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A Double-Variational Bayesian Framework in
Random Fourier Features for Indefinite Kernels

Fanghui Liu, Xiaolin Huang, Lei Shi, Jie Yang, and Johan A.K. Suykens

Abstract—Random Fourier features (RFF) have been suc-
cessfully employed to kernel approximation in large scale situ-
ations. The rationale behind RFF relies on Bochner’s theorem,
but the condition is too strict and excludes many widely-used
kernels, e.g., dot-product kernels and indefinite kernels. In this
paper, we present a unified RFF framework for indefinite kernel
approximation in the Reproducing Kernel Kreı̆n Spaces (RKKS).
Besides, our model is also suited to approximate a dot-product
kernel on the unit sphere, as it can be transformed into a shift-
invariant but indefinite kernel. By the Kolmogorov decomposition
scheme, an indefinite kernel in RKKS can be decomposed into
the difference of two unknown positive definite (PD) kernels. The
spectral distribution of each underlying PD kernel can be for-
mulated as a nonparametric Bayesian Gaussian mixtures model.
Based on this, we propose a double-infinite Gaussian mixture
model in RFF by placing the Dirichlet process prior. It takes
full advantage of high flexibility on the number of components
and has the capability of approximating indefinite kernels on
a wide scale. In model inference, we develop a non-conjugate
variational algorithm with a sub-sampling scheme for posterior
inference. It allows for the non-conjugate case in our model and
is quite efficient due to the sub-sampling strategy. Experimental
results on several large classification datasets demonstrate the
effectiveness of our nonparametric Bayesian model for indefinite
kernel approximation when compared to other representative
random features based methods.

Index Terms—random Fourier features, indefinite kernel,
variational inference, kernel approximation

I. INTRODUCTION

Kernel methods [1], [2], [3] have enjoyed tremendous suc-
cess in statistical machine learning with numerous applications
such as classification [4], regression [5], and dimensionality
reduction [6]. Whilst a distinct bottleneck of kernel methods
is their limited scalability in large datasets, i.e., the huge
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storage and significant computational cost of the kernel matrix.
Given N observations, storing the kernel matrix often needs
O(N2) space, and takes about O(N2d) operations, where d
is the dimension. To make kernel methods scalable, kernel
approximation is a powerful technique by mapping input
features into a new space. And accordingly, an efficient linear
learner can be well trained in the transformed space while
retaining the expressive power of nonlinear methods.

To overcome poor scaling in N , several routes have
been explored. On the one hand, a straightforward way
is employing the divide and conquer approach [7], [8]. It
decomposes the full problem into several smaller easy-to-
solve subproblems to accelerate the solving process. On the
other hand, random projections are widely-applicable and
commonly used tactics to seek for a low-rank approximation,
either data-dependent or data-independent. The data-dependent
approaches approximate the kernel matrix by greedy basis
selection techniques [9], incomplete Cholesky decomposition
[10], or Nyström methods [11]. In data-independent techniques,
the kernel function is directly approximated by an explicit
map, which is sampled from a distribution independent of
training data. Most approaches that follow this idea are based
on random Fourier features (RFF)1 [14], and have attracted
significant attention to scale up kernel methods, such as SVM
[15], Gaussian process regression [16], kernel PCA [17], and
randomized CCA [18].

The theoretical foundation behind RFF is demonstrated by
Bochner’s theorem [19], i.e., any bounded, continuous, shift-
invariant, and positive definite (PD) function can be expressed
as the Fourier transform of a non-negative measure ρ(w).
However, Bochner’s theorem requires the kernel to exhibit
two properties: 1) shift-invariance, i.e. K(x,y) = K(x − y)
and 2) positive definiteness. These two conditions exclude
many widely-used kernels such as dot-product kernels and
indefinite kernels (real, symmetric, but not PD) [20], [21],
[22]. For instance, the polynomial kernel and the Hellinger’s
kernel [23] are two popular dot-product kernels that do not
satisfy the shift-invariant condition. Indefinite kernels include
the hyperbolic tangent kernel [24], the TL1 kernel [25], and
Gaussian kernels with a geodesic distance on the manifold
[26]. Moreover, dot-product kernels are commonly used on
`2-normalized data to avoid the unboundedness [27], [28], so
they can be reformulated as shift-invariant but not always PD
on the unit sphere, i.e., 〈x,y〉 = 1− 0.5‖x− y‖22.

Jeffery Pennington et al. [29] theoretically demonstrate
that the Fourier transform of a polynomial kernel on the unit

1Some recent works [12], [13] are data-dependent.
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sphere is not a non-negative function, which is the obstruction
to RFF. They empirically use ten Gaussians to approximate
the polynomial kernel with spherical random features, and
employ a grid-search scheme for parameter tuning. This way is
similar to a Gaussian mixture model (GMM) [30] for density
estimation, but we need to carefully consider the following two
issues. First, the number of Gaussian components is usually ad-
hoc pre-defined or manually specified. This is a real limitation
as it significantly effects the approximation performance of
indefinite kernels. Actually, it is difficult to argue that the
number of Gaussian mixtures eventually runs up against some
finite bound and remains fixed. We expect to infer the number of
Gaussian components needed from data instead of ungrounded
guesses. Second, there are numerous parameters in GMM to
be estimated, including the mixture coefficients, the mean
vector, the covariance of each Gaussian model, and the number
of Gaussian components. An efficient parameter estimation
technique without heuristic pruning should be developed for
model inference, especially when more Gaussians are taken
into consideration.

In this paper, we propose a fully non-parametric Bayesian
model for approximating non-Bochner kernels (including the
dot-product kernel on the unit sphere and shift-invariant
indefinite kernel). In our framework, by the Kolmogorov
decomposition scheme, an indefinite kernel in the Reproducing
Kernel Kreı̆n Spaces (RKKS) [20], [31] can be decomposed
into the difference of two unknown PD kernels. The spectral
distribution of each underlying PD kernel is modeled by an
infinite Gaussian mixture model, resulting in a Double-Infinite
Gaussian Mixture Model in RFF, termed as RFF-DIGMM.
To be specific, our model treats the random frequency w
as a latent parameter for each underlying PD kernel, and
places a Dirichlet process (DP) prior on it. This makes our
random features based framework flexible to indefinite kernel
approximation. In model inference, we develop a non-conjugate
variational inference method to infer the posterior distribution
due to the non-conjugate random frequency w in RFF-DIGMM
model. Further, a sub-sampling scheme is used to accelerate
the inference process.

Formally, the contributions are summarized as follows.
1) In light of the Kolmogorov decomposition scheme, we

propose a Double-Infinite Gaussian Mixture Model for
shift-invariant indefinite kernel approximation via random
features. As a non-parametric Bayesian model, our model
takes full advantage of high flexibility on the number
of components and has capability of approximating
indefinite kernels in RKKS on a wide scale.

2) In the proposed RFF-DIGMM model, we design a non-
conjugate variational inference algorithm with a sub-
sampling scheme to infer the non-conjugate posterior
distribution. The developed inference algorithm is feasi-
ble and efficient to accelerate the inference process for
our non-conjugate model.

3) Experimental results illustrate that our RFF-DIGMM
model is flexible to approximate indefinite kernels on a
wide scale. Furthermore, its application to classification
tasks on several large datasets demonstrates the superior-
ity of our RFF-DIGMM model when compared to other

representative random features based algorithms.
The remainder of the paper is organized as follows. Section

II briefly introduces preliminaries of random Fourier features
and the stick-breaking construction for Dirichlet process.
Section III presents the proposed RFF-DIGMM model. The non-
conjugate variational inference algorithm is given in Section
IV. Section V shows the evaluation results of the proposed
RFF-DIGMM model with other representative methods on
several popular benchmarks. Finally, the conclusion is drawn
in Section VI.

II. PRELIMINARIES

This section briefly introduces the rationale of random
Fourier features [14], [32] and stick-breaking construction for
Dirichlet process [33], [34]. Reviewing these two approaches
will help to understand our double-infinite Gaussian mixtures
model in RFF. Let D = {xn}Nn=1 be the sample set with
N training examples with xn ∈ X ⊆ Rd. Let K(·, ·) be a
positive definite kernel function endowed in the Reproducing
Kernel Hilbert Space H, and K = [K(xi,xj)]N×N be the
kernel matrix sampled from D. The theoretical foundation of
RFF relies on Bochner’s celebrated characterization of positive
definite functions.

Theorem 1. (Bochner’s theorem [19]) A continuous and shift-
invariant function K : Rd → R is positive definite if and only
if it is the Fourier transform of a finite nonnegative Borel
measure ρ(w) on Rd.

A consequence of Bochner’s theorem is that any shift-
invariant and PD kernel can be interpreted by

K(x− y) =

∫
Rd
p(w) exp

(
iw>(x− y)

)
dw

= Ew∼ρ(w)

[
exp(iw>x) exp(iw>y)∗

]
,

(1)

where the symbol x∗ denotes the complex conjugate of x
and ρ(w) can be scaled to a normalized density by setting
K(0) = 1. By Monte Carlo integration, the kernel K can be
approximated by

K(x− y) ≈ 1

M

M∑
m=1

exp(iw>mx) exp(iw>my)∗ , (2)

where wm is sampled i.i.d from P with the density ρ(w). In
particular, since the kernel K is real-valued in most cases, the
imaginary part of Eq. (2) can be discarded, i.e.

K(x− y) ≈ ϕ>(x)ϕ(y),with ϕ(x) ,
1√
M

[
cos(w>1x),· · ·,cos(w>Mx), sin(w>1x),· · ·,sin(w>Mx)

]>
,

(3)

where ϕ(·) : Rd 7→ RM is the random feature mapping, and
ϕ>(x)ϕ(y) is the unbiased estimation of K(x,y). Hence, by
random features, the storage and computational complexity can
be reduced to O(NM) and O(NMd), respectively. Recent
works on random features aim to improve the approximation
quality by Quasi-Monte Carlo sampling [35], random orthogo-
nal matrix [32], or decrease the time and space complexity by
Fastfood [36], quadrature-based features [37]. However, these
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algorithms mainly focus on shift-invariant and PD kernels, and
cannot be directly applied to non-Bochner kernels. Only a few
literature based on random features are able to deal with a
polynomial kernel by the Maclaurin’s approximation [38] and
tensor sketching [27], or indefinite kernel approximation by
finite Gaussian mixtures [29].

Next, we briefly review the stick-breaking construction
for Dirichlet process (DP) [39]. DP is a stochastic process
over discrete probability measures, i.e., atoms, with countably
infinite support. It is widely used in Bayesian nonparametric
models of data, particularly in Dirichlet process mixture models
[40]. Mathematically, let G be a distribution over the probability
space Θ, α be a positive real scalar, and H be a base measure
over Θ. If any r partitions (A1, A2, · · · , Ar) of the correspond-
ing probability space obey a Dirichlet distribution, then the
distribution (G(A1), G(A2), · · · , G(Ar)) is a Dirichlet process

(G(A1),G(A2),· · ·, G(Ar)) ∼ Dir(αH(A1),αH(A2),· · ·, αH(Ar)),

where r is a natural number [34] and α is the concentration
parameter. We denote it as G ∼ DP(α,H).

To build a DP, one representative strategy is stick-breaking
construction [41]. Given a unit-length stick (0, 1), we first draw
β1 ∼ Beta(1, α0), set θ1 , β1, and pick the fraction 1−β1 as
the remainder of the stick. And then, we draw β2 ∼ Beta(1, α0),
and assign θ2 , β2(1−β1). Repeating this procedure, we have
Dirichlet process mixtures with stick-braking representation,
i.e., the random measure G is associated with a Dirichlet
process DP(G0, α0) with respect to base distribution G0 and
concentration parameter α0. Mathematically, we have

G =

∞∑
k=1

θk(β)δΦk , θk(β) = βk

k−1∏
s=1

(1− βs) , (4)

with Φk ∼ G0 and βk|α0 ∼ Beta(1, α0). The notation δΦk
is the Kronecker delta function, of which the value is 1 at
location Φk and 0 elsewhere. It can be found that, G is discrete
almost surely, i.e., the support of G consists of a countably
infinite set of atoms, which are drawn independently from G0.
Since the distributions sampled from a DP are discrete almost
surely, data generated from a DP mixture can be partitioned
into different groups according to the distinct values of the
sampled distributions. As a result, the whole model serves as a
mixture model, in which the number of components is random
and grows as new data are observed. For more details on the
nonparametric Bayesian model and its construction, we refer
the reader to [34] and [42].

III. MODEL DESCRIPTION

In this section, we present the formulation of our RFF-
DIGMM model and its graphical model representation.

A. Kolmogorov decomposition for indefinite kernels

In theory, a functional space spanned by indefinite kernels
does not belong to the Reproducing Kernel Hilbert Spaces
(RKHS) [1], [43]. To investigate indefinite kernels, we need
Kreı̆n spaces defined as follows.

Definition 1. (Kreı̆n space [31]) An inner product space is a
Kreı̆n space HK if there exist two Hilbert spaces H+ and H−
such that
• All f ∈ HK can be decomposed into f = f+ +f−, where
f+ ∈ H+ and f− ∈ H−, respectively.

• ∀f, g ∈ HK, 〈f, g〉HK = 〈f+, g+〉H+
− 〈f−, g−〉H− .

If H+ and H− are two RKHSs, the Kreı̆n space HK
is a RKKS associated with a unique indefinite reproducing
kernel K such that the reproducing property holds, i.e.,
∀f ∈ HK, f(x) = 〈f, k(x, ·)〉HK . To link indefinite kernels
of RKKS to RKHS, we present a useful proposition as follows.

Proposition 1. (Proposition 2.1 in [44]) An indefinite repro-
ducing kernel K associated with a RKKS admits a Kolmogorov
decomposition

K = K+ −K− ,

with two positive definite kernels K+ and K−.

Typical examples of indefinite kernels that admit Kol-
mogorov decomposition include a wide range of commonly
used indefinite kernels, such as a linear combination of PD
kernels, and conditionally PD kernels. Hence, approximating
an indefinite kernel K in RKKS by random features can be
formulated as conducting random feature mappings for two
underlying PD kernels K+ and K−.

Although the above proposition presents the existence of
a Kolmogorov decomposition for an indefinite kernel in RKKS,
it does not provide a specific decomposition result for K+ and
K−. In this case, what we only have is the indefinite kernel K
and its associated indefinite kernel matrix K on the sample set
D. An intuitive way is to conduct an eigenvalue decomposition
for K, i.e., K = U>ΓU , where U is an orthogonal matrix
and the diagonal matrix is Γ = diag(λ1, λ2, · · · , λN ) with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 ≥ · · · ≥ λN . Without
loss of generality, we assume that the first s eigenvalues are
nonnegative and the remaining N−s ones are negative. Hence,
K can be decomposed as K = K+−K− with the following
formulation{

K+ = U> diag(λ1 + τ, . . . , λs + τ)U

K− = U> diag(τ − µN−s+1, . . . , τ − µN )U ,
(5)

where τ is to ensure that these two matrices K+ and K−

are positive definite. Further, to speed up the computational
efficiency in large scale situations, we only consider a subset of
training examples to conduct eigenvalue decomposition. That
is, given two sub-matrices from K+ and K−, our target is
to obtain random feature mappings for K+ and K− by the
proposed RFF-DIGMM model.

B. Graphical Model Representation for RFF-DIGMM

Bochner’s theorem shows that the characteristic function
(i.e., the inverse Fourier transformation) of a continuous
distribution P with its pdf ρ(w) is associated with a shift-
invariant and PD kernel [45]. For example, suppose that
ρ(w) = N (w|µ,Σ) is a Gaussian distribution with the mean
vector µ and the covariance matrix Σ, its characteristic function
is a shift-invariant kernel K(∆) = exp(iµ>∆− 1

2∆>Σ∆) with
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Fig. 1: Graphical model representation of RFF-DIGMM.

∆ := x − y. That is to say, a Gaussian distribution and its
characteristic function define a Gaussian kernel. Considering
that GMM is a universal approximator for any continuous
distribution [46] in density estimation, the spectral distribution
P can be well approximated by GMM. From the kernel learning
perspective, this mixture modeling is able to yield a general
PD kernel, which provides a justification to obtain random
feature mappings for K+ and K−, respectively.

For the underlying PD kernel K+, since the number of its
corresponding nonnegative Borel measure ρ(w) is not a prior
known, we posit it as infinite, namely

ρ(w) =

∞∑
k=1

θkN
(
w|µk,Λ−1

k

)
, (6)

where µk and Λk are the mean vector and precision matrix of
each Gaussian, respectively. According to Plancherel’s theorem
[47], the expression of ρ(w) with infinite components in Eq. (6)
is able to approximate any shift invariant PD kernel. It relates
spectral accuracies to the original domain by the following
characteristic function

K+(x−y)=

∞∑
k=1

θkexp
(

iµ>k(x−y)− 1

2
(x−y)>Λk(x−y)

)
.

In practical use, the kernel is often real-valued, so we consider
the real part of the above equation

K+(∆) =

∞∑
k=1

θk exp
(
− 1

2
∆>Λk∆

)
cos
(
µ>k∆

)
,

with ∆ := x − y. In this case, the PD kernel K+ can be
approximated by K+(x,y) ≈ ϕ>(x)ϕ(y), where ϕ(x) is as
in Eq. (3).

Likewise, for K−, its corresponding nonnegative Borel
measure ρ′(w′) is formulated as

ρ′(w′) =

∞∑
k=1

θkN
(
w′|µ′k,Λ′−1

k

)
, (7)

and its characteristic function is

K−(x−y)=

∞∑
k=1

θ′k exp
(

iµ′>k (x−y)− 1

2
(x−y)>Λ′k(x−y)

)
.

In this case, the PD kernel K− can be approximated by

K−(x− y) ≈ ϕ′>(x)ϕ′(y),with ϕ′(x) ,
1√
M

[
cos(w′>1 x),· · ·,cos(w′>Mx), sin(w′>1 x),· · ·,sin(w′>Mx)

]>
.

(8)

Therefore, the expression of ρ(w) in Eq. (6) and ρ′(w′) in
Eq. (7) with infinite components provide adequate flexibility
to find a good approximation of K from a broad class.

The graphical model representation of our RFF-DIGMM
model is shown in Fig. 1. In our model, to speed up the
computational efficiency and to reduce the memory storage,
we randomly select Ns examples from the training set D,
resulting in the sketch Ds. Similar to [48], [49], our model
works between sub-sampling the training set and adjusting the
hidden structure for parameter estimation based on the sketch
Ds. Thereby, finding a good approximation to a non-Bochner
kernel over Ns observations can be represented as

Kij = K+
ij −K

−
ij =ϕ>(xi)ϕ(xj)−ϕ′>(xi)ϕ

′(xj)+ε,

∀xi,xj ∈ Ds and i 6= j ,
(9)

with ε ∼ N (0, σ2
ε ). The two random feature mappings ϕ and

ϕ′ satisfy K+(xi − xj) ≈ ϕ>(xi)ϕ(xj) and K−(xi − xj) ≈
ϕ′>(xi)ϕ

′(xj), respectively. It is important to point out that,
on each trial, we randomly sample two examples xi and xj
(i 6= j) without replacement from Ds to construct Kij , and
directly set Kii = 1. By doing so, we are able to avoid the
situation when the pair example (xi,xj ,Kij) is not mutually
pairwise independent [50].

In our RFF-DIGMM model, since the explicit feature
mappings ϕ and ϕ′ in Eq. (9) are determined by ρ(w) and
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ρ′(w′), respectively, the distributions of K+
ij and K+

ij are

p
(
K+
ij |(xi,xj), ϕ

)
∼ N

(
1

M

M∑
m=1

cos
(
w>m(xi − xj)

)
, σ2
ε

)
,

p
(
K−ij |(xi,xj), ϕ

′) ∼ N( 1

M

M∑
m=1

cos
(
w′>m(xi − xj)

)
, σ2
ε

)
.

The random frequencies wm and w′m over the input space for
a mixture component are given by{

p(wm|zm = k,µk,Λk) ∼ N (wm|µk,Λ−1
k ) ,

p(w′m|z′m = k,µ′k,Λ
′
k) ∼ N (w′m|µ′k,Λ′−1

k ) ,

where zm, z′m are two latent variables that assign the indices
of the parameter associated with wm and w′m. The mean
vectors µk, µ′k and the precision matrices Λk, Λ′k are further
specified by Gaussian distribution priors and Normal-Wishart
distribution priors with the same hyper-parameters, respectively.
To be specific, the corresponding priors are

µk,µ
′
k ∼ N

(
m0,R

−1
0

)
, Λk,Λ

′
k ∼ W(W0, ν0) . (10)

Besides, the distribution of zm can be regarded as a multino-
mial distribution with parameters {θk}∞k=1 by the following
formulation

p(zm|βk) =

∞∏
k=1

(1− βk)1[zm>k]β
1[zm=k]
k , (11)

where βk is given by Eq. (4), determining the mixing pro-
portions {θk}∞k=1. The prior for {θk}∞k=1 is a DP prior built
by stick-breaking construction, so we define it by the stick-
breaking distribution θ ∼ GEM(α0), where GEM (Griffiths-
Engen-McCloskey) is the stick breaking prior [41]. The
mixing proportions {θk}∞k=1 can be regarded as a sequence
of sticks with lengths, satisfying

∑∞
k=1 θk = 1. The product∏k−1

s=1 (1 − βs) denotes the previous remaining length of the
stick, and multiplication by βs gives the length of the stick
currently broken off. Hence, Eq. (11) can be formulated as

zm|{β1, β2, · · · , β∞} ∼ Mult
(
β
)
,

where Mult denotes the multinomial distribution. Similarly, z′m
is subject to

p(z′m|β′k) =

∞∏
k=1

(1− β′k)1[z′m>k]β
′1[z′m=k]
k .

Finally, the complete generative process is given below.
1) Draw the mixing proportions {θi}∞i=1 : θ ∼ GEM(α0)

and {θ′i}∞i=1 : θ′ ∼ GEM(α0).
2) Draw the mixture components, for k = 1 :∞

• draw µk,µ
′
k ∼ N

(
m0,R

−1
0

)
.

• draw Λk,Λ
′
k ∼ W(W0, ν0).

3) For each random frequency index m = 1, 2, · · · ,M
• draw the indicate labels zm|{β1, β2, · · · , β∞} ∼

Mult(θ(β)) and z′m|{β′1, β′2, · · · , β′∞} ∼
Mult(θ′(β′)).

• draw the random feature vectors wm∼N (wm|zm=
k,µk,Λ

−1
k ) and w′m ∼ N (w′m|z′m=k,µ′k,Λ

′−1
k ).

4) For any two selected training examples xi,xj ∈ Ds
• compute ϕ(xi), ϕ(xj), ϕ′(xi), and ϕ′(xj) by

Eq. (3).
• draw an observation Kij ∼ N

(
ϕ>(xi)ϕ(xj) −

ϕ′>(xi)ϕ
′(xj), σ

2
ε

)
.

After conducting the generative process of our RFF-
DIGMM model, we need to infer the associated parameters
with respect to ρ(w) and ρ′(w′). For ρ(w), defining param-
eter sets β̃ = {β1, β2, · · · , β∞}, µ̃ = {µ1,µ2, · · · ,µ∞},
Λ̃ = {Λ1,Λ2, · · · ,Λ∞}, latent variable sets w̃ =
{w1,w2, · · · ,wM}, z̃ = {z1, z2, · · · , zM}, the hidden vari-
able set is given by Ω = {β̃, µ̃, Λ̃, z̃, w̃}. As illustrated by the
graphical model shown in Fig. 1, the joint distribution of all
the random variables with respect to ρ is given by

p(Ds,Ω) = p(β̃)p(µ̃)p(Λ̃)

M∏
m=1

p(zm|β̃)p(wm|zm, µ̃, Λ̃)

×
Ns∏

i,j=1,i6=j

p(K+
ij |(xi,xj), w̃) ,

where the notations are p(β̃) =
∏∞
k=1 p(βk), p(µ̃) =∏∞

k=1 p(µk), p(Λ̃) =
∏∞
k=1 p(Λk), p(z̃) =

∏M
m=1 p(zm), and

p(w̃) =
∏M
m=1 p(wm). Accordingly, we have

p(Ds,Ω) =

∞∏
k=1

p(βk|α0)p(µk|m0,R0)p(Λk|W0, ν0)

×
M∏
m=1

p(zm|β̃)p(wm|zm, µ̃, Λ̃)

Ns∏
i,j=1,i6=j

p(K+
ij |(xi,xj), w̃) .

Likewise, the joint distribution of all the random variables with
respect to ρ′ is given by

p(Ds,Ω′) =

∞∏
k=1

p(β′k|α0)p(µ′k|m0,R0)p(Λ′k|W0, ν0)

×
M∏
m=1

p(z′m|β̃′)p(w′m|z′m, µ̃′, Λ̃′)
Ns∏

i,j=1,i6=j

p(K−ij |(xi,xj), w̃′) ,

where the variable notations Ω′ = {β̃′, µ̃′, Λ̃′, z̃′, w̃′} for ρ′

share the similar formulation with the corresponding definitions
for ρ. Since the posteriors p(Ω|Ds) and p(Ω′|Ds) are often
intractable, in the next section, we will approximate them
using mean-field variational inference.

IV. INFERENCE

In this section, we develop a variant of the mean-field
variational inference algorithm to tackle the non-conjugate
variable w in our model. Here we take ρ(w) as an example to
illustrate the inference process. The inference for ρ′(w′) can
be obtained in a similar way.

A. Truncated DP in Mean-field Approach

Variational inference [33], [51] aims to find a distribution
in a simple family that is close to the true posterior distribution
p(Ω|Ds) by a proxy q(Ω) with the following decomposition

ln p(Ds) = L(q) + KL(q||p) , (12)
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where the Kullback-Leibler (KL) divergence is defined as
KL(q||p) =

∫
q(Ω) ln{q(Ω)/p(Ω|Ds)}dΩ, and L(q) is the

lower bound of ln p(Ds) with the expression L(q) =∫
q(Ω) ln{p(Ds,Ω)/q(Ω)}dΩ. Variational inference can be for-

mulated as minimizing the KL divergence from the variational
distribution to the posterior distribution, which is equivalent to
maximize the evidence lower bound (ELBO).

To formulate the variational posterior q(Ω), the posterior
Dirichlet process is approximated by a truncated stick-breaking
representation [52]. That is, given a value T , we set q(βT =
1) = 1 to guarantee that the mixture proportions θk are zero
for k > T . Note that the variational distribution is truncated
but our model is a full DP and is not truncated. Based on the
truncated DP, we adopt the mean-field approximation by the
fully factorized variational distribution to approximate p(Ω|Ds)

q(Ω|Ds) =

T−1∏
t=1

q(βt)

T∏
k=1

q(µk)q(Λk)

M∏
m=1

q(wm)q(zm) .

Using the above full factorization formulation, we can solve
q(Ω|Ds) by maximizing the lower bound L(q) in Eq. (12).
The logarithm of the optimized factor q∗(ϑ) with ϑ ∈ Ω is

ln q∗(ϑ) = EΩ\ϑ ln p(Ds,Ω) + const , (13)

where EΩ\ϑ is the expectation with respect to all other latent
variables, and “const” (short for c) denotes a constant that is
independent of ϑ. Therefore, using the ELBO and the mean-
field family, the posterior approximate is cast as an optimization
problem. It can be efficiently solved by a coordinate ascent
variational inference [53] and we detail this as follows.

B. Update Variational Factors

The optimization for each variational factor is conducted
by the coordinate ascent variational inference. It iteratively
optimizes each factor of the mean-field variational density,
while holding the others fixed, which climbs the ELBO to a
local optimum. Here we just state the results and the derivations
can be found in Appendix A.

1) q(βt): We absorb terms in Eq. (13) that are independent
of βt into the additive normalization constant, and then get a
Beta posterior approximating distribution

βt ∼ Beta
(

1 +

M∑
m=1

q(zm = t), α0 +

M∑
m=1

q(zm > t)

)
.

2) q(zm): Likewise, we do not consider irrelevant terms
of zm in Eq. (13). Defining Ξ , Ewm,µk,Λk

[
(wm −

µk)>Λk(wm − µk)
]
, ln ~mk , E(lnβk) +

∑k−1
t=1 E[ln(1 −

βt)] + 1
2

(
E ln |Λk| − d ln(2π) − Ξ

)
, and scaling ~̃mk =

~mk∑T
t=1 ~mt

, we have q(zm = k) = ~̃mk. It means that zm
is chosen according to a multinomial probability distribution.

3) q(µk): Keeping only terms that have functional de-
pendence on µk, we get a Gaussian posterior approximating
distribution µk ∼ N

(
µk|mk,R

−1
k

)
with the following mean

vector and precision matrix
mk = R−1

k

(
R0m0 + E(Λk)

M∑
m=1

q(zm = k)E(wm)
)

Rk = R0 + E(Λk)

M∑
m=1

q(zm = k) .

4) q(Λk): We only retain some terms with respect to
Λk in Eq. (13), the approximating distribution is Λk ∼
W(Λk|Wk, νk) with νk = ν0 +

∑M
m=1 q(zm = k) and W−1

k

is formulated by

W−1
k = W−1

0 +

M∑
m=1

q(zm = k)E(wm − µk)(wm − µk)> .

5) q(wm): The equation for solvingwm is a little complex,
because wm is involved in multiple variational factors. Due
to the fact that wm is a non-conjugate variable, here we
use the second order Taylor expansion for cosine function,
i.e., cos

[
w>m(xi −xj)

]
≈ 1− 1

2w
>
m(xi −xj)(xi −xj)>wm.

Accordingly, we inspect Eq. (13) and read off those terms
which involve wm. Defining

S,
T∑
k=1

[
q(zm=k)E(Λk)

]
+

1

2σ2
ε

Ns∑
i,j=1,i6=j

(1−K+
ij )(xi−xj)(xi−xj)

>,

we get the posterior approximating distribution for wm

wm ∼ N

(
S−1

{ T∑
k=1

[
q(zm = k)E(Λk)E(µk)

]}
,S−1

)
.

The variational distribution q(wm) is subject to a Gaussian
distribution. Its Gaussian form naturally stems from the Taylor
approximation of the cosine function. By Bochner’s theorem,
we have E[cos(w>mx̄)] = exp(−‖x̄‖2/2) with x̄ :=

xi−xj
σ .

Hence, with a proper scale width σ, we can guarantee that
〈wm,xi−xj〉 = 0 with high probability when ‖x̄‖ approaches
to zero, and accordingly the Taylor approximation condition is
satisfied. This approximation technique can also be found in
Laplace approximation variational inference for non-conjugate
models [54]. Unlike Laplace approximation, our variational
inference algorithm does not require the exponential family
assumption but directly uses the Taylor approximation of the
cosine function.

Finally, by repeating the update steps above, we adjust
the free variational parameters to approximate the original
distribution p(Ω|Ds) until convergence. Likewise, the vari-
ational approximation for p(Ω′|Ds) can be obtained in the
similar fashion. The variational inference algorithm for model
inference is summarized in Algorithm 1. The convergence
results of our model are similar to the Laplace approximation
method in [54], which converges to a local optimum of the
variational objective. Here we assess convergence by measuring
the difference between the two consecutive iterations for q(z).
This is a common stopping criterion and we set the maximum
iteration number IterMAX to 50. We will experimentally
verify the convergence of the proposed inference algorithm in
Section V-F.
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Algorithm 1: Variational inference for RFF-
DIGMM.
1 Construct Ds and the associated sub-kernel matrix K.
2 Obtain K+ and K− by eigenvalue decomposition for K.
3 Set IterMAX= 50, iter = 0, initialize variational

distributions q(Ω|Ds) and q(Ω′|Ds).
4 Repeat
5 iter = iter + 1;
6 for k = 1 to T do
7 Update q(βk), q(µk), q(Λk), q(β′k), q(µ′k),

q(Λ′k);
8 end
9 for m = 1 to M do

10 Update q(zm), q(wm), q(z′m), and q(w′m);
11 end
12 Until ‖q(ziter)− q(ziter-1)‖F ≤ 1e−5 or iter=IterMAX;
13 return variational distributions q(Ω|Ds), q(Ω′|Ds) and

random features {wm}Mm=1, {w′m}Mm=1.

TABLE I: Dataset statistics.

datasets d #traing examples #test examples

ijcnn1 22 49,990 91,701
covtype 54 464,810 116,202

skin 3 122,529 122,528
EEG 14 7,490 7,490

spambase 57 2,301 2,300

Complexity: Our inference algorithm involves simple
computations such as matrix addition and matrix multiplication,
except that inferring w and Λ needs to conduct d× d matrix
inversion operations, leading to O((M + T )d3). Thanks to
the sub-sampling scheme, based on Ds, the total runtime per
iteration is O((M +T )d3 +MNsT +MNs). As a result, our
method is quite efficient because the inference is independent
of N , especially on large datasets with N � d.

V. EXPERIMENTS

In this section, we experimentally evaluate the approxi-
mation performance of the proposed RFF-DIGMM model and
apply it to classification tasks. All the experiments implemented
in MATLAB are repeated over 10 runs on a standard PC
with Intelr i5-6500 CPU (3.20 GHz) and 16 GB RAM.
The source code of our implementation can be found in
http://www.lfhsgre.org.

A. Experiment Setup

Datasets: We extensively study the proposed method on
five large classification benchmark datasets2 that are listed in
Table I. The data in these datasets are normalized to [0, 1]d in
advance, and we randomly pick half of the data for training
and the rest for test on skin, EEG, and spambase. For ijcnn1,
both training and test data have been divided. Following [7],
we use a random 80%-20% split on covtype.

Kernel setting: Experiment results here are based on four
non-Bochner kernels including two dot-product kernels on the

2All the datasets can be downloaded from https://www.csie.ntu.edu.tw/
∼cjlin/libsvmtools/datasets/ or the UCI Machine Learning Repository [55].

TABLE II: The used non-Bochner kernels.

Type Kernel Formulation

dot-product (sphere)
polynomial kernel Kp(x,y) = (1 + 〈x,y〉)p

Hellinger’s kernel [23] Kh(x,y) =
√
〈x,y〉

indefinite
TL1 kernel [25] Kτ (x,y) = max{τ − ‖x− y‖1, 0}

tanh kernel [24] Kυ(x,y) = tanh(1 + υ〈x,y〉)

(a) Polynomial kernel (b) TL1 kernel

Fig. 2: Comparison of RMSE on EEG with (a) the polynomial
kernel; (b) TL1 kernel.

unit sphere and two indefinite kernels as listed in Tab. II. These
four non-Bochner kernels can be transformed into indefinite
but shift-invariant kernels, and approximated by our model.

Parameter setting: In our experiment, the sketch size is
set to Ns = 5. The truncation parameter in DP is T = 5. The
order in the polynomial kernel Kp(x,y) is fixed with p = 10,
and the parameters in the TL1 kernel and tanh kernel are set
to τ = 0.7d and υ = 1/d as suggested.

Compared methods: We choose the liblinear classifier
[56] as our fast solver, and present a comparison of our method
(RFF-DIGMM) with the following algorithms.
• liblinear [56]: It is an efficient solver for linear SVM. It

serves as a baseline for comparison. The balance parameter
C in liblinear is well tuned by 5-fold cross validation on
a grid of points: C = [2−5, 2−4, . . . , 25].

• RM [38]: It adopts random Maclaurin feature maps to
approximate polynomial kernels but is infeasible to the
Hellinger’s kernel. This is because Maclaurin expansion
in RM requires the order of 〈x,y〉 not less than 1. Note
that RM is not suited to indefinite kernel as well.

• SRF [29]: the polynomial kernel on the unit spherical
is approximated by a Gaussian mixture model with ten
components. Parameters in GMM are offline optimized
by grid-search over [0, 2].

B. Quality of Kernel Approximation
One target of the experiment is to study the approximation

quality of non-Bochner kernels. In our experiment, we choose
the polynomial kernel on the unit sphere and the TL1 kernel
as examples. For them, we compute the groundtruth kernel
matrix K∗ and the approximated kernel matrix K on the EEG
dataset, and validate the approximation quality of competing
methods. The used evaluation metric here is root mean square
error (RMSE) between K∗ and K over N observations, i.e.,
RMSE =

√
1

N(N−1)

∑N
i=1

∑N
j=1,j 6=i

(
K∗ij −Kij

)2
.

http://www.lfhsgre.org
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Fig. 2 shows the kernel approximation performance of
the compared algorithms with the polynomial kernel and the
TL1 kernel on EEG. It can be observed that, in terms of
polynomial kernel approximation, under varying random feature
dimensionality, our method always provides lower RMSE than
RM and SRF, especially when using lower dimensional random
features. For TL1 kernel approximation, along with the number
of random features increases, the approximation error provided
by SRF and our method steadily declines. Nevertheless, SRF
yields a considerable approximation error and relatively large
variance. Unlike SRF, our method achieves lower RMSE, which
benefits from the high flexibility of the proposed RFF-DIGMM
model. Notice that, the obtained RMSE on the TL1 kernel of
both two methods is not as good as those for the polynomial
kernel. This is mainly due to the non-smoothness of the TL1
kernel, which enhances the approximation difficulty.

C. Classification Results for Approximating Indefinite Kernels

The main focus of our RFF-DIGMM model is not limited
to improve the quality of kernel approximation. Instead, we
aim to train a linear classifier in the feature space spanned by
the obtained random features for classification tasks.

For the polynomial kernel, we compare the performance
of random feature mappings (RM, SRF, and our method)
with the polynomial kernel and the liblinear method. For the
Hellinger’s kernel Kh(x,y) =

√
〈x,y〉, SRF and our RFF-

DIGMM method are taken into comparisons but RM is not
suited to this kernel. This is because Maclaurin expansion in
RM requires the order of 〈x,y〉 not less than 1. Table III
reports the classification accuracy and approximation time of
all the competing methods for the polynomial kernel and the
Hellinger’s kernel. As expected, the test accuracy improves with
higher-dimensional feature maps. The kernel approximation
time linearly increases as the number of random features
dimensionality raises. Among all the five datasets, our method
achieves the best test accuracy. As a full Bayesian model, our
RFF-DIGMM achieves comparable computational efficiency,
and accordingly decreases the computational cost for hyper-
parameter tuning and multiple trials for determining a proper
number of components by SRF.

Apart from dot-product kernels, we also evaluate the
classification performance of our model with the TL1 kernel
and tanh kernel. The compared two algorithms include SRF
and liblinear. The experimental results with respect to the test
accuracy and training time are reported in Table IV. We can
find that the proposed RFF-DIGMM model is superior to SRF
in all the cases except for M = 2d on ijcnn1 and spambase.
For the TL1 kernel, the test accuracy of SRF is inferior to our
method, and it almost stays unchanged with nearly indiscernible
improvements on ijcnn1 and covtype even if M varies from
2d to 32d. This phenomenon also appears to SRF with the
tanh kernel on spambase. Instead, our RFF-DIGMM model
flexibly exploits the infinite components that adapts to data,
and accordingly achieving promising test accuracy on these
five datasets with varying M . The classification results on
two indefinite kernels demonstrate the superiority of our RFF-
DIGMM model.

D. Compared with Other Kernel Approximation Methods with
Bochner Kernels

As aforementioned, research works on approximating non-
Bochner kernels by random features appear to be quite rare.
Albeit this, we also compare the proposed RFF-DIGMM model
with other recent kernel approximation algorithms as follows.
• RF [12]: It is a nonparametric kernel learning framework

by learning from optimal random features.
• CROiclassification [57]: A new CRO (Concomitant Rank

Order) kernel is proposed to approximate the Gaussian
kernel on the unit sphere by random features.

The used kernel in CROiclassification [57] is a Gaussian kernel.
Instead, as a data-dependent method, RF considers the learned
random features for kernel learning and approximation. In the
current setting, our method, equipped with the polynomial
kernel and M = 32d, is taken into consideration. For the
subsequent classification, all of these three algorithms are
combined with the liblinear algorithm for fair comparison. The
corresponding classification results are reported in Tab. V. We
find that RF appears to obtain a not very promising performance
even if the kernel is learned instead of directly specified.
Compared to [57] equipped with the Gaussian kernel, our
method with the polynomial kernel achieves a comparable
classification performance and computational cost. Actually,
in this paper we do not want to claim that our RFF-DIGMM
model is better than other kernel approximation methods, as the
scope of their applications are not the same. Instead, our aim is
to show that our RFF-DIGMM model provides a justification
to conduct random features for non-Bochner kernels.

E. Parametric Analysis

Here we study the influence of different sizes of the
sketch, different truncation parameter, and different eigenvalue
decompositions on the final results.

1) The size of the sketch: In our RFF-DIGMM model, in
each iteration, we sample Ns data points from D for variational
inference. Here we quantitatively study the influence of the size
of the sketch, i.e., Ns = 1, 5, 10, 50, 100 in our method with
the polynomial kernel and TL1 kernel on the ijcnn1 dataset.

Fig. 3 shows the kernel approximation error, test accuracy,
and time cost for polynomial kernel approximation and TL1
kernel approximation varying with different sizes of the sketch.
We can see that if more data points are sampled, our method
with the polynomial kernel achieves with slight improvements
on the kernel approximation error and the test accuracy, see in
Fig. 3(a) and Fig. 3(b). However, in terms of computational
cost, the training time significantly increases along with more
sampled data taken into consideration as shown in Fig. 3(c).
In addition, Fig. 3(d), 3(e), 3(f) show that our model with the
TL1 kernel achieves the same tendencies with the polynomial
kernel setting, in terms of approximation error, classification
accuracy, and time cost.

From the above experimental results, although the sketch
with larger size lead to better approximation performance to
some extent, this strategy cannot guarantee better classification
performance. This might be because the original kernel might
not be suitable for the task, as discussed in [29], [37].
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TABLE III: Comparison results of various algorithms with the polynomial kernel and the Hellinger’s kernel for varying feature
map dimensionality (M ) in terms of classification accuracy (mean±std. deviation %) and training time (mean±std. deviation sec.).
The best performance is highlighted in bold.

Dataset Method M = 2d M = 8d M = 16d M = 32d liblinear

Acc:% (time:sec.) Acc:% (time:sec.) Acc:% (time:sec.) Acc:% (time:sec.) Acc:%

Po
ly

no
m

ia
l

ke
rn

el

ijcnn1(d=22)
RM 90.4±0.4 (0.3±0.0) 93.3±0.3 (1.0±0.1) 95.1±0.7 (2.4±0.2) 96.5±0.4 (5.0±0.2)

92.5±0.0SRF1 81.2±1.9 (0.3±0.0) 86.6±0.7 (1.1±0.1) 88.8±0.7 (2.2±0.1) 93.4±0.5 (4.6±0.1)
Ours 90.0±0.6 (0.7±0.4) 95.7±0.4 (2.1±0.8) 97.3±0.4 (3.9±0.9) 97.8±0.1 (10.7±0.9)

covtype(d=54)
RM 72.9±0.6 (5.5±0.3) 75.9±0.3 (21.8±0.5) 77.8±0.1 (44.1±1.3) 79.3±0.3 (84.3±3.2)

75.6±0.2SRF 68.8±0.8 (3.7±0.1) 77.3±0.3 (16.2±0.5) 80.4±0.2 (49.5±5.4) 81.9±0.2 (93.6±8.4)
Ours 73.7±0.5 (1.7±0.6) 79.5±0.3 (3.0±1.1) 80.9±0.2 (6.0±0.4) 83.1±0.3 (19.8±2.2)

skin(d=3)
RM 80.9±6.8 (0.1±0.0) 87.9±8.2 (0.2±0.0) 87.5±7.3 (0.3±0.1) 87.7±7.7 (0.6±0.0) 91.1±0.1SRF 91.9±2.3 (0.1±0.0) 97.8±0.1 (0.3±0.0) 98.0±0.1 (0.4±0.0) 98.1±0.1 (0.9±0.0)
Ours 98.0±0.5 (0.5±0.2) 98.1±0.1 (0.7±0.3) 98.2±0.0 (1.3±0.6) 98.2±0.1 (3.1±1.3)

EEG(d=14)
RM 64.1±1.7 (0.0±0.0) 70.3±5.0 (0.1±0.0) 74.8±2.8 (0.1±0.0) 77.8±3.8 (0.1±0.0)

63.8±0.2SRF 66.3±0.8 (0.0±0.0) 67.9±0.7 (0.1±0.0) 71.8±1.8 (0.1±0.0) 74.4±2.1 (0.2±0.0)
Ours 68.7±1.2 (0.3±0.2) 80.9±0.5 (0.9±0.5) 83.9±0.5 (1.7±0.8) 85.1±0.5 (4.0±0.8)

spambase(d=57)
RM 84.6±1.4 (0.0±0.0) 87.5±2.2 (0.1±0.0) 87.1±3.3 (0.2±0.0) 90.2±0.5 (0.3±0.0)

90.7±0.8SRF 72.4±0.8 (0.0±0.0) 80.5±2.3 (0.1±0.0) 83.2±0.4 (0.2±0.0) 84.1±0.3 (0.4±0.0)
Ours 79.9±0.2 (0.5±0.2) 86.7±1.2 (1.7±0.3) 88.4±0.9 (3.8±0.2) 90.9±0.5 (6.2±0.2)

H
el

lin
ge

r’
s

ke
rn

el

ijcnn1(d=22) SRF 87.1±0.8 (0.3±0.0) 91.4±0.6 (1.1±0.0) 94.3±0.4 (2.2±0.0) 96.7±0.2 (4.5±0.1) 92.5±0.0Ours 89.5±0.8 (1.2±0.3) 95.0±1.6 (5.8±1.5) 97.0±0.4 (10.4±3.2) 97.8±0.5 (27.6±6.7)

covtype(d=54) SRF 72.0±0.7 (3.5±0.1) 78.7±0.1 (14.7±0.6) 80.1±0.3 (29.8±2.4) 82.4±0.5 (58.4±8.7) 75.6±0.2Ours 74.6±0.7 (1.9±0.6) 79.7±0.2 (5.5±0.5) 81.3±0.4 (12.5±0.4) 83.0±0.5 (27.5±2.7)

skin(d=3) SRF 96.0±1.9 (0.1±0.0) 97.9±0.2 (0.2±0.0) 98.0±0.1 (0.5±0.0) 98.1±0.1 (0.9±0.0) 91.1±0.1Ours 98.3±0.3 (0.6±0.2) 98.2±0.1 (1.6±0.8) 98.2±0.0 (3.8±1.2) 98.2±0.1 (6.7±2.6)

EEG(d=14) SRF 65.3±2.4 (0.0±0.0) 75.5±0.7 (0.1±0.0) 82.7±0.9 (0.2±0.0) 84.2±0.5 (0.4±0.1) 63.8±0.2Ours 69.3±1.6 (0.3±0.1) 81.0±1.3 (1.0±0.6) 83.9±0.7 (1.8±0.7) 84.3±0.8 (4.7±1.3)

spambase(d=57) SRF 75.3±1.7(0.0±0.0) 78.4±1.3 (0.1±0.0) 81.2±0.5 (0.2±0.0) 83.3±1.1 (0.4±0.1) 90.7±0.8Ours 78.4±1.2 (1.5±0.4) 84.6±1.0 (3.9±1.5) 87.6±0.8 (9.2±3.2) 88.2±0.2 (12.9±4.1)
1 For each dataset, SRF obtains parameters in GMM by an off-line grid search scheme in advance, of which the time cost is reported as follows.

ijcnn1 covtype skin EEG spambase
the polynomial kernel (sec.) 16.7s 86.1s 18.1s 6.8s 41.3s
the Hellinger’s kernel (sec.) 28.8s 21.9s 19.3s 16.2s 20.4s

TABLE IV: Comparison results of various algorithms with the TL1 kernel and the hyperbolic tangent kernel for varying feature
map dimensionality (M ) in terms of classification accuracy (mean±std. deviation %) and training time (mean±std. deviation sec.).
The best performance is highlighted in bold.

Dataset Method M = 2d M = 8d M = 16d M = 32d liblinear

Acc:% (time:sec.) Acc:% (time:sec.) Acc:% (time:sec.) Acc:% (time:sec.) Acc:%

T
L

1
ke

rn
el

ijcnn1(d=22) SRF1 91.0±0.7 (0.3±0.0) 92.0±0.2 (1.0±0.0) 92.2±0.5 (2.0±0.1) 92.1±0.2 (4.3±0.4) 92.5±0.0Ours 89.8±0.5 (0.6±0.4) 95.0±0.4 (1.8±0.9) 97.1±0.3 (3.8±0.8) 97.4±0.3 (7.8±0.7)

covtype(d=54) SRF 72.7±0.7 (3.3±0.1) 73.6±0.3 (16.0±0.5) 73.7±0.2 (27.7±2.1) 73.8±0.4 (41.8±14.6) 75.6±0.2Ours 73.5±0.6 (1.9±0.6) 86.7±0.4 (6.3±0.5) 87.2±0.2 (10.8±0.3) 87.2±0.6 (20.0±1.2)

skin(d=3) SRF 95.4±1.7 (0.1±0.0) 97.9±0.2 (0.2±0.0) 98.1±0.2 (0.4±0.0) 98.1±0.1 (0.8±0.0) 91.1±0.1Ours 98.0±0.5 (0.3±0.2) 98.1±0.0 (0.7±0.3) 98.1±0.1 (1.8±0.6) 98.2±0.0 (2.4±0.7)

EEG(d=14) SRF 66.8±2.6 (0.1±0.0) 77.7±0.9 (0.1±0.0) 84.6±1.0(0.2±0.0) 89.8±0.5 (0.4±0.0) 63.8±0.2Ours 69.0±1.0 (0.3±0.2) 80.6±1.0 (0.9±0.6) 85.2±0.3 (1.7±0.8) 86.9±0.8 (3.9±0.8)

spambase(d=57) SRF 84.1±2.4(0.0±0.0) 86.0±1.1 (0.1±0.0) 87.0±0.7 (0.2±0.0) 88.3±1.0 (0.4±0.1) 90.7±0.8Ours 79.9±1.0 (0.9±0.6) 86.7±1.1 (2.8±1.0) 88.0±0.9 (5.5±1.0) 88.9±0.6 (9.8±0.9)

ta
n
h

ke
rn

el

ijcnn1(d=22) SRF 92.1±0.4 (0.3±0.0) 93.0±0.4 (1.1±0.0) 93.9±0.4 (2.2±0.1) 95.5±0.8 (4.2±0.2) 92.5±0.0Ours 90.1±0.3 (0.6±0.4) 95.6±0.4 (1.9±0.9) 97.5±0.4 (3.7±0.9) 97.9±0.2 (10.4±1.2)

covtype(d=54) SRF 75.8±0.8 (3.3±0.1) 78.9±0.1 (13.8±0.6) 80.4±0.3 (28.7±2.8) 82.8±0.6 (44.7±12.1) 75.6±0.2Ours 74.2±1.2 (1.7±0.5) 79.6±0.1 (4.9±0.7) 81.0±0.2 (10.4±0.5) 83.6±0.5 (22.5±1.5)

skin(d=3) SRF 94.2±2.3 (0.1±0.0) 98.2±0.2 (0.2±0.0) 98.2±0.1 (0.4±0.0) 98.1±0.1 (0.8±0.0) 91.1±0.1Ours 97.2±1.5 (0.6±0.2) 98.2±0.1 (1.4±0.5) 98.2±0.0 (2.1±0.8) 98.2±0.1 (4.2±0.8)

EEG(d=14) SRF 64.3±1.2 (0.1±0.0) 75.2±1.1 (0.2±0.0) 78.4±0.8 (0.3±0.0) 79.1±0.9 (0.5±0.1) 63.8±0.2Ours 69.3±1.2 (0.3±0.2) 80.2±1.0 (1.9±0.8) 83.4±0.5 (1.7±0.8) 84.5±1.2 (4.0±0.7)

spambase(d=57) SRF 83.5±1.8(0.1±0.0) 84.2±1.1 (0.1±0.0) 84.8±0.8 (0.2±0.0) 85.0±1.4 (0.4±0.1) 90.7±0.8Ours 76.2±1.4 (2.0±0.7) 85.6±1.5 (4.8±1.0) 87.0±0.8 (7.5±2.5) 87.2±1.2 (20.7±4.8)
1 For each dataset, SRF obtains parameters in GMM by an off-line grid search scheme in advance, of which the time cost is reported as follows.

ijcnn1 covtype skin EEG spambase
the TL1 kernel (sec.) 3.7s 8.3s 10.7s 3.0s 6.5s
the tanh kernel (sec.) 10.2s 11.8s 29.5s 16.5s 17.4s
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(a) Relative error (b) Test accuracy (c) Time cost

(d) Relative error (e) Test accuracy (f) Time cost

Fig. 3: Comparison of results versus varying Ns for the polynomial kernel (a), (b), (c) and the TL1 kernel (d), (e), (f) on the ijcnn1 dataset.

TABLE V: Comparison results of various representative algorithms
with Bochner kernels and our RFF-DIGMM model with the polynomial
kernel. The best scores are highlighted by bold.

Dataset

RF CROiclassification RFF-DIGMM

learned kernel Gaussian kernel polynomial kernel

Acc:% (time:sec.) Acc:% (time:sec.) Acc:% (time:sec.)

ijcnn1 95.5±0.4 (36.6±2.3) 97.1±0.1 (0.4±0.1) 97.8±0.1 (10.7±0.9)

covtype 79.2±0.28 (44.4±2.2) 86.2±0.2 (17.7±0.9) 83.1±0.3 (19.8±2.2)

skin 97.9±0.2 (40.4±1.4) 98.1±0.1 (3.4±0.3) 98.2±0.1 (3.1±1.3)

EEG 84.3±0.8 (5.0±0.1) 87.2±0.1 (0.4±0.1) 85.1±0.5 (4.0±0.8)

spambase 86.2±1.4 (2.0±0.2) 90.2±0.1 (0.2±0.1) 90.9±0.5 (6.2±0.2)

2) Truncation Parameter: As aforementioned, the vari-
ational distribution is truncated but our model is a full DP
and is not truncated. The truncation level T is a variational
parameter which can be freely set; it is not a part of the prior
model specification. Here we evaluate the parametric sensitivity
of T on the ijcnn1 dataset. Table VI reports the classification
accuracy and time cost for computing random features when
T is chosen as 1, 5, and 10. It can be observed that the test
accuracy with different T is experimentally stable. However,
the time cost gradually increases as T rises. Hence, small T
values are shown to achieve high computational efficiency,
which explains the reason why we choose this parameter for
our experiments.

F. Illustration of Convergence

Here we investigate the convergence of the used non-
conjugate variational inference algorithm. We take the TL1 ker-
nel with M = 2d as an example, and plot ‖q(zt)−q(z(t−1))‖F
versus iteration on the above-mentioned five datasets in Fig. 4.

It can be found that, in most cases, q(zt) significantly decays
in the first 5 iterations in our variational inference algorithm,
which leads to quick convergence under the stopping criterion
‖q(zt) − q(z(t−1))‖F ≤ 1e−5. The total iterations are less
than 10 in these five datasets except for skin with about 13
iterations. Therefore, the maximum iteration number fixed to
50 is reasonable and enough. And further, the convergence
of the optimization process employed by our non-conjugate
variational inference is well demonstrated.

VI. CONCLUSION

We investigated a full non-parametric Bayesian method
in random feature mappings for indefinite kernels. It extends
the traditional Bochner kernel in RFF to several non-Bochner
kernels including dot-product kernels and indefinite kernels. By
placing a DP prior on the components of Gaussian mixtures,
our RFF-DIGMM model is adaptive to the data with varying
components. The derived non-conjugate variational inference
algorithm with the sub-sampling scheme is efficient and
effective for model inference. As a result, the superiority of our
method is demonstrated by experimental validation on several
classification datasets.

APPENDIX A
UPDATE VARIATIONAL FACTORS

The optimization for each variational factor is conducted
by iteratively updating latent variables in details.

1) q(βt): We absorb terms in Eq. (13) that do not depend
on βt into the additive normalization constant, giving

ln q∗(βt) = EΩ\βt ln p(Ds,Ω) + const

= ln p(βt) +

M∑
m=1

Eq
[

ln p(zm|β̃)
]

+ c .
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TABLE VI: Comparison results of different truncation parameter values on the ijcnn1 dataset.

kernel
type T M = 2d M = 4d M = 8d M = 16d M = 32d

Acc:% (time:sec.) Acc:% (time:sec.) Acc:% (time:sec.) Acc:% (time:sec.) Acc:% (time:sec.)

Polynomial
kernel

T = 1 89.9±0.6 (0.2±0.2) 92.8±0.9 (0.4±0.2) 95.7±0.4 (0.6±0.2) 97.0±0.4 (1.0±0.2) 98.1±0.3 (2.4±0.2)
T = 5 90.0±0.6 (0.7±0.4) 92.1±0.7 (1.1±0.6) 95.7±0.4 (2.1±0.8) 97.3±0.4 (3.9±0.9) 97.8±0.1 (10.7±0.9)
T = 10 89.7±0.2 (0.8±0.4) 91.9±0.8 (1.1±0.7) 94.8±0.7 (2.7±0.9) 97.4±0.4 (5.3±0.7) 98.2±0.2 (12.0±0.5)

TL1
kernel

T = 1 90.1±0.7 (0.2±0.2) 92.2±0.8 (0.3±0.2) 95.3±0.5 (0.5±0.2) 97.0±0.2 (0.8±0.4) 97.8±0.3 (1.3±0.6)
T = 5 89.8±0.5 (0.6±0.4) 91.7±0.6 (1.0±0.5) 95.0±0.4 (1.8±0.9) 97.1±0.3 (3.8±0.8) 97.4±0.3 (7.8±0.7)
T = 10 89.9±0.3 (0.7±0.4) 92.0±0.7 (1.1±0.7) 94.9±0.5 (2.0±0.9) 96.9±0.3 (4.1±0.8) 97.8±0.2 (11.8±0.7)

(a) ijcnn1 (b) covtype (c) skin (d) EEG (e) spambase

Fig. 4: Convergence plots on (a) ijcnn1, (b) covtype, (c) skin, (d) EEG, and (e) spambase.

Following [52] and q(zm > T ) = 0, we have

Eq
[
ln p(zm|β̃)

]
=

T∑
k=1

{
q(zm>k)Eq

[
ln(1−βk)

]
+q(zm=k)E(lnβk)

}
.

As a result, the optimal variational distribution q∗(βt) can be
obtained by

ln q∗(βt)=ln p(βt)+

M∑
m=1

[q(zm>t) ln(1−βt)+q(zm= t) lnβt]+c

=ln p(βt)+

[ M∑
m=1

q(zm>t)

]
ln(1− βt)+

[ M∑
m=1

q(zm= t)

]
lnβt+c .

Since βk ∼ Beta(1, α0), we have p(βk) ∝ (1 − βk)α0−1.
Finally, we have

βt ∼ Beta
(

1 +

M∑
m=1

q(zm = t), α0 +

M∑
m=1

q(zm > t)

)
.

2) q(zm): Likewise, we do not consider irrelevant terms
of zm in Eq. (13), i.e.

ln q∗(zm) = EΩ\zm ln p(Ds,Ω) + c

= Eq
[

ln p(zm|β̃) + ln p(wm|zm, µ̃, Λ̃)
]

+ c

=
T∑
k=1

{
1[zm > k]E[ln(1− βk)] + 1[zm = k]E(lnβk)

+ 1(zm = k)
(1

2
E
[

ln |Λk|
]
− d

2
ln(2π)− 1

2
Ξ
)}

+ c ,

with Ξ , Ewm,µk,Λk
[
(wm − µk)>Λk(wm − µk)

]
. Defining

ln ~mk=E(lnβk)+

k−1∑
t=1

E[ln(1−βt)]+
1

2

(
E ln |Λk|−d ln(2π)−Ξ

)
,

and scaling ~̃mk = ~mk∑T
t=1 ~mt

, we have q(zm = k) = ~̃mk. It
means that zm is chosen according to a multinomial probability
distribution.

3) q(µk): Keeping only terms that have a functional
dependence on µk, we have

ln q∗(µk) = EΩ\µk ln p(Ds,Ω) + c

= Eq
[

ln p(µk) + ln

M∏
m=1

p(wm|zm, µ̃, Λ̃)
]

+ c

= ln p(µk)+

M∑
m=1

q(zm=k)EΩ\µk
[

lnN (wm|µk,Λ−1
k )
]
+c

= −1

2
µ>k

(
R0 + E(Λk)

M∑
m=1

q(zm = k)

)
µk

+ µ>k

(
R0m0 + E(Λk)

M∑
m=1

q(zm = k)E(wm)

)
.

After some algebraic manipulations, as we expect, µk is subject
to a Gaussian distribution µk ∼ N

(
µk|mk,R

−1
k

)
with the

following mean vector and precision matrix


mk = R−1

k

(
R0m0 + E(Λk)

M∑
m=1

q(zm = k)E(wm)
)

Rk = R0 + E(Λk)

M∑
m=1

q(zm = k) .

4) q(Λk): We only retain some terms with respect to Λk

in Eq. (13), namely
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ln q∗(Λk) = EΩ\Λk ln p(Ds,Ω) + c

=ln p(Λk)+

M∑
m=1

q(zm=k)EΩ\Λk
[

lnN (wm|µk,Λ−1
k )
]
+c

= −1

2
Tr(ΛkW

−1
0 )+

ν0−d−1

2
ln|Λk|+

1

2

( M∑
m=1

q(zm=k)

)
ln|Λk|

− 1

2

M∑
m=1

q(zm=k)Tr
(
ΛkE(wm − µk)(wm − µk)>

)
+ c .

Thus we have Λk ∼ W(Λk|Wk, νk) with νk = ν0 +∑M
m=1 q(zm = k) and W−1

k is formulated by

W−1
k = W−1

0 +

M∑
m=1

q(zm = k)E(wm − µk)(wm − µk)> .

5) q(wm): Inspecting Eq. (13) and reading off those terms
which involve only wm, we have

ln q∗(wm) = EΩ\wm ln p(Ds,Ω) + c

= Eq
[

ln p(wm|zm, µ̃, Λ̃)
]
+Eq

[
ln

Ns∏
i,j=1,i6=j

p(K+
ij |(xi,xj),wm)

]
+c .

For the first term, we have

Eq
[

ln p(wm|zm, µ̃, Λ̃)
]

= Eq
[

ln p(wm|µ̃, Λ̃)1[zm=k]]
=

1

2

T∑
k=1

q(zm=k)
(
E
[
ln|Λk|

]
−Eµk,Λk

[
(wm−µk)>Λk(wm−µk)

])
+c .

The second term can be expressed as

Eq
[

ln

Ns∏
i,j=1,i 6=j

p(K+
ij |(xi,xj),wm)

]

= − 1

2σ2
ε

Ns∑
i,j=1,i6=j

(
K+
ij − cos

[
w>m(xi − xj)

])2

+ c .

Since wm is not a conjugate variable, we conduct the second
order Taylor expansion cos

[
w>m(xi − xj)

]
≈ 1− 1

2w
>
m(xi −

xj)(xi − xj)>wm, and derive that

ln q∗(wm) ≈ −1

2
w>mSwm +w>m

T∑
k=1

[
q(zm = k)E(Λk)E(µk)

]
+ c .

where S is defined by

S=

T∑
k=1

[
q(zm = k)E(Λk)

]
+

1

2σ2
ε

Ns∑
i,j=1,i 6=j

(1−K+
ij)(xi−xj)(xi−xj)

>.

Therefore, wm is subject to

wm ∼ N

(
S−1

{ T∑
k=1

[
q(zm = k)E(Λk)E(µk)

]}
,S−1

)
.

In the variational update equations, we also need to
calculate the expectations with respect to the current variational
distributions. For example, E(µk) and E(Λk) can be easily
obtained by their respective distributions. Here we present

several intractable expectation computations. The expectation
E
(

ln |Λk|
)

can be obtained by

E
(

ln |Λk|
)

=

d∑
i=1

ψ
(νk + 1− i

2

)
+ d ln 2 + ln |Wk| ,

where ψ(·) is the digamma function with ψ(x) = d
dx ln Γ(x).

Besides, the expectation Eµk,Λk
[
(wm −µk)>Λk(wm −µk)

]
is given by

Eµk,Λk
[
(wm − µk)>Λk(wm − µk)

]
=

∫
µk

∫
Λk

Tr
[
Λk(wm−µk)>(wm−µk)

]
q∗(µk)q∗(Λk)dµkdΛk

=

∫
Λk

∫
µk

Tr
[
Λk(w>mwm−2w>mµk+µ>kµk)

]
q∗(µk)dµkq∗(Λk)dΛk

=

∫
Λk

Tr
[
Λk(w>mwm − 2w>mmk +m2

k +R−1
k )
]
q∗(Λk)dΛk

= E(Λk)
[
(wm −mk)>(wm −mk) +R−1

k

]
.

Similarly, the expectations Ewm,µk,Λk
[
(wm−µk)>Λk(wm−

µk)
]

and Ewm,µk
[
(wm − µk)>Λk(wm − µk)

]
can be calcu-

lated by the above way.
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