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Abstract

When solving partial differential equations numerically, usually a high order spatial discretization is needed. Model order reduction (MOR)
techniques are often used to reduce the order of spatially-discretized systems and hence reduce computational complexity. A particular MOR
technique to obtain a reduced order model (ROM) is balanced truncation (BT). However, if one aims at finding a good ROM on a certain finite
time interval only, time-limited BT (TLBT) can be a more accurate alternative. So far, no error bound on TLBT has been proved. In this paper, we
close this gap in the theory by providing an output error bound for TLBT with two different representations. The performance of the error bound
is then shown in several numerical experiments.
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1. Introduction

Let (A, B,C) ∈ Rn×n ×Rn×m ×Rp×m be a realization of a linear,
time-invariant system

Σ : ẋ(t) = Ax(t) + Bu(t), x(0) = 0, y(t) = Cx(t) (1)

and assume that A is Hurwitz which implies (1) is asymptoti-
cally stable. The Hurwitz property is classified by<(λ) < 0 for
all λ ∈ Λ(A), where Λ(·) denotes the spectrum of a matrix.
The infinite reachability and observability Gramians

P∞ =

∫ ∞

0
eAs BBT eAT s ds, Q∞ =

∫ ∞

0
eAT s CT C eAs ds

of (A, B,C) solve the Lyapunov equations

AP∞ + P∞AT + BBT = 0, AT Q∞ + Q∞AT + CT C = 0. (2)

The first ingredient of balanced truncation [14] (BT) is to si-
multaneously diagonalize both Gramians through congruence
transformations Ŝ P∞Ŝ T = Ŝ −T Q∞Ŝ −1 = Σ∞ which gives a
balanced realization (Ŝ AŜ −1, Ŝ B,CŜ −1), where Σ∞ is diago-
nal and contains the Hankel singular values σ j (HSVs), i.e.,
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the square roots of the eigenvalues of P∞Q∞. The HSVs σ j

are typically assumed to be ordered in a non-increasing fash-
ion. In the second step the reduced order model Σr is obtained
by keeping only the r × r upper left block of Ŝ AŜ −1 and the
associated parts of Ŝ B,CŜ −1, i.e., the smallest n − r HSVs
are removed from the system. With Cholesky factorizations
P∞ = LPLT

P , Q∞ = LQLT
Q, and the singular value decomposition

(SVD) XΣ∞YT = LT
QLP, the balancing transformation is given

by Ŝ = Σ
−

1
2
∞ XT LT

Q and Ŝ −1 = LPYΣ
−

1
2
∞ , see, e.g., [1]. More-

over, the resulting reduced system Σr is asymptotically stable
and satisfies theH∞ error bound [9]

‖Σ − Σr‖H∞ ≤ 2(σr+1 + . . . + σn). (3)

Once the SVD is computed, (3) can be used to adaptively ad-
just the reduced order r. A generalizedH∞-error bound for BT
has been proved in [2, 5], where linear stochastic systems are
investigated.
The matrix of truncated HSVs Σ2 = diag(σr+1, . . . , σn) can be
used to express theH2 error bound [1]. It is represented by

‖Σ − Σr‖
2
H2
≤ tr(Σ2(B2BT

2 + 2P∞,M,2AT
21)), (4)

where B2 is the matrix of the last n − r rows of Ŝ B, A21 is the
left lower (n−r)×r block of Ŝ AŜ −1 and P∞,M,2 are the last n−r
rows of the mixed Gramian P∞,M = Ŝ

∫ ∞
0 eAs BBT

1 eAT
11 s ds. The

bound in (4) has already been extended to stochastic systems in
a more general form [3, 7, 15].
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In [8] Gawronski and Juang restricted balanced truncation to
a finite time interval [0, T̄ ], T̄ < ∞, by introducing the time-
limited reachability and observability Gramians

PT̄ :=
∫ T̄

0
eAs BBT eAT s ds, QT̄ =

∫ T̄

0
eAT s CT C eAs ds. (5)

It is easy to show that PT̄ , QT̄ solve the Lyapunov equations

APT̄ + PT̄ AT + BBT − FT̄ FT
T̄ = 0, (6a)

AT QT̄ + QT̄ AT + CT C −GT
T̄ GT̄ = 0, (6b)

where Gt := C eAt and Ft := eAt B, t ∈ [0, T̄ ]. Time-limited
balanced truncation (TLBT) is then carried out by using the
Cholesky factors of PT̄ , QT̄ instead of P∞,Q∞ to construct the
balancing transformation which in this case is denoted by S .
This transformation simultaneously diagonalizes PT̄ , QT̄ , i.e.,
S PT̄ S T = S −T QT̄ S −1 = ΣT̄ and is, thus, referred to as time-
limited balancing transformation. The values in ΣT̄ are referred
to as time-limited singular values and are, similar to the HSVs,
invariant under state-space transformations. Because of the al-
tered Gramian definitions, TLBT does generally not preserve
stability and there is noH∞ error bound as in unrestricted BT.

The main contribution of this paper is an output error bound
for TLBT. It leads to (4) if T̄ → ∞. We provide two represen-
tations of this bound. The first one can be used for practical
computations and is, hence, an important tool to assess the ob-
tained accuracy. The second representation is not appropriate
for computing the bound but it shows that, similar to BT, the
time-limited singular values deliver an alternative criterion to
find a suitable reduced order dimension r. We conclude this
paper by conducting several numerical experiments which in-
dicate that the time-limited error bound is tight.

2. Output Error Bounds for Time-Limited Balanced Trun-
cation

Let S be the time-limited balancing transformation. We parti-
tion the balanced realization (S AS −1, S B,CS −1) as follows:

S AS −1 =

[
A11 A12
A21 A22

]
, S B =

[
B1
B2

]
, CS −1 =

[
C1 C2

]
,

where A11 ∈ Rr×r, B1 ∈ Rr×m, C1 ∈ Rp×r and the other blocks
of appropriate dimensions. Furthermore, we introduce

S FT̄ =

[
FT̄ ,1
FT̄ ,2

]
, GT̄ S −1 =

[
GT̄ ,1 GT̄ ,2

]
, ΣT̄ =

[
ΣT̄ ,1

ΣT̄ ,2

]
.

We consider the corresponding Lyapunov equations in parti-
tioned form:[

A11 A12
A21 A22

] [
ΣT̄ ,1

ΣT̄ ,2

]
+

[
ΣT̄ ,1

ΣT̄ ,2

] [ AT
11 AT

21
AT

12 AT
22

]
= −

[
B1BT

1 B1BT
2

B2BT
1 B2BT

2

]
(7)

+

[
FT̄ ,1FT

T̄ ,1
FT̄ ,1FT

T̄ ,2

FT̄ ,2FT
T̄ ,1

FT̄ ,2FT
T̄ ,2

]
,

[
AT

11 AT
21

AT
12 AT

22

] [
ΣT̄ ,1

ΣT̄ ,2

]
+

[
ΣT̄ ,1

ΣT̄ ,2

] [
A11 A12
A21 A22

]
= −

[
CT

1 C1 CT
1 C2

CT
2 C1 CT

2 C2

]
(8)

+

[
GT

T̄ ,1
GT̄ ,1 GT

T̄ ,1
GT̄ ,2

GT
T̄ ,2

GT̄ ,1 GT
T̄ ,2

GT̄ ,2

]
.

The TLBT reduced system that approximates (1) is given by

ẋr(t) = A11xr(t) + B1u(t), xr(0) = 0, yr(t) = C1xr(t).

The goal of this section is to find a bound for the error between
y and yr. Since we have zero initial conditions for both the
reduced and the full system, we have the following representa-
tions for the outputs

y(t) = Cx(t) = C
∫ t

0
eA(t−s) Bu(s)ds,

yr(t) = C1xr(t) = C1

∫ t

0
eA11(t−s) B1u(s)ds,

where t ∈ [0, T̄ ]. To find a first representation for the error
bound, arguments from [3, 7, 15] are used, where a generalized
H2 error bound for stochastic systems has been derived. Some
easy rearrangements yield a first error estimate

‖y(t) − yr(t)‖2

=

∥∥∥∥∥∥C
∫ t

0
eA(t−s) Bu(s)ds −C1

∫ t

0
eA11(t−s) B1u(s)ds

∥∥∥∥∥∥
2

≤

∫ t

0

∥∥∥∥(C eA(t−s) B −C1 eA11(t−s) B1

)
u(s)

∥∥∥∥
2

ds

≤

∫ t

0

∥∥∥C eA(t−s) B −C1 eA11(t−s) B1
∥∥∥

F ‖u(s)‖2 ds.

By the Cauchy Schwarz inequality it holds that

‖y(t) − yr(t)‖2

≤

(∫ t

0

∥∥∥C eA(t−s) B −C1 eA11(t−s) B1
∥∥∥2

F ds
) 1

2
(∫ t

0
‖u(s)‖22 ds

) 1
2

.

Using substitution, the definition of the Frobenius norm and
the linearity of the integral, we obtain∫ t

0

∥∥∥C eA(t−s) B −C1 eA11(t−s) B1
∥∥∥2

F ds

=

∫ t

0

∥∥∥C eAs B −C1 eA11 s B1
∥∥∥2

F ds

≤

∫ T̄

0

∥∥∥C eAs B −C1 eA11 s B1
∥∥∥2

F ds

=

∫ T̄

0
tr

(
C eAs BBT eAT s CT

)
ds

+

∫ T̄

0
tr

(
C1 eA11 s B1BT

1 eAT
11 s CT

1

)
ds

− 2
∫ T̄

0
tr

(
C eAs BBT

1 eAT
11 s CT

1

)
ds

= tr
(
CPT̄ CT

)
+ tr

(
C1PT̄ ,rC

T
1

)
− 2 tr

(
CPT̄ ,MCT

1

)
,

2
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where PT̄ :=
∫ T̄

0 eAs BBT eAT s ds, PT̄ ,r :=
∫ T̄

0 eA11 s B1BT
1 eAT

11 s ds

and PT̄ ,M :=
∫ T̄

0 eAs BBT
1 eAT

11 s ds. Matrix-valued integrals of
this form can under some conditions be expressed as unique
solutions of matrix equations.

Lemma 2.1. Let A1 ∈ Rn×n, A2 ∈ Rr×r with Λ(A1)∩−Λ(A2) =

∅ and B1 ∈ Rn×m, B2 ∈ Rr×m. Then,

X =

∫ T̄

0
eA1 s B1BT

2 eAT
2 s ds

solves the Sylvester equation

A1X + XAT
2 = −B1BT

2 + eA1T̄ B1BT
2 eAT

2 T̄ .

Proof. The integral is equivalent to

vec (X) =

∫ T̄

0
vec

(
eA1 s B1BT

2 eAT
2 s
)

ds

=

∫ T̄

0
eA2 s ⊗ eA1 s ds vec

(
B1BT

2

)
=

∫ T̄

0
e(Ir⊗A1+A2⊗In)s ds vec

(
B1BT

2

)
,

where we used [12, Theorem 10.9]. The matrixA := Ir ⊗ A1 +

A2 ⊗ In is nonsingular and it holds that

vec (X) = A−1
(
eAT̄ −Inr

)
vec

(
B1BT

2

)
⇔ A vec (X) =

(
eAT̄ −Inr

)
vec

(
B1BT

2

)
and the claim follows after de-vectorization.

Remark. The result of the above Lemma is also a consequence
of the product rule. Setting g1(t) := eA1t B1 and g2(t) := BT

2 eAT
2 t,

it holds that

g1(T̄ )g2(T̄ ) − g1(0)g2(0) =

∫ T̄

0
g1(s)dg2(s) +

∫ T̄

0
dg1(s)g2(s)

=

∫ T̄

0
g1(s)g2(s)ds AT

2 + A1

∫ T̄

0
g1(s)g2(s)ds,

since dg2(s) = g2(s)AT
2 ds and dg1(s) = A1g1(s)ds.

The time-limited Gramians (5) also exists for unstable systems.
Therefore, it is, e.g. in [1, Section 7.6.5], [13], discussed to
use TLBT to reduce unstable systems. The above Lemma fur-
ther reveals that in this situation and if Λ(A) ∩ −Λ(A) = ∅,
the time-limited Gramians can still be obtained by solving the
time-limited Lyapunov equations (6) which is important from
a numerical point of view. In this work, however, we will not
pursue the reduction of unstable systems further.

From now on we assume that Λ(A11)∩−Λ(A11) = ∅ and Λ(A)∩
−Λ(A11) = ∅, implying by Lemma 2.1 that the matrices PT̄ ,r and
PT̄ ,M are the unique solutions of

A11PT̄ ,r + PT̄ ,rAT
11 = −B1BT

1 + FT̄ ,rFT
T̄ ,r, (9a)

APT̄ ,M + PT̄ ,MAT
11 = −BBT

1 + FT̄ FT
T̄ ,r, (9b)

where FT̄ ,r := eA11T B1. We have, thus, established the follow-
ing result.

Theorem 2.2. Let Λ(A11)∩−Λ(A11) = ∅ and Λ(A)∩−Λ(A11) =

∅. Then the following error bound holds for the reduced system
Σr generated by TLBT

max
t∈[0,T̄ ]

‖y(t) − yr(t)‖2 ≤ ε ‖u‖L2
T̄
,

ε :=
(
tr

(
CPT̄ CT

)
+ tr

(
C1PT̄ ,rC

T
1

)
− 2 tr

(
CPT̄ ,MCT

1

)) 1
2 ,

(10)

where ‖u‖2L2
T̄

:=
∫ T̄

0 u(s)T u(s)ds.

The representation (10) of the error bound has the same struc-
ture as the one computed in the stochastic framework [3, 7, 15]
but it is clearly different since solutions of different matrix equa-
tions enter in the time-limited case. The bound in (10) can be
used to some extent for practical computations. It only requires
to solve the matrix equations in (9) since PT̄ is already known
from the balancing procedure. The matrix equations (9) are not
expensive since PT̄ ,r usually is a small matrix and PT̄ ,M only has
a few columns.

Moreover, the error bound (10) is not restricted to TLBT and
can essentially also be used for other model order reduction
schemes provided the spectral conditions for A, A11 in Theo-
rem 2.2 hold.
The next theorem provides an alternative representation of
this bound. It can be expressed with the help of ΣT̄ ,2 =

diag(σT̄ ,r+1, . . . , σT̄ ,n) which is the matrix of truncated time-
limited singular values. In [3, 7, 15] representations of gen-
eralized H2 error bounds have been shown using the truncated
HSVs of the underlying stochastic system. However, the ma-
trix equations (6) and (9) have a very different structure than
the generalized equations for stochastic system. Therefore, we
need to apply other techniques in order to obtain the result be-
low. This result also shows essential differences in its structure
compared to the stochastic case.

Theorem 2.3. Using the coefficients of the balanced realiza-
tion of the system, the error bound in (10) can be expressed as
follows:

tr
(
CPT̄ CT + C1PT̄ ,rC

T
1 − 2CPT̄ ,MCT

1

)
= tr(ΣT̄ ,2(B2BT

2 + 2PT̄ ,M,2AT
21)) − 2 tr(GT

T̄ ,1GT̄ PT̄ ,M)

+ tr(GT
T̄ ,1GT̄ ,1PT̄ ,r) + tr(FT̄ ,1FT

T̄ ,1ΣT̄ ,1)

− tr((FT̄ ,1 − FT̄ ,r)(FT̄ ,1 − FT̄ ,r)
T ΣT̄ ,1),

where PT̄ ,M,2 are the last n − r rows of S PT̄ ,M with S being the
balancing transformation.

Proof. By selecting the left and right upper block of (8), we
have

AT
11ΣT̄ ,1 + ΣT̄ ,1A11 = −CT

1 C1 + GT
T̄ ,1GT̄ ,1 (11)

AT
21ΣT̄ ,2 + ΣT̄ ,1A12 = −CT

1 C2 + GT
T̄ ,1GT̄ ,2. (12)

3
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We introduce the reduced order system observability Gramian
QT̄ ,r :=

∫ T̄
0 eAT

11 s CT
1 C1 eA11 s ds which satisfies

AT
11QT̄ ,r + QT̄ ,rA11 = −CT

1 C1 + GT
T̄ ,rGT̄ ,r (13)

with GT̄ ,r := C1 eA11T̄ . We make use of the integral represen-
tations of PT̄ and QT̄ and apply properties of the trace. Hence,
we have

tr(CPT̄ CT ) =

∫ T̄

0
tr(C eAs BBT eAT s CT )ds

=

∫ T̄

0
tr(BT eAT s CT C eAs B)ds = tr(BT QT̄ B).

Using the balancing transformation S and the partition of S B,
we obtain

tr(BT QT̄ B) = tr(BT S T S −T QT̄ S −1S B) = tr(BT S T ΣT̄ S B)

= tr(BT
1 ΣT̄ ,1B1) + tr(BT

2 ΣT̄ ,2B2).

The partition of CS −1 and S PT̄ ,M =
[ PT̄ ,M,1

PT̄ ,M,2

]
yield

tr(CPT̄ ,MCT
1 ) = tr(CS −1S PT̄ ,MCT

1 )

= tr(C1PT̄ ,M,1CT
1 ) + tr(C2PT̄ ,M,2CT

1 ).

For ε in (10) this leads to

ε2 = tr(BT
1 ΣT̄ ,1B1) + tr(BT

2 ΣT̄ ,2B2) + tr(C1PT̄ ,rC
T
1 ) (14)

− 2 tr(C1PT̄ ,M,1CT
1 ) − 2 tr(C2PT̄ ,M,2CT

1 ).

We insert equation (12) which yields

tr(C2PT̄ ,M,2CT
1 ) = tr(PT̄ ,M,2CT

1 C2)

= − tr(PT̄ ,M,2(AT
21ΣT̄ ,2 + ΣT̄ ,1A12))

+ tr(PT̄ ,M,2GT
T̄ ,1GT̄ ,2)

= − tr(ΣT̄ ,2PT̄ ,M,2AT
21) − tr(ΣT̄ ,1A12PT̄ ,M,2)

+ tr(GT
T̄ ,1GT̄ ,2PT̄ ,M,2).

We multiply (9b) with S from the left and evaluate the resulting
upper block of the equation:

−A12PT̄ ,M,2 = A11PT̄ ,M,1 + PT̄ ,M,1AT
11 + B1BT

1 − FT̄ ,1FT
T̄ ,r.

Hence, we have

− 2 tr(C2PT̄ ,M,2CT
1 ) =

2[tr(ΣT̄ ,1FT̄ ,1FT
T̄ ,r) − tr(ΣT̄ ,1(B1BT

1 + A11PT̄ ,M,1 + PT̄ ,M,1AT
11))]

+ 2[tr(ΣT̄ ,2PT̄ ,M,2AT
21) − tr(GT

T̄ ,1GT̄ ,2PT̄ ,M,2)].

Using equation (11), we obtain

tr(ΣT̄ ,1(A11PT̄ ,M,1 + PT̄ ,M,1AT
11)) = tr(PT̄ ,M,1(ΣT̄ ,1A11 + AT

11ΣT̄ ,1))

= tr(PT̄ ,M,1(GT
T̄ ,1GT̄ ,1 −CT

1 C1)),

so that

− 2 tr(C2PT̄ ,M,2CT
1 )

= 2[tr(ΣT̄ ,2PT̄ ,M,2AT
21) − tr(BT

1 ΣT̄ ,1B1) + tr(C1PT̄ ,M,1CT
1 )]

+ 2[tr(ΣT̄ ,1FT̄ ,1FT
T̄ ,r) − tr(GT

T̄ ,1GT̄ PT̄ ,M)].

Inserting this result into equation (14) provides

ε2 = tr(ΣT̄ ,2(B2BT
2 + 2PT̄ ,M,2AT

21))

+ 2[tr(ΣT̄ ,1FT̄ ,1FT
T̄ ,r) − tr(GT

T̄ ,1GT̄ PT̄ ,M)]

+ tr(C1PT̄ ,rC
T
1 ) − tr(BT

1 ΣT̄ ,1B1).

With the integral representations of PT̄ ,r and QT̄ ,r it holds that

tr(C1PT̄ ,rC
T
1 ) =

∫ T̄

0
tr(C1 eA11 s B1BT

1 eAT
11 s CT

1 )ds

=

∫ T̄

0
tr(BT

1 eAT
11 s CT

1 C1 eA11 s B1)ds = tr(BT
1 QT̄ ,rB1).

So, we have

tr(C1PT̄ ,rC
T
1 ) − tr(BT

1 ΣT̄ ,1B1) = tr(B1BT
1 (QT̄ ,r − ΣT̄ ,1)).

Combining equations (11) and (13), we have

AT
11(QT̄ ,r − ΣT̄ ,1) + (QT̄ ,r − ΣT̄ ,1)A11

= GT
T̄ ,rGT̄ ,r −GT

T̄ ,1GT̄ ,1.
(15)

Inserting (9a) and (15) gives

tr(C1PT̄ ,rC
T
1 ) − tr(BT

1 ΣT̄ ,1B1)

= − tr((A11PT̄ ,r + PT̄ ,rAT
11 − FT̄ ,rFT

T̄ ,r)(QT̄ ,r − ΣT̄ ,1))

= − tr(PT̄ ,r((QT̄ ,r − ΣT̄ ,1)A11 + AT
11(QT̄ ,r − ΣT̄ ,1)))

+ tr(FT̄ ,rFT
T̄ ,r(QT̄ ,r − ΣT̄ ,1))

= tr(PT̄ ,r(G
T
T̄ ,1GT̄ ,1 −GT

T̄ ,rGT̄ ,r)) + tr(FT̄ ,rFT
T̄ ,r(QT̄ ,r − ΣT̄ ,1)).

Using again the integral representations of PT̄ ,r and QT̄ ,r, we
see that

tr(PT̄ ,rG
T
T̄ ,rGT̄ ,r) =

∫ T̄

0
tr(eA11 s B1BT

1 eAT
11 s eAT

11T̄ CT
1 C1 eA11T̄ )ds

=

∫ T̄

0
tr(C1 eA11 s eA11T̄ B1BT

1 eAT
11T̄ eAT

11 s CT
1 )ds

=

∫ T̄

0
tr(BT

1 eAT
11T̄ eAT

11 s CT
1 C1 eA11 s eA11T̄ B1)ds

= tr(FT
T̄ ,rQT̄ ,rFT̄ ,r) = tr(FT̄ ,rFT

T̄ ,rQT̄ ,r).

Hence, we have

tr(C1PT̄ ,rC
T
1 ) − tr(BT

1 ΣT̄ ,1B1) = tr(PT̄ ,rG
T
T̄ ,1GT̄ ,1) − tr(FT̄ ,rFT

T̄ ,rΣT̄ ,1).

The error bound ε2 then is

ε2 = tr(ΣT̄ ,2(B2BT
2 + 2PT̄ ,M,2AT

21))

4
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+ 2[tr(ΣT̄ ,1FT̄ ,1FT
T̄ ,r) − tr(GT

T̄ ,1GT̄ PT̄ ,M)]

+ tr(PT̄ ,rG
T
T̄ ,1GT̄ ,1) − tr(FT̄ ,rFT

T̄ ,rΣT̄ ,1).

Since

2 tr(ΣT̄ ,1FT̄ ,1FT
T̄ ,r) = 2

〈
Σ

1
2

T̄ ,1
FT̄ ,r,Σ

1
2

T̄ ,1
FT̄ ,1

〉
F

=

∥∥∥∥∥Σ 1
2

T̄ ,1
FT̄ ,r

∥∥∥∥∥2

F
+

∥∥∥∥∥Σ 1
2

T̄ ,1
FT̄ ,1

∥∥∥∥∥2

F
−

∥∥∥∥∥Σ 1
2

T̄ ,1
(FT̄ ,1 − FT̄ ,r)

∥∥∥∥∥2

F
,

we obtain

ε2 = tr(ΣT̄ ,2(B2BT
2 + 2PT̄ ,M,2AT

21))

+ tr(ΣT̄ ,1FT̄ ,1FT
T̄ ,1)) − 2 tr(PT̄ ,MGT

T̄ ,1GT̄ ) + tr(PT̄ ,rG
T
T̄ ,1GT̄ ,1)

− tr(ΣT̄ ,1(FT̄ ,1 − FT̄ ,r)(FT̄ ,1 − FT̄ ,r)
T )

which is the claimed result.

We now discuss the impact of the remainder term RT̄ :=
−2 tr(GT

T̄ ,1
GT̄ PT̄ ,M) + tr(GT

T̄ ,1
GT̄ ,1PT̄ ,r) + tr(FT̄ ,1FT

T̄ ,1
ΣT̄ ,1) of the

error bound in Theorem 2.3. Every summand of RT̄ can be
bounded from above as follows:

tr(GT
T̄ ,1GT̄ PT̄ ,M) ≤

∥∥∥GT̄ ,1

∥∥∥
F ‖GT̄ ‖F

∥∥∥PT̄ ,M

∥∥∥
F ,

tr(FT̄ ,1FT
T̄ ,1ΣT̄ ,1) =

∥∥∥∥∥Σ 1
2

T̄ ,1
FT̄ ,1

∥∥∥∥∥2

F
≤

∥∥∥FT̄ ,1

∥∥∥2
F tr(ΣT̄ ,1),

tr(GT
T̄ ,1GT̄ ,1PT̄ ,r) =

∥∥∥∥∥P
1
2

T̄ ,r
GT

T̄ ,1

∥∥∥∥∥2

F
≤

∥∥∥GT̄ ,1

∥∥∥2
F tr(PT̄ ,r).

If A is asymptotically stable, then the norms
∥∥∥FT̄ ,1

∥∥∥
F ,

∥∥∥GT̄ ,1

∥∥∥
F

and ‖GT̄ ‖F decay exponentially fast, i.e., they are bounded by
c1 e−c2T̄ , where c1, c2 > 0 are suitable constants.

Now, if the terminal time T̄ is sufficiently large, the term RT̄
is small and hence it can be neglected in the error bound. For
very stable systems (c2 is large), T̄ can be chosen small and
for slowly decaying systems (small constant c2), T̄ needs to be
large in order to have a sufficiently small RT̄ . If the remainder
term RT̄ is small, it can be concluded from Theorem 2.3 that
TLBT works well if the truncated time-limited singular values
σT̄ ,r+1, . . . , σT̄ ,n are small.

For non-stable systems the remainder term RT̄ in the error
bound is expected to be large (exponential growth) which might
be an indicator for a large error when applying TLBT to these
systems.

Remark. The representation in Theorem 2.3 is not appropri-
ate to determine the error bound since B2 and A21 are never
computed in practice. However, for asymptotically stable sys-
tems (1) (RT̄ is expected to be small), Theorem 2.3 suggests to
select the reduced order dimension r such that σT̄ ,r+1, . . . , σT̄ ,n
are small in order to guarantee a good approximation. This
is also in line with experimental observations. Consequently,
looking at the time-limited singular values instead of comput-
ing the error bound (10) provides an alternative way to find a
suitable reduced order dimension.

3. Practical Considerations

Here we review the practical execution of TLBT for large-scale
systems and evaluate the usefulness of the error bound (10)
in actual computations. Directly solving the Lyapunov equa-
tions (2), (6) is infeasible for large dimensions. Therefore,
for large-scale systems it has become common practice to ap-
proximate the Gramians by low-rank factorizations, e.g., P∞ ≈
Z∞ZT

∞ with low-rank factors Z∞ ∈ Rn×h, rank(Z∞) = h � n,
and similarly for the other Gramians. This is justified by the
often observed and proven fast singular value decay of solu-
tions of Lyapunov equations [11], especially if p,m � n. For
this situation there exist efficient algorithms [4, 16] employ-
ing techniques from sparse numerical linear algebra for com-
puting the low-rank solution factors. For the Lyapunov equa-
tions (6) in TLBT, a rational Krylov subspace method [6] is
proposed in [13] that is also able to deal with the arising ma-
trix exponentials. With low-rank approximations PT̄ ≈ ZPT̄

ZT
PT̄

,
QT̄ ≈ ZQT̄

ZT
QT̄

, one computes the SVD XΣYT = ZT
QT̄

ZPT̄
and

projection matrices V = ZPT̄
Y1Σ

−
1
2

1 and W := ZQT̄
X1Σ

−
1
2

1 , where
Σ1 contains the largest r singular values and X1,Y1 the associ-
ated singular vectors. The reduced order model Σr is obtained
via A11 := WT AV , B1 := WT B, C1 := CV which makes it clear
that some of the quantities of the bound in Theorem 2.3 are not
accessible in practical computations.
However, we may nevertheless acquire an approximation
of (10). For this tr

(
CPT̄ CT

)
can be approximated by

tr
(
CZPT̄

ZT
PT̄

CT
)

= ‖CZPT̄
‖2F , tr

(
C1PT̄ ,rCT

1

)
requires solving

the r dimensional Lyapunov equation (9a), and tr
(
CPT̄ ,MCT

1

)
requires the solution of the Sylvester equation (9b), which
amounts to solve r linear systems of equations defined by A−αI,
α ∈ Λ(A11) see, e.g., [10, Algorithm 7.6.2]. Unlike the error
bound in BT (3), the TLBT bound (10) cannot be easily used to
adjust the reduced order because when changing r to, say, r + d,
d ≥ 1, the solutions of (9) have to be computed entirely from
scratch. Especially because of the Sylvester equation (9b), this
would be increasingly expensive.
TLBT can with minor adjustments be applied to generalized
state-space systems

Σ : Eẋ(t) = Ax(t) + Bu(t), x(0) = 0, y(t) = Cx(t) (16)

with E nonsingular. In that case the time-limited Gramians are
PT̄ , ET QT̄ E, where PT̄ , QT̄ solve the generalized Lyapunov
equations

APT̄ ET + EPT̄ AT + BBT − FE
T̄ (FE

T̄ )T = 0,

AT QT̄ E + ET QT̄ AT + CT C − (GE
T̄ )T GE

T̄ = 0
(17)

with FE
t := E eE−1At E−1B and GE

t := C eE−1At, see [13]. Hence,
the derivations of Section 2 can be carried out as before by us-
ing the quantities in (17). In particular, in the constant in the
bound (10), PT̄ ,M has to be replaced by the solution PE

T̄ ,M
of

APE
T̄ ,M + EPE

T̄ ,MA11 + BB̃1 − FE
T̄ (FE

T̄ ,r)
T = 0,

5
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Figure 1. Results obtained by BT and TLBT for small rail model (n = 1357,
T̄ = 100, u(t) = 5017, r = 40).

where S E−1B =

[
B̃1
B̃2

]
, FE

T̄ ,r
:= eA11T̄ B̃1. Here we employed

that the mass matrix E is transformed to the identity in (TL)BT.
The transformation matrices V,W for TLBT are constructed as
before but using the SVD XΣYT = ZT

QT̄
EZPT̄

, where ZPT̄
, ZQT̄

are low-rank solution factors of (17).

4. Numerical Experiments

All following computations are carried out in MATLAB R©

8.0.0.783 on a Intel R©Xeon R©CPU X5650 (2.67GHz, 48 GB
RAM). We use the rail model from the Oberwolfach benchmark
collection1 which represents a finite element discretization of a
cooling process of a steel rail. It provides symmetric posi-
tive and negative definite matrices M and, respectively, A, as
well as B ∈ Rn×7, C ∈ R6×n. We begin with the coarsest dis-
cretization level with n = 1357 which still allows to compute
the matrix exponentials and Lyapunov solutions by direct meth-
ods. The final time is T̄ = 100, the input chosen as u(t) = 5017
(1h := [1, . . . , 1]T ∈ Rh), and the time integration is carried out
using an implicit midpoint rule until T = 400 with a fixed time
step δt = 0.04. We generate reduced order models of dimension
r = 40 by both BT and TLBT. Figure 1 shows the obtained er-
rors ‖y(t)−yr(t)‖2 and the bound (10), clearly indicating that the
proposed bound is valid. Of course, after leaving [0, T̄ ], (10) is
no longer valid and ‖y(t)− yr(t)‖2 > ε ‖u‖L2

T̄
for some t > T̄ . We

also see that ordinary BT provides less accurate reduced order
models. It is important to point out that almost identical results
were obtained if low-rank Gramian approximations computed
by rational Krylov subspace methods [6, 13] are used. In par-
ticular, running the method for the restricted Gramians with the
same settings as in [13] led to |εapprox. − εexact| ≈ 1.6 · 10−9 and
visually indistinguishable error norms ‖y(t) − yr(t)‖2.
We continue by investigating the influence of the final time T̄
and the reduced order r to max

t∈[0,T̄ ]
‖y(t) − yr(t)‖2 and (10). The

results are visualized in Figure 2. For the top plot we fixed
T̄ = 100 and varied the reduced order r = 10, . . . , 100. Appar-
ently, TLBT achieves smaller errors than BT for increasing r.

1http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark
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Figure 2. Influence of r (top) and T̄ (bottom) for small rail model.

After some value of r, the bound (10) appears to stagnate and
fails to capture the decreasing behavior of the error. The bottom
plot shows the results for a fixed r = 50 but different final times
T̄ = 50, . . . , 300 which for TLBT requires, naturally, comput-
ing (approximations of) the matrix exponentials and PT̄ , QT̄ for
each value of T̄ . The results indicate that increasing T̄ also in-
creases the achieved error and the bound (10) appears to capture
this behavior. As investigated for TLBT in [13], for even larger
final times T̄ , TLBT will at some point produce errors which
are very close to those of BT.
Next we experiment with a larger version of the rail model
with n = 79841. This size requires using low-rank so-
lution factors of the Gramians. We set u(t) = u∗(t) :=
[sin(4tπ/100), cos(tπ/100), 3, e−2t, cos(t/100) e−t, 1

1+t2 ,
1

1+
√

t
]T

and T̄ = 150. Motivated by Theorem 2.3, we experiment
with an automatic determination of the reduced order r s.t.∑n̂

i=r+1 σi,T̄ ≤ τ for some specified tolerance 0 < τ � 1 and
n̂ := min(rank(ZPT̄

), rank(ZQT̄
)), i.e., similar as in unrestricted

BT. The obtained reduced orders r in BT and TLBT, as well
as the largest errors in [0, T̄ ] and (10) are shown in Figure 3
against different values τ = 10−7, . . . , 10−2.
TLBT again achieves smaller errors than BT and approximately
two orders of magnitude smaller than τ. Note that the obtained
reduced orders r of TLBT are for τ = 10−4, 10−3, 10−2 slightly
larger than those of BT. This experiment nevertheless suggests
that choosing the order r in TLBT automatically by looking at
the time-limited singular values is as reliable as in BT.

5. Conclusion

In this paper, we have studied time-limited balanced trunca-
tion, an alternative to conventional balanced truncation. This
scheme can outperform the conventional ansatz when seeking

6
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Figure 3. Automatically adjusted orders r, maximum errors, bound (10) against
tolerances τ for the larger rail model (n = 79841, T̄ = 150, u(t) = u∗(t)).

for a good reduced order model on a certain finite time inter-
val but, so far, no theory on error bounds has been established.
Therefore, we proved an output error bound in this work gener-
alizing theH2 bound known from the infinite time horizon case.
We provided two different representations for the bound. One
is appropriate for practical computations, whereas the other one
shows that the time-limited singular values can be used as well
in order to determine a suitable reduced order dimension. This
paper also contains numerical experiments in which we pre-
sented the performance of the error bound.
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