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Abstract—We propose a novel approach for the optimization of the H2

norm for time-delay systems, grounded in its characterization in terms of
the delay Lyapunov matrix. We show how the partial derivatives of the
delay Lyapunov matrix with respect to system or controller parameters
can be semi-analytically computed, by solving a delay Lyapunov equation
with inhomogeneous terms. It allows us to obtain the gradient of the
H2 norm and in turn to use it in a gradient based optimization
framework. We demonstrate the potential of the approach on two classes
of problems, the design of robust controllers and the computation of
approximate models of reduced dimension. Thereby a major advantage
is the flexibility: in the former class of applications the order or structure
of the controller can be prescribed, including recently proposed delay-
based controllers. For the latter class of applications, approximate models
described by both ordinary and delay differential equations (e.g., inhering
the structure of the original system) can be synthesized.

Index Terms—Time-delay systems, H2 norm optimization, delay Lya-
punov matrix, model reduction.

I. INTRODUCTION

One of the main objectives of a control design is to achieve given
system performance specifications. The H2 norm, which provides a
measure of robustness with respect to noise or external disturbances
(see, for instance, [1]) is a widely used performance measure. The
fact that under mild conditions it is a smooth function of the
system parameters makes it suitable for optimization purposes. In
particular, the optimization of H2 norms has proven to be useful
in the synthesis of fixed-order dynamic optimal controllers/reduced
order observers for high dimension systems [2]. It has also been
successfully applied to the optimal model reduction problem, which
consists in approximating a high dimension system by one of lower
dimension (see, for example, [3] and [4]).

In recent years, the study of the H2 norm of delay differential
equations has received some attention. See, for instance, [5], [6],
and for more detailed explanations [7] and [8]. In [9] the H2 norm
for time-delay systems is computed by using an auxiliary delay
free system, obtained by spectral discretization. The important result
presented by [10] and extended in [11] is the starting point of the
present contribution. There, it is proved, in analogy with the delay
free case, that the H2 norm can be expressed in terms of the delay
Lyapunov matrix. There are basically two approaches for computing
this matrix. One of them, called the semi-analytic approach, reduces
to the computation of the solution of a set of differential equations
with boundary conditions of mixed type obtained from the so-called
dynamic, symmetry and algebraic properties [12], while the other,
suitable when the delays are non-commensurate, is based on the
discretization of the corresponding equations that results from taking
polynomials as basis functions, [13], [10]. As in this paper we only
consider one delay, the presented results are in line with and build
on the semi-analytic approach. It is worthy mentioning that the
results of this contribution can be trivially extended to the multiple
commensurate delays case.
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In this paper, we propose a general scheme for the optimization of
the H2 norm for time-delay systems based on the results introduced
in [10]. Two features makes thisH2 norm characterization in terms of
the delay Lyapunov matrix particularly tractable from an optimization
perspective. First, as we shall see, the H2 norm is, under mild
conditions, a smooth function of system or controller parameters.
Second, an exact, computable objective function is available (instead
of a possibly conservative upper bound). The main results of the
paper concern the mathematical characterization of the sensitivity of
the H2 norm and the associated delay Lyapunov matrix, along with
computational procedures. Equally important is the demonstration
of the potential of the obtained results in terms of control design
and approximation. In particular, the main contributions can be
summarized as follows.

1) The computation of the partial derivatives of the delay Lya-
punov matrix with respect to matrix system parameters is
obtained from the basic properties of this matrix.

2) The computation of the gradient of the H2 norm is described,
allowing the optimization of the H2 norm within a (standard)
gradient based optimization framework.

3) The approach is applied to the problems of controller synthesis
and to the computation of H2 optimal approximate models of
reduced dimension.

Note that both application problems are considered as very challeng-
ing. Although the proposed approach is illustrated with the synthesis
of static controllers, the methodology can be trivially extended in
order to construct dynamic controllers of fixed order. Even for
finite-dimensional systems the design of fixed-order controllers with
dimension lower than the dimension of the plant typically gives rise to
non-convex optimization problems, when using both time-domain and
frequency domain methods, see, e.g., [14], and this carries over to the
infinite-dimensional delay setting. Also results on the approximation
of delay systems are scarce and many problems related to the latter
are still considered to be unsolved [15].

For the former application the H2 norm of the closed loop system
is directly minimized as a function of the parameters of the controller.
This approach complements the work of [16], [17], where stabilizing
controllers are determined based on optimizing the spectral abscissa
(the supremum of the real parts of the characteristic roots), and the
work reported in [18] on the H∞ optimization problem. From an
optimization perspective a major difference is that, in contrast to the
H2 norm, the spectral abscissa and the H∞ norm are in general
non-smooth functions of the system parameters (not everywhere
differentiable, even not everywhere Lipschitz continuous). The direct
optimization approach allows us to synthesize controllers with a
prescribed structure or order (dimension). It is also possible to fix
elements of the controller matrices, allowing to impose sparsity or an
additional structure, e.g., a PID-like structure or, as we shall illustrate,
a delay based controller.

In the latter application, approximate models are computed by
minimizing the H2 norm of the approximation error on the transfer
function, which is conceptually similar to the pioneering work of
[19] and the references therein. The differences are that in [19] the
H∞ norm of the error is considered and that sufficient conditions
guaranteeing a bound on the error, along with the approximate model,
are obtained in an LMI framework. The adopted direct optimization
approach has as main advantages a large flexibility in imposing
structure on the approximate model and that local optimality of the
computed models can be guaranteed, at the price that the underlying
optimization problem is in general non-convex.

For sake of completeness, we summarize existing work on model
reduction. Results related to the reduction of linear time-delay sys-
tems to finite-dimensional LTI (Linear Time Invariant) systems are
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based on interpolation/moment matching and grounded in either the
Krylov framework [20] or the data driven moment Loewner frame-
work [21] (see also [22] for the generalization of moment matching to
nonlinear systems). Structure preserving reduction approaches, where
the reduced model is also expressed in terms of a delay model,
include approaches based on position balancing [23], a feedback
interconnection interpretation of the system isolating the delay [24], a
generalization of the dominant pole algorithm [25], moment matching
[22] and the IRKA (Iterative Rational Krylov Algorithm) algorithm
[26].

The manuscript is organized as follows. In the next section, we
introduce basic definitions and concepts. The main result of this
paper is presented in Section III. There, we provide the formulas
for computing the partial derivatives of the delay Lyapunov matrix
and the gradient of the H2 norm. Based on this, the optimization
algorithm is introduced. Section IV is devoted to show the practical
relevance of the main result: the synthesis of optimal H2 controllers
is addressed in Section IV-A and the H2 optimal approximation
problem is presented in Section IV-B. Finally, we end the paper with
some remarks.

Throughout the paper we denote the space of Rn-valued piecewise
continuous functions on [−h, 0] by PC ([−h, 0],Rn). The trace of a
matrix A is represented by Tr(A). The symbol ⊗ stands for the
classical Kronecker product of two matrices A and B [27] and
vec(A) stands for the vectorization of a matrix A. The gradient of a
function f : Rn → R is represented by ∇f . The notation M ′(t, p)

and
∂M(t, p)

∂pi
stand for the matrix obtained by taking the partial

derivative of each element of a matrix M with respect to t and with
respect to the i− th element of vector p, respectively.

II. PRELIMINARIES

Consider a system of the form

ẋ(t) =A0(p)x(t) +A1(p)x(t− h) +B(p)v(t),

y(t) =C(p)x(t),
(1)

where the constant h > 0 is the delay, x ∈ Rn denotes the state
vector, v ∈ RnB and y ∈ RnC represent the input and output
of the system, respectively, and the vector p =

(
p1 . . . pm

)
denotes the system parameters. We assume that the matrix functions
A0(p), A1(p) ∈ Rn×n, B(p) ∈ Rn×nB , C(p) ∈ RnC×n smoothly
depend on the system parameters p. The transfer function is given
by

G(s, p) = C(p)
(
sI −A0(p)−A1(p)e−sh

)−1

B(p). (2)

We assume that t0 = 0 and that the initial condition ϕ of system
(1) belongs to the space PC ([−h, 0],Rn), such that existence and
uniqueness of solutions is guaranteed. Some basic definitions are
presented next.

Definition 1. System (1) is exponentially stable if there exist µ ≥ 1
and α > 0 such that, for v(t) = 0, the solution x(t, ϕ) satisfies

‖x(t, ϕ)‖ ≤ µe−αt sup
θ∈[−h,0]

‖ϕ(θ)‖, t ≥ 0.

The results presented in this work are focused on the H2 norm
of system (1). We consider strictly proper rational transfer functions,
i.e. the matrix D in the standard notation of system (1) is considered
to be zero, as otherwise the H2 norm is not finite. For exponentially
stable time-delay systems, it is defined as

‖G‖2 =

(
1

2π

∫ ∞
−∞

Tr (G∗(jω, p)G(jω, p)) dω.

)1/2

It is well known that the H2 norm for delay free systems can be
computed from the solution of a Lyapunov equation. In [10], it has
been proved that this is also possible for the time-delay case by using
the delay Lyapunov matrix U , which we define first.

Definition 2. [12] A parametrized matrix U(τ, p), τ ∈ [−h, h], is
a continuous delay Lyapunov matrix of system (1) associated with a
symmetric matrix W (p) if it satisfies the following three equalities:

U ′(τ, p) = U(τ, p)A0(p) + U(τ − h, p)A1(p), τ ∈ [0, h], (3)

UT (τ, p) = U(−τ, p), τ ∈ [−h, h], (4)

A0(p)TU(0, p) + U(0, p)A0(p)

+A1(p)TU(h, p) + U(−h, p)A1(p) = −W (p), (5)

called the dynamic, symmetry and algebraic properties, respectively.

The following result characterizes the H2 norm in terms of the
delay Lyapunov matrix.

Theorem 1. [10] If system (1) is exponentially stable, then its H2

norm satisfies

‖G‖22 =Tr
(
BT (p)U(0, p)B(p)

)
, (6)

where U(τ, p) is the delay Lyapunov matrix associated with the
matrix W (p) = CT (p)C(p).

As a consequence the computational schemes for the H2 norm
proposed in [10] rely on solving equations (3), (4) and (5). The
existence and uniqueness of a solution for these equations depends
on the so-called Lyapunov condition.

Theorem 2. [12] The delay Lyapunov matrix of system (1) associ-
ated with a symmetric matrix W (p) exists and is unique if and only
if the system satisfies the Lyapunov condition, i.e., the spectrum

Λ =
{
s ∈ C|det

(
sI −A0(p)−A1(p)e−sh

)
= 0
}

does not contain a root ŝ such that −ŝ also belongs to the spectrum.

Remark 1. The Lyapunov condition is always satisfied for an
exponentially stable system. Moreover, if the condition of Theorem 2
holds, the solution of the delay Lyapunov matrix exists and is unique
whether the system is stable or not.

For the time-delay case, the computation of the Lyapunov matrix is
not an algebraic problem anymore. Now, by using the semi-analytic
approach, the matrix U(τ, p), τ ∈ [−h, h], is computed as the
solution of a system of ordinary differential equations with boundary
conditions, deduced from equations (3), (4) and (5), [12]. For the
sake of completeness, we recall this result. Assume that the Lyapunov
condition holds and consider the vector

ξ(τ) =

(
vec(U(τ, p))

vec(U(τ − h, p))

)
, τ ∈ [0, h].

As a result of the vectorization of the previously referred system of
ordinary differential equations with boundary conditions, the solution
of ξ(τ), τ ∈ [0, h], is determined by

ξ(τ) = eL(p)τξ(0), τ ∈ [0, h], (7)

where

ξ(0) = −
(
M(p) +N(p)eL(p)h

)−1

w(p), (8)
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with matrices

w(p) =

(
0

vec(W (p))

)
,

L(p) =

(
AT0 (p)⊗ I AT1 (p)⊗ I
−I ⊗AT1 (p) −I ⊗AT0 (p),

)
,

M(p) =

(
I ⊗ I 0n×n ⊗ 0n×n

AT0 (p)⊗ I AT1 (p)⊗ I

)
,

N(p) =

(
0n×n ⊗ 0n×n −I ⊗ I
I ⊗AT1 (p) I ⊗AT0 (p)

)
.

(9)

The existence of the matrix inverse in (8) is guaranteed by the
assumption on the Lyapunov condition (see Theorem 2.10 in [12]).
The delay Lyapunov matrix U(τ, p), τ ∈ [−h, h], can be obtained
by the devectorization of ξ.

Finally, observe that equations (3), (4) and (5) can be seen as a
generalization of the algebraic Lyapunov equation of the delay free
case.

III. OPTIMIZATION OF THE H2 NORM

In this section, we present the main result of our contribution. We
first address smoothness properties of the delay Lyapunov matrix and
introduce the computation of the partial derivatives with respect to the
parameters of the system. Then, we show that the obtained formulae
allow us to easily compute the gradient of the squared H2 norm.
Finally, the H2 norm optimization algorithm is presented.

A. Sensitivity of the delay Lyapunov matrix

It is well known that in general the delay Lyapunov matrix U(τ, p)
is not smooth with respect to τ at τ = 0, having a discontinuity in
the derivative. However, in the next lemma, we state that it is smooth
with respect to the system parameters for τ ∈ [−h, h]. This property
is key in the subsequent results.

Lemma 1. Assume that the Lyapunov condition holds for parameters
p = p0. Then the function p 7→ U(τ, p) is smooth at p = p0 for every
τ on [−h, h].

Proof. As the eigenvalues are continuous with respect to the system
parameters p, the Lyapunov condition holds for a sufficiently small
vicinity of p0, which means that, by Theorem 2, the delay Lyapunov
matrix is well defined in a neighborhood of p0.

Since the Lyapunov condition holds, implying that M(p) +
N(p)eL(p)h is invertible at p = p0 and because matrices A0(p),
A1(p) and W (p) smoothly depend on parameters p, the initial vector
ξ(0) determined by (8) is well defined, and it smoothly depends on
p. Combining this result with expression (7), the smoothness of ξ(τ)
with respect to p at p = p0, hence of the delay Lyapunov matrix
U(τ, p) for any τ ∈ [−h, h], follows.

The fact that the delay Lyapunov matrix smoothly depends on p
allows us to state the next lemma.

Lemma 2. The delay Lyapunov matrix U(τ, p) associated with a
symmetric matrix W (p) satisfies the following equations:

∂U ′(τ, p)

∂pi
=
∂U(τ, p)

∂pi
A0(p) +

∂U(τ − h, p)

∂pi
A1(p)

+ U(τ, p)
∂A0(p)

∂pi
+ U(τ − h, p)

∂A1(p)

∂pi
, τ ∈ [0, h], (10)

∂UT (τ, p)

∂pi
=
∂U(−τ, p)

∂pi
, τ ∈ [−h, h], (11)

AT0 (p)
∂U(0, p)

∂pi
+
∂U(0, p)

∂pi
A0(p) +AT1 (p)

∂U(h, p)

∂pi

+
∂U(−h, p)

∂pi
A1(p) = −∂W (p)

∂pi
− ∂AT0 (p)

∂pi
U(0, p)

− U(0, p)
∂A0(p)

∂pi
− ∂AT1 (p)

∂pi
U(h, p)− U(−h, p)

∂A1(p)

∂pi
. (12)

Proof. Equations (10), (11) and (12), follow directly from Lemma 1
and equations (3), (4) and (5), respectively.

Consider for any i ∈ {1, . . . ,m} and τ ∈ [0, h] the matrices

Ypi(τ) =
∂U(τ, p)

∂pi
, Zpi(τ) =

∂U(τ − h, p)

∂pi
. (13)

Inspired by Lemma 2.7 in [12], we prove that the sensitivity of
the matrix U(τ, p) with respect to the parameters of the system
can be recast as the solution of a standard system of ordinary
differential equations with inhomogeneous terms depending on the
delay Lyapunov matrix U , and subjected to boundary conditions.

Lemma 3. The delay Lyapunov matrix U(τ, p), τ ∈ [0, h], associ-
ated with a symmetric matrix W (p) is such that the matrices in (13)
satisfy the system of matrix equations

Y ′pi(τ) = Ypi(τ)A0(p) + Zpi(τ)A1(p) (14)

+U(τ, p)
∂A0(p)

∂pi
+ U(τ − h, p)

∂A1(p)

∂pi
,

Z′pi(τ) = −AT0 (p)Zpi(τ)−AT1 (p)Ypi(τ) (15)

−∂A
T
0 (p)

∂pi
U(τ − h, p)− ∂AT1 (p)

∂pi
U(τ, p),

with boundary conditions

Ypi(0) = Zpi(h), (16)

AT0 (p)Zpi(h) + Ypi(0)A0(p) +AT1 (p)Ypi(h) + Zpi(0)A1(p)

= −∂W (p)

∂pi
− ∂AT0 (p)

∂pi
U(0, p)− U(0, p)

∂A0(p)

∂pi

− ∂AT1 (p)

∂pi
U(h, p)− U(−h, p)

∂A1(p)

∂pi
. (17)

Proof. Equation (14) follows from (10). Now, by (11), notice that

Zpi(τ) =

(
∂U(h− τ, p)

∂pi

)T
, τ ∈ [0, h].

Then, by using (10) and symmetry property (4), we get equation (15)
as follows:

Z′pi(τ) = −AT0 (p)

(
∂U(h− τ, p)

∂pi

)T
−AT1 (p)

(
∂U(−τ, p)

∂pi

)T
− ∂AT0 (p)

∂pi
UT (h− τ, p)

− ∂AT1 (p)

∂pi
UT (−τ, p) = −AT0 (p)Zpi(τ)−AT1 (p)Ypi(τ)

− ∂AT0 (p)

∂pi
U(τ − h, p)− ∂AT1 (p)

∂pi
U(τ, p).

The boundary condition (16) is deduced directly from the definition
of the matrices in (13) and equation (17) is obtained by rewriting
(12) in terms of Ypi(0) and Zpi(h).

In order to solve system (14)-(15) with boundary conditions (16)-
(17) for a solution (Ypi , Zpi), we vectorize the system and use the
Kronecker product property [27]

vec(EFH) = (HT ⊗ E) vec(F ), (18)
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where E, F and H are matrices of compatible dimensions.
We introduce the vector

ξpi(τ) =

(
vec(Ypi(τ))
vec(Zpi(τ))

)
, τ ∈ [0, h],

and provide an expression for its computation in the next lemma.

Lemma 4. Assume that the Lyapunov condition holds, then the next
equality is satisfied for τ ∈ [0, h], i = 1, . . . ,m:

ξpi(τ) = eL(p)τξpi(0) + eL(p)τ
∫ τ

0

e−L(p)s ∂L(p)

∂pi
ξ(s)ds. (19)

Here,
ξpi(0) =

(
M(p) +N(p)eL(p)h

)−1

γi(p), (20)

where

γi(p) = −∂w(p)

∂pi
− ∂N(p)

∂pi
ξ(h)− ∂M(p)

∂pi
ξ(0)

−N(p)eL(p)h
∫ h

0

e−L(p)s ∂L(p)

∂pi
ξ(s)ds,

with the vector ξ determined by (7) and matrices L(p), M(p), N(p),
given by (9).

Proof. By applying identity (18) to equations (14) and (15), we get

ξ′pi(τ) = L(p)ξpi(τ) +
∂L(p)

∂pi
ξ(τ). (21)

The solution of the above equation is clearly given by (19). We now
show that the initial condition is determined by equation (20). Using
(18) in the boundary conditions (16) and (17), we obtain

M(p)ξpi(0) +N(p)ξpi(h)

= −∂w(p)

∂pi
− ∂M(p)

∂p
ξ(0)− ∂N(p)

∂p
ξ(h). (22)

As (19) holds,

ξpi(h) = eL(p)hξpi(0) + eL(p)h
∫ h

0

e−L(p)s ∂L(p)

∂pi
ξ(s)ds.

Substituting the above equation into (22), we get(
M(p) +N(p)eL(p)h

)
ξpi(0) = γi(p).

Since the Lyapunov condition holds, as we mention before, the matrix
M(p)+N(p)eL(p)h is non-singular and we obtain the desired result.

Clearly, by devectorization of ξpi in equation (19), we get

Ypi(τ) =
∂U(τ, p)

∂pi
, τ ∈ [0, h], i = 1, . . . ,m.

B. The gradient of the H2 norm

The gradient of the H2 norm, which plays a key role in the
optimization process, constitutes a measure of the sensitivity of the
norm with respect to small parameter variations. The first two terms
in the Taylor’s series of ‖G(·, p)‖22 around p = ρ are given by

‖G(·,ρ)‖22 +

m∑
i=1

∂

∂pi
‖G(·, p)‖22

∣∣∣∣
p=ρ

(pi − ρi)

= ‖G(·,ρ)‖22 + ∆p
(
∇‖G(·,ρ)‖22

)
,

with ∆p = p−ρ. A formula for computing it is presented in the next
theorem. It is a straightforward consequence of Theorem 1 and of the
computation of the matrix ∂U(0,p)

∂pi
, i = 1, . . . ,m, which follows from

Lemma 4.

Theorem 3. Let U(0, p) be the delay Lyapunov matrix associated
with matrix CT (p)C(p). The gradient of the squared H2 norm of
system (1) with respect to p is given by

∇‖G‖22 =
2Tr

(
∂BT (p)
∂p1

U(0, p)B(p)
)

+Tr

(
BT (p)

∂U(0, p)
∂p1

B(p)
)

...

2Tr

(
∂BT (p)
∂pm

U(0, p)B(p)
)

+Tr

(
BT (p)

∂U(0, p)
∂pm

B(p)
)
.

In what follows we briefly discuss some computational issues. The
computation of the H2 norm only depends on the matrix U(τ, p) at
τ = 0 (or ξ(0)) , therefore its gradient computation only requires
∂U(0,p)
∂pi

, obtained from the devectorization of ξpi(0). However, one
still needs m derivatives of U(0, p) with respect to the parameters.

Let us now discuss the computational complexity of obtaining the
H2 norm and its gradient.
• The computation of ξ(0) using (8) and the computation of
ξpi(0), i = 1, . . . ,m, using (20) rely on solving linear systems
of equations with the same system matrix M(p) +N(p)eL(p)h.
As a consequence, when using a direct solver, the factorization
of this matrix needs to be done only once. Since the matrix
has dimensions n2 × n2, the computational cost of solving the
systems of equations amounts to O(n6) elementary operations
for the factorization phase, and O((m+1)n4) operations for the
substitution phases (if no problem-specific structure or sparsity
is exploited).

• To construct the system matrix in a preliminary phase, the com-
putation of the matrix exponential requires O(n6) operations.
To obtain the right-hand sides γi(p), we need to evaluate, for
i = 1, . . . ,m, ∫ h

0

eL(p)(h−s) ∂L(p)

∂pi
ξ(s)ds.

The most efficient way to do so consists of numerically solving
differential equation (21) with zero initial condition at t = 0, on
the interval [0, h]. By using a Runge-Kutta integration scheme
with grid points θk, k = 1, . . . ,M , and by exploiting the
Kronecker structure of L in the matrix-vector products (O(n3)
instead of O(n4) operations per matrix-vector product), the
dominant cost of evaluating γi(p), i = 1, . . . ,m, amounts to
O
(
mMn3

)
operations.

Note further that both of the above ingredients are amendable for
parallellization. When only evaluating the H2 norm, one should set
m = 0 in the above expressions for the computational complexity.
Hence, as long as m << n2 the additional cost of computing the
gradient is negligible.

For problems with high-dimension n, condition m << n2 is
usually satisfied in the context of control design and model reduction
(see Section IV for the principles) since low-order controllers for
delay systems, which are easy to implement, and reduced models
of low dimension are desirable. However, the main computational
bottleneck remains the evaluation of the H2 norms. For large-
scale sparse problems this necessitate the development of dedicated
iterative solvers, for which some preliminary steps have been reported
in [28] and [29]. This is however beyond the scope of this paper.

C. General algorithm

The optimization of the H2 norm of system (1) with respect to the
parameters corresponds to the minimization problem:

min
p=(p1,...,pm)

‖G(·, p)‖22. (23)
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Considering the expression for the gradient of the squared H2 norm
of system (1) given by Theorem 3, it is natural to use gradient based
algorithms in order to solve the problem.

For our experiments we use the BFGS (BroydenFletcherGoldfarb-
Shanno) quasi-Newton method, that is based on an iterative updating
of the Hessian matrix approximation (see [30]). It is implemented as
part of the MATLAB function fminunc included in the optimization
toolbox. The method relies on the availability of a routine returning
the objective function and its gradient at a given p.

When using formula (6) a stability constraint on p needs to
be included as the definition of the H2 norm is for exponentially
stable systems. Explicitly adding the constraint of a negative spectral
abscissa is to be avoided since the stability regions in the param-
eter spaces might be non-convex, with possibly highly non-smooth
boundaries (e.g., cusps). Furthermore, minimizers are not expected at
the border of the stability region since under mild controllability and
observability conditions the H2 norm of G will diverge to infinity
whenever the boundary is approached. For these reasons, we include
the stability constraint implicitly by initializing the algorithm with a
stabilizing value of p and setting the objective function to infinity if
the system is unstable, i.e., we define the objective function as

fobj(p) =

=


Tr
(
BT (p)U(0, p)U(p)

)
, if (1) is asymp-

totically stable,
+∞, otherwise.

(24)

If during the run of the algorithm a trial step would be generated
outside the stability region, then, because of the formulation of the
objective function as (24), the line search procedure will automati-
cally reduce the step size, in such a way that non-stabilizing iterations
are avoided.

To check stability one can, for example, compute the rightmost
root via the QPmR (Quasi-Polynomial Mapping Based Rootfinder)
algorithm [31], a spectral discretization as in TRACE-DDE [32],
a Krylov method in the large-scale setting [33], or use the delay
Lyapunov matrix based criteria [34], [35]. The requirement for
stabilizing initial values might need a preliminary stabilization phase,
for which the algorithm of [17], relying on minimizing the spectral
abscissa, can be used.

Finally, we note that the optimization problem (23) is in general
non-convex. Under mild conditions, convergence is guaranteed to
a point satisfying the first order necessary optimality conditions,
∇||G||22 = 0 (see [36]). The computed optimizers lie in the connected
component of the stability region in which the algorithm is initialized.
A practical approach to handle these issues consists of generating
multiple initial values, by carrying out the preliminary stabilization
phase from a set of user-specified and/or random parameter vectors.

IV. APPLICATIONS OF THE H2 NORM OPTIMIZATION

In this section, the applicability of the results previously presented
is demonstrated by addressing the control synthesis and the model
approximation problems, respectively.

A. Control synthesis

We introduce a methodology for designing a controller that mini-
mizes the H2 norm of the closed-loop system. The idea basically
consists of proposing a controller and finding its parameters as
outlined in Section III-C. Consider a time-delay system of the form

ẋ(t) =A0ox(t) +A1ox(t− h)

+B0u(t) +B1u(t− h) +Bv(t),

y(t) =Cx(t)

where A0o, A1o ∈ Rn×n, B0, B1 ∈ Rn×nB , B ∈ Rn×nBo and C ∈
RnC×n. Here, u is the control signal, v is the exogenous disturbance
and the output y is the measured signal.

Let us propose a static output feedback of the form

u(t) = Kcy(t), (25)

where Kc ∈ RnB×nC . The closed-loop system is

ẋ(t) =A0x(t) +A1x(t− h) +Bv(t),

y(t) =Cx(t),
(26)

where

A0 = A0o +B0KcC, andA1 = A1o +B1KcC.

Observe that system (26) is in the form of system (1) and that
the elements of the matrix Kc of the controller can be viewed as
parameters of system (26). They can be tuned to obtain a minimum
of the H2 norm of the closed-loop system as stated in the following
problem:

Problem 1. Find the matrix Kc of the controller that stabilizes the
system and minimize the H2 norm of the closed-loop system.

Problem 1 can be solved by minimizing (24), where p represents
the controller parameters as

p = vec(Kc).

We illustrate this by some examples. The notation Gcl(s) represents
the transfer function of the closed-loop system.

Example 1. Consider the system (see [16])

ẋ(t) =A0x(t) +B1u(t− 5) +Bv(t),

y(t) =x(t),

where

A0 =

−0.08 −0.03 0.2
0.2 −0.04 −0.005
−0.06 −0.2 −0.07

 ,

B1 =

−0.1
−0.2
0.1

 , B =

1 0 0
0 1 0
0 0 1

 .

We propose a controller of the form (25):

u(t) =
(
p1 p2 p3

)
y(t).

We consider as initial parameters

p0 =
(
0.472 0.505 0.603

)
,

which ensure the stability of the closed-loop system and minimize the
spectral abscissa. By optimizing the H2 norm starting from the given
initial parameter values, we obtained

p =
(
0.53844 0.33763 0.22559

)
and the achieved value of the closed-loop system squared H2 norm
is 32.4897. Figure 1 depicts the value of the squared H2 norm at
every iteration and Table I shows the trade-off between the spectral
abscissa and theH2 norm with the initial and the obtained parameter
values.

TABLE I
TRADE-OFF BETWEEN THE H2 NORM AND THE SPECTRAL ABSCISSA.

Spectral abscissa Squared H2 norm
Spectral abscissa minimized (p0) −0.15 79.3356
H2 norm optimized (p) −0.061543 32.4897
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Fig. 1. Values of ‖Gcl‖22 at every iteration, Example 1. The figure on the
right shows an enlargement of the figure on the left in the last iterations.

In the next example, we illustrate the applicability of the control
design method, even when the delay is an optimization parameter.

Example 2. Consider the second order system

ẋ(t) = Ax(t) +B(u(t) + v(t)),

y(t) = Cx(t),
(27)

with matrices

A =

(
0 1
−ν2 −2δν

)
, B =

(
0
b

)
, C =

(
1 0

)
,

where ν is the non-damped frequency, δ is the damping factor, and b is
the input gain. We introduce a Proportional-Retarded (PR) controller
of the form

u(t) = −kpy(t) + kry(t− h). (28)

This class of controllers, where the delay is a design parameter, has
been studied in recent works (see, for instance, [37]). The closed-loop
system (27)-(28) is

ẋ(t) =

(
0 1

−ν2 − bkp −2δν

)
x(t)

+

(
0 0
bkr 0

)
x(t− h) +

(
0
b

)
v(t), y(t) = Cx(t).

(29)

By defining the new time variable t̄ =
t

h
and considering x̄(t̄) =

x(t), one can rewrite system (29) as

˙̄x(t̄) =

(
0 h

−ν2h− bkph −2δνh

)
x̄(t)

+

(
0 0

bkrh 0

)
x̄(t̄− 1) +

(
0
bh

)
v(t̄),

ȳ(t̄) =Cx̄(t̄).

(30)

The relation of the H2 norm of systems (29) and (30) is given as
follows:

‖Gcl‖22 =
1

h
‖Ḡcl‖22, (31)

where Ḡcl is the transfer function of the time scaled system (30). We
use the above equality in order to minimize ‖Gcl‖22.

We set the numerical values corresponding to the model of a DC
servomechanism [37], ν = 17.6, δ = 0.0128, b = 31, and take the

parameters vector as p =
(
p1 p2 p3

)
, with p1 = h, p2 = kph

and p3 = krh. By (31), the gradient of ‖Gcl‖22 is given by

∇‖Gcl‖22 =
1

p1


∂‖Ḡcl‖22
∂p1

− ‖Ḡcl‖
2
2

p1
∂‖Ḡcl‖22
∂p2

∂‖Ḡcl‖22
∂p3

 .

Figure 2 shows the value of the squared H2 norm of system
(29) at every iteration, when the algorithm is initialized by p0 =(
0.03 0.09 0.03

)
. At iteration 16 the values of the delay and

the gains are h = 0.01778, kp = 168.8537 and kr = 169.5677,
corresponding to ‖Gcl‖22 = 0.018224. There is no finite global min-
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Fig. 2. Values of ‖Gcl‖22 at every iteration, Example 2.

imizer and along the iterations we have h→ 0 and |kp|, |kr| → ∞.
In fact, the computed controller tends to a classical PD controller,
related to (28) via ẏ ≈ 1

h
(y(t)− y(t− h)).

High gains and small delays are to be avoided in an implementa-
tion. When fixing kp = 22.57 as in [37], a finite local optimum is
found starting with

(
p1 p3

)
=
(
0.03 0.9

)
. The optimized values

are h = 0.05187 and kr = 17.9643, and the achieved value of
‖Gcl‖22 is 0.049704.

It is worthy mentioning that the approach presented in this sub-
section can be applied to the design of dynamic controllers of fixed
order.

B. H2 optimal model approximation

When a system is of high dimension, it is for many purposes
(analysis, simulation, control design,. . . ) convenient to have a lower
order approximation. The H2 norm can be used as a measure of the
approximation error between the two systems. A major advantage of
the direct optimization approach is its generality. It allows us, for
instance, to preserve a time-delay structure (i.e., the reduced system
is also a time-delay system), or compute delay-free reduced order
models. As another motivation, only in a very limited number of
cases, explicit optimality conditions are available (see, e.g., [38] for
the approximation of a delay-free system by a reduced model with
transfer function of the form p1/(s− p−sτ2 )).

Consider the transfer function (2) and the one of a reduced
dimension r model given by

Gr(s, pr) = Cr(pr)
(
sI −A0r(pr)−A1r(pr)e

−sh
)−1

Br(pr),

where pr is a parametrization of the reduced order model. Define
Ge(s, pr) = G(s, p)−Gr(s, pr) and observe that

Ge(s, pr) = Ce
(
sIe −A0e −A1ee

−sh
)−1

Be, (32)
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with

Ie =

(
In 0
0 Ir

)
, Be =

(
B

Br(pr)

)
,

Ce =
(
C −Cr(pr)

)
, Aie =

(
Ai 0
0 Air(pr)

)
, i = 0, 1.

Now, the parameters of the reduced dimension system are parameters
of the extended transfer function (32). The optimal model reduction
problem can be stated as follows:

Problem 2. Find a reduced order system with matrices
(A0r , A1r , Br, Cr) that minimizes the H2 norm of the transfer
function Ge(s, pr).

We illustrate the solution of Problem 2 with two examples.

Example 3. A nonlinear model for describing a refining plant is
obtained in [39] and the linear case considering the delay induced
by the recycle process is considered in [40]. The linearized model is
given by

ẋ(t) =A0x(t) +A1x(t− 0.1) +Bv(t),

y(t) =Cx(t),
(33)

where

A0 =


−4.93 −1.01 0 0
−3.20 −5.30 −12.8 0
6.40 0.347 −32.5 −1.04

0 0.833 11 −3.96

 ,

A1 =


1.92 0 0 0

0 1.92 0 0
0 0 1.87 0
0 0 0 0.724

 , B =


1 0
0 1
0 0
0 0


and

C =
(
1 1 1 1

)
.

We assume that the output matrix is given by C. The recycle delay
here is considered to be of one minute, that according to the time-
scale in [40] is equivalent to set h = 0.1.

We propose a reduced order system of dimension r = 2

ẋr(t) =A0rxr(t) +A1xr(t− 0.1) +Brvr(t),

yr(t) =Crx(t).
(34)

We define the vector of parameters

pr =
(
vec(A0r)

T vec(A1r)
T vec(Br)

T vec(Cr)
T
)

and compute values of pr that minimize ‖Ge‖22, where the transfer
function Ge is determined by (32) with matrices

Aie =

(
Ai 0
0 Air

)
, Be =

(
B
Br

)
, Ce =

(
C −Cr

)
,

where i = 0, 1, and A0, A1, B and C2 are given in (33). The
obtained matrices of system (34) with initial parameter values

A0r0 =

(
−3 −1
−3 −2

)
, A1r0 =

(
1 0
2 0

)
,

Br0 =

(
1.6 0.3
0.15 0.7

)
, Cr0 =

(
0.7 −0.7

)
,

are

A0r =

(
−5.9722 0.1903
−8.1593 −1.3019

)
, A1r =

(
−4.3358 3.1555
−9.8049 6.8424

)
,

Br =

(
1.1664 0.8980
1.9544 1.7810

)
, Cr =

(
0.2356 −0.6808

)
,

and the achieved value of ‖Ge‖22 is 3.5059× 10−5. Figure 3 shows
the value of ‖Ge‖22 at every iteration and Figure 4 the frequency
response comparison between system (33) and the obtained reduced
order system (34).

Iteration
0 10 20

‖G
e
(s
)‖

2 2

0

0.2

0.4

0.6

0.8

Iteration
50 100 150 200 250

×10-3

0

0.2

0.4

0.6

0.8

1

Fig. 3. Values of ‖Ge‖22 at every iteration, Example 3. The figure on the
left shows the first twenty iterations while the figure on the right depicts an
enlargement of the last iterations.

Fig. 4. Bode magnitude diagram of systems (33) and (34) with the obtained
parameters pr , Example 3.

V. CONCLUSIONS

The computation of the sensitivity of the delay Lyapunov matrix
with respect to given system parameters allows us to find the gradient
of the H2 norm of time delay systems. Gradient based optimization
algorithm enable us to synthesize fixed-order controllers and to find
H2 optimal approximate models of reduced dimension. The presented
examples show the effectiveness of the proposed approach.

A first direction for future work is the extension of these results to
other classes of time-delay systems and the integration with recent
results on H∞ synthesis, aiming at a general H2-H∞ framework for
the synthesis of structured controllers. A second direction consists
of developing iterative numerical algorithms for the H2 norm com-
putation and optimization for large-scale sparse problems, for which
some preliminary steps are reported in [28].
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