and Barrett, 2006; Kijima et al., 2011; 

Lambrecht et al., 2014). Relaxing uncertainty about the return to high fertilizer levels by 

providing information on the seasonal variation in expected returns might prevent such 

disappointment and dis-adoption and ensure a continued adoption of a site-specific and more 

efficient fertilizer level in subsequent years, even if the initial return from higher fertilizer use 

is low. Relaxing this uncertainty allows farmers to make better-informed fertilizer use 

decisions (Saha et al., 1994; Koundouri et al., 2006). In addition, provision of more 

information about the expected variability of economic returns may signal greater credibility 

of the extension information to farmers. A larger information set might be perceived to be 

more accurate, and/or because the acknowledgement of uncertainty around returns to site-

specific recommendations might be perceived as an indicator of honesty of the extension 

agent. 

 

Fig. 4.3: The effect of relaxing information constraints about variability of the expected returns 

to investments on fertilizer use, yield and revenue 

Based on this conceptual discussion, we formulate three hypotheses. First, relaxing 

information constraints about optimal fertilizer management practices improves technical 

efficiency and results in higher yield and revenue, and can be associated with an immediate 
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or a gradual expansion of fertilizer use (Fig. 4.1). Second, site-specific fertilizer 

recommendations reduce technical uncertainty and only result in an expansion of fertilizer 

use and associated higher yields and revenue for farmers operating in conducive agro-

ecological conditions and may not have much effect on average (Fig. 4.2). Third, additional 

information on variability of expected returns can motivate continued adoption of site-

specific recommendations and result in higher yield and revenue in the longer run (Fig. 4.3). 

3. Methods 

3.1 Research area and background 

The research is conducted in three states in northern Nigeria (Fig. A1 in appendix), where 

maize is grown in a smallholder rainfed system under different agro-ecological conditions. 

Fertilizer use is low in this area, and maize yields amount to 1 or 2 tons per hectare (ha) 

despite a yield potential of over 5 tons per ha (Liverpool-Tasie et al., 2017; Shehu et al., 

2018; ten Berge et al., 2019). Despite heterogeneous conditions in the area, the extension 

system relies on a general fertilizer recommendation of 120 kg N, 60 kg P2O5 and 60 kg K2O 

per ha maize (Shehu et al., 2018). Within this context the project ‘Taking Maize Agronomy 

to Scale in Africa (TAMASA)’ co-developed a locally calibrated version of a Nutrient Expert 

tool to provide SSNM recommendations to farmers. This is a tablet- or smartphone-based 

DST that allows extension agents to generate fertilizer recommendations tailored to the 

specific situation of an individual farmer’s field (Pampolino et al., 2012).  

The Nutrient Expert tool is based on the 4R principles of nutrient management – the 

right fertilizer source, the right rate, the right placement and the right time of application 

(Pampolino et al., 2012; Johnston and Bruulsema, 2014) – and should allow to adjust 

fertilizer application based on crop-, plot- and season-specific conditions. The tool uses 

farmer-supplied information on plot management history, growing conditions and target yield 

as inputs and produces SSNM information based on the QUEFTS (Quantitative Evaluation of 

the Fertility of Tropical Soils) model to predict maize yield responses (Pampolino et al., 

2012). This includes plot-specific information on optimal nutrient rates and fertilizer sources 

that supply these nutrients as well as general advice on nutrient management practices, such 

as timing of fertilizer application (in particular on splitting the nitrogen application to match 

nutrient demands at different stages in the maize growth cycle) and fertilizer application 

method (in particular spot application is recommended as this reduces nutrient losses and 
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ensures optimal nutrient uptake by the plant). The model was calibrated for the study area 

using data from nutrient omission trials in two seasons – 2015 and 2016.  

3.2 Experimental design 

A two-stage sampling design was used to sample maize farmers in the research area. In the 

first stage, 99 villages were randomly selected in the three states21 by generating 22 sampling 

grids of 10 by 10 km across the primary maize-producing areas in the three states to ensure 

spatial representativeness. In the second stage, we constructed a sampling frame of maize-

producing farm households and randomly selected eight from each selected village, which 

results in a sample of 792 households. We randomly assigned the 99 villages to one control 

(C) and two treatment groups (T1 and T2, described below), resulting in 33 villages and 264 

households in each group22. For each household a maize focal plot was selected, which is the 

plot the household head perceives to be most important for food security or income 

generation. All treatment interventions were done for this focal plot.  

Farmers in T1 were exposed to SSNM information including a site-specific fertilizer 

application rate to obtain a target yield, optimal fertilizer management practices (sources, 

timing and placement), the rationale behind the recommendations and a detailed explanation 

on how to implement them as well as the expected return from uptake of the 

recommendations. The latter is a naïve estimate based on the prevailing maize market price at 

the time of providing the information, before planting. This is akin to most agronomic 

recommendations and to the uncertainty farmers face due to the time lag between planting 

decisions and outcomes at harvest time. Farmers in T2 were exposed to the same information 

as T1 farmers but received additional information on the variability of expected returns. This 

is a more robust estimate based on the 25th, 50th and 75th percentiles of the distribution of the 

monthly real maize price during post-harvest months over the last eight years in the research 

area23. The treatments represent situations as described in Fig. 4.1 and 4.2 (T1) and in Fig. 

4.1, 4.2 and 4.3 (T2). Farmers in C are exposed to general recommendations prevailing in the 

traditional extension systems.  

                                                 
21 These 99 villages are located in 17 Local Government Areas, the administrative unit below the state.  
22 We prefer a village-level randomization over a household-level randomization to avoid unintended behavioral 

and spillover effects that can interfere with causal identification – violation of SUTVA (Athey and Imbens, 

2017). 
23 Price data are derived from weekly nominal maize price data collected from grain markets in the study area by 

the National Agricultural Extension and Rural Liaison Services (NAERLS), Ahmadu Bello University, Nigeria.  
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 The SSNM information was provided to farmers using the Nutrient Expert tool prior 

to planting in the 2017 and 2018 farming seasons (April to May) by public extension agents. 

These extension agents were trained intensively to ensure a proper understanding of how to 

use the tool, to generate recommendations and to interpret the results to farmers; and 

supervised in the field to ensure that recommendation protocols were correctly followed. The 

use of the Nutrient Expert tool requires farmers to provide information on previous crop 

management practices on the plot (use of inorganic and organic fertilizer, seed type, cropping 

system, yield, etc.), on characteristics of the growing environment (water availability, 

incidence of drought, flood, etc.), and on input and maize prices; and extension agents to 

obtain additional information on soil characteristics (color, texture, etc.) through physical 

observation and record the plot location and size by GPS. The output generated by the 

Nutrient Expert tool includes fertilizer use guidelines (amount, type, timing and placement), 

crop management practices and a simple profit analysis to compare returns from current and 

recommended practices. Extension agents explain the details of the output to the farmer and 

provide a summary of the recommendations in a report sheet in the local language to serve as 

a reminder for the farmer.  

3.3 Data collection 

We implement three rounds of a farm-household survey among T1, T2 and C households 

(HHs); a baseline survey conducted in 2016 before any SSNM intervention and two follow-

up surveys in 2017 and 2018, after a first and a second SSNM intervention. The surveys were 

conducted during the maize harvest season (September to October). The questionnaire 

includes general household information, production data and detailed agronomic data for the 

focal plot, and community-level information on prices and access to institutions and services. 

At baseline, data were collected from the full sample of 792 HHs while this dropped to 788 

and 786 HHs in the first and second follow-up rounds. This implies a very low attrition of 

0.5% and 0.8%. An additional attrition of 13 and 16% arises due to HHs not cultivating 

maize on their focal plot in 2017 and 2018 respectively. For both types of attrition, we test for 

possible differential attrition across treatment groups and baseline observable characteristics 

(appendix tables A1 and A2). We find no strong evidence of non-random attrition, apart from 

attrition due to not cultivating maize being correlated with T1 in the first follow-up (table 

A2). We check for possible imbalances in baseline characteristics that could arise from 

attrition (Athey and Imbens, 2017). We find no pairwise differences between treatment 
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groups, which indicates that attrition does not undermine the randomization (table 4.1 and 

A3). Finally, we perform a robustness check for possible attrition bias using the non-

parametric bounds approach of Lee (2009) as in other randomized evaluations (de Brauw et 

al., 2018; Omotilewa et al., 2019). In our model estimation, we use a balanced panel of 690 

HHs who cultivate maize for the first 2016-2017 panel period, which we refer to as panel A 

and contains one year of treatment, and a balanced panel of 666 HHs who cultivate maize for 

the second 2016-2018 panel period, which we refer to as panel B and contains two years of 

treatment. 

3.4 Estimation strategy  

We estimate the intent-to-treat (ITT) effect using the difference-in-difference (DiD) 

estimation in equation 1, which compares the average change in outcomes over time for the 

treated and control groups. It accounts for possible imbalances in pre-treatment outcomes and 

time-invariant unobserved heterogeneity not controlled for by randomization. In an 

alternative specification in equation 2, we include baseline controls for plot, farmer and 

household characteristics that are potentially correlated with outcomes of interest to improve 

the precision of the estimates. 

𝑦𝑖𝑗𝑡 = 𝛽0 +  𝛽1T1𝑖𝐽𝑡 +  𝛽2T2𝑖𝐽𝑡 +  𝛽3Post𝑡  + 𝛽4T1𝑖𝐽𝑡 ∗ Post𝑡 +  𝛽5T2𝑖𝐽𝑡 ∗ Post𝑡 +  𝜀𝑖𝑗𝑡         (1) 

𝑦𝑖𝑗𝑡 = 𝛽0 + 𝛽1T1𝑖𝐽𝑡 + 𝛽2T2𝑖𝐽𝑡 + 𝛽3Post𝑡 + 𝛽4T1𝑖𝐽𝑡 ∗ Post𝑡 + 𝛽5T2𝑖𝐽𝑡 ∗ Post𝑡 + 𝛽6X𝑖𝐽 + 𝜀𝑖𝑗𝑡   (2) 

Various outcome variables  𝑦𝑖𝑗𝑡 for the focal plot of HH 𝑖 in village 𝑗 in year 𝑡 are used: 1/ 

adoption of optimal fertilizer management practices, including binary variables for combined 

application of inorganic and organic fertilizer, split N application, application at sowing time, 

and spot application or dibbling; 2/ fertilizer application rates (kg/ha), including N, P2O5 and 

K2O rates and the overall rate; 3/ maize yield (ton/ha); and 4/ production costs, and gross and 

net revenue (NGN/ha). The variables T1𝑖𝐽𝑡 and T2𝑖𝐽𝑡 are binary indicators for farmers in T1 

and T2 respectively, and Post𝑡 for observations in the follow-up year (2017 or 2018). X𝑖𝐽 is a 

vector of baseline control variables and 𝜀𝑖𝑗𝑡 is a random error term clustered at the village 

level. The coefficients 𝛽4 and 𝛽5 capture the ITT effects T1 and T2 respectively while 𝛽0 is 

the average outcome value for the control group at baseline. Two sets of estimations are 

reported for the first one-year treatment, panel A (using baseline and 2017 data) and for a 

second two-year treatment, panel B (using baseline and 2018 data). This allows to explore 

immediate and more gradual effects. For binary outcome variables, a linear probability model 
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is used. Consistent with Fig. 4.2 in the theoretical framework, we only expect an increase in 

fertilizer application rates for farmers whose baseline application rate is below the SSNM 

recommendation. Therefore we estimate conditional ITT effects on fertilizer application for 

this subgroup of farmers. In addition, we estimate quantile regressions for continuous 

outcome variables (fertilizer rate, yield, revenue) to explore heterogeneity in treatments 

effects across the outcome distribution.  

In addition to the robustness checks for attrition bias mentioned above, we perform 

multiple hypothesis corrections using False Discovery Rate (FDR) sharpened q-values to 

control for the proportion of false treatment effects due to multiple outcomes and treatments 

(Anderson, 2008). These q-values are computed following Benjamin et al.’s (2006) and 

Anderson (2008), and empirical implementations (Omotilewa et al., 2018; Hossain et al., 

2019). Moreover, we perform hypotheses tests using randomization inference p-values as a 

robustness check to conventional inference p-values. Although statistical inference in RCT is 

commonly done by sampling-based (asymptotic) inference, it is recommended to use 

randomization-based inference to test the sharp null hypothesis of no treatment effect for all 

respondents (Athey and Imbens, 2017; Heß, 2017; Young, 2019; Hossain et al., 2019). This 

yields consistent estimates solely based on the randomization assumption and is not sensitive 

to the number of clusters or observations.  

4. Results  

4.1 Baseline characteristics and recommendations 

In the overall sample, farmers are on average 44 years old, have about 5 years of formal 

schooling and 19 years of maize farming experience (table 4.1). Their maize focal plot is on 

average 0.9 ha, most (97%) of the plots are cultivated with inorganic fertilizer, and the plots 

produce an average yield of around 2 tons per ha. We perform randomization checks by 

testing equality of means of the baseline characteristics between the three groups (T1=C, 

T2=C and T1=T2). The p-values of the pairwise comparisons in columns 5, 6 and 7 show that 

there are no significant differences in almost all the baseline characteristics between the 

groups. Only in two cases out of the 69 orthogonality tests (23 variables for each group) 

across the three groups we find significant differences: for livestock holdings and assets for 

T2=C comparison. Overall, the p-values for the chi-squared tests of joint orthogonality 

between the groups fail to reject the null hypothesis that the baseline observables are 

orthogonal to the treatment status.  
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Table 4.1: Baseline household and plot characteristics and balance tests 

 Overall 

sample 

(1) 

Treatment 

one (T1) 

(2) 

Treatment  

two (T2) 

(3) 

Control  

(C) 

(4) 

T1=C 

 p-value 

(5) 

T2=C 

 p-value 

(6) 

T1=T2 

 p-value 

(7) 

Age of head (years) 44.28 44.20 44.23 44.41 0.856 0.871 0.984 

 (0.45) (0.79) (0.78) (0.77)    

Education of head (years) 5.23 5.34 4.93 5.42 0.881 0.385 0.462 

 (0.23) (0.39) (0.40) (0.41)    

Household size  9.27 8.93 9.87 9.01 0.863 0.105 0.086 

 (0.21) (0.34) (0.44) (0.31)    

Group membership (1/0) 0.31 0.35 0.30 0.291 0.208 0.912 0.245 

 (0.02) (0.03) (0.03) (0.03)    

Access to credit (1/0) 0.23 0.22 0.25 0.23 0.698 0.692 0.425 

 (0.02) (0.03) (0.03) (0.03)    

Maize experience (years) 18.80 19.14 18.24 19.01 0.885 0.431 0.356 

 (0.39) (0.67) (0.71) (0.66)    

Access to extension (1/0) 0.40 0.43 0.40 0.36 0.180 0.429 0.583 

 (0.02) (0.03) (0.03) (0.03)    

Maize contract farming (1/0) 0.19 0.19 0.18 0.20 0.735 0.640 0.892 

 (0.02) (0.03) (0.03) (0.03)    

Livestock holding (TLU)1 1.94 1.80 2.29 1.73 0.751 0.041 0.067 

 (0.10) (0.15) (0.22) (0.16)    

Number of plots cultivated 2.70 2.73 2.69 2.67 0.602 0.865 0.730 

 (0.04) (0.08) (0.08) (0.08)    

Total farm area (hectare) 3.15 3.08 3.37 3.00 0.800 0.277 0.384 

 (0.13) (0.22) (0.27) (0.21)    

Assets (1,000 NGN)2 534.09 516.46 608.36 475.67 0.503 0.096 0.225 

 (29.58) (40.75) (64.47) (45.52)    

Annual income (1,000 NGN)3 188.51 182.49 206.50 176.26 0.820 0.377 0.420 

 (12.44) (15.90) (25.46) (22.70)    

Off-farm income (1/0) 0.88 0.86 0.90 0.87 0.859 0.367 0.272 

 (0.01) (0.02) (0.02) (0.02)    

Focal plot area (hectare) 0.82 0.84 0.82 0.81 0.688 0.898 0.813 

 (0.04) (0.06) (0.08) (0.07)    

Plot ownership (1/0) 0.96 0.94 0.97 0.96 0.200 0.928 0.165 

 (0.01) (0.02) (0.01) (0.01)    

Plot distance (minutes) 4 15.11 14.33 16.05 14.96 0.604 0.536 0.277 

 (0.63) (0.70) (1.44) (1.00)    

Use organic fertilizer (1/0) 0.78 0.76 0.77 0.80 0.396 0.580 0.770 

 (0.02) (0.03) (0.03) (0.03)    

Use improved seed (1/0) 0.29 0.27 0.33 0.27 0.884 0.218 0.159 

 (0.02) (0.03) (0.03) (0.03)    

Use mineral fertilizer (1/0) 0.97 0.96 0.97 0.97 0.401 0.647 0.698 

 (0.01) (0.01) (0.01) (0.01)    

NPK fertilizer (kg/ha) 130.89 131.83 132.89 127.77 0.697 0.627 0.920 

 (4.29) (7.40) (7.53) (7.34)    

Urea fertilizer (kg/ha) 87.25 83.35 91.61 86.94 0.677 0.612 0.343 

 (3.60) (5.77) (6.55) (6.44)    

Maize yield (ton/ha) 2.07 2.01 2.09 2.12 0.217 0.711 0.390 

 (0.04) (0.06) (0.06) (0.06)    

Joint orthogonality test p-value     0.985 0.648 0.398 

N 690 240 230 220    

p-values in columns 5, 6, 7 are from t-tests of equality of means except the joint test p-values from chi-squared 

tests, 1One tropical livestock unit (TLU) is equivalent to 250 kg (cattle=0.7, sheep/goat=0.1, pig=0.2, 

chicken=0.01, duck=0.02, rabbit=0.01), 2Value of household assets, 3Per-adult equivalent household annual 

income from all sources, 4 Time to walk from homestead to the plot, Standard errors are reported in parentheses,  

NGN: 305 NGN (Nigerian Naira) is equivalent to 1 USD at the survey time   
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We examine farmers’ baseline fertilizer application rates and maize yields, and 

compare these with the recommended rates and corresponding expected yield level from the 

treatments (table 4.2). In the 2016-2017 panel period, farmers in T1 apply on average 93 kg 

of nutrients (including N, P2O5 and K2O per ha) at baseline while the average recommended 

site-specific rate is 242 kg per ha. This results in an average nutrient gap of 149 kg (or 61%) 

and 95% of farmers initially (at baseline) using less fertilizer than recommended for their plot 

specific situations. This is associated with a low initial average yield (2 ton per ha) and a 

yield gap of an average of 3.3 tons per ha (or 63%).  The comparison of baseline and 

recommended nutrient applications and of baseline and attainable yields is very similar for 

T2 farmers and for the 2016-2018 panel period.  
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Table 4.2: Descriptive statistics on farmers’ baseline and recommended fertilizer application rates and yields  

 N 

(kg/ha) 

P2O5 

(kg/ha) 

K2O 

(kg/ha) 

All 

(kg/ha) 

Yield 

(ton/ha) 

 N 

(kg/ha) 

P2O5 

(kg/ha) 

K2O 

(kg/ha) 

All 

(kg/ha) 

Yield 

(ton/ha) 

Panel A (one year): 2016-2017 Panel B (two years): 2016-2018 

Treatment one (T1)            

Baseline (2016) nutrient rates 

and yields1 

57.77 

(48.00) 

17.41 

(14.65) 

17.41 

(14.65) 

92.58 

(65.27) 

2.01 

(0.92) 

 59.58 

(49.90) 

17.58 

(14.60) 

17.58 

(14.60) 

94.73 

(67.07) 

1.96 

(0.90) 

Recommended nutrient rates and 

expected yields2 

128.96 

(23.31) 

56.50 

(25.84) 

56.18 

(25.89) 

241.64 

(72.23) 

5.28 

(1.07) 

 132.07 

(22.21) 

59.40 

(18.62) 

59.40 

(18.62) 

250.88 

(56.46) 

5.88 

(1.33) 

Nutrient gap and yield gap 71.19 

(50.12) 

39.09 

(27.93) 

38.77 

(27.96) 

149.06 

(88.79) 

3.27 

(1.52) 

 72.49 

(55.71) 

41.83 

(23.89) 

41.83 

(23.89) 

156.15 

(89.48) 

3.92 

(1.70) 

Nutrient gap and yield gap (%) 55 69 69 61 62  55 70 70 62 67 

Farmers (%) applying nutrients 

below the recommended rate 

92 95 95 95   90 95 95 95  

Treatment two (T2)            

Baseline (2016) nutrient rates 

and yields1 

58.76 

(46.93) 

18.81 

(16.71) 

18.81 

(16.71) 

96.40 

(67.15) 

2.09 

(0.95) 

 60.03 

(49.46) 

19.50 

(18.33) 

19.50 

(18.33) 

99.04 

(75.04) 

2.11 

(0.95) 

Recommended nutrient rates and 

expected yields 

128.56 

(19.53) 

53.19 

(22.16) 

53.03 

(22.24) 

234.79 

(60.82) 

5.35 

(1.10) 

 134.80 

(24.28) 

56.13 

(21.71) 

56.13 

(21.71) 

247.05 

(62.77) 

5.90 

(1.19) 

Nutrient gap and yield gap 69.80 

(50.92) 

34.38 

(28.54) 

34.21 

(28.68) 

138.39 

(92.49) 

3.27 

(1.45) 

 74.76 

(57.90) 

36.62 

(29.51) 

35.08 

(29.26) 

148.01 

(104.34) 

3.78 

(1.64) 

Nutrient gap and yield gap (%) 54 65 65 59 61  55 65 65 60 64 

Farmers (%) applying nutrients 

below the recommended rate 

90 91 91 92   90 93 93 93  

The macronutrients are based on the fertilizer blends used by farmers, which include NPK 15:15:15 (contains 15% N, 15% P and 15% K), NPK 20:10:10 (20% 

N, 10% P and 10% K), urea (46% N) and SSP (18% P). 
1 Baseline values refer to 2016 for both panel periods and differ for the two panel periods because of differences in the balanced sample size. 2 Values refer to 

2017 (first year of treatment) for panel A and to 2018 (second year of treatment) for panel B.   

N = 240 and 230 in T1 and T2 respectively for 2017; N = 225 and 220 in T1 and T2 respectively for 2018. 

Standard deviations are reported in parentheses.
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4.2 Treatment effects  

In table 4.3, we report the ITT effects of farmers’ access to SSNM interventions on adoption 

of optimal fertilizer management practices. Estimates are based on models including baseline 

control variables (equation 2) and are extremely similar to estimates from models without 

baseline control variables (equation 1 and results reported in table A4 in appendix), which is 

indication of the robustness of the results. The results show that the treatments increase the 

likelihood of adopting combined use of inorganic fertilizer and manure with on average 15 to 

17 percentage points (pp), the likelihood of using a split N application with 13 to 17 pp, the 

likelihood of applying fertilizer at sowing time with 17 to 20 pp, and the likelihood of using a 

spot fertilizer application with 15 to 21 pp. Given that baseline adoption is around 77 to 79 

percent for combined inorganic-organic fertilizer application and for split N application, the 

estimated effects translate into absolute increases of around 11 to 13 percent. Baseline use of 

fertilizer at sowing and of spot application is much lower, and estimated effects translate into 

absolute increases of around 3% for the former and around 5 to 7 percent of the latter. There 

is no statistically significant difference between estimated ITT effects for T1 and T2. 

Differences in estimated effects over the two panel periods are small with most effects larger 

in the two-year panel period but not statistically significant.  
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Table 4.3: ITT effects on fertilizer management practices 

 Inorganic-

organic fertilizer 

(1/0) 

Split N 

application 

 (1/0) 

Fertilizer at 

sowing 

(1/0) 

Spot fertilizer 

application  

(1/0) 

Panel A: 2016 - 2017      

Treatment one (T1) 0.147*** 0.135* 0.170*** 0.149* 

 (0.053) (0.076) (0.056) (0.077) 

Treatment two (T2) 0.164*** 0.173** 0.187*** 0.202*** 

 (0.052) (0.068) (0.061) (0.073) 

Baseline control mean (C) 0.77 0.79 0.14 0.36 

N 1380 1380 1380 1380 

Panel B: 2016 - 2018     

Treatment one (T1) 0.170*** 0.148** 0.199*** 0.155** 

 (0.056) (0.073) (0.057) (0.066) 

Treatment two (T2) 0.145** 0.141** 0.196*** 0.214*** 

 (0.058) (0.068) (0.055) (0.060) 

Baseline control mean (C) 0.76 0.78 0.14 0.35 

N 1332 1332 1332 1332 

p-values:     

T12017 = T22017 0.757 0.542 0.761 0.507 

T12018 = T22018 0.684 0.902 0.943 0.335 

T12017 = T12018 0.683 0.857 0.597 0.943 

T22017 = T22018 0.752 0.664 0.876 0.872 

Estimates with baseline control variables as specified in equation (2). 

Standard errors clustered at the village level reported between parentheses.  

Significant coefficients at * p < 0.1, ** p < 0.05 and *** p < 0.01. 

Table 4.4 shows the ITT effects of farmers’ access to SSNM interventions on 

fertilizer application rates. Estimates for overall macronutrients application are positive but 

very small with increases of on average 6 to 10 kg per ha for T1 and 12 to 19 kg per ha for 

T2. Only the effect of T2 in the 2016-2018 panel period is statistically significant and is 

mainly driven by an increased application of nitrogen. Table 4.5 shows the ITT effects on 

fertilizer application rates but only including those farmers for whom baseline application 

rates are below SSNM recommendations. These conditional ITT effects are slightly above the 

unconditional ITT effects in table 4.4. We find statistically significant effects of T2 in both 

periods – but without significant differences between the periods – and for all nutrients. Yet, 

also these conditional effects remain rather small. An increase of 26 kg of nutrient per ha is a 

small impact, which is only about one fourth of the average baseline application rate. 

Estimates in tables 4.4 and 4.5 are derived from models including baseline control variables 

(equation 2) but are robust to excluding the control variables (equation 1; table A5 & A6 in 

appendix).  
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Table 4.4: ITT effects on farmers’ fertilizer application rates (unconditional estimates) 

 N  

(kg/ha) 

P2O5  

(kg/ha) 

K2O  

(kg/ha) 

Overall  

(kg/ha) 

Panel A: 2016 - 2017      

Treatment one (T1) 0.976 2.360 2.398 5.736 

 (6.661) (2.476) (2.468) (9.903) 

Treatment two (T2) 8.200 2.153 2.054 12.405 

 (5.659) (2.473) (2.445) (8.920) 

Baseline control mean (C) 62.19 20.35 20.35 102.88 

N 1380 1380 1380 1380 

Panel B: 2016 - 2018     

Treatment one (T1) 3.868 3.141 2.918 9.927 

 (5.440) (2.271) (2.070) (8.680) 

Treatment two (T2) 13.524** 2.661 3.305 19.490** 

 (5.458) (2.396) (2.320) (8.882) 

Baseline control mean (C) 62.13 19.97 19.97 102.09 

N 1332 1332 1332 1332 

p-values:     

T12017 = T22017 0.296 0.924 0.873 0.499 

T12018 = T22018 0.104 0.831 0.857 0.290 

T12017 = T12018 0.633 0.763 0.828 0.669 

T22017 = T22018 0.366 0.839 0.602 0.440 

Estimates with baseline control variables as specified in equation (2). 

Standard errors clustered at the village level reported between parentheses.  

Significant coefficients at * p < 0.1, ** p < 0.05 and *** p < 0.01. 
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Table 4.5: ITT effects on farmers’ fertilizer application rates (conditional estimates) 

 N  

(kg/ha) 

P2O5  

(kg/ha) 

K2O  

(kg/ha) 

Overall  

(kg/ha) 

Panel A: 2016 - 2017      

Treatment one (T1) 3.733 2.491 2.524 8.750 

 (6.381) (2.550) (2.536) (10.111) 

Treatment two (T2) 13.251** 4.494* 4.370* 22.114*** 

 (5.420) (2.353) (2.316) (8.438) 

Baseline control mean (C) 62.19 20.35 20.35 102.88 

N 1312 1312 1312 1312 

Panel B: 2016 - 2018     

Treatment one (T1) 5.921 3.592 3.332* 12.845 

 (5.083) (2.202) (1.990) (7.934) 

Treatment two (T2) 16.517*** 4.330* 4.971** 25.818*** 

 (5.480) (2.217) (2.148) (8.449) 

Baseline control mean (C) 58.53 19.62 19.62 97.77 

N 1268 1268 1268 1268 

p-values:     

T12017 = T22017 0.119 0.336 0.371 0.141 

T12018 = T22018 0.060 0.717 0.401 0.116 

T12017 = T12018 0.716 0.671 0.735 0.675 

T22017 = T22018 0.586 0.945 0.794 0.685 

Estimates with baseline control variables as specified in equation (2) 

Standard errors clustered at the village level reported between parentheses.  

Significant coefficients at * p < 0.1, ** p < 0.05 and *** p < 0.01. 

Table 4.6 shows the ITT effects of farmers’ access to SSNM interventions on maize 

yields, production costs, gross and net revenues. Estimates are based on models including 

baseline control variables (equation 2) but are again extremely similar to estimates from 

models without baseline control variables (equation 1; table A7 in appendix). The results 

show that the interventions lead to statistically significant increases in maize yield. We find 

that T1 increases maize yield with 0.2 ton per ha for panel A and with 0.3 ton for panel B 

while T2 increases yield with 0.3 and 0.4 ton per ha in respectively panel A and B. These are 

moderately important effects which correspond to increases of 10 to 18% from the average 

baseline yield. The estimated yield effects of T2 are larger than the effects of T1, and the 

estimated effects for panel B larger than for panel A, but differences in estimated effects are 

not significant. A potential confounder to the observed effects is the incidence of fall army 

worm (FAW) infestation during the 2017 and 2018 seasons in Nigeria and other parts of SSA 

(Nagoshi et al., 2018). The incidence of FAW infestation in our sample is 17% and 8% in 

2017 and 2018 respectively. Column 2 of table 4.6 shows that the results are robust to 

controlling for FAW infestation.  
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The results in table 4.6 further show that the yield increase associated with T1 and T2 

translates into a significant increase in gross revenue after one year (panel A) and a 

significant increase in net revenue after two years (panel B). The economic importance of 

these revenue increases is rather modest, with effects amounting to 9 to 16% of baseline 

revenue values. Both treatments result in significantly higher production costs but only after 

two years of treatment, which points to gradual investments by farmers. After two years 

(panel B), production costs increase on average with 9,870 NGN per ha or 13% for T1 

farmers and with 13,426 NGN per hectare or 18% for T2 farmers. None of the estimated 

effects on yield, production costs, gross and net revenue differs significantly between T1 and 

T2, or between panel A and panel B.  
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Table 4.6: ITT effects on maize yields, production costs, gross revenue and net revenue  

 Yield  

(ton/ha) 

Production costs 

(NGN/ha) 

Gross revenue 

(NGN/ha) 

Net revenue 

 (NGN/ha) 

Panel A: 2016 - 2017      

Treatment one (T1) 0.205* 0.201* 6457.705 20602.54* 14144.83 

 (0.120) (0.120) (6784.210) (12353.58) (14312.15) 

Treatment two (T2) 0.257** 0.256** 9324.822 25776.22** 16451.39 

 (0.121) (0.121) (5897.551) (12521.2) (14011.51) 

FAW (1/0)  0.024    

  (0.077)    

Baseline control mean (C) 2.12 2.12 75052.94 222394.8 147341.8 

N 1380 1380 1380 1380 1380 

Panel B: 2016 - 2018      

Treatment one (T1) 0.310*** 0.310*** 9870.715* 30413.34*** 20542.63* 

 (0.104) (0.103) (5477.933) (10361.2) (10548.44) 

Treatment two (T2) 0.389*** 0.389*** 13426.04*** 35290.05*** 21864.02* 

 (0.102) (0.102) (4938.405) (10451.88) (11220.75) 

FAW (1/0)  -0.047    

  (0.102)    

Baseline control mean (C) 2.13 2.13 75118.16 223364.9 148246.8 

N 1332 1332 1332 1332 1332 

p-values:      

T12017 = T22017 0.636 0.636 0.320 0.640 0.863 

T12018 = T22018 0.451 0.451 0.508 0.643 0.905 

T12017 = T12018 0.223 0.223 0.594 0.264 0.488 

T22017 = T22018 0.153 0.153 0.524 0.294 0.568 

Estimates with baseline control variables as specified in equation (2). 

Net revenue is the gross revenue (value of output) less the variable costs of production, which include cost of inorganic fertilizer, seed, organic fertilizer, labor 

and agrochemicals such as herbicides and insecticides. 

Standard errors clustered at the village level reported between parentheses.  

Significant coefficients at * p < 0.1, ** p <0.05 and *** p <0.01. 
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4.3 Robustness checks 

The results of the Lee (2009) bounds estimator as robustness check for potential attrition bias 

show that all the point estimates of our outcomes of interest lie within the lower and upper 

treatment-effect bounds (tables 4.7 to 4.9). This implies that the treatment effects we observe 

are robust to attrition bias, particularly for T1 in 2017 where we have differential attrition 

rates in relation to households who did not cultivate maize on the focal plot in 2017 and/or 

2018. Tables 4.10 to 4.12 show the results of statistical hypothesis testing using the 

conventional inference p-values and the randomization inference p-values. The former relies 

on the assumption of a random draw of the sample from an infinite population and is thus 

sensitive to the experimental sample size, which is not the case for the latter that takes the 

sample as fixed and considers only the treatment assignment as a random draw. The tests 

using randomization inference p-values are consistent with those of the conventional 

inference p-values. This implies that the significant treatment effects we find are robust to the 

somewhat small number of villages or observations at hand and are unlikely due to chance 

(Heß, 2017). In table 4.13, we report the results of correction for multiple hypotheses testing 

arising from the fact that we have multiple outcomes (fertilizer management practices, 

fertilizer application rates, yield and revenue) and treatment groups (T1, T2, C) in the RCT 

setting and thus more prone to Type I error, i.e. higher likelihood of false positive inference. 

Using the approach exemplified in Anderson (2008), the false discovery rates-adjusted q-

values indicate that all the statistically significant treatment effects we find are robust to 

accounting for multiple hypothesis tests. In general, our results are robust to potential attrition 

bias, to alternative statistical inference and to corrections for multiple hypotheses testing.
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Table 4.7: Results of Lee bounds estimates for fertilizer management practices 

 Inorganic-

organic 

fertilizer 

(1/0) 

 Split N 

application 

(1/0) 

 Fertilizer at 

sowing  

(1/0) 

 Spot fertilizer 

application 

(1/0) 

Panel A: 2016 - 2017         

Treatment one (T1) 0.147***  0.135*  0.170***  0.149* 

Lower bound 0.064  0.050  0.095  0.068 

 (0.067)  (0.068)  (0.059)  (0.073) 

Upper bound 0.245***  0.232***  0.277***  0.250*** 

 (0.070)  (0.070)  (0.067)  (0.077) 

Treatment two (T2) 0.164***  0.173**  0.187***  0.202*** 

Lower bound 0.123*  0.132**  0.150***  0.164** 

 (0.066)  (0.064)  (0.058)  (0.072) 

Upper bound 0.214***  0.223***  0.241***  0.255 

 (0.070)  (0.068)  (0.067)  (0.079) 

N 1380  1380  1380  1380 

Panel B: 2016 - 2018        

Treatment one (T1) 0.170***  0.148**  0.199***  0.155** 

Lower bound 0.154**  0.131*  0.186***  0.140** 

 (0.069)  (0.076)  (0.058)  (0.063) 

Upper bound 0.190***  0.167**  0.222***  0.176** 

 (0.072)  (0.079)  (0.069)  (0.071) 

Treatment two (T2) 0.145**  0.141**  0.196***  0.214*** 

Lower bound 0.141**  0.136*  0.191***  0.205*** 

 (0.067)  (0.075)  (0.065)  (0.066) 

Upper bound 0.150**  0.177  0.200***  0.214*** 

 (0.071)  (0.188)  (0.063)  (0.064) 

N 1322  1322  1322  1322 
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Table 4.8: Results of Lee bounds estimates for fertilizer application rates  

 N  

(kg/ha) 

 P2O5  

(kg/ha) 

 K2O  

(kg/ha) 

 Overall  

(kg/ha) 

Panel A: 2016 - 2017            

Treatment one (T1) 0.976 3.733  2.360 2.491  2.398 2.524  5.736 8.750 

Lower bound -9.903 -6.237  -2.0391 -1.581  -1.997 -1.551  -12.140 -8.097 

 (7.177) (6.829)  (2.509) (2.565)  (2.472) (2.514)  (10.994) (10.874) 

Upper bound 13.216* 13.474**  6.189** 6.266**  6.204** 6.278**  22.107** 23.018** 

 (6.922) (6.466)  (2.505) (2.528)  (2.500) (2.523)  (10.277) (10.230) 

Treatment two (T2) 8.200 13.251**  2.153 4.494*  2.054 4.370*  12.405 22.114*** 

Lower bound 2.281 6.516  -.463 1.519  -.579 1.373  3.073 11.733 

 (7.543) (6.177)  (2.677) (2.591)  (2.678) (2.592)  (11.347) (10.902) 

Upper bound 15.349** 20.189***  4.502* 6.684***  4.387 6.538***  22.136* 31.726*** 

 (7.544) (7.061)  (2.741) (2.518)  (2.727) (2.505)  (11.673) (10.480) 

N 1380 1312  1380 1312  1380 1312  1380 1312 

Panel B: 2016 - 2018            

Treatment one (T1) 3.868 5.921  3.141 3.592  2.918 3.332*  9.927 12.845 

Lower bound 1.212 4.278  1.843 2.640  1.879 2.647  6.136 10.797 

 (6.828) (6.687)  (2.743) (2.836)  (2.675) (2.736)  (10.282) (11.328) 

Upper bound 7.426 7.567  4.013 4.0618  3.767 3.787  14.478 15.080 

 (7.525) (7.363)  (2.509) (2.552)  (2.412) (2.450)  (11.315) (11.093) 

Treatment two (T2) 13.524** 16.517***  2.661 4.330*  3.305 4.971**  19.490** 25.818*** 

Lower bound 12.835 16.517  2.402 4.318  3.050 4.960  18.560 25.753* 

 (8.094) (10.377)  (3.105) (3.116)  (3.053) (3.109)  (11.886) (15.728) 

Upper bound 14.281* 16.548**  2.982 4.342  3.630 4.984  20.780 25.860** 

 (8.417) (8.472)  (3.369) (3.363)  (3.380) (3.329)  (13.552) (12.099) 

N 1322 1268  1322 1268  1322 1268  1322 1268 
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Table 4.9: Results of Lee bounds estimates for maize yield, production costs, gross and net 

revenues 

 Yield  

(ton/ha) 

 Production 

costs 

(NGN/ha) 

 Gross revenue 

(NGN/ha) 
 Net revenue 

 (NGN/ha) 

Panel A: 2016 - 2017         

Treatment one (T1) 0.201*  6457.705  20602.54*  14144.83 

Lower bound -0.011  -8767.822  -921.136  -7561.754 

 (0.134)  (7252.44)  (13736.13)  (14768.27) 

Upper bound 0.420***  16846.38**  43349.55***  38259.85*** 

 (0.132)  (75758.14)  (13507.23)  (14489.51) 

Treatment two (T2) 0.256**  9324.822  25776.22**  16451.39 

Lower bound 0.142  960.885  14260  5554.082 

 (0.135)  (7659.079)  (13747.17)  (14826.65) 

Upper bound 0.394***  15717.35**  40105.45***  31769.56** 

 (0.140)  (8002.4)  (14460.20)  (15685.12) 

N 1380  1380  1380  1380 

Panel B: 2016 - 2018        

Treatment one (T1) 0.310***  9870.715*  30413.34***  20542.63* 

Lower bound 0.264**  6977.707  26051.81**  15843.1 

 (0.125)  (7319.879)  (12375.62)  (13944.07) 

Upper bound 0.362***  12809.74*  35682.35**  25808.53* 

 (0.141)  (7401.317)  (14084.11)  (14681.18) 

Treatment two (T2) 0.389***  13426.04***  35290.05***  21864.02* 

Lower bound 0.375**  12567.68  33908.18**  20298.46 

 (0.151)  (9061.317)  (15038.08)  (17301.93) 

Upper bound 0.404**  14705.86  36711.82**  23419.88 

 (0.161)  (11657.82)  (15551.47)  (16470.75) 

N 1322  1322  1322  1322 
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Table 4.10: ITT effects on farmers’ fertilizer management practices using conventional 

inference (C.I) and randomization inference (R.I) p-values 

 Inorganic-

organic 

fertilizer 

(1/0) 

 Split N 

application  

(1/0) 

 Fertilizer at 

sowing  

(1/0) 

 Spot fertilizer 

application 

(1/0) 

Panel A: 2016 - 2017         

Treatment one (T1) 0.147  0.135  0.170  0.149 

C.I p-value (0.006)  (0.078)  (0.003)  (0.057) 

R.I p-value (0.008)  (0.074)  (0.003)  (0.070) 

Treatment two (T2) 0.164  0.173  0.187  0.202 

C.I p-value (0.002)  (0.013)  (0.003)  (0.007) 

R.I p-value (0.004)  (0.017)  (0.006)  (0.008) 

Panel B: 2016 - 2018        

Treatment one (T1) 0.170  0.148  0.199  0.155 

C.I p-value (0.003)  (0.044)  (0.001)  (0.021) 

R.I p-value (0.006)  (0.048)  (0.001)  (0.024) 

Treatment two (T2) 0.145  0.141  0.196  0.214 

C.I p-value (0.015)  (0.042)  (0.001)  (0.001) 

R.I p-value (0.024)  (0.049)  (0.001)  (0.000) 

Conventional inference (C.I) and randomization inference (R.I) p-values reported between parentheses 
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Table 4.11: ITT effects on farmers’ fertilizer application rates using conventional inference (C.I) and randomization inference (R.I) p-values 

 N  

(kg/ha) 

 P2O5  

(kg/ha) 

 K2O  

(kg/ha) 

 Overall 

 (kg/ha) 

Panel A: 2016 - 2017            

Treatment one (T1) 0.976 3.733  2.360 2.491  2.398 2.524  5.736 8.750 

C.I p-value (0.884) (0.560)  (0.343) (0.256)  (0.334) (0.322)  (0.564) (0.389) 

R.I p-value (0.871) (0.584)  (0.319) (0.331)  (0.320) (0.325)  (0.543) (0.404) 

Treatment two (T2) 8.200 13.251  2.153 4.494  2.054 4.370  12.405 22.114 

C.I p-value (0.151) (0.016)  (0.386) (0.059)  (0.403) (0.062)  (0.167) (0.010) 

R.I p-value (0.159) (0.022)  (0.396) (0.068)  (0.417) (0.068)  (0.166) (0.010) 

Panel B: 2016 - 2018            

Treatment one (T1) 3.868 5.921  3.141 3.592  2.918 3.332  9.927 12.845 

C.I p-value (0.479) (0.247)  (0.170) (0.106)  (0.162) (0.097)  (0.256) (0.109) 

R.I p-value (0.473) (0.245)  (0.166) (0.107)  (0.149) (0.094)  (0.242) (0.114) 

Treatment two (T2) 13.524 16.517  2.661 4.330  3.305 4.971  19.490 25.818 

C.I p-value (0.015) (0.003)  (0.269) (0.054)  (0.158) (0.023)  (0.031) (0.003) 

R.I p-value (0.014) (0.004)  (0.280) (0.062)  (0.167) (0.027)  (0.034) (0.004) 

Conventional inference (C.I) and randomization inference (R.I) p-values reported between parentheses, 

Estimates in columns 1, 3, 5 and 7 (results for unconditional estimates in table 4.4), estimates in columns 2, 4, 6 and 8 (results for conditional estimates in table 4.5) 
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Table 4.12: ITT effects on maize yields, production costs, gross revenue and net revenue using conventional inference (C.I) and  

randomization inference (R.I) p-values 

 Yield  

(ton/ha) 

 Production costs 

(NGN/ha 

 Gross revenue 

(NGN/ha) 
 Net revenue 

 (NGN/ha) 

Panel A: 2016 - 2017           

Treatment one (T1) 0.205  0.201  6457.705  20602.540  14144.830 

C.I p-value (0.098)  (0.096)  (0.344)  (0.099)  (0.325) 

R.I p-value (0.107)  (0.107)  (0.339)  (0.107)  (0.330) 

Treatment two (T2) 0.257  0.256  9324.822  25776.220  16451.390 

C.I p-value (0.037)  (0.036)  (0.117)  (0.042)  (0.243) 

R.I p-value (0.034)  (0.034)  (0.128)  (0.042)  (0.246) 

Panel B: 2016 - 2018          

Treatment one (T1) 0.310  0.310  9870.715  30413.340  20542.630 

C.I p-value (0.003)  (0.003)  (0.075)  (0.004)  (0.054) 

R.I p-value (0.005)  (0.005)  (0.073)  (0.006)  (0.057) 

Treatment two (T2) 0.389  0.389  13426.040  35290.050  21864.020 

C.I p-value (0.000)  (0.000)  (0.008)  (0.001)  (0.054) 

R.I p-value (0.000)  (0.001)  (0.011)  (0.003)  (0.063) 

Conventional inference (C.I) and randomization inference (R.I) p-values reported between parentheses 
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Table 4.13: Robustness check for multiple hypothesis testing  

 Outcomes Panel A: 2016 - 2017  Panel B: 2016 - 2018 

p-value q-value p-value  q-value 

Table 4.3       

T1 Inorganic-organic fertilizer (1/0) 0.006 0.019  0.003 0.006 

 Split N application (1/0) 0.078 0.076  0.044 0.031 

 Fertilizer at sowing (1/0) 0.003 0.017  0.001 0.004 

 Spot fertilizer application (1/0) 0.057 0.061  0.021 0.022 

T2 Inorganic-organic fertilizer (1/0) 0.002 0.017  0.015 0.018 

 Split N application (1/0) 0.013 0.023  0.042 0.031 

 Fertilizer at sowing (1/0) 0.003 0.017  0.001 0.004 

 Spot fertilizer application (1/0) 0.007 0.019  0.001 0.004 

Table 4.4       

T1 Overall fertilizer (kg/ha) 0.564 0.214  0.256 0.069 

T2 Overall fertilizer (kg/ha) 0.167 0.113  0.031 0.029 

Table 4.5       

T1 Overall fertilizer (kg/ha) 0.389 0.167  0.109 0.053 

T2 Overall fertilizer (kg/ha) 0.010 0.023  0.003 0.006 

Table 4.6       

T1 Yield (ton/ha) 0.098 0.080  0.003 0.006 

T2 Yield (ton/ha) 0.037 0.044  0.000 0.001 

T1 Net revenue (NGN/ha) 0.325 0.162  0.054 0.035 

T2 Net revenue (NGN /ha) 0.243 0.143  0.063 0.038 

The false discovery rate adjusted q-values are estimated from the p-values of estimates in tables 4.3, 4.4, 4.5, 

and 4.6.  

5. Discussion 

We find small but significant improvements in fertilizer management practices and associated 

yield and gross revenue for T1 after one year, but with no immediate change in fertilizer use 

rates in response to DST-enabled site-specific nutrient management recommendations. This 

suggests that the latter can improve uptake of optimal fertilizer management practices, which 

may not represent much additional investments, but improve yields by reducing technical 

inefficiencies stemming from the use of inappropriate fertilizer management practices. This is 

consistent with our theoretical predictions about technical efficiency gains associated with 

take-up of optimal management practices. We know this because there is no significant effect 

on fertilizer use rates for T1 but an effect on yield, which comes from the effect on 

management practices. This aligns with other calls to address variability in yield response to 

fertilizer through better targeted management practices (Tittonell and Giller, 2013; Jayne et 

al., 2019; Burke et al., 2019), and should be the starting point for extension interventions on 

promoting fertilizer use. This is important because the benefits of ICT-enabled tools are often 

framed in terms of benefitting from spatially explicit information and targeting, i.e. location-

specific information. While this very well may be the case, our finding suggests that even 
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delivery of non-targeted management information may be an important role for such 

platforms. 

We find that fertilizer use rates for T1 do not increase after one year while for T2 they 

do but the estimated yield and revenue gains are quite similar for the two groups, which 

suggests that increase in fertilizer application improves yield but the considerable increase by 

T2 over T1 does not result in substantial yield gains over T1. In other words, both types of 

information content (T1 and T2) are likely to have similar yield and revenue impacts.  A 

possible explanation for this is that the yield response to higher fertilizer levels is relatively 

low and further support the finding that much of the yield gains accrue via management 

practices. This is consistent with empirical studies that find low and variable maize yield 

responses to fertilizer in Nigeria and elsewhere in SSA (Marenya and Barrett, 2009; Harou et 

al., 2017; Liverpool-Tasie et al., 2017; Burke et al., 2017; Theriault et al., 2018). Our 

observed fertilizer increasing effect of 26 kg per ha and the associated yield effect of 0.4 ton 

per ha, i.e. 16 kg maize per kg nutrient is twice the survey-based estimate of 8 kg maize per 

kg N documented in previous empirical findings for Nigeria (Liverpool-Tasie et al., 2017). 

Yet, this is still far below the potential of up to or more than 40 kg maize per kg nutrient 

under researcher-managed farm trials (Vanlauwe et al., 2011, 2015b; Ichami et al., 2019), and 

below survey-based estimates in other parts of SSA even without site-specific 

recommendations, e.g. 17 to18 kg maize per kg N for Kenya (Marenya and Barrett, 2009; 

Sheahan et al., 2013), 21 to 25 kg for Uganda (Matsumoto and Yamano, 2013), 22 to 26 kg 

for Ghana (Ragasa and Chapoto, 2017) and 19 to 24 kg for Burkina Faso (Koussoube and 

Nauges, 2017; Theriault et al., 2018). Overall the magnitude of the yield effects, a 10 to 18% 

increase in relation to the yield gap of over 60% (i.e. the gap between farmers’ baseline yields 

and the yields expected under optimal management), suggests that the progress towards 

closing the yield gap is rather modest. In addition, given the market prices of inputs and 

output, the yield gains did not translate into substantial revenue gains but rather a small and 

gradual improvement.  

We find that for T2 management practices improve after one year, fertilizer use and 

outcomes in terms of yield and gross revenue also improves after one year and increases 

further after two years, while net revenue only improves after two years. This finding is 

similar for T1 except for fertilizer use rates. This suggests that provision of plot-specific 

recommended fertilizer application rates, combined with additional information on the 
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distribution of expected returns, appears to incentivize more fertilizer use after one year and 

foster continued fertilizer investment after two years. This is consistent with our conceptual 

framework on the role of reducing farmers’ uncertainty about fertilizer investment outcomes, 

and with other literature which argues that farmers may not adopt technologies if they are 

uncertain about the returns to investments (Koundouri et al., 2006; Genius et al., 2014; 

Magruder, 2018). Also, the limited fertilizer effect for T1 is weakly consistent with our 

theoretical model’s illustration of how fertilizer use may be increased by reducing plot-

specific technical uncertainties. The fact that T2 had generally larger and more significant 

impacts on all outcomes than T1, including management outcomes which do not necessarily 

imply larger cash investments suggests that reducing uncertainty may also induce greater 

investments of time or attention. The emergence of net revenue effects only after two years 

suggests that the gradual improvements in revenue effects of site-specific recommendations 

requires a continued investment in nutrient management over time, and for the latter, 

information about fertilizer investment returns can play a crucial role. In addition, despite the 

expectation of an immediate or gradual expansion in fertilizer use from improvements in 

technical efficiency and in turn yields and revenue as indicated in our theoretical framework, 

we observe that this does not really hold for T1 – fertilizer use did not significantly change 

after one and two years.  

In our specific context, the observed increase in fertilizer use is economically small 

relative to the general and the site-specific recommended fertilizer rates despite the incentive 

created by relaxing technical inefficiency, site-specific technical uncertainty and uncertainty 

in investment returns as put forward in the conceptual discussion. Yet, the marginal increase 

in fertilizer could be due to low fertilizer responsiveness of some plots and hence, an 

expanded use of fertilizer may not be expected in line with our theoretical insights. Again, as 

fertilizer is capital intensive, a binding cash constraint may also play a role in limiting 

substantial expansion in the use of fertilizer as highlighted in our theoretical framework, and 

in empirical fertilizer adoption literature (Croppenstedt et al., 2003; Lambrecht et al., 2014; 

Koussoube and Nauges, 2017). Although, we do not test whether cash constraint matter for 

farmers’ responses to site-specific recommendations, descriptive evidence suggests that it is 

likely a key challenge for some farmers given the high cost of fertilizer (table A15 in 

appendix). In a broader sense, the modest increase in fertilizer use by 26 kg nutrients per ha 

after two years can be considered important relative to the low application of less than on 

average 10 kg nutrients per ha of arable land for Nigeria, and less than 20 kg for SSA for over 
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a decade (World Bank, 2018c). In addition, the gradual fertilizer investment and net revenue 

effects is somewhat worthwhile given the high fertilizer acquisition cost in the area. To this 

end, the small and modest increase over time, i.e. persistence of effects can allow of further 

increase in fertilizer use and returns in the longer run, which in a way makes our observed 

effects moderately important.   

Our results entail some general policy implications and some direct policy advice for 

improving agricultural extension systems for maize production in Nigeria. For the specific 

context of our research area, our results imply that a focus on information about optimal 

fertilizer management practices (i.e. beyond fertilizer type and amount) should be the first 

priority for extension agencies in promoting fertilizer use as this can lead to efficiency gains, 

improved returns and gradual increase in fertilizer use. Hence, traditional extension systems 

could benefit from low-cost agronomic DSTs which allow them to better inform farmers 

about optimal fertilizer use and crop management practices beyond focusing only on site-

specific fertilizer application rates, especially when the DSTs are learning tools for extension 

officers. Second, our results imply that giving advice on site-specific fertilization application 

rates is an effective instrument to induce fertilizer use – but its impacts on yield and revenue 

gains are small. Therefore, intensifying fertilizer use in our research area without 

corresponding efforts at improving yield responses is unlikely to generate substantial 

profitable maize production. This is consistent with empirical studies (Marenya and Barrett, 

2009; Burke et al., 2017; Liverpool-Tasie et al., 2017; Jayne et al., 2019; ten Berge et al., 

2019; Burke et al., 2019), on the need for complementary measures to improve fertilizer use 

efficiency and returns. To this end, more research is needed to unpack the underlying causes 

of low yield response to fertilizer – possible areas include issues of fertilizer quality, 

micronutrient deficiencies, etc. Third, for the development of nutrient management and other 

agronomic DSTs in our research area and more broadly, our results imply that farmers are not 

only interested in agronomic recommendations and the associated average expected returns, 

but are also interested in variability of the expected returns. Providing information about the 

expected variability of economic returns (in addition to the expected value) may signal 

greater credibility of the information to farmers (Silehi et al., 2010; Vanlauwe et al., 2019a). 

The use of weather data such as rainfall should be explored to simulate possible distribution 

of expected yields and returns, which will be more informative, particularly for risk-averse 

farmers. Lastly and in general, despite the marginal potentials of agronomic advisory tools, 

such as Nutrient Expert, the use of the tools requires physical contact of extension agents 
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with farmers, which may limit farmers’ access given the poor extension coverage due to low 

agents-to-farmers ratio in our research area. In this sense, investments in DST development 

should not be seen as substitutes for investments in extension systems and other modes of 

scaling advisory services. Possible alternative low-cost options include the increased use of 

community-based contact farmers and agro-dealers to provide extension information using 

such tools.    

We acknowledge that this study is associated with some methodological limitations. 

First, information on optimal fertilizer management practices was not included as a separate 

treatment. This would have allowed stronger conclusions about the role of fertilizer 

management practices. Second, uncertainty about seasonal variation in return to fertilizer was 

only captured by price variation and not by yield variation. Some farmers may be aware of 

variation in prices or have subjective expectations about this but they may be more uncertain 

about yield variation when applying new practices or expanding input use. Third, including 

three seasons in the analysis is an important improvement in comparison with other RCT 

impact studies and resulted in insights on a very gradual expansion of fertilizer use. Yet, to 

really understand farmers’ fertilizer use decisions and the impact of SSNM extension, studies 

should look at even longer periods. Lastly, we estimate only direct effects. Yet, there could 

be indirect effects, e.g. environmental benefits (through reduced soil nutrient 

mining/degradation/nutrient losses to the environment in response to SSNM) which if 

quantified can amount to substantial effects. More research may clarify some of these 

limitations. 

6. Conclusion 

Our study contributes to the nascent empirical literature on emerging digital agronomy tools 

targeting smallholders in developing countries, with an experimental study of ICT-enabled 

plot-specific fertilizer recommendations for smallholder farmers in northern Nigeria. We find 

that the provision of site-specific nutrient management recommendations results in small but 

statistically significant increases in the use of inorganic fertilizer and related improved 

management practices, and results in related impacts on maize yields and gross farm revenue. 

In addition, we show that there are only gradual increases in investment, fertilizer use and net 

revenue after two years, particularly for farmers exposed to site-specific recommendations, 

combined with information on the distribution of expected returns. The persistence of effects 

in year two may allay concern about a novelty effect, i.e. that the ICT-enabled tool induced 
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greater behavioral changes simply because it was new. Yet, the observed effects are 

economically small and only emerge gradually, which may create some doubt about site-

specific extension recommendations but again, a slow and steady increase is worthwhile. In 

this regard, lending a stronger credence for scaling up the use of nutrient management DSTs 

in the traditional extension systems of SSA, particularly in northern Nigeria will require a 

much more longer-term research while explicitly taking into consideration the underlying 

issues of yield response to fertilizer, and complementary roles of management practices, and 

market-related factors, such as cash or credit constraints.   

  



 

 

124 

 

Appendix 

A1. Heterogeneous treatment effects 

We consider inter-temporal heterogeneity in treatment effects using the p-values of the tests 

of equality of treatment effects (T12017=T12018 and T22017 =T22018) reported in tables 3 to 6 in 

the main text. The results indicate that we cannot reject the null of equality of treatment 

effects over time for all outcomes of interest. This suggests that the observed impacts of the 

interventions that we find are persistent or stable over time. In other words, the treatment 

effects we find do not significantly increase or decrease for the two treatment groups over the 

two post-intervention periods. We present the distributions of treatment effects on fertilizer 

application rates for T1 and T2 in Fig. A2, and the distributions on maize yields and net 

revenue in Fig. A3. The observed effects are positive across the entire distributions for the 

two treatment groups and the two post-intervention years except for fertilizer and net revenue 

effects in 2017, and are not significantly different from zero in some quantiles of the 

distributions. In addition, they are not systematically concentrated in the upper or lower tails 

of the distributions. The effects for T2 farmers across most quantiles of the distributions 

dominate that of T1 farmers except for the effects on net revenue, where we observe 

considerable variability in distribution of net revenue effects between the two groups. 

Overall, the figures suggest that heterogeneity in treatment effects is rather limited. This is 

consistent with Duflo et al. (2008) who find limited evidence for considerable heterogeneity 

in returns to fertilizer across plots. 
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Table A1: Results of tests for differential attrition (attrition- HHs who dropped out)  

 First follow-up: 2017  Second follow-up: 2018 

Attrition  

  dummy 

Attrition 

 dummy 

Attrition 

dummy 

Attrition  

 dummy 

Attrition 

 dummy 

Attrition 

dummy 

Treatment one (T1) -0.004 -0.003 0.060  -0.011 -0.012 -0.138 

 (0.004) (0.004) (0.054)  (0.008) (0.008) (0.154) 

Treatment two (T2) 0.008 0.008 0.111  -0.011 -0.011 -0.136 

 (0.009) (0.009) (0.100)  (0.008) (0.008) (0.154) 

Age of farmer  -0.000 0.000   0.000 -0.000 

  (0.000) (0.000)   (0.000) (0.001) 

Education of farmer  0.001 0.002   0.002* 0.002 

  (0.001) (0.002)   (0.001) (0.002) 

Household size  0.000 0.002   0.001 0.005 

  (0.000) (0.002)   (0.001) (0.003) 

Access to credit  -0.006 -0.003   0.005 -0.001 

  (0.004) (0.005)   (0.009) (0.017) 

Group membership  -0.008* -0.015   -0.001 -0.018 

  (0.005) (0.014)   (0.007) (0.023) 

Maize contract farming  -0.004 -0.000   0.002 0.015 

  (0.003) (0.003)   (0.008) (0.020) 

Access to off-farm income  0.005 0.004   -0.004 -0.020 

  (0.004) (0.004)   (0.011) (0.028) 

ln (assets)  -0.000 0.002   -0.001 -0.002 

  (0.002) (0.002)   (0.002) (0.003) 

Plot ownership  0.004 -0.002   -0.025 -0.113 

  (0.004) (0.005)   (0.028) (0.105) 

Plot distance  0.000 0.001   -0.000 0.000 

  (0.000) (0.001)   (0.000) (0.001) 

_cons 0.004 -0.000 -0.060  0.015** 0.023 0.109 

 (0.004) (0.032) (0.054)  (0.007) (0.053) (0.151) 

Baseline controls x 

treatment dummies1  

No No Yes  No No Yes 

2F-tests of :        

a. baseline controls  0.991    0.838  

b. interaction terms with T1   0.920    0.880 

c. interaction terms with T2   0.928    0.758 

Observations 792 792 792  792 792 792 
1Interaction terms of all baseline controls with treatment dummies for T1 and T2 are all statistically insignificant 

but not reported for brevity,  
2p-values of the joint F-tests of baseline controls and interaction terms to check for non-random attrition, 

Standard errors clustered at the village level reported between parentheses.  

Significant coefficients at * p < 0.1, ** p < 0.05 and *** p < 0.01 
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Table A2: Results of tests for differential attrition (attrition - HHs who did not cultivate maize 

on focal plots + HHs who dropped out)  

 First follow-up: 2017  Second follow-up: 2018 

Attrition  

  dummy  

Attrition 

 dummy 

Attrition 

dummy 

Attrition  

dummy 

Attrition 

 dummy 

Attrition 

dummy 

Treatment one (T1) -0.076** -0.076** -0.471  -0.015 -0.013 0.137 

 (0.032) (0.032) (0.368)  (0.035) (0.034) (0.351) 

Treatment two (T2) -0.038 -0.036 0.013  0.004 0.004 0.173 

 (0.036) (0.037) (0.347)  (0.036) (0.035) (0.343) 

Age of farmer  0.001 -0.001   -0.002 -0.001 

  (0.001) (0.003)   (0.001) (0.002) 

Education of farmer  -0.001 -0.002   0.002 0.004 

  (0.002) (0.003)   (0.003) (0.005) 

Household size  -0.006** -0.017***   0.003 0.003 

  (0.002) (0.006)   (0.003) (0.005) 

Access to credit  0.006 0.058   0.043 0.058 

  (0.028) (0.068)   (0.033) (0.068) 

Group membership  -0.013 -0.033   -0.027 -0.033 

  (0.024) (0.045)   (0.027) (0.045) 

Maize contract farming  -0.022 0.014   -0.059** 0.014 

  (0.030) (0.058)   (0.029) (0.058) 

Access to off-farm income  0.016 -0.049   -0.042 -0.049 

  (0.037) (0.081)   (0.045) (0.081) 

ln (assets)  0.011 0.015   -0.005 -0.000 

  (0.009) (0.014)   (0.010) (0.015) 

Plot ownership  0.006 0.049   0.020 0.049 

  (0.057) (0.104)   (0.060) (0.104) 

Plot distance  0.001 0.001   -0.000 0.001 

  (0.001) (0.001)   (0.001) (0.001) 

_cons 0.167*** 0.043 0.121  0.163*** 0.292** 0.183 

 (0.026) (0.145) (0.287)  (0.022) (0.142) (0.236) 

Baseline controls x 

treatment dummies1  

No No Yes  No No Yes 

2 p-values of :        

a. baseline controls  0.388    0.502  

b. interaction terms with T1   0.066    0.972 

c. interaction terms with T2   0.225    0.708 

Observations 792 792 792  792 792 792 
1Interaction terms of all baseline controls with treatment dummies for T1 and T2 are statistically insignificant 

(except for the interactions of T1 and T2 with household size in 2017 and T2 with maize contract farming in 

2018) but not reported for brevity, 
2p-values of the joint F-tests of baseline controls and interaction terms to check for non-random attrition, 

Standard errors clustered at the village level reported between parentheses.  

Significant coefficients at * p < 0.1, ** p < 0.05 and *** p < 0.01 
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Table A3: Baseline characteristics and balance test - based on HHs who cultivated maize in 2018 

 Overall 

sample 

(1) 

Treatment 

one (T1) 

(2) 

Treatment  

two (T2) 

(3) 

Control  

(C) 

(4) 

T1=C 

 p-value 

(5) 

T2=C 

 p-value 

(6) 

T1=T2 

 p-value 

(7) 

Age of head (years) 44.5 44.91 44.35 44.23 0.555 0.916 0.628 

 (0.47) (0.84) (0.81) (0.80)    

Education of head (years) 5.08 5.07 4.93 5.25 0.752 0.573 0.800 

 (0.23) (0.40) (0.41) (0.40)    

Household size  9.09 8.96 9.71 8.62 0.476 0.040 0.185 

 (0.21) (0.36) (0.44) (0.29)    

Group membership (1/0) 0.31 0.35 0.3 0.29 0.235 0.893 0.294 

 (0.02) (0.03) (0.03) (0.03)    

Access to credit (1/0) 0.22 0.21 0.24 0.22 0.831 0.715 0.562 

 (0.02) (0.03) (0.03) (0.03)    

Maize experience (years) 19.02 19.72 18.03 19.29 0.669 0.200 0.097 

 (0.41) (0.72) (0.72) (0.68)    

Access to extension (1/0) 0.38 0.40 0.37 0.36 0.358 0.816 0.494 

 (0.02) (0.03) (0.03) (0.03)    

Maize contract farming (1/0) 0.20 0.19 0.21 0.20 0.741 0.981 0.723 

 (0.02) (0.03) (0.03) (0.03)    

Livestock holding (TLU)1 2.14 2.22 2.26 1.93 0.514 0.287 0.932 

 (0.17) (0.39) (0.22) (0.22)    

Number of plots cultivated 2.68 2.76 2.62 2.67 0.434 0.675 0.233 

 (0.05) (0.08) (0.08) (0.08)    

Total farm area (hectare) 3.19 3.19 3.40 2.99 0.515 0.253 0.570 

 (0.14) (0.22) (0.28) (0.23)    

Assets (1,000 NGN)2 537.75 556.8 584.53 471.77 0.197 0.145 0.736 

 (30.76) (50.60) (64.94) (41.86)    

Annual income (1,000 NGN)3 186.05 174.4 196.97 187.06 0.650 0.775 0.454 

 (12.64) (15.69) (25.90) (23.14)    

Off-farm income (1/0) 0.88 0.88 0.9 0.87 0.831 0.306 0.415 

 (0.01) (0.02) (0.02) (0.02)    

Focal plot area (hectare) 0.82 0.87 0.84 0.75 0.141 0.342 0.751 

 (0.04) (0.07) (0.08) (0.05)    

Plot ownership (1/0) 0.96 0.93 0.97 0.96 0.146 0.800 0.090 

 (0.01) (0.02) (0.01) (0.01)    

Plot distance (minutes)4 15.41 14.7 16.11 15.45 0.566 0.716 0.399 

 (0.66) (0.78) (1.49) (1.04)    

Use organic fertilizer (1/0) 0.77 0.75 0.76 0.8 0.212 0.347 0.762 

 (0.02) (0.03) (0.03) (0.03)    

Use improved seed (1/0) 0.29 0.27 0.32 0.28 0.825 0.334 0.233 

 (0.02) (0.03) (0.03) (0.03)    

Use mineral fertilizer (1/0) 0.97 0.96 0.98 0.97 0.482 0.365 0.113 

 (0.01) (0.01) (0.01) (0.01)    

NPK fertilizer (kg/ha) 127.46 126.44 131.95 124.05 0.811 0.451 0.591 

 (4.17) (6.88) (7.60) (7.20)    

Urea fertilizer (kg/ha) 86.92 82.39 90.38 88.09 0.513 0.804 0.349 

 (3.60) (5.65) (6.40) (6.64)    

Maize yield (ton/ha) 2.07 1.96 2.11 2.13 0.054 0.832 0.095 

 (0.04) (0.06) (0.06) (0.06)    

Joint orthogonality test p-value     0.872 0.648 0.180 

N 666 225 220 221    

p-values in columns 5, 6, 7 are from t-tests of equality of means except the joint test p-values from chi-squared 

tests 
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Table A4: ITT effects on farmers’ fertilizer management practices1 

 Inorganic-

organic 

fertilizer 

(1/0) 

 Split N 

application 

(1/0) 

 Fertilizer at 

sowing  

(1/0) 

 Spot fertilizer 

application 

(1/0) 

Panel A: 2016 - 2017         

Treatment one (T1) 0.147***  0.135*  0.170***  0.149* 

 (0.052)  (0.076)  (0.056)  (0.077) 

Treatment two (T2) 0.164***  0.173**  0.187***  0.202*** 

 (0.052)  (0.068)  (0.061)  (0.073) 

Baseline control mean  (C) 0.77  0.79  0.14  0.36 

N 1380  1380  1380  1380 

Panel B: 2016 - 2018        

Treatment one (T1) 0.170***  0.148**  0.199***  0.155** 

 (0.056)  (0.072)  (0.056)  (0.066) 

Treatment two (T2) 0.145**  0.141**  0.196***  0.214*** 

 (0.058)  (0.068)  (0.054)  (0.060) 

Baseline control mean (C) 0.76  0.78  0.14  0.35 

N 1332  1332  1332  1332 

p-values:        

T12017 = T22017 0.756  0.540  0.760  0.505 

T12018 = T22018 0.683  0.901  0.943  0.333 

T12017 = T12018 0.682  0.857  0.596  0.943 

T22017 = T22018 0.752  0.664  0.875  0.871 
1Estimates with no baseline control variables  
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Table A5: ITT effects on farmers’ fertilizer application rates1 (unconditional estimates) 

 N  

(kg/ha) 
 P2O5  

(kg/ha) 
 K2O  

(kg/ha) 
 Overall 

(kg/ha) 

Panel A: 2016 - 2017         

Treatment one (T1) 0.976  2.360  2.398  5.736 

 (6.637)  (2.467)  (2.459)  (9.867) 

Treatment two (T2) 8.200  2.153  2.054  12.405 

 (5.638)  (2.465)  (2.436)  (8.888) 

Baseline control mean (C) 62.19  20.35  20.35  102.88 

N 1380  1380  1380  1380 

Panel B: 2016 - 2018        

Treatment one (T1) 3.868  3.141  2.918  9.927 

 (5.420)  (2.263)  (2.062)  (8.647) 

Treatment two (T2) 13.524**  2.661  3.305  19.490** 

 (5.437)  (2.387)  (2.311)  (8.849) 

Baseline control mean (C) 62.13  19.97  19.97  102.09 

N 1332  1332  1332  1332 

p-values:        

T12017 = T22017 0.294  0.924  0.873  0.497 

T12018 = T22018 0.103  0.830  0.857  0.288 

T12017 = T12018 0.632  0.762  0.828  0.668 

T22017 = T22018 0.365  0.839  0.602  0.439 
1Estimates with no baseline control variables   
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Table A6: ITT effects on farmers’ fertilizer application rates1 (conditional estimates) 

 N  

(kg/ha) 
 P2O5  

(kg/ha) 
 K2O  

(kg/ha) 
 Overall 

(kg/ha) 

Panel A: 2016 - 2017         

Treatment one (T1) 3.733  2.491  2.524  8.750 

 (6.357)  (2.541)  (2.526)  (10.073) 

Treatment two (T2) 13.251**  4.494*  4.370*  22.114*** 

 (5.400)  (2.344)  (2.308)  (8.406) 

Baseline control mean  (C) 62.19  20.35  20.35  102.88 

N 1312  1312  1312  1312 

Panel B: 2016 - 2018        

Treatment one (T1) 5.921  3.592  3.332*  12.845 

 (5.063)  (2.194)  (1.982)  (7.902) 

Treatment two (T2) 16.517***  4.330*  4.971**  25.818*** 

 (5.458)  (2.209)  (2.140)  (8.416) 

Baseline control mean (C) 58.53  19.62  19.62  97.77 

N 1268  1268  1268  1268 

p-values:        

T12017 = T22017 0.118  0.334  0.369  0.140 

T12018 = T22018 0.059  0.716  0.400  0.115 

T12017 = T12018 0.716  0.670  0.735  0.674 
1Estimates with no baseline control variables   
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Table A7: ITT effects on maize yields, production costs, gross revenue and net revenue1 

 Yield  

(ton/ha) 

 Production costs 

(NGN/ha) 
 Gross revenue 

(NGN/ha) 
 Net revenue 

 (NGN/ha) 

Panel A: 2016 - 2017          

Treatment one (T1) 0.201*  0.201*  6457.705  20602.54*  14144.83 

 (0.120)  (0.120)  (6759.477)  (12308.54)  (14259.97) 

Treatment two (T2) 0.256**  0.256**  9324.822  25776.22**  16451.39 

 (0.121)  (0.121)  (5876.050)  (12475.56)  (13960.43) 

FAW (1/0)   0.019       

   (0.075)       

Baseline control mean (C) 2.12  2.12  75052.94  222394.8  147341.8 

N 1380  1380  1380  1380  1380 

Panel B: 2016 - 2018          

Treatment one (T1) 0.310***  0.310***  9870.715*  30413.34***  20542.63* 

 (0.103)  (0.103)  (5457.238)  (10322.05)  (10508.59) 

Treatment two (T2) 0.389***  0.389***  13426.04***  35290.05***  21864.02* 

 (0.102)  (0.102)  (4919.749)  (10412.4)  (11178.36) 

FAW (1/0)   -0.053       

   (0.101)       

Baseline control mean (C) 2.13  2.13  75118.16  223364.9  148246.8 

N 1332  1332  1332  1332  1332 

p-values:          

T12017 = T22017 0.635  0.635  0.260  0.669  0.863 

T12018 = T22018 0.445  0.449  0.506  0.642  0.905 

T12017 = T12018 0.223  0.223  0.593  0.263  0.488 

T22017 = T22018 0.152  0.152  0.523  0.293  0.567 
1Estimates with no baseline control variable



 

 

132 

 

Table A15: Treated farmers’ stated constraints associated with the use of site-specific fertilizer 

recommendations  

Constraints Share of farmers (%) 

T1 & T2 T1 T2 

2017 treatment    

High cost of fertilizer 53.1 46.9 60.4 

Lack of trust/confidence in the recommendations 34.3 34.4 34.2 

Fertilizer unavailability when needed 7.9 7.0 9.0 

Poor knowledge/understanding of the details of the 

recommendations 

15.9 18.0 13.5 

Poor quality of fertilizer available in the market 3.8 4.7 2.7 

Others 5.4 4.7 6.3 

2018 treatment    

High cost of fertilizer 47.7 47.7 47.8 

Lack of trust/confidence in the recommendations 16.8 22.1 10.1 

Fertilizer unavailability when needed 15.5 8.1 24.6 

Poor knowledge/understanding of the details of the 

recommendations 

11.6 5.8 18.8 

Poor quality of fertilizer available in the market 1.3 1.2 1.4 

Others 38.7 44.2 31.9 

2017 & 2018 treatments    

High cost of fertilizer 51.0 47.2 55.6 

Lack of trust/confidence in the recommendations 27.4 29.4 25.0 

Fertilizer unavailability when needed 10.9 7.5 15.0 

Poor knowledge/understanding of the details of the 

recommendations 

14.2 13.1 15.6 

Poor quality of fertilizer available in the market 2.8 3.3 2.2 

Others 18.5 20.6 16.1 
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Fig. A1: Map of the research area showing the treatment (T1 and T2) and control villages 
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Fig. A2: Quantile treatment effects on unconditional and conditional fertilizer application rates 
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Fig. A3: Quantile treatment effects on maize yield and net revenue 
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Chapter 5 

General Discussion and Conclusion 

The focus of this PhD thesis on Nigeria, specifically northern Nigeria, on maize and on ICT-

enabled agricultural extension is important for several reasons. First, Nigeria has the largest 

number of extreme poor and out-of-school children in the world, and a large number of 

hungry people – is among the eight countries who suffer high levels of acute hunger. More 

importantly, northern Nigeria accounts for a larger share of these developmental challenges 

amidst a high population pressure, a rising food demand and a declining per capita land. 

Productivity growth in agriculture can substantially contribute to address the challenges 

because a larger share of the rural population depends on agriculture, directly and/or 

indirectly. Yet, agricultural productivity is on average low, which may be connected with low 

adoption of external inputs and improved crop management practices. Despite, the large body 

of theoretical and empirical studies that try to explain agricultural technology adoption in the 

area and in SSA in general, the literature is yet to adequately reveal why adoption of 

potentially relevant technologies is still low.  

Second, maize is the most important staple food crop in northern Nigeria, and a 

source of income for smallholder farmers in light of its increasing industrial demand. Yet, its 

yield on farmers’ fields has remained low – around 1 to 2 tons/ha despite the potential for 

high yield of over 7 tons/ha. Depletion of soil fertility associated with low and inappropriate 

use of nutrients is a primary biophysical factor that strongly contributes to low maize yield. 

While intensifying the use of fertilizer is necessary in the area because the use of fallow 

system to replenish soil fertility is limited resulting to a continuous cropping system, its use is 

still low. Information constraints may contribute to explain in part the limited use of fertilizer 

to offset the declining soil fertility, and in turn the returns to fertilizer investment. 

Intensifying fertilizer use in maize production is based on the assumption of substantial 

marginal return to fertilizer investment, which is not always the case due to low and variable 

maize yield response to fertilizer. Good nutrient management can help to improve the yield 

response, which calls for better extension services.  

Third, agricultural extension interventions are expected to produce positive outcomes 

but do not always result in the intended effects, which may be connected with the highly 

diverse smallholder farming systems in the area. Yet, the extension systems in the area still 
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provide general fertilizer use recommendations, which do not account for the substantial 

variation in production conditions, such as soil quality and microclimate. In addition, the 

general fertilizer use recommendations do not provide additional information about 

variability of the expected fertilizer investment returns – associated with variation in climate 

and/or market conditions. Moving forward, these limitations in the extension systems need to 

be addressed, and a potential intervention in this regard is SSNM, which can play a crucial 

role in sustainable intensification of maize. In light of the rapid transformation in digital 

technologies in recent times, digital DSTs can be deplored in the extension system to allow of 

provision of SSNM advice.  

There are specific research gaps in the existing theoretical and empirical literature on 

design, adoption and impact of DST-enabled site-specific extension services, and in the 

broader agricultural technology adoption literature related to fertilizer use in maize 

production. This PhD thesis focuses on a nutrient management DST for maize ‘Nutrient 

Expert tool’ in northern Nigeria, and addresses some of the research gaps.   

1. Main findings 

In the second chapter, I assess farmers’ preferences for intensification of maize production 

supported by DST-enabled SSNM advice ex-ante, i.e. before introducing nutrient 

management DSTs for maize in the area. The findings show that farmers are in general 

favorably disposed to switch from general fertilizer use recommendations to DST-enabled 

SSNM recommendations. This suggests that farmers are aware that their production 

conditions are heterogeneous, and are open to site-specific extension advice that are better 

tailored to their crop-, site- and season-specific conditions, and enabled by digital 

technologies. Also, the findings show heterogeneity in preferences, and the observed 

preference patterns relate to farmers resource endowments and access to services. The 

findings show that a first group of farmers can be described as strong potential adopters of 

site-specific extension recommendations for more intensified maize production and a second 

group of farmers as weak potential adopters. The two groups of farmers are willing to accept 

some yield variability for a higher average yield, but this trade-off is on average larger for the 

first group. The findings imply that improving the design of advisory tools to enable 

provision of information on the riskiness of expected investment returns and flexibility in 

switching between low-input, -risk and -return and high-input, -risk, and -return 

recommendations will help farmers to make better informed input use decisions.  
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In the third chapter, the preferences of extension agents for the design of nutrient 

management DSTs for maize and their willingness to use the tools are analyzed ex-ante. The 

findings show that the extension agents generally prefer the use of DSTs for site-specific 

extension advice on nutrient management, which lends credence to the emerging policy 

interest in design of extension DSTs for maize in the area. The findings also show that they 

prefer a DST with a more user-friendly interface that requires less time to generate an output 

but that their preferences for other design features of DSTs are substantially heterogeneous. 

The findings also show two preference groups of extension agents. The first group includes 

the extension agents, who prioritize the attributes related to the effectiveness of the extension 

advice resulting from a DST, such as a more detailed and more accurate output. The second 

group includes the extension agents, who care more about practical features, such as the 

platform, the language and the user-friendliness of the interface. The differences in observed 

characteristics between the two groups are small, which implies that unobservable 

characteristics, such as motivation and ability, likely play a role in explaining preference 

heterogeneity. The findings imply that recognizing and accommodating preference 

differences may facilitate the take-up of DSTs by extension agents and thus enhance the 

scope for such tools to influence the farm investment decisions of farmers. 

In chapter four, the causal effects of SSNM extension recommendations enabled by a 

DST, ‘Nutrient Expert tool’ on fertilizer use, management decisions and associated maize 

yield and revenue are analyzed. The findings show that SSNM extension recommendations 

bring about improvements in fertilizer management practices, yield and gross revenue after 

one-year treatment but not in fertilizer use for one of the extension treatments. This suggests 

that optimal fertilizer management practices can improve yield and revenue at current 

nutrient application by reducing technical inefficiencies associated with the use of sub-

optimal fertilizer management practices. The findings also show that fertilizer use rates for 

one of the two extension treatments did not increase after one year, i.e. for T1 while for the 

other extension treatment, i.e. for T2, it increased but the estimated yield and revenue gains 

are quite similar for the two groups. This suggests that increase in fertilizer application rates 

can improve yield but the considerable increase by T2 over T1 does not result in substantial 

yield gains over T1, which may be connected to low yield responses to higher fertilizer 

levels. The findings also show that SSNM recommendations, combined with additional 

information on the distribution of expected returns, appears to induce more fertilizer use after 

one year and foster continued fertilizer investment after two years via reduction in farmers’ 
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uncertainty about fertilizer investment outcomes. In addition, I show that there are only 

gradual increases in investment, fertilizer use, maize yield and especially net revenue after 

two years. Overall, the economic importance of the observed effects is rather modest.  

Overall, the findings of the different chapters are closely related – deals with different 

aspects of nutrient management DSTs for maize, including the design and adoption potential, 

ex-ante and testing the effectiveness on-farm, ex-post and considers two key actors in the use 

of DSTs, farmers and extension agents. The findings point to favorable adoption potential of 

nutrient management DSTs for maize from the perspective of extension agents, and of 

extension advice from such DSTs from the perspective of farmers. The findings also point to 

the role of risk and uncertainty in the take-up of extension recommendations for 

intensification of maize production, ex-ante insights (chapter 2) and ex-post insights (chapter 

4). In the same vein, the findings show that majority of extension agents are favorably 

disposed to offering a wide range of options or recommendation alternatives, which can 

potentially meet farmers demand for information on distribution of expected outcomes of 

recommendations (chapter 3). Despite the potentials of agronomic advisory DSTs in the 

literature, and also from the findings of chapters 2 and 3, the findings of chapter 4 show 

economically small but significant effects of the DST-enabled site-specific extension 

recommendations on intensification of maize production. A brief summary of some of the 

findings of chapter 4 is presented in Fig. 5.1.  
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Fig. 5.1: Treatment effects on fertilizer management practices, nutrient application rate 

(conditional estimates), maize yield, production cost and net revenue. Errors bars are 95% 

confidence intervals.  
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2. Policy implications 

The findings of this PhD thesis have some important policy implications for agricultural 

research, development and extension, including digitalizing extension in developing 

countries. The first policy implication is related to the importance of variability or riskiness 

of expected investment returns to DST-enabled SSNM recommendations. Stimulating 

(continued) fertilizer investment is more effective if farmers are better informed about 

variability of expected fertilizer returns beyond the expected value (i.e. greater 

parameterization of returns likelihood) given the time lag between planting decisions and 

outcomes at harvest time. This implies that provision of information about the expected 

variability of economic returns stemming from seasonal variation in climate and market 

conditions may allow of better informed farm investment decisions of smallholder farmers. 

Yet, extension interventions and in particular advisory tools are designed to only provide 

information about average expected investment returns associated with agronomic 

recommendations. The direct implication of this for optimizing the design of digital 

agronomic advisory tools is that tool developers should strongly consider designing tools in a 

way that data on variation in rainfall and output price – climate and market uncertainty can be 

accommodated to better inform farmers about variability of expected investment returns. In a 

similar vein, optimizing the design of DSTs to allow of flexibility in switching between low-

input, -risk and -return and high-input, -risk, and -return recommendations will help targeting 

of extension advice by risk taking ability of farmers. 

The second policy implication is related to the fact that in the presence of substantial 

technical inefficiency, optimal fertilizer management practices can improve maize yields and 

revenue without an increase in fertilizer application rate by reducing the inefficiency. This 

implies that the entry point for traditional extension systems in trying to promote expanded 

use of fertilizer is to pursue widespread diffusion of information about optimal fertilizer 

management practices, such as the right fertilizer sources, the right timing of application and 

the right method of application. This will help to improve technical efficiency, returns at 

current fertilizer investment outlay and allow of immediate or gradual increase in fertilizer 

investments depending on whether cash constraint is binding. While most agronomic tools 

are promoted to allow of site-specific agronomic advice, the underlying mechanism for much 

of the observed impact seems to be through the optimal fertilizer use management practices, 

which are not necessarily site-specific issues. To this end, low-cost agronomic advisory tools 

that allow extension agents to learn about optimal fertilizer and crop management practices – 
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as learning tools, and thus to better advise farmers about management practices beyond 

advice on site-specific fertilizer rates can be more beneficial for extension agents and 

farmers. In this way, extension agents can leverage advisory tools for self-study to improve 

their capacity, and be in a better position to properly inform farmers about fertilizer 

management practices in detail – both site- and non-specific aspects. The idea of using DSTs 

as leaning tools has been slightly highlighted in the literature (e.g. Evans et al., 2017; 

Lundstrom and Lindlbom, 2018). 

The third policy implication is related to the effectiveness of DST-enabled SSNM 

recommendations in improving fertilizer use but with no substantial impact on yields and 

gross revenue while net revenue only emerges gradually. On the one hand, a low yield 

response to fertilizer can play a crucial role in this, and have been highlighted in empirical 

fertilizer use literature (e.g. Marenya and Barrett, 2009; Xu et al., 2009; Liverpool-Tasie et 

al., 2017; Burke et al., 2017, 2019). This implies that policy interventions to stimulate 

expanded use of fertilizer to drive intensification of staple food crops, such as maize without 

associated efforts aimed at improving yield response to fertilizer may only produce limited 

impact – low fertilizer use and returns. A focus on improving nutrient use efficiency can help 

to improve returns to higher fertilizer levels and encourage sustainable fertilizer use. This 

may require a shift from emphasis on fertilizer alone to broader nutrient and non-nutrient 

management practices, such as variety type, timeliness of planting, planting density, weeding, 

etc. (Otsuka and Muraoka, 2017; Jayne et al., 2018, 2019; ten Berge et al., 2019). For 

instance, the use of a sub-optimal planting density can substantially lower nutrient use 

efficiency as demonstrated by Xu et al. (2017)24. Therefore, a more holistic approach that 

involves a strong focus on both socioeconomic, soil- and non-soil agronomic considerations 

in fertilizer use can be more rewarding for farmers. On the other hand, a better understanding 

of the impact of DST-enabled SSNM recommendations will require a longer-term research 

while accounting for the role of low and variable yield response, which will allow of a 

stronger support for massive investment in scaling the use of nutrient management DSTs.  

The fourth policy implication is related to the fact that extension agents in general 

prefer digital agronomic advisory tools with a more user-friendly interface that require less 

time to generate an output but have substantial heterogeneous preferences for other design 

                                                 
24 This line of thought contributed in informing the development of a tool ‘Maize-Seed-Area App’ by the 

TAMASA project to support the provison of farm-specific agronomic advice on optimal planting density, and 

the tool was piloted in Kenya in 2018.  
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features. This implies that optimization of a DST regarding interface ease-of-use and time 

effort should be given strong attention while also accommodating other preference 

differences to allow a good balance of content- and convenience-related features. This is 

important for user-centered design of DSTs to induce the adoption and the sustained use of 

such DSTs by extension agents, and in turn enhance the provision of targeted extension 

advice at scale. This may help to address the low use of DSTs at scale reported in some 

studies (Hochman and Carberry, 2011; Ravier et al., 2016; Rose et al., 2016). In practice, 

optimizing the design of DSTs to facilitate better targeting will require more work and 

engagement of extension agents in testing alternative interfaces, e.g. variants of color-text-

image combinations, and platforms, such as mobile- and web apps, excel- and ODK-based 

interfaces as well as other practical features of a DST. The engagement of extension agents is 

required in testing DST information sets with varying levels of detail in the output to 

optimize a DST. In addition, for the subgroup of extension agents who are appear to care less 

about the quality of extension messages from a DST. This implies that beyond the practical 

features of DSTs, such extension agents should be well disposed to effectiveness-related 

features of DSTs and in turn, to provision of higher-quality extension advice. Improved 

capacity building for extension agents may play a role in this (Makate and Makate, 2019). 

The fifth policy implication is related to the fact that the use of most agronomic 

advisory tools, such as Nutrient Expert tool requires a face-to-face contact of an extension 

agent with a farmer, which may have contributed to the observed impact of the nutrient 

management advice. Such one-on-one interaction can be very effective but not cost-effective 

(Lambrecht et al., 2014). It may limit impact at scale, as a lot of farmers may not have access 

to DST-enabled extension advice due to poor extension coverage, i.e. low agent-farmer ratio 

of about 1:5000-10000 in Nigeria (Ande et al., 2017; Davis and Spielman, 2017). This 

implies that agronomic advisory tools that require one-to-one interaction may face scalability 

constraints. The rising policy interest on increasing investment in development of agronomic 

advisory tools should only complement investment in traditional extension systems and not 

be considered as substitute for it. Moving forward, low-cost options should be explored, 

including the use of agro-dealers, contact farmers, farmer group officials, etc. for scaling 

advisory services using DSTs. The latter have to be competent to avoid misinforming 

farmers. In addition, the provision of SSNM recommendations without the need for a face-to-

face contact can be explored by leveraging the use of mobile phones to facilitate 

communication between agent and farmer – via phone calls, SMS, IVR, and allow of a wider 
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reach. This is often the premise for promoting the use of digital tools in providing agronomic 

advice at scale without a one-on-one contact. Yet, this will require making more realistic 

approximations about certain input data for Nutrient Expert tool, such as plot size that should 

be measured by an extension agent, and may not allow farmers to adequately engage with an 

extension agent. Alternatively, a fee-for-service extension model, i.e. a market-led extension 

approach, where private extension service providers make available one-on-one tailored 

advisory services to farmers for a fee may be explored in the research area. Yet, the latter 

may not be beneficial to highly resource-poor farmers (Anderson and Feder, 2007; Davis, 

2008). 

The sixth implication is related to the impressive adoption potential of nutrient 

management DSTs for maize from the perspective of extension agents, and of extension 

advice from such DSTs from the perspective of farmers. This supports the transition from 

general to digitally-supported site-specific extension services in the maize belt of Nigeria. In 

a broader sense, it lends credence to the emerging interest on how to leverage recent digital 

transformation in improving provision of advisory and related agricultural services, such as 

credit and insurance in developing countries (Janssen et al., 2017; Verma and Sinha, 2018). 

This calls for more public policy interventions, particularly digital inclusion policies to close 

the digital gap in the traditional extension systems and allow of improved efficiency of 

extension services in lifting information constraints and supporting the process of agricultural 

intensification.   

Lastly, from a public policy perspective, this thesis carefully reflects on the 

economically small impact of SSNM extension recommendations mediated by DSTs. The 

small impact that I find may create some doubt about the potentials of nutrient management 

advisory tools in contributing substantially to maize intensification, and in turn to addressing 

the key development challenges of SSA – hunger and extreme poverty. The limited fertilizer 

use effects of the DST-enabled SSNM recommendations may also be connected with high 

acquisition cost of fertilizer and the role of binding cash or credit constraints. While I 

explicitly address the role of information constraints, alternative policy interventions may 

consider provision of SSNM advice with a complementary intervention to relax cash 

constraint, which may induce immediate and sustained expansion in fertilizer use and 

associated yield and revenue, but this remains an open question. In addition, since farmers 

likely face multiple constraints, policy interventions that address multiple constraints – 
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provision of SSNM advice combined with well-targeted input subsidy and/or insurance, etc. 

can be explored as a potential way to achieve economically large impact but this remains an 

empirical question. Overall, all these will require rigorous testing of the cost-effectiveness of 

alternative policy interventions, and are areas for further research. In a broader perspective, 

i.e. looking at the observed effects, such as the fertilizer increasing effect of 26 kg nutrient 

per ha after two years relative to the application of less than 20 kg nutrients per ha of arable 

land in Nigeria and SSA in general for over a decade, the short-term effects are quite 

worthwhile. In this sense, a slow and steady increase in net revenue may allow further 

increase in fertilizer investment and returns to support intensification of maize and 

improvement in farmer welfare. While it is likely more effective to target SSNM advice at the 

plot level, as reported in this thesis, it may not be practically feasible to provide crop-, plot- 

and season-specific SSNM advice to every farmer in light of the limitations (e.g. shortage of 

manpower) of the traditional extension systems. Alternatively, targeting of nutrient 

management advice may be considered at a level above the plot level – e.g. recommendations 

at the village level or for a group of farmers that share similar production conditions within a 

village. This is more feasible especially for non-site specific aspects of the recommendations 

and given the possibility of positive spill-over effects. Yet, this is only suggestive and open to 

further research.    

3. Research contributions 

This thesis makes several contributions to the scientific literature. First, it adds to the extant 

literature on agricultural technology adoption choices, particularly in relation to soil fertility 

management and intensification of staple food crops, such as maize in SSA. A large body of 

ex-post studies has explained farmers’ adoption of intensification technologies, such as 

inorganic fertilizer, soil- and non-soil management practices, etc. in relation to farm(er) 

characteristics (Chianu and Tsuji, 2005; Sanni and Droppler, 2007; Lambrecht et al., 2014; 

Mponela et al., 2016; Morello et al., 2018). Few studies have taken a different approach, 

which is to assess the technology adoption choices of farmers ex ante by explicitly taking into 

account the specific technology traits (Lambrecht et al., 2015; Dalemans et al., 2018; 

Gamboa et al., 2018; Tarfasa et al., 2018). So far, no study has specifically analyzed farmers’ 

preferences for maize intensification in the context of DST-enabled site-specific extension 

services ex ante in SSA. Using data from a CE among farmers, this thesis adds to the 

literature by providing empirical evidence on how farmers trade off specific attributes of a 

high-input, -output, -investment and -risk maize production system supported by site-specific 
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extension in the design stage of a nutrient management DST for maize. The results show that 

in general farmers are favorably disposed to the adoption of nutrient management extension 

advice from DSTs to support intensification of maize, but with substantial heterogeneous 

preferences related to their resource endowments and access to services. More resource-

endowed and less risk-averse farmers are more willing to invest in maize intensification in 

response to sit-specific extension advice.  

Second, this thesis adds to the emerging literature on digitalizing agricultural 

extension services, particularly in the design of nutrient management advisory tools for maize 

in SSA. Several studies have documented the potentials of the rising digital revolution in 

transformation of extension services and agricultural systems in general (e.g. Aker et al., 

2011; Nakasone et al., 2014; Beuermann, 2015; Aker and Ksoll, 2016; Janssen et al., 2017; 

Verma and Sinha, 2018; Camacho and Conover, 2019). Yet, empirical literature in the design 

of digital DSTs for locally-tailored extension is rather scant and most of the literature is based 

on case studies of DSTs in developed country settings (Kragt and Llewellyn, 2014; Small et 

al., 2015; Lacoste and Powles, 2016; Lundstrom et al., 2017; Oliver et al., 2017; Rose et al., 

2016, 2018). In addition, with the exception of Kragt and Llewellyn (2014) none of the 

previous studies documented the preferences of extension agents for the design of agronomic 

advisory DSTs in an ex-ante quantitative fashion. This thesis builds on the existing literature 

by providing empirical evidence on the preferences of extension agents for the design 

features of nutrient management DSTs for maize using data from a CE among extension 

agents in Nigeria. In this way, this thesis provides ex ante insights on the potential uptake of 

DSTs, the practical and the content-related features of DSTs that are more (less) appealing, 

and the preference heterogeneity for such design features. As adoption of DSTs is relatively 

low despite their potential benefits, ex ante insights can help to optimize the design of DSTs 

and potentially stimulate uptake and sustained adoption of such tools. 

 Third, this thesis contributes to the literature on agricultural extension in relation to 

SSNM paradigm and intensification of maize under widely varying production conditions in 

SSA. Some authors argue that general fertilizer use recommendations do not account for 

spatio-temporal diversity in biophysical and socioeconomic conditions of smallholder 

farmers, and may result in sub-optimal fertilizer use (Vanlauwe et al., 2015b; Kihara et al., 

2016a; Njoroge et al., 2017; MacCarthy et al., 2018). Others show that the use of SSNM can 

bring about substantial improvement in nutrient use efficiency and returns, and also reduce 
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negative environmental impact, but such findings are from researcher-managed trial 

conditions, and mainly in Asia (Dobermann et al., 2002; Pampolino et al., 2007; Xu et al., 

2014; Buresh et al., 2019). These may not reflect real-world farm settings, where conditions 

are quite different, and farmers have full control over their resource allocations and 

management decisions (Barrett et al., 2004; Duflo et al., 2008; Beaman et al., 2013; 

Vandercasteelen et al., 2018; Jayne et al., 2019; Macours, 2019). Empirical findings on 

smallholder farmers’ fertilizer investment decisions and returns in SSA do not consider the 

potential role of general extension recommendations on fertilizer use in the traditional 

extension systems. These findings are from non-experimental studies (e.g. Marenya and 

Barrett, 2009; Ragasa and Chapoto, 2017; Koussoube and Nauges, 2017; Liverpool-Tasie et 

al., 2017; Burke et al., 2017; Theriault et al., 2018), and experimental studies (e.g. Duflo et 

al., 2008; Beaman et al., 2013; Harou et al., 2017). This thesis adds to the existing literature 

by providing empirical evidence on impact of DST-enabled SSNM advice to reveal the role 

of information constraint, i.e. what part general fertilizer use recommendations play in 

explaining the on average low use of fertilizer and returns in SSA. This thesis relies on data 

from an RCT, and specifically provides a conceptual model to explain the underlying 

mechanisms for expected immediate and longer-term effects – changes in fertilizer 

investment, management decisions and returns in response to SSNM advice. The results show 

that provision of SSNM extension recommendations results in small but statistically 

significant increases in fertilizer investment and related management practices, as well as the 

associated yield and gross revenue. Also, the results show that there are only gradual 

increases in the outcomes, particularly net revenue, and the observed yield and revenue 

increasing effects are mainly driven by optimal fertilizer management practices.    

 Fourth, this thesis contributes to the theoretical and empirical literature on agricultural 

technology adoption under uncertainty and the pivotal role of information on this in 

developing countries. Previous studies argue that farmers are more likely to give up 

productivity gains for stability in returns to investments, and also may be unwilling to adopt 

or may delay adoption in the face of uncertainty about the expected returns (e.g. Feder et al., 

1985; Asrat et al., 2010; Dercon and Christiaensen, 2011; Musaka, 2018; Oliva et al., 2019). 

Some advocate that acquisition of information about the use of a technology, especially via 

learning-by-doing can reduce uncertainty about the expected outcomes, and enhance adoption 

decisions (e.g. Just and Zilberman, 1983; Feder and Umali, 1993; Saha et al., 1994; Marra et 

al., 2003; Koundouri et al., 2006; Abdulai et al., 2008; Genius et al., 2014). None of these 
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studies looked at how relaxing uncertainty about expected returns to high fertilizer levels 

affects investment decisions – whether to intensify fertilizer use and/or whether to continue to 

use higher fertilizer levels despite the sunk cost. This thesis builds on the literature by 

providing empirical evidence on how provision of information about the variability of 

expected fertilizer investment returns stemming from variation in market (output price) 

conditions influences the take-up and sustained use of fertilizer recommendations. In 

addition, this thesis provides a theoretical model to explain the causal pathways. Using data 

from an RCT, the results show that provision of SSNM recommendations combined with 

information about the variability of expected investment returns increases fertilizer use after 

one year and motivates the continued use of fertilizer after two years. In addition, the results 

show that the observed fertilizer increasing effects are statistically significant but 

economically small, and do not result in substantial yield and revenue increasing effects over 

farmers who did not have access to information about uncertainty in expected fertilizer 

investment returns.  

4. Strengths and weaknesses 

The novelty in this PhD thesis lies in its focus on ICT-enabled advisory tools in an era where 

digitalization of extension is gaining policy interest in developing countries, on a crop notable 

for food security in SSA – maize and on a key factor that limits crop productivity in SSA – 

depletion of soil fertility. Although, there is a large body of agronomic and socioeconomic 

studies on soil fertility management and extension services in SSA (e.g. Vanlauwe et al., 

2015a, Lambrecht et al., 2016a, 2016b; ten Berge et al., 2019; Burke et al., 2019), the focus 

of most of them is not related to digital innovations for nutrient management to improve the 

efficiency of traditional extension systems. Given the highly diverse farming conditions in 

SSA, and the rapid digital transformation in recent years, there is increasing interest in the 

use of digital advisory tools to adapt agronomic advice to site-specific conditions of 

individual farmers. Yet, empirical literature on design, adoption and impact of agronomic 

advisory tools is thin, particularly in relation to nutrient management for maize. This thesis 

uses data from smallholder farmers and extension agents in the maize belt of northern Nigeria 

to build on the nascent literature on emerging digital advisory tools for farmers in developing 

countries and SSA in particular.  

From a methodological point of view, this PhD thesis makes several contributions. 

First, this thesis relies on a large and unique database, including primary data from a sample 
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of 792 farmers and 320 extension agents, and panel data from three household survey rounds. 

Second, I implement a CE among farmers to analyze their preferences for tailored extension 

advice from nutrient management DSTs. I also implement a CE among extension agents to 

assess their preferences for the design of nutrient management DSTs. The use of CE in this 

thesis allows us to provide ex ante insights on adoption potential and optimizing the design of 

nutrient management DSTs from the perspectives of farmers and extension agents. The 

application of CE to study farmers’ technology adoption choices in an ex ante quantitative 

way to better inform agricultural research and development initiatives is becoming popular in 

agricultural economics (e.g. Mahadevan and Asafu-Adjaye, 2015; Lambrecht et al., 2015; 

Kassie et al., 2017). However, the use of CE among extension agents to inform extension 

initiatives is very limited. In fact, no published study has applied CE among extension agents 

except for Kragt and Llewellyn (2014) but for a weed management DST and in a developed 

country setting. The use of CE in this thesis, especially among extension agents should 

inspire other extension-related studies to consider applying CEs among extension agents 

beyond the conventional use of CEs for farmers and consumers in agricultural economics.  

Third, I implement an RCT to allow of consistent estimates of the causal effects of 

SSNM extension interventions with and without complementary information about variability 

of expected investment returns to uptake of the SSNM recommendations. Using an RCT in 

this thesis, I am able to overcome the identification challenge in impact evaluation, which 

arises from self-selection or unobserved farm(er) heterogeneity, and often poses a threat to 

internal validity of observational or non-experimental studies. This allows us to control for 

confounding effects of farm- and farmer-specific characteristics, and precisely attribute the 

observed effects to the extension interventions. This thesis contributes to the growing impact 

evaluation literature on the application of RCTs, especially in development economics to 

establish causal effects of soil fertility-related interventions (e.g. Duflo et al., 2008; Beaman 

et al., 2013) and ICT-enabled information interventions (e.g. Fu and Akter, 2016; Larochelle 

et al., 2019).  

Fourth, I rely on multiple rounds of post-intervention data to estimate causal effects, 

which is an advancement in comparison with most agriculture-related randomized 

evaluations that use a single post-intervention round (c.f. Beaman et al., 2013; Bulte et al., 

2014; de Brauw et al., 2018; Vandercasteelen et al., 2018; Abate et al., 2018; Hossain et al., 

2019; Omotilewa et al., 2019). In this regard, we are able to observe effects (e.g. yield effect) 
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under different weather realizations over time, and to show whether the treatment effects 

persist over time. In addition, I administer the extension interventions in two years – 2017 

and 2018 maize production seasons. Overall, the set-up of the RCT allows us to estimate 

immediate effects (after one-year treatment) and more gradual or longer-term effects (after 

two-year treatment) of the SSNM extension recommendations.   

Fifth, I use different econometric models to explicitly take into account both scale 

heterogeneity and attribute non-attendance (ANA), which are potential sources of bias in CE 

studies. I estimate scale-adjusted latent class model to account for scale heterogeneity, and 

also estimate two models to account for ANA, i.e. conventional and validation stated ANA 

models. This is an improvement over previous CE studies that address only one of these 

issues (e.g. Kragt, 2013; Coffie et al., 2016; Dalemans et al., 2018; Campbell et al., 2018; 

Caputo et al., 2018), and several others that do not consider any of these issues (e.g. Asrat et 

al., 2010; Jaeck and Lifran, 2014; Mahadevan and Asafu-Adjaye, 2015; Lambrecht et al., 

2015; Van den Broeck et al., 2017;  Tarfasa et al., 2018). In general, our results are consistent 

across all the estimated models, which suggest that any possible bias from scale and ANA 

issues is relatively small. Yet, this may not always be the case for other studies that do not 

account for these issues. 

Sixth, I consider heterogeneous effects in this thesis beyond average effects to allow 

better insights about the estimated effects. In chapter 2, I use latent class model to analyze 

heterogeneity in farmers’ preferences for maize intensification in the context of site-specific 

extension advice. I also analyze heterogeneous preferences of extension agents for the design 

of nutrient management DST using mixed logit and latent class models in chapter 3. The 

estimation of heterogeneous preferences in chapters 2 and 3 allows for better insights that can 

help to optimize the design of nutrient management DSTs and of tailored extension advice for 

farmers. In addition, it can allow of better targeting of specific subgroups of farmers and 

extension agents, and in turn potentially improve uptake and impacts of DSTs in service 

delivery to farmers. In chapter 4, I use quantile regressions to analyze heterogeneity in 

treatment effects across the outcome distribution for continuous outcome variables, i.e. 

fertilizer application rate, maize yield and net revenue. This provides additional information 

about the observed effects of SSNM extension recommendations by showing the effects at 

different quantiles of the outcome distribution, and whether the effects are systematically 

concentrated in the lower or upper tails of the outcome distribution. This adds to the 
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empirical agriculture-related RCT studies that estimate quantile regressions to explore 

heterogeneous effects (e.g. Vandercasteelen et al., 2018; Hossain et al., 2019). Also, I 

estimate inter-temporal heterogeneity in the observed effects of SSNM extension 

recommendations. This provides additional insights on whether the observed impacts of the 

extension interventions are stable over time, i.e. further insights about inter-temporal external 

validity as explained in Rosenzweig and Udry (2019).    

Seventh, I employ more rigorous empirical estimation in analyzing the impact of 

SSNM extension recommendations as robustness checks in chapter four. I estimate Lee 

(2009) bounds estimator as robustness check for potential attrition bias, and the results show 

that all point estimates of the outcomes of interest lie within the lower and upper bounds, 

which suggests that the observed treatment effects are robust to attrition bias. I perform 

statistical hypothesis testing using the increasingly recommended randomization inference p-

values as a robustness check to conventional (sampling-based) inference p-values (Bruhn and 

McKenzie, 2009; Athey and Imbens, 2017, Heß, 2017; Young, 2019). The tests using 

randomization inference p-values are consistent with those of the conventional inference p-

values, which implies that the observed treatment effects are robust to the number of clusters 

or observations at hand and are unlikely due to chance. I perform corrections for multiple 

hypotheses testing using False Discovery Rate (FDR) sharpened q-values to control for the 

proportion of false treatment effects due to multiple outcomes and treatments in the RCT 

implemented in this thesis (Anderson, 2008). The FDR q-values show that all the observed 

treatment effects are robust to accounting for multiple hypotheses tests. 

I end this sub-section by highlighting some limitations of this thesis and prospects for 

further research. Although this PhD thesis has made some relevant contributions to different 

strands of literature, it has some shortcomings, which entails general and specific limitations. 

The general limitation stems from the fact that this thesis is based on one case study, 

comprising of farmers and extension agents in the maize belt of northern Nigeria, specifically 

to Kaduna, Kano and Katsina States. While the narrow focus on this case study allows for an 

in-depth analysis, it can limit generalization of the findings of this thesis to other parts of 

Nigeria and SSA, especially in relation to external validity of the impact of SSNM advice. 

This is despite the fact that I use a spatial sampling framework to allow spatially 

representative maize-based areas, and to improve external validity of the findings of the RCT. 

Therefore, further research can consider expanding the coverage to include other states and 
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regions in Nigeria, as well as other parts of SSA to make additional contribution to the 

literature. The specific limitations of this thesis are as follows.  

First, in chapter 2, I do not account for the quality of inputs in the design of the CE, 

which may have contributed to the observed positive preference for a higher fertilizer and 

seed cost attribute by a subgroup of farmers. This is because of a possible intuitive 

association farmers make between cost attribute and quality of inputs while eliciting their 

choices during the CE implementation. This is in line with empirical CE studies (Lambrecht 

et al., 2015; Palma et al., 2016), who note that such a positive preference for a higher cost can 

indicate a cue for quality in choice modeling. This suggests that future CE studies should 

consider inclusion of quality of inputs as a separate attribute to control for this, and allow of 

stronger claim about farmers preferences for technology traits and trade-offs in relation to 

input price attribute. While I make an attempt to account for attribute non-attendance (ANA) 

in chapters 2 and 3 using serial stated ANA models, the results show that the respondents did 

not completely ignore some of the attributes self-reported as ignored. This suggests that some 

respondents assign a lower weight to the attributes self-reported as ignored and/or may be due 

to measurement errors, which is the major limitation of stated ANA approach (Hess and 

Hensher, 2010; Scarpa et al., 2013; Caputo et al., 2018). While there is no consensus in the 

CE literature on how best to account for ANA ex-post, more agricultural economics research 

in developing country contexts may explore other approaches, such as choice task stated 

ANA, inferred ANA and eye tracking.  

Second, in chapter 4, provision of information on variability of expected economic 

returns to fertilizer investment to treatment two farmers in the RCT was captured by seasonal 

maize price variation without inclusion of climate-induced yield variation. As expected, 

farmers may face uncertainty about expected yield variability when applying new practices or 

expanding input use, especially due to the rainfed nature of agriculture in SSA. I made effort 

to include information on variability of yields as determined by different possible weather 

realizations but could not accommodate spatially explicit data on rainfall variation (as proxy 

for weather conditions) in defining the distribution of expected yields in the present design of 

Nutrient Expert tool. This is a possible area for improving Nutrient Expert tool, and an area 

worth considering in the design of other agronomic DSTs to allow of estimating uncertainty 

in investment returns from both variations in climate and market conditions. In practice, this 

will require high quality geospatial datasets. While I use three-period panel data to estimate 
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the immediate and longer-term effects of SSNM extension recommendations, a research with 

longer periods is necessary to really understand the impact of the interventions, and allow of 

stronger claim to support up-scaling of nutrient management DSTs. More research may be 

needed to provide additional long term impact and cover welfare variables, such as poverty, 

food and nutrition security. While I explicitly consider the ‘right rate’ as one of the 4Rs of 

nutrient stewardship, the site-specific fertilizer rate is limited to primary macronutrients and 

did not consider the possible role of secondary macro- and micronutrients deficiencies. In 

addition, the role of substandard fertilizer may be important in explaining the observed yield 

responses following the empirical findings of Bold et al. (2017) in Uganda. I did not measure 

the quality of fertilizer applied by farmers, which may allow of stronger conclusion on the 

role of fertilizer quality in fertilizer investments and returns to SSNM. More research may 

help to clarify these issues.  

Lastly, I estimate only direct effects, including fertilizer investment, management 

decisions and associated maize yield and revenue in response to the SSNM 

recommendations. However, there are possible indirect effects drawing from agronomic 

literature about SSNM (e.g. Dobermann et al., 2002; Pampolino et al., 2007; Satyanarayana 

et al., 2011; Xu et al., 2014; Sapkota et al., 2014; Banayo et al., 2018). Such indirect effects 

include environmental benefits stemming from the notion of balanced nutrient application 

that underpin SSNM paradigm, which forms the basis for its potential in reducing soil 

nutrient mining and nutrient losses to the environment. In practice and under farmers’ 

conditions and management, this remains an open question for further research to empirically 

test whether and to what extent SSNM advice can really reduce negative environmental 

externalities associated with input intensification in maize. This is in line with Stevenson et 

al. (2019) and Macours (2019) who note that consideration of environmental outcomes of 

interventions beyond yield and income gains is important to better understand the 

effectiveness of agricultural interventions.  
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General appendix: Modules of Nutrient Expert decision support tool 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A1: Introductory screen of Nutrient Expert tool 
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Fig. A2: Screen of the first module of Nutrient Expert tool. It only shows some portion of the 

module 
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Fig. A3: Screen of the second module of Nutrient Expert tool. It only shows some portion of the 

module 
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Fig. A4: Screen of the third module of Nutrient Expert tool. It only shows some portion of the 

module 
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Fig. A5: Screen of the fourth module of Nutrient Expert tool. It only shows some portion of the 

module                                                      
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