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A Abuelo





Os corazós dos homes
que ao lonxe espreitan,

feitos están
tamén

de pedra.

Celso Emilio Ferreiro, Longa noite de pedra.





Abstract

Driven by the economics of surveillance capitalism, online service providers
profile users to infer information about them, feeding automated decision-making
processes such as targeted advertising or user experimentation that prompt
grave concerns about people’s privacy, autonomy and democratic sovereignty,
among other rights. Market forces and lack of state intervention have forestalled
the emergence of privacy-preserving alternatives, forcing individuals to choose
between being profiled or relinquishing online services altogether.

In response to this failure, researchers and developers have advanced the
deployment of privacy enhancing technologies (PETs) and, in particular, PETs
that rely on obfuscation. Obfuscation tools enable users to protect themselves
against profiling by degrading the data profilers collect about them, thereby
reducing the amount of information profilers learn from those data. Of special
interest is utility-preserving obfuscation, enabling users to escape trade-offs
between utility and privacy.

In this thesis we contribute to the advance of privacy engineering through utility-
preserving obfuscation. We propose a conceptual framework to distinguish
between utility-preserving and utility-degrading obfuscation, and identify
personal and social utility requirements that inform the choice of either type
of obfuscation. We study chaff as a utility-preserving obfuscation method
and provide a model and analytical framework to inform and assist the design
and analysis of chaff-based profile obfuscation tools, with a focus on defence
strategies and usability. We illustrate the design and analysis of chaff-based
profile obfuscation through two use cases: web search and online communication.
We examine existing chaff-based private web search tools, uncovering systematic
design flaws; we study and assist the design of obfuscation tools that conceal
communication patterns, attending in particular to their deployment on social
networking sites. Lastly, we propose a new privacy design pattern to systematise
profile obfuscation through chaff and discuss further implications of our research,
exposing gaps and identifying promising research avenues.
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Samenvatting

Aangedreven door de economische imperatieven van het surveillancekapitalisme
stellen online dienstverleners profielen op van hun gebruikers om informatie
over hen af te leiden. Deze informatie dient voor geautomatiseerde besluit-
vormingsprocessen zoals gerichte reclame of experimenten met gebruikers welke
aanleiding geven tot ernstige bezorgdheden over privacy, autonomie en andere
rechten. Marktkrachten en een gebrek aan regulering door overheden hebben
de opkomst van privacybeschermende alternatieven echter verhinderd. Mensen
kunnen er dus enkel voor kiezen om geprofileerd te worden of te stoppen met
het gebruik van online diensten.

Als reactie hierop zijn onderzoekers en ontwikkelaars gestart met het opstellen
van privacyverbeterende technologieën. Met deze die steunen op obfuscatie
kunnen gebruikers zich beschermen tegen profilering door ruis toe te voegen
aan hun data. De informatie die profilers hieruit kunnen afleiden wordt zo
verminderd. Van bijzonder belang is nutsbehoudende obfuscatie, waardoor
gebruikers afwegingen tussen nut en privacy kunnen vermijden.

Deze thesis draagt bij aan de vooruitgang van privacy engineering door
nutsbehoudende obfuscatie. We stellen een kader voor om onderscheid te maken
tussen nutsbehoudende en nutsverminderende obfuscatie, en we identificeren
persoonlijk en maatschappelijk nut als doelstellingen voor beide types obfuscatie.
We bestuderen chaff als nutsbehoudende obfuscatiemethode en ondersteunen
op chaff gebaseerde obfuscatietools met een focus op verdedigingsstrategieën en
gebruiksvriendelijkheid. We illustreren dit aan de hand van twee toepassingen:
online zoekopdrachten en communicatie. Voor de eerste onderzoeken we
bestaande tools op basis van chaff die privézoekopdrachten toelaten en brengen
we zo systematische ontwerpfouten aan het licht. Voor de tweede bestuderen
we het ontwerp van obfuscatietools die communicatiepatronen verbergen,
in het bijzonder voor socialenetwerksites. Tot slot stellen we een privacy-
ontwerppatroon voor om profielobfuscatie op basis van chaff te systematiseren
en bespreken we de gevolgen en toekomst van ons onderzoek.
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Chapter 1

Introduction

You’re all serfs. [...] The data is all out there, they take your stuff for
free and monetise it for huge margins, they take over your life.

—Steve Bannon.

I was never one to acquiesce very easily to systems that felt wrong to me.
—Anohni.

Disobedience, in the eyes of anyone who has read history, is man’s
original virtue. It is through disobedience that progress has been made,
through disobedience and through rebellion.

—Oscar Wilde, The soul of man under socialism.

Bring the noize when we run upon them!
Bring the noize when we run upon them!

—M.I.A., Matangi.

Technological advances and innovations in the second half of the 20th century,
as well as the cheap, mass production of devices such as personal computers and
smartphones have ushered in a digital revolution, conducing to digital technology
mediating an increasing number of human activities.

In 2019, we browse the Internet for both work and leisure, communicate over
email and instant messaging, connect with people on social networking sites,

1
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order food and taxis with our smartphones, rely on “intelligent” assistants for
all sorts of tasks and manage our finances and tax payments online, among an
ever widening range of activities.

The increasing digitisation of human life has many advantages. Computers
dramatically facilitate information processing and storage, easing and simplifying
tedious and complex tasks such as keyword search and document indexing.
Computer networks further enable instantaneous and on-demand transmission
of information, as the web, email and voice over IP (VoIP) exemplify.

Yet at the same time, the economic apparatus that has harnessed and steered the
development of this digital revolution has led to the emergence of a surveillance
and datafied society [362, 581]. Tech giants such as Google and Facebook have
fostered and relied on the mass adoption of various digital services to build a
system of behavioural data acquisition and exploitation whereby they monetise
user data through what Zuboff refers to as behavioural futures markets [581].
Service providers entice people to use various services so as to extract their usage
patterns, using such patterns to build individual profiles of user behaviour. User
profiling enables providers to make predictions about users’ future behaviour,
selling those predictions as a product; e.g. Google and Facebook analyse users’
data and metadata to predict which goods, services or topics users are most
likely to be interested in, then sell those predictions to advertisers seeking to
target their products or their ideas to potential buyers.

Profiling can bring many benefits to users, such as service improvement and
personalisation, but it also poses multiple dangers, both for individuals and
society at large. Beyond the obvious privacy problems that profiling poses, as
profilers learn all sorts of sensitive and private information about the users they
profile [497], profiling further informs (automated) decision making processes,
prompting multiple deleterious outcomes over which users have no knowledge
or control over [404]. Unauthorised predictions and inferences [144, 334],
discrimination —racial, economic or otherwise— [584, 273, 513], social
sorting [126, 579], filter bubbles [407, 428], manipulation [334, 511] or
experimentation [65, 102, 184, 257] are some of the dangers that users face as a
result of online profiling.

More fundamentally, profiling and the decision making processes that profiles
inform alter the very fabric of society as, similarly to the effect Solove attributes
to government surveillance, they “not only frustrate the individual by creating
a sense of helplessness and powerlessness, but also affect social structure by
altering the kind of relationships people have with [those] that make important
decisions about their lives. [...] The harms are bureaucratic —indifference,
error, abuse, frustration, and lack of transparency and accountability” [498].
Moreover, under the accumulation logic of surveillance capitalism, knowledge
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and power is concentrated on a few surveillance capitalists that “through illegible
mechanisms of extraction, commodification, and control [...] effectively exile
persons from their own behavior” [580, 581], impairing “parity of participation
in social life” and “reinforcing [...] material and cultural power imbalances” [83],
thereby threatening “a diverse range of intersecting rights, including autonomy,
fairness, equality, democratic sovereignty, due process, and property” [125].

In spite of these dangers, so far regulation of data acquisition and processing
has been lax [144, 288, 404]. This is specially true and relevant for the US,
as most tech companies are US-based and, therefore, appropriate regulation
could have prevented the rise and dominance of business models based on online
profiling [459, 581]. Scholars have attributed the reluctance of US regulators
to restrain profiling practices to a historical juncture where several elements
converged to prevent intervention. These elements include the global hegemony
of neoliberal policies, pressing for deregulation and industry self-regulation; a
global economic slowdown that motivates investors to find and encourage new,
profitable markets; and the opportunistic exploitation of surveillant assemblages
as part of the War on Terror that the US launched after the 9/11 attacks [77,
282, 393, 499, 581]. Consequently, US law has so far largely left the profiling
industry to self-regulate itself through mechanisms of notice and choice whereby
users must choose whether they consent to profiling or not [288].

Self-regulation has however long been considered a failure [233, 288, 341, 404].
Users’ unawareness of privacy problems, feelings of having ‘nothing to hide’ [7,
77, 317, 388, 498] or time-inconsistent trade-offs between immediate gratification
and future harms, explain the dichotomy between users’ attitude and behaviour
in terms of privacy protection [5, 8], i.e. users report to care about privacy yet
have adopted privacy-invasive systems en masse.

Moreover, tech companies’ lack of incentives to stop profiling practices —as
a result of the economic imperatives that capitalism imposes— in addition to
weak regulation and lack of user awareness —which translates into little demand
for privacy preserving systems— has led to no privacy-friendly alternatives
entering the market [287, 457, 504].

Alternative systems and solutions that prevent user profiling do however
exist, as the extensive literature on privacy enhancing technologies (PETs)
demonstrates [115, 240]. The PETs research community of privacy experts
have proposed and sought ways to redesign or adapt systems to prevent the
ability of service providers to extract data and profile users while, at the same
time, ensuring no or minimal degradation on the utility users derive from such
systems. PETs represent systems and tools that reimagine or patch privacy-
invasive systems in order to minimise users’ privacy risks, e.g. alternative
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implementations of web search and social networking platforms that would
enable users to bypass Google and Facebook [161, 170, 508, 519].

The prohibitive social costs that giving up online services involves and the lack
of realistic alternatives explain users’ inability to escape profiling online [77, 404],
with people voicing resignation and hopelessness in the aftermath of the Snowden
revelations [168, 388, 418]. Both users and scholars agree that the market has
not provided realistic alternatives to avoid profiling, that voluntariness is an
“illusion” as users constantly face take-it-or-leave-it decisions; i.e. they either
agree to profiling or renounce the use of online services [77, 288], while many of
these services are increasingly necessary to perform vital tasks such as looking
for a job or connect with friends and family.

In the EU, the recent general data protection regulation (GDPR) holds promise,
specially because of the rules Article 22 sets on profiling and automated decision
making [288, 494]. Legal scholars however differ as to the extent to which they
believe the GDPR will actually limit current profiling practices [95, 381, 571, 583].
As Hoofnagle et al. argue in the context of service providers that require
users’ consent to profiling in exchange for service provision, “under which
circumstances take-it-or-leave-it choices are still acceptable has to become clear
from enforcement” [288].1 Other scholars have advanced that owning to the
EU’s influence and bargaining power, the GDPR will eventually lead to a new,
more stringent, “global privacy standard” [66, 238, 459].

In the meantime, however, users who wish to evade profiling are left with little
choice. Either consent to profiling, fuelling the surveillance capitalist juggernaut,
or give up on services which have become essential for the successful development
of life and participation in society [581]. This state of user vulnerability and lack
of alternatives has motivated a stream of work and research on tools that people
can deploy on top of the services they use to protect themselves from privacy-
invasive practices, as opposed to giving up on those services entirely. These
tools follow a “take-matters-into-your-own-hands” philosophy, empowering users
to defend themselves against profiling [99]. Prominent examples include privacy
technologies such as Tor or PGP. Tor is an anonymous communication network
that enables users to browse the web anonymously, thereby preventing profiling
by rendering users’ web transactions unlinkable [176]. People can download
the Tor browser and use it (mostly) as they would use any other browser [520].
PGP is an email encryption tool that enables users to encrypt their emails to
prevent email providers or network eavesdroppers from accessing their emails’

1Hoofnagle et al. also report that “[t]he day the GDPR became enforceable, Max Schrems
complained to Data Protection Authorities about the take-it-or-leave-it practices of Google,
Instagram, WhatsApp, and Facebook” [288]. At the time of writing, no resolution has been
adopted on this complaint.
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content [480]. Other popular PETs include various anti-tracking tools such as
Ghostery, uBlock origin or NoScript [369, 471].

These PETs rely on a variety of mechanisms and strategies to protect user
privacy. Among them, a particular subset relies on what is loosely termed
obfuscation. A paradigmatic example of such a tool is TrackMeNot (TMN), a
browser plug-in that generates fake queries on behalf of web search engine’s
users [523]. By injecting fake queries, TMN seeks that the search provider cannot
distinguish a user’s queries from the automatically generated and, thereby, that
the provider cannot determine the user’s search interests, as fake queries degrade
or pollute the profiles providers build.

In many scenarios, obfuscation-based privacy enhancing technologies (ObPETs)
like TMN represent a better or the only alternative to other PETs for a
variety of reasons. Technical requirements and constraints that we examine
in Sect. 2.3 prevent or discourage the use of other PETs, leaving ObPETs
as the only viable option. Moreover, encryption tools such as PGP or anti-
trackers such as Ghostery and NoScript rely on a set of complex mechanisms to
achieve the protection they provide, mechanisms that the average user generally
does not understand or is unaware of. PGP is notoriously hard to use and
understand [551]. Similarly, researchers have reported severe user misconceptions
about how anti-tracking tools work [471]. The technical complexity underlying
many PETs renders them inaccessible or incomprehensible to the average user.
In contrast, ObPETs like TMN relate to a far more approachable and easy to
understand concept, one that users instinctively rely on for their protection
online, namely, that of privacy lies.2

Previous work has shown that, among other privacy-protective behaviours
online, users rely on data degradation or privacy lies, namely, they choose to
strategically provide inaccurate or false information when they face requests
that they deem intrusive, abusive or unnecessary [422, 466]. Two classic
scenarios where users adopt this practice are inquisitive sign-up forms and
publicly exposed social media profiles, which they fill with inaccurate or false
information [224, 466]. ObPETs adopt the generation of privacy lies as a defence
mechanism and automate it, i.e. they remove the need of user intervention,
they free users from having to generate privacy lies themselves. Hence, instead
of relying on technical information and methods that users ignore or have
misconceptions about, ObPETs leverage a protection mechanism that users

2Obfuscation is too broad and vague a term to precisely delimit a particular set of
ObPETs, as there is no universally-accepted formal definition of or consensus on what
constitutes obfuscation [100]. We formalise in Chapter 2 the type of obfuscation tools we
study in this thesis, namely, those that rely on obfuscation understood as data degradation;
e.g. while some authors consider Tor’s onion routing mechanism as obfuscation [100], it does
not fall within the obfuscation as data degradation type of tools that we focus on in this thesis.
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can easily understand and relate to, which in turn renders these tools more
accessible to the average user [99].

Proof of obfuscation’s accessibility and intuitiveness is the number of software
developers, designers and artists with no expertise in computer security or
privacy engineering that have resorted to obfuscation as a means to develop
interventions against profiling. Examples of such interventions include web
browser extensions such as I like what I see and GoRando. The former
“automatically clicks all ‘Like’ buttons on Facebook” ; the latter “chooses one of
the six ‘reactions”’ every time a user clicks “Like” on Facebook [101, 293].

Indeed, both ObPETs users and designers may resort to obfuscation to “avoid
or neutralise a lurking but ill-understood threat” [99], i.e. in the face of unknown,
complex threats, both users and designers resort to intuitive, easy-to-understand
defence strategies. A paradox however, as ultimately obfuscation represents
a comprehensible defence to inherently complex privacy threats, leading both
users and designers to misunderstand or overestimate the protection that
ObPETs afford [42, 294].

It is because of this dual asymmetry, both in terms of power —as users have
little control over profiling— and knowledge —as users do not know how they
are being profiled or the consequences thereof— that motivates Brunton and
Nissenbaum to refer to obfuscation as a weapon of the weak, borrowing from
Scott’s work on everyday forms of resistance, namely, “stratagems deployed by
a weaker party in thwarting the claims of an institutional or class opponent who
dominates the public exercise of power” [99, 478].

Data degradation or inaccuracy enables users to modulate consent in the absence
of meaningful opt-out policies, this is, in the absence of granular policies
that enable individuals to determine for which uses profilers can and cannot
collect and process their data [99, 224]. Users can strategically obfuscate the
data profilers collect to maximise utility in terms of what they consider the
primary use of data and minimise utility in terms of the secondary uses they
wish to preempt, e.g. TMN obfuscates users’ search patterns in a way that
allows users to obtain the search results they expect (the primary use) while
preventing profilers to determine users’ interests, which TMN users do not
which to reveal (secondary use). As González Fuster argues, obfuscation “can
be interpreted as a preventive limitation against undesired secondary processing,
a natural obstacle to further processing or a ‘sticky policy’ promoting compliance
with the purpose limitation principle”, enabling individuals to “preserve [their]
informational autonomy” [224].

Howe further recognises three intertwined aims of ObPETs: protection, as they
prevent profilers from gaining accurate information about users; expression, as
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they enable users to openly contest and protest against profiling practices; and
subversion, as they pollute profilers’ data with noise —thereby crippling the
economic machinery around profiling.

1.1 Motivation

Despite obfuscation being an intuitive and approachable solution, designing
effective ObPETs to protect users against profiling is far from trivial. Sound
ObPET designs require that we go beyond adding some random noise. ObPETs
need to withstand strategic attacks, which means that we must subject them to
proper security analyses. As Kocher et al. point out in the context of securing
cryptosystems against side channel attacks, “[d]esigners and reviewers must
approach [...] obfuscation with great caution, however, as many techniques can
be used to bypass or compensate for [it]” [327]. Eliciting the privacy properties
ObPETs must guarantee, determining how ObPETs must obfuscate, namely,
how to introduce noise in the data profilers collect, evaluating the level of
protection these tools offer, under which conditions, and in light of the epistemic
asymmetry between ObPET designers and profilers; all these tasks require a
systematic approach to ensure sound ObPET’s design and evaluation.

Obfuscation itself as a concept is vague and often loosely used to denote a
panoply of PETs that have little in common beyond an underlying notion of
producing “misleading, ambiguous and plausible but confusing information as an
act of concealment or evasion” to protect users’ privacy [99, 100]. Whereas in
terms of ethical and political theory it may be useful to lump these tools together
under the category of obfuscation technologies, in terms of privacy engineering
these tools rely on different principles and protection mechanisms that benefit
from a separate conceptualisation and study of their own, further enabling a
dialectics across different forms of obfuscation. Identifying and understanding
the types of obfuscation privacy engineers use, their underlying protection
mechanisms, the conditions that enable or prevent their deployment as well
as the advantages and disadvantages of obfuscation compared to alternative
mechanisms are some of the key pillars in the art and practice of engineering
privacy through obfuscation. However, answers to these and other questions
remain scarce or nonexistent in the literature.

In particular, we are interested in obfuscation mechanisms that enable users
to protect themselves against profiling at no utility costs. In other words,
obfuscation mechanisms that enable users to preserve all the utility they obtain
from the primary use of data while preventing or frustrating any secondary
uses of data. An engineering practice of privacy protection through obfuscation
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needs to understand which mechanisms enable users to achieve that dual goal
and under which conditions.

Brunton and Nissenbaum ask “Is it possible to create a meaningfully quantified
science of obfuscation?” [99]. Privacy engineers need analytical frameworks and
methodologies to design and evaluate obfuscation tools, to measure a tool’s
effectiveness, the level of privacy protection a tool offers. This requires the
operationalisation of abstract privacy requirements into technical constraints
and the selection of privacy measures that enable the quantification of privacy
properties. It also requires modelling the set of assumptions under which such
properties hold, especially those relating to the adversaries a tool must protect
against. All these elements contribute to the advance of the quantified science
of obfuscation that Brunton and Nissenbaum inquire about.

The design of privacy technologies requires solutions specifically tailored to
particular contexts and users’ needs [400]; no two obfuscation tools are likely
to be the same. And yet, an engineering of obfuscation benefits from the
abstraction of methods and solutions that privacy engineers can generally resort
to as a guide in the design process. Engineering privacy through obfuscation
requires a blueprint of the fundamental elements and concepts involved in the
design of obfuscation tools. Such engineering practice includes not only the
obfuscation mechanisms themselves but also the mechanisms that govern users’
interactions with the tools that implement such mechanisms, namely, the human-
computer interaction (HCI) problem. Understanding which design principles
help individuals adopt and effectively utilise obfuscation tools, maximising their
privacy protection, is a key aspect to ObPETs design.

Obfuscation practice can also benefit from a common language not only across
obfuscation technologies, but also with respect to other privacy technologies.
Understanding how concepts and methodologies that underlie other PETs can
be adapted and repurposed in the context of ObPET design further promotes a
dialogue across the privacy engineering community and contributes to advancing
the discipline overall.

Lastly, even if obfuscation technologies enable users to protect their privacy
online, it is unclear the extent to which ObPETs can insulate users against
the unexpected, undesirable outcomes of profiling and under which conditions.
Obfuscation tools can prevent an adversary from learning sensitive information
about users, but not from using misleading, ambiguous or confusing information
to make decisions that affect them. Moreover, we need to determine whether
ObPETs can effectively undermine the conditions that underpin profiling
practices in the first place. Howe identifies a trade-off between three ObPETs
aims, namely, protection, expression and subversion [293]. We need to reason
about the conditions under which ObPETs maximise either of those aims or
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strike a balance between them, whether obfuscation technologies are ultimately
an adequate instrument to resist and challenge surveillance capitalism.

1.2 Approach

Our first objective is to delimit the conceptual boundaries across obfuscation
tools in computer security and privacy and develop a conceptual framework
that enables us to focus on a particular subset of obfuscation tools, namely,
those that protect users’ privacy against profiling without taking a toll on user
utility. To do so, we review previous work on obfuscation across the computer
security and privacy engineering literature. We provide a critical analysis of the
meanings researchers within particular subcommunities in computer security
and privacy attribute to obfuscation and examine the privacy goals they pursue
and the obfuscation methods they utilise.

Then, to further establish a conceptual separation across types of ObPETs, we
rely on an abstract model of obfuscation as data degradation. This model enables
us to distinguish between tools like, on the one hand, TMN or differentially
private mechanisms and, on the other hand, Tor or tools that leverage traffic
morphing [99]; thereby contributing to a first technical separation across ObPETs
that enables us to further narrow down our subject of study to focus on the
particularities of tools that rely on obfuscation as data degradation.

Furthermore, within this abstract model we define a set of concepts that
enable us to distinguish between two types of obfuscation tools, namely, those
that degrade utility to protect users’ privacy and those that do not. This
conceptualisation enables us to examine the conditions that call for either type
of obfuscation tools and, as a result, to formulate a conjecture on the utility
requirements that either require users to necessarily trade-off utility for privacy
or that enable them to protect their privacy without incurring any utility loss.

Our second objective is to provide an analytical framework that enables us
to systematise the study of obfuscation tools that rely on chaff to protect
users from profiling at no cost for utility. To do so, we rely on classic security
modelling to provide an abstract model of profile obfuscation tools (Protos) and
of the reference adversary or profiler that Protos protect against. Moreover,
we revisit privacy measures that previous authors have relied on to measure
the level of protection that obfuscation tools afford. We categorise these
measures according to their underlying adversarial assumptions and level of
abstraction, thereby providing designers and reviewers with an analytical toolbox
to design and evaluate Protos. In addition, we leverage classic computer security
modelling to examine the set of adversarial assumptions that support each of
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the three ObPETs’ aims that Howe identifies —namely, protection, expression
and subversion.

Our third objective is to develop a conceptual framework to assist the design of
Protos. We leverage classic computer security and privacy engineering modelling
to inform the selection and operationalisation of the privacy properties Protos
must satisfy. Moreover, we rely on previous expert literature on Protos to
propose a set of elementary conceptual tools that assist and inform tool design.

Our fourth objective is to further assist Proto design in terms of usability,
namely, determine key principles that enable individuals to adopt and use
Protos effectively. Because of the lack of studies that examine the usability of
Protos, we revisit the literature on the usability of privacy and the behavioural
economics of privacy to determine which existing principles and findings we
can extrapolate to Proto design. In addition, we run a user study to test the
reproducibility of some of these findings and assess the viability of third-party,
end-to-end-encryption tools (TPETs) as a user-friendly platform on top of which
designers can build Protos.

Our fifth objective is to demonstrate the viability and adequacy of the
analytical and conceptual frameworks we propose, this is, to demonstrate
how to apply these frameworks in practice. To do so, we implement the general
model we propose in two particular scenarios, namely, web search and online
communication —inspired by the flagship services of prominent surveillance
capitalists Google and Facebook, respectively. We illustrate how to select and
operationalise privacy properties in each of these contexts. We leverage our
conceptual and analytical frameworks to revisit and critically examine previous
Protos’ designs. Moreover, we illustrate how to compute privacy measures in
practice, proposing a set of simplifications that enable designers to speed up
and thereby lower the cost of Protos’ evaluation.

Our sixth objective is to set the basis of a design methodology for chaff-based
profile obfuscation as well as to encourage a common language between and a
dialogue with privacy engineers across a range of domains and techniques. To
that aim, we resort to the fields of software and privacy engineering and their
work on privacy design patterns. We propose a new privacy design pattern,
namely, a chaff-based profile obfuscator and integrate previously proposed
privacy design patterns within a hierarchy of related patterns.

Our seventh and last objective is to identify major gaps in our work as well as
future avenues of inquiry. We reflect on the findings and limitations of our work,
discuss the implications of Protos deployment and identify promising lines of
future work.
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1.3 Outline and contributions

In Chapter 2 we introduce the concept of obfuscation, highlighting how
its multiple meanings and interpretations render it a vague and ambiguous
concept to work with. To elucidate the particular type of obfuscation we
focus on in this thesis, we provide an overview to the various understandings
and uses of obfuscation across security and privacy research. We distinguish
three subcommunities with their own particular understanding of obfuscation,
namely, software engineers, whose definition relates to the complexity of reverse-
engineering obfuscated code; cryptographers, whose definition relates to the
indistinguishability between obfuscated code of two programs with equivalent
functionality, and privacy engineers, whose definition relates to the inaccuracy
and imprecision of data.

As privacy engineers, our working definition of obfuscation belongs to the
last category. Hence, in Chapter 2 we propose an abstract model of data
obfuscation and introduce the concepts of personal utility, privacy loss (or
adversarial gain) and social utility. Through the concepts of personal utility and
privacy loss we distinguish between two types of obfuscation, namely, utility-
preserving obfuscation (UPO) and utility-degrading obfuscation (UDO). Both
UPO and UDO seek to preserve user utility while minimising adversarial gains,
i.e. privacy losses. However, we argue that UDO is inadequate or suboptimal
to address trade-offs between personal utility and privacy in the absence of
social utility requirements, as personal utility alone does not require information
disclosure to adversarial parties. Conversely, as social utility requires disclosing
information to adversarial parties, we argue that only UDO can provide robust
privacy guarantees against adversaries with arbitrary background knowledge
—by trading off social utility for privacy.

We further outline the technical constraints that motivate the use of obfuscation
as opposed to cryptographic anonymity tools, highlighting the role of
uncooperative providers that refuse to deploy cryptographic systems and
the clash between anonymity and services that require persistent, even if
pseudonymous, identities.

We introduce UPO through chaff and provide an overview of the use of chaff
in security and privacy research. We distinguish between different types of
chaff, identifying the goals, protection methods and adversarial assumptions
underlying their deployment.

In Chapter 3 we introduce “Protos”, namely, chaff-based obfuscation tools that
seek to prevent privacy losses that profiling causes. We introduce an abstract
model that describes the profiling process as well as the type of adversary Protos
respond to. In addition, we introduce a set of measures to assist the design and
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evaluation of Protos, distinguishing two types of measures: those supporting
a mechanism-centred analysis (MCA) and those supporting an attack-centred
analysis (ACA). We propose this categorisation to distinguish between measures
that abstract away from particular adversaries and attacks, measuring intrinsic
properties of the Proto, i.e. as a function of its inputs and outputs alone (MCA),
and measures that capture the performance of a particular adversary and attack,
i.e. that rely on details external to Protos’ design (ACA).

Moreover, we provide an overview to key aspects in Proto design, with a focus
on Protos’ dummy generation strategies (DGSs) and usability. A Proto’s DGS
is responsible for the generation of dummy, fake activity to protect users against
profiling. Protos require usability to ensure that individuals are able to benefit
from the antiprofiling protection they offer. Due to the shortage of usability
studies of Protos (motivated in turn by a dearth of Protos implementations)
we review the state-of-the-art on usability of security and privacy tools and
propose a set of recommendations towards the design and implementation of
usable Protos.

We finalise Chapter 3 with a discussion on the implications of assuming an honest-
but-curious service provider as the reference adversary Protos defend against.
We examine the impact of both naive and active adversaries, highlighting Protos’
inability to both avoid unintended consequences from profiling and prevent an
active adversary from degrading the quality of service Protos’ users expect.

Chapter 3 draws on, extends and develops some of our previous findings
and results [39, 41, 42, 261].

In Chapter 4 we study obfuscation tools that attempt to thwart profiling by
online search engine providers. We instantiate the general Protos model to
chaff-based private web search (CBPWS), illustrating how to operationalise
relevant privacy properties to measure the effectiveness of CBPWS tools. Then,
we illustrate how to leverage the CBPWS analysis framework by critically
examining existing CBPWS tools. We uncover a series of vulnerabilities that
render these tools ineffective and further articulate and systematise the culprits
underlying these flawed designs. Through Chapter 4 we highlight, among several
others, two main Protos’ design challenges: one, the complexity of DGS design
when the universe of user actions is too large to delimit and define and user
behaviour is difficult to predict; two, the lack of information on an adversary’s
profiling practices.

Chapter 4 heavily draws on previous results published by Balsa et al., which
we extend and elaborate on [42].

In Chapter 5 we propose a second use case and study obfuscation tools that
attempt to thwart profiling in online communication services. We instantiate the
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general Protos model to communication services, define profile confidentiality
as the reference privacy property communication Protos are after, and
operationalise profile confidentiality through the information-theoretic measures
we propose in Chapter 3.

Online communication services enable us to highlight two main differences
between the deployment of Protos for CBPWS and communication profile
confidentiality (CPC). These differences further enable us to emphasise that
despite the commonalities across Protos, each service and context requires
tweaks and tailored solutions of its own.

Based on previous results by Balsa et al., we further propose a set of techniques
to empirically compute the level of profile confidentiality that Protos afford to
users who communicate on social networking sites (SNSs) [41]. We draw on a
separate set of previous results by Balsa et al. to identify sources of side-channel
information leakage in SNSs, informing the selection of metadata a Proto’s DGS
must consider [40].

We focus on the deployment of Protos in online social networks and include
and update our previous analysis of the role social network providers (SNPs)
play in the deployment of end-to-end encryption (E2EE) in SNSs, as encryption
is key for Protos to guarantee content indistinguishability, a core DGS design
requirement [38]. In addition, we resort to a previous user study by Balsa et al. to
frame and discuss the dichotomy between tool integration and user engagement
in the context of Protos for CPC in SNSs [39], showing that our results align and
support previous and subsequent findings, namely, that users overwhelmingly
prefer integrated privacy solutions.

In Chapter 6 we propose chaff-based profile obfuscator (CBOR), a new privacy
design pattern. CBOR recasts the general Protos model we introduce in
Chapter 3 as an abstract solution that privacy engineers can resort to to
develop chaff-based profile obfuscation tools against profiling. Through CBOR
we contribute to the advancement of privacy engineering as a discipline by,
first, encouraging researchers and developers across domains to think about
Protos collectively and, secondly, by developing a common language not only
for Protos’ developers but also for privacy engineers at large.

In Chapter 7 we conclude by revisiting the goals we have stated in this
section and outlining the extent to which we have fulfilled them. Moreover, we
discuss further implications of our research, exposing gaps and promising lines
of research.





Chapter 2

On obfuscation

Obscurity wraps about a man like a mist; obscurity is dark, ample,
and free; obscurity lets the mind take its way unimpeded. Over the
obscure man is poured the merciful suffusion of darkness.
None knows where he goes or comes. He may seek the truth and
speak it; he alone is free; he alone is truthful; he alone is at peace.”

—Virginia Woolf, Orlando: A biography.

In this chapter we provide a definition of what we refer to as obfuscation and
obfuscation technologies. In particular, we focus on what we call obfuscation-
based privacy enhancing technologies (ObPETs), i.e. technologies whose goal is
to solve a privacy problem by relying on obfuscation. We may define a privacy
enhancing technology (PET) as any type of “technical means for protecting users’
privacy” [547]. The meaning of obfuscation, however, varies across research
(sub)communities, meaning there is no standard definition or consensus on what
obfuscation technically means or entails. There is a panoply of technologies and
techniques whose proponents say to rely on or provide obfuscation. From privacy-
preserving location based services [30, 186, 488] and private web search tools [42]
to anonymous communication systems such as Tor [100] or directed-access
databases [401] and software obfuscation [138, 137], these systems and tools
rely on some form of obfuscation, yet they differ in the protection techniques
they use and the privacy properties they pursue or guarantee. This wide variety
of tools attests to the lack of a unique understanding or definition of what
obfuscation involves or what an obfuscation tool is. Hence, if we define ObPET
as tools that provide privacy through obfuscation, we need to consider a range
of privacy tools that differ widely from each other.

15
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Obfuscation is thus too vague a word to delimit the conceptual boundaries of
the type of technologies we aim to study. Let us consider the definitions of
‘obfuscation’ the Oxford dictionary1 provides:

1. The action of obfuscating something or someone; the condition of being
obfuscated.

a. Darkening or dimming of colour, light, or the sight; an instance of
this.

b. Concealment or obscuration of a concept, idea, expression, etc.
c. Confusion of the mind, understanding, etc.; stupefaction, bewilder-

ment.

2. Something that darkens or obscures a situation, facts, etc.; an instance of
darkening or obscuration.

Understanding obfuscation as concealment implies that any technology that
conceals or hides information is obfuscation. Hence, according to this definition,
encryption technologies are obfuscation. Similarly, anonymous communication
systems seek to conceal the relationship between senders and receivers in
a communication channel, leading to some scholars categorising them as
obfuscation tools [100]. In fact, if we generalise this reasoning any technology
that models privacy as confidentiality or hiding [259] may be considered
an ObPET.

On the other hand, since inaccuracy and imprecision are ‘something that darkens
or obscures’ and ‘an instance of darkening or obscuration’, privacy technologies
that intentionally make data less accurate or precise may also be considered
obfuscation tools, as is the case of tools that leverage intentional data quality
degradation as a means to provide location privacy [30, 186, 488], context
privacy [555] or privacy-preserving collaborative filtering [70, 437].

In this thesis we focus on a particular subset of obfuscation tools that, because
of the commonalities they share and their differences with other tools, we
consider a category of their own. We note that this is not an attempt to limit or
constrain the notion of obfuscation, but to illustrate the various understandings
of what obfuscation means and entails across research communities.

In this chapter we firstly provide in Sect. 2.1 an overview of different
understandings of what obfuscation means across computer security and privacy
research. In Section 2.2, we introduce a conceptual framework for obfuscation
tools that rely on data degradation to protect privacy. In Section 2.3 we examine

1Retrieved on 1 March 2018 from www.oed.com.

www.oed.com
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technologies other than those that rely on obfuscation as data degradation to
illustrate the advantages and disadvantages of either type of tools. In Section 2.4
we introduce chaff as enabler of utility-preserving obfuscation and examine
the use of chaff in security and privacy research, identifying different types of
chaff and their uses. Lastly, we conclude in Sect. 2.5 with a summary of the
contributions of this chapter.

2.1 Obfuscation in security and privacy research

We examine properties, goals and methods that the security and privacy research
communities have denominated or referred to as obfuscation. We note that we
focus on prominent and dominant conceptualisations of obfuscation, i.e. we
do not attempt to capture niche understandings and uses that have not been
broadly adopted.

2.1.1 Obfuscation as complexity.
The software engineering perspective.

The most prominent use of obfuscation in the software engineering community
relates to the program obfuscation problem —also known as software or code
obfuscation. Program obfuscation seeks to generate a modified version of a
program’s code that, while guaranteeing the same utility as the original program,
deters anyone from reverse-engineering it, learning its purpose or internal
structure. The goal is hence “to transform the program into a semantically
equivalent program which is much harder to understand for an attacker” [24].
Program obfuscation may target either source or machine code and finds
application in scenarios such as intellectual property and data protection or
anti-tampering and vulnerability discovery prevention [43].

Software engineers have proposed a range of methods for software obfuscation.
These include lexical, control, data and semantic transformations of code that
aim to hinder the efforts of an adversary at understanding or reverse-engineering
the obfuscated program [43, 137].

Various authors have however either criticised or acknowledged that these
methods are not grounded on rigorous definitions to guarantee any notion
of provable security properties [24, 137, 338, 401, 474]. Program obfuscation
progresses as “an arms race between software developers and code analysts” [474]:
developers design new program obfuscation methods to defend against the latest
debugging, disassembling and emulation tools [371] or any other type of code
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analysis techniques available [43], exploiting their limitations to produce code
that is, at that particular moment, hard to analyse [371]. Code analysts in
turn respond by refining their analyses to break new obfuscation methods, thus
raising the bar for program obfuscators to design better obfuscation. This
highlights the lack of provable guarantees: software engineers’ obfuscation
methods target existent reverse-engineering techniques guaranteeing nothing
about future code analysis developments.

Collberg et al. evaluate code obfuscation techniques according to their obscurity
(measured as the additional time an adversary requires to reverse-engineer or
understand an obfuscated program), their resilience (the possibility to design
an automated tool that undoes obfuscation), their stealth (the ability of an
adversary to detect obfuscated code), and cost (the additional computation and
memory resources required to run the program) [137]. Anckaert et al. propose a
set of software complexity metrics such as instruction counts, cyclomatic numbers
or knot counts in the program’s control flow graph that instead of targeting a
particular code analysis technique (or combination thereof) attempt to capture
principles that apply to code analysis complexity in general [24]. The rationale
behind this proposal is that any code analysis technique is slowed down or
hindered by an increasing number of program instructions or control flow graph
complexity; hence their utility as a proxy measure of obfuscation. Schrittwieser
et al. alternatively rate the robustness of similar classes of obfuscation methods
against classes of code analyses (such as pattern matching and static, dynamic
and human-assisted analysis) by the ability of the latter to defeat the protection
the former provide [474].

Common to all these measures is the notion that obfuscation depends upon code
complexity. Program obfuscation methods seek to increase the complexity of
the reverse-engineering process so as to, even if unable to guarantee any formal
definition of security, significantly raise reverse-engineering costs, forcing in turn
an adversary to spend as many resources on de-obfuscation as possible [371].
Moreover, while there is no universal or fixed set of measures that software
engineers rely on to evaluate software obfuscation, there is the underlying notion
of a continuous spectrum of effort/protection: the more code complexity the
developer introduces, the more or better obfuscation obtains as a result.

2.1.2 Obfuscation as indistinguishability.
The cryptography research perspective.

The cryptography community has long seen program obfuscation as a
cryptographic “master tool” that would by design provide any cryptographic
functionality, such as public-key cryptography, secure multiparty computation
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or zero-knowledge proofs [44]. However, the software engineering ‘arms
race’ approach to program obfuscation has long received criticism from the
cryptography community due to the lack of formal definitions and provable
security guarantees in their methods and solutions [137, 338, 401].

In addressing this, Hada and Barak et al. provide the first formal definitions
of program obfuscation [46, 265]. Barak et al. propose the “virtual black box”
model, whereby an obfuscated program P ′ must provide the same functionality
as the original, non-obfuscated program P, while anything we can efficiently
compute from P ′ we must be able to efficiently compute given oracle or black-box
access to P too [46].

Barak et al. demonstrate that such a definition of obfuscation is in general
impossible to satisfy due to the existence of a family of inherently unobfuscatable
functions [46], the intuition being that an obfuscated program reveals code
providing a given functionality (that may be input to other programs and
reused at will) and that is inherently more informative than no code at all,
i.e. a black-box.2 To circumvent this impossibility result, Barak et al. propose a
weaker notion of obfuscation, indistinguishability obfuscation (IO), whereby an
adversary is unable to distinguish obfuscated programs P ′ and Q′ of functionally
equivalent programs P and Q.

The “cryptographic notion” of obfuscation is therefore more akin to a binary
property: an obfuscator Ω is either able to satisfy the definition (any of the
above) or not. This differs from the software engineering perspective, where
measures of complexity denote a range of obfuscation potency or resilience: the
more code transformations, the more obfuscation.

Barak further equates the approaches to program obfuscation of software
engineers and cryptographers to security by obscurity and security by simplicity,
respectively [44]. The reason is that the former rely on adding new complex
transformations that existent code analysis techniques are not aware of or
prepared for. However, as soon as code analysts discover these transformations
and refine their methods, they can bypass obfuscation. Modern cryptography
on the other hand predicates its security on open designs and well-known hard
problems such as integer factorisation, the discrete logarithm problem or one-
way functions [45]. Instead of relying on new techniques adversaries are yet
unaware of and need to adapt and find a way around, cryptographers rely on
open and well-known cryptographic primitives for which no efficient attacks
exist or are yet known.

2Matthew Green provides a layman’s explanation of the different cryptographic definitions
of program obfuscation in his blog “A Few Thoughts on Cryptographic Engineering” [247].
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In spite of this shift from security by obscurity to security by simplicity,
still the underlying notion to the approaches of both software developers
and cryptographers to program obfuscation is that of complexity. Software
developers’ obfuscation methods rely on new, complex code transformations
existent code analysis techniques do not account for. Cryptographers’ current
approaches to program obfuscation rely on hard, complex problems for which
no efficient solutions are yet known [387]. Granted that the difference between
the software engineering and cryptographic approaches is stark: cryptographers
provide provable guarantees through reductions to well-known hard problems
such as the discrete logarithm, whereas the software engineering approach does
not: it simply hopes that obfuscation will be hard to undo, offering no formal
guarantees over the proposed obfuscation mechanisms. Still, Barak indicates
that there is “no strong evidence” that problems such as the discrete logarithm or
integer factorisation are actually hard; hence, there is no reason to “assume the
nonexistence of a[n] algorithm for these problems” [45]. The advent of quantum
computing has cast further doubts over the security of current cryptosystems
in the future, especially those relying on public-key cryptography [72, 118].

If it is just a matter of time before crypto analysts find a way —either through
more efficient algorithms or new technology— to break the cryptosystems
underlying cryptographers’ obfuscation, then the difference in approaches
between the cryptography and the software engineering communities seems to
shrink. This connects with an alternative, loose understanding and use of the
word obfuscation, namely, that of “bad” or “faulty encryption”.

A note on “obfuscation as ‘bad encryption’”. The implicit vagueness of the
term obfuscation has led security experts to liberally use it to denote a host of
data transformations that, while not secure enough to be deemed encryption
(i.e. in accordance to modern cryptographic standards in that no feasible, efficient
attack is currently known), do impose nevertheless a certain amount of effort
—even if minimal— required to undo them. We highlight however that there is
no consensus with respect to this terminology (i.e. referring to insecure forms of
encryption as obfuscation) nor a formalisation of this understanding of insecure
encryption as obfuscation.

Researchers have denoted as obfuscation earlier (insecure) proposals of order-
preserving encryption [150]; insecure, deterministic data masking (e.g. by
repeatedly XOR-ing data with a constant string [367]); weak encryption [20], or
simply insecure security practices involving encryption such as storing decryption
keys in easily accessible files [316].

We note that this notion of obfuscation represents security through obscurity
rather than the security through simplicity or open security principles underlying
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modern cryptography and thus shares more similarities with the notion of
obfuscation in software engineering.

2.1.3 Obfuscation as inaccuracy and imprecision.
The privacy engineering perspective.

We mention at the beginning of this chapter that any privacy technology
that conceptualises privacy as confidentiality or hiding may potentially be
considered an ObPET. In practice however, the most prominent understanding
of obfuscation in the privacy community is that of techniques that rely on a host
of data operations that modify data to render it less accurate or precise, aiming
to lessen in turn the amount of sensitive information an adversary acquires from
them. Such data operations include, among others, randomisation, addition and
suppression, generalisation, shuffling and swapping [11]. By inaccuracy we
refer to deviations from data values akin to errors (random variability) whereas
by imprecision we refer to coarser granularity values encompassing the original
value [186]. Figure 2.1 provides a graphical representation of inaccuracy and
imprecision.

(a) Accuracy: l′ less accu-
rate than l.

(b) Precision: interval l′ less
precise than l.

Figure 2.1: A graphical representation of (in)accuracy and (im)precision

An example that further illustrates these concepts in the context of location
data is the following. Let us consider a location l, e.g. a set of GPS coordinates
(lφ, lλ) = (50.862469 N, 4.686821 E), pointing to a location on Campus Arenberg
at the University of Leuven. An inaccurate location entails a different set of
GPS coordinates l′, pointing to another location entirely (even if arbitrarily
close to the actual location l), e.g. l′ = (l′φ, l′λ) = (50.869364 N, 4.692250
E), a nearby location on campus, or l′ = (l′φ, l′λ) = (50.88 N, 4.70 E), a
different location in the centre of Leuven. An imprecise location on the other
hand entails granularity coarser than GPS coordinates (e.g. at the street, city
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or country level) yet including the actual location l = (lφ, lλ), e.g. in order
of decreasing granularity: l′ = {Campus Arenberg} ⊂ {Leuven-Heverlee} ⊂
{Vlaams-Brabant} ⊂ {Belgium}.

Privacy engineers turn to data obfuscation to provide database anonymity [364,
512], search privacy [42, 235], location privacy [30, 186, 490], privacy preserving
personalisations and recommendations [427, 429], communication profile
confidentiality [41] or privacy-preserving data mining [14], among other privacy
goals. We however note that the use of the word obfuscation to denote these
data operations is not equally established within each of these subcommunities.
Whereas location privacy researchers typically refer to the operations they
perform on location data as obfuscation, database privacy researchers rarely do
so, favouring alternative terms such as perturbation or more specific terminology
such as randomisation or generalisation, even if the set of techniques both use is
oftentimes the same or analogous. The database privacy community moreover
distinguishes between operations that seek to trade-off data accuracy for privacy,
offering no guarantees of data ‘truthfulness’, such as randomisation, and those
that trade-off data precision for privacy, resulting in truthful yet imprecise data,
such as generalisation [31].

In spite of the variety of data operations we may denote as obfuscation and
the wide set of privacy problems researchers seek to address with them, they
all share one common feature and underlying assumption, that of gradual
protection and monotonicity. Obfuscation enables privacy engineers to tune the
degree of privacy protection by choosing to add more or less obfuscation. More
obfuscation entails greater data degradation. This, in turn —assuming a sound
obfuscation strategy is in place— enables better privacy protection.

We further distinguish between two different approaches to data obfuscation. On
the one hand, utility-degrading obfuscation (UDO) addresses trade-offs between
utility and privacy by corroding data quality in ways that are detrimental to
both adversaries and non-adversarial users. These methods apply obfuscation
that makes data less useful both to adversaries —thereby inhibiting their ability
to breach data subjects’ privacy— and to non-adversarial users —who also see
the quality of the service they receive diminish. When deploying these methods,
the ultimate goal of the privacy engineer is to strike a balance between utility
and privacy loss [351, 465].

On the other hand, utility-preserving obfuscation (UPO) seeks to prevent
adversaries from invading data subjects’ privacy while retaining all utility for
non-adversarial users. When deploying these methods, the ultimate goal of the
privacy engineer is to prevent adversaries from acquiring any privacy-sensitive
information while preserving all utility for non-adversarial users. The ability
to deploy either type of obfuscation depends on both the desired functionality
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Figure 2.2: A comparison between notions of obfuscation across security and
privacy research.
Image includes the following icons from www.flaticon.com: Twins, sand timer, meter, canned
food and banana (author: Freepik), ruler (author: Good Ware), switch (author: Smashicons),
pitcher (author: phatplus), balance, tape measure (author: monkik), speed meter (author:
Yannick) and eaten apple (author: Those Icons).

www.flaticon.com
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and the system model in ways that a privacy engineer cannot always control,
e.g. if the information system is already in place and running. We delve into
the separation between utility-degrading and utility-preserving obfuscation
in Sect. 2.2.1.

Lastly, we note the notion of program obfuscation in both the software engi-
neering and cryptography communities represents utility-preserving obfuscation,
as the goal is to produce code that minimises what an adversary learns while
preserving the program’s functionality. Moreover, the software engineering and
cryptography communities measure obfuscation quality in time (that it may
take to undo obfuscation and brute-force a cryptosystem, respectively) while the
privacy community has a wide variety of metrics that depend on the particular
privacy property we aim to provide with obfuscation.

Figure 2.2 summarises the notions and uses of obfuscation across security and
privacy research as described in this section.

2.2 Data obfuscation

In this section we examine in more detail privacy tools that rely on obfuscation
as data degradation. To that end, let us consider a bare-bones model of a
privacy invasion. Let us consider an individual that uses an online service
that offers a set of functionalities {fi}, such as sending a message to a friend,
browsing the Internet, posting a blog entry or searching the web. We refer to
this individual as the user or data subject and we abstract from the particular
type of service she uses; we simply consider that the user performs a series of
service requests ri obtaining as a result a set of responses {oi} so that oi = fi(ri),
with functionality f :

f : R → O (2.1)

where R represents the universe of user service requests r and O the universe
of responses o the system provides. A user request r includes not only the
designated service the user is interested in, but also input data that the execution
of the service requires, e.g. the message a user sends or the URL of the website
she wishes to visit. Hence, we more generally refer to r as the user input and
to o as the system output. Moreover, we denote the sequence of user inputs as
r = [r1, r2, . . . , rn] and the sequence of responses as o = [o1, o2, . . . , on].
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An adversarial entity is interested in the user input data r, but allowing
the adversary to obtain r invades the user’s privacy. Figure 2.3 depicts an
information flow conceptualisation of this model.

Figure 2.3: Process flow conceptualisation of a privacy invasion.

We account for the utility users derive and the privacy loss (or adversarial gain)
they incur from revealing r to an adversary. We represent utility and adversarial
gain through functions u and A, respectively. The user obtains utility uf from
functionalities fi so that

uf : O→ R+ (2.2)

where O = {oi} represents the universe of output sequences.

The adversary on the other hand obtains information by processing users’ input
data with a set of functions gi so that

g : R → X (2.3)

where R represents the universe of user input sequences r and X the universe
of outputs x the adversary obtains from g, i.e. what the adversary wishes to
learn about the user.

We model the privacy loss A that users incur by revealing r as:

A : X → R (2.4)

Lastly, we consider social utility, namely, utility a user provides to others
(including herself) by revealing r to adversarial parties. We consider that social
utility derives from a set of functions hi(r) so that:

h = R → Oh

where Oh represents the universe of outputs that produce social utility, e.g. film
recommendations or traffic-aware driving directions based on the user’s film



26 ON OBFUSCATION

reviews and position on the road while driving, respectively. Hence, we obtain
social utility as:

uh : Oh → R+

Users may exchange and reveal data among a trusted group of relatives, friends
or coworkers. We do not consider that exchanges among trusted peers contribute
to social utility. Rather, we consider that the utility users derive from disclosing r
to trusted peers is part of their personal utility, whereas social utility exclusively
derives from data disclosure to potentially adversarial users. Whereas this
decision may seem arbitrary,3 it enables us to conjecture a crisp separation
between the utility requirements that enable either UPO or UDO, as we discuss
later in Sect. 2.2.2. Figure 2.4 represents the inclusion of utility and privacy
leakage in the model. Table 2.1 summarises the notation we have introduced
so far.

Symbol Meaning Symbol Meaning

r User input/request r Sequence of user inputs
[r1, r2, . . . , rn]

R Universe of user inputs R Universe of user input
sequences

f System functionality uf Personal utility function

o System output/response,
o = f(r)

o Sequence of system
outputs [o1, o2, . . . , on]

O Universe of system
outputs

O Universe of system output
sequences

g Function of interest to the
adversary

A Privacy loss / Adversarial
gain

x Adversarial outcome,
x = g(r)

X Universe of adversarial
outcomes

h System functionality uh Social utility function

Ω Obfuscation function

Table 2.1: Overview of data obfuscation model notation.

3Deciding which peers or entities a user trusts is in fact entirely at the user’s or system
designers’ own discretion.
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Figure 2.4: Privacy loss and utility as functions over data exposed to
an adversary.

Data obfuscation as a form of protection modifies the input data r users
provide to the system to minimise the privacy loss that derives from revealing
that data to an adversary. Disclosing an obfuscated r′ instead of r seeks to
minimise privacy loss, this is, turn A(g(r′)) = A(x)→ 0, while keeping intact
or maximising user utility, this is, uf (f(r′)) = uf (o′)→ uf (o) and social utility,
i.e. uh(o′h)→ uh(oh). Figure 2.5 depicts an information flow conceptualisation
of privacy tools that rely on data obfuscation.

Figure 2.5: Process flow of data obfuscation tools

Data obfuscation is syntax-preserving [360].4 Obfuscated data takes on values
that the system has been designed to process, even if these values are less
accurate or precise. A defining feature of data obfuscation is therefore that
it requires no modifications of the system it is applied to. A user or system
administrator may unilaterally deploy data obfuscation without the need for
any system alterations.

4Note however that a system may only admit values on a predetermined precision scale,
e.g. GPS coordinates. In such cases, the type of obfuscation is restricted to inaccurate data,
rather than imprecise “yet truthful” data.
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Moreover, obfuscation represents a gradual protection mechanism as we may
degrade more or less the accuracy and precision of users’ input data so that,
ideally —assuming a sound obfuscation mechanism is in place— we obtain
higher or lower privacy protection, respectively.

Hence, we may distinguish between tools whose underlying privacy protection
mechanisms hinge upon data degradation (i.e. modifying r into r′) and those
that do not, such as encryption and onion routing [243]. Encryption does not
rely on introducing inaccuracy or imprecision, but on a complete reencoding of
a data item (e.g. a message) that should bear no relation to the original content
(other than in terms of size). The protection a secure encryption scheme5

affords is therefore “binary” : an unauthorised party is either able to decrypt
the message or not. Encrypted content may in fact be considered perfectly
obfuscated (as in statistically indistinguishable from random noise), precisely
because one does not gradually increase or decrease protection by adding more
or less obfuscation. While longer keys increase the amount of time an adversary
needs to break them, once broken the message can be recovered in its entirety.
This contrasts with data obfuscation tools, featuring gradual levels of data
degradation that hopefully translate into equivalent gains or losses of utility
and privacy. On the other hand, anonymous communication systems such as
Tor [176] attempt to hide the IP address of an Internet user (i.e. the r in our
model) from an external observer or the end server by routing the message
through a series of intermediary relays rather than making the IP less accurate
or imprecise so that the more obfuscated the IP is, the less accurate or imprecise
the IP the adversary observes.6 Hence, we restrict our definition of obfuscation
tools to those that derive privacy protection from data degradation.

2.2.1 Utility-preserving and utility-degrading obfuscation

We distinguish between two approaches to data obfuscation according to their
impact on user utility: utility-degrading and utility-preserving.

Utility-degrading obfuscation.

Utility-degrading obfuscation alters r to mitigate users’ privacy loss at the
expense of utility loss. Utility-degrading obfuscation is unavoidable when no

5By secure encryption we mean a semantically secure cryptosystem [244] whose
implementation is free from software bugs and resistant to side-channel attacks [264, 327].

6Referring to accurate or imprecise IPs requires the definition of a metric space over which
we can evaluate the distance between IPs, e.g. distance over IP address numbers or distance
between the actual geographical location of the machines to which each IP maps.
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obfuscation mechanism can enable privacy gains without a drop in utility.
Formally:

@Ω(r) = r′ : A(x) > A(x′) ∧ u(o) = u(o′) (2.5)

This further entails that g depends on a subset of r —or relationships therein—
that f depends on, so that any changes to ri that have an impact on x
affect oi too.

Whereas utility-degrading obfuscation may be a design choice for privacy
engineers for reasons such as cost, convenience or personal preference, it
is however unavoidable when utility derives from information disclosure to
adversarial entities, making the trade-off between utility and privacy inescapable.
We explore the conditions that may impose utility-degrading obfuscation
in Sect. 2.2.2.

Utility-preserving obfuscation.

Utility-preserving obfuscation alters r to mitigate users’ privacy loss while
preserving utility, i.e. A(x′) < A(x) while u(o′) = u(o).

Utility-preserving obfuscation is only possible when users derive their utility
from a set of functions {fi} that are not affected by changes in input data
r that the set of adversarial functions {gi} is sensitive to. In lay terms, this
means that the user and adversary goals are independent to the extent that it
is possible to effect changes in the input limiting the impact of such changes
to {gi} alone. Utility-preserving obfuscation is possible when there exists an
obfuscation mechanism that enables privacy gains without a drop in utility.
Formally:

∃Ω(r) = r′ : A(x) > A(x′) ∧ u(o) = u(o′) (2.6)

In practice, this means that fi depend at most on a proper subset of the data (or
relationships therein) that gi depend on, so that it is possible to effect changes
on r that have an impact on g but not on f . We explore the conditions that
impose utility-degrading obfuscation in the next section.

A note on cost. In this thesis we separate between utility as the set of
functionalities the user aims to achieve (i.e. {fi} and {hi} ) and the cost or
expense at which these come. Cost has practical implications for the design of
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privacy technologies in general and obfuscation tools in particular, as increased
costs may trump utility and make a system unusable.

In defining utility as independent from cost, we render our definition of UPO
oblivious to the latter, leading to the paradox where a UPO mechanism may
protect privacy at prohibitive cost for users, thereby rendering the purported
utility of the system meaningless. Hence, in practice, UPO design viability
depends on additional considerations relating to deployment costs that we
abstract from in this thesis.

2.2.2 The role of personal and social utility.

Figure 2.4 distinguishes between individual and social utility as characterised
by functions fi and hi, respectively.

Personal utility refers to the utility an individual revealing ri obtains exclusively
for herself or for others she trusts. We refer to individuals that exclusively
seek to obtain personal utility from a system as utility consumers. Consider
an individual that uses a public transport app, such as the SNCB app offering
information on public transportation in Belgium. This kind of app enables
people to find the nearest public transport station, plan routes between two
locations and obtain information about delayed trains, trams and buses. To
obtain this set of functionalities a user needs to provide her location, desired
origin and destination and chosen means of transport, respectively. If we
consider that a user intends the input she feeds to the service provider to be
useful to no one besides herself and those she trusts, then that user exclusively
seeks personal utility, she is a utility consumer, e.g. a user provides her location
to the SNCB app to find the nearest train station and she does not intend her
location to be of utility to any adversarial party; similarly, a user that sends a
private message to a friend intends that information to be of utility to no one
besides herself and her friend, whom she trusts.

Social utility on the other hand refers to utility an individual provides to others
(including herself) by revealing ri to adversarial entities. We refer to individuals
that provide social utility as utility producers. Consider an individual that uses
a medical research app, such as EpiWatch [289] or mPower [390] for epilepsy
and Parkinson’s patients, respectively. These kind of tools not only let users
track their own symptoms and improve their treatment but also share that
information with medical researchers to help them better study and understand
the condition under treatment. Whereas users of these apps obtain personal
utility from the potential for recognition of symptoms and earlier diagnoses
—enabling in turn better treatment—, they also contribute with their data to
improve the treatment of everyone (including themselves), thereby producing
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social utility. However, we consider other patients or medical researchers non-
trusted and potentially adversarial, i.e. they may leak or abuse the information
they have collected from utility producers.7

Either type of utility imposes opposite data exposure requirements. Utility
consumers should not need to reveal or expose their data to adversarial parties;
the rationale being that if only the data subject and other trusted parties
benefit from her data, then no adversarial party should require access to the
data. Data exposure requirements depend therefore on the system architecture
rather than on the intrinsic nature of the functionality itself. To illustrate this,
consider a media delivery service (MDS), such as YouTube. In the commonplace,
privacy-unfriendly system architecture, the service provider requires users to
disclose the list of videos they desire to watch. This represents a privacy problem
for users concerned about what the MDS provider learns about them from
their media consumption patterns. Moreover, let us assume MDS users seek
to obtain only personal utility and do not wish to produce any social utility
i.e. they simply wish to watch the requested media. In this case, it is the
system architecture that forces users to disclose their data to meet their utility
requirements, not the utility function itself. In fact, a private information
retrieval (PIR) implementation of the MDS enables users to receive the media
they desire to watch without the need for them to disclose the list of items to
the service provider [258].

A trivial implementation that illustrates why personal utility does not require
users’ data disclosure relies on the service provider sending all data and code
to run the service to each user. Equipped with everything they require to run
the service, users do not need to disclose any usage information to the service
provider. This is in fact how providers offered their services prior to the Internet,
through “shrink-wrap software” that users bought and enjoyed in the privacy
of their non-Internet connected homes [263]. Whereas such an implementation
of a service like YouTube would prove infeasible, it highlights that some of the
benefits of thin-client-based online services (for both users and providers) come
at the expense of privacy loss.

Personal utility requirements alone do not, theoretically, impose any disclosure
requirements on their users. Therefore, it should be possible to architect the
system in a way that escapes trade-offs between utility and privacy, i.e. to enable

7Deeming a user’s friend as trusted and medical researchers and other patients as
adversarial simply reflects the trust assumptions implicit in the particular threat model
we choose to consider in this example, i.e. one may argue that a user does not trust her
friend, fearing he may publish their private photos and conversations online, while medical
researchers’ stringent security measures and high ethical standards fully warrant her trust.
What is relevant here is that our data obfuscation model only considers privacy losses stemming
from adversarial entities and implicitly assumes that trusted parties pose no threat to privacy,
regardless of who we assume to be either trustworthy or adversarial.
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personal utility without giving privacy away. Still, what is theoretically possible
may not always be achievable in practice due to cost, available infrastructure
or usability (e.g. unacceptable delays), among other constraints. Whereas it
may be feasible to deploy a PIR implementation of an MDS offering a small
number of media files (e.g. in the few thousands) such as Netflix [258], this may
not scale well to services such as Google search, indexing “hundreds of billions
of webpages” and with stringent latency requirements [29, 246, 515].

Conversely, utility producers always need to at least partially reveal or expose
their data, either directly (i.e. the raw data ri they input to the system) or
indirectly (i.e. through the product of computations performed on their data
h(r) = oh); the rationale being that whoever benefits from the utility producer’s
data must have access to at least some function over those data. Data exposure
requirements are therefore unavoidable as they depend on the intrinsic nature of
social utility itself. Changes to the system architecture may reduce the privacy
risk of providing social utility but they cannot completely prevent it.

To illustrate this, consider an MDS that offers personalised recommendations
to users on what to watch next, i.e. other media items viewers may find
interesting. Recommendation systems typically rely on probabilistic modelling to
determine relationships between media items that viewers often like, e.g. whether
viewers that like film A also often like film B. To determine such relationships,
recommendation systems require sample data to train a model, i.e. samples
of what people request to the MDS. One way of building a recommendation
system is to enable a central party (e.g. the service provider) to collect users’
viewing histories. The central party collects all viewers’ histories to obtain the
recommendation model, then offers personalised suggestions to each individual
viewer. This however poses a privacy problem for viewers concerned about
sharing their viewing histories with the central party.

An alternative to this centralised system architecture is the following. Each user
trains the model locally and does not disclose her viewing history to anyone. A
viewer thus obtains recommendations based on her own history, but not from
other viewers’ histories. Hence, whereas this alternative protects users’ privacy,
it also destroys all social utility. Users do not enjoy predictions based on other
people’s viewing histories.

To remedy this, users may share their own local models with the central party
instead of their viewing histories. The central party then averages the individual
models into a global model that users download to update their local model and
keep on refining. This is the idea behind federated learning as used by Google
to train Gboard in a distributed fashion [376]. Still, from the perspective of the
user concerned about a central party collecting all data, this does not entirely
address the privacy problem, as the central party obtains individual models that
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leak information about the training data [32, 489]. Federated learning thus adds
a level of indirection and complexity that prevents less sophisticated adversaries
from breaching the users’ privacy; however, it still leaks information about users
from the outcome of the function computed over their data, i.e. h(r).

Users may as well get rid of the central party by running a secure multiparty
computation (MPC) protocol. In this scenario users still compute their own
individual model locally. Then, instead of sending it to the central party, they
run a distributed communication protocol among themselves to average the
individual models into a global model in a way that no party gets access to
any individual user model [148]. Whereas MPC prevents the participants from
obtaining the individual model of any individual, the resulting global model
still presents biases from each individual model, thus leaking information about
the input individual predictive models. Of particular concern are well-informed
adversaries, such as the classic “knows-all-records-but-one” or “has-arbitrary-
knowledge” adversaries considered in the differential privacy literature [322]:
MPC cannot offer any privacy guarantees against n− 1 colluding parties out
of n participants. Let us consider an adversary that observes the output
h(rv, {r2, . . . , rn}) = oh, where rv represents the input of the target user and the
remaining rj the inputs of the n− 1 colluding parties. Knowing h, the colluding
parties’ rj and the function output oh, the adversary can either determine the
actual value of input rv or the set of values that could not have possibly lead to
oh, therefore learning something about the actual user value rv —the exception
being that h is insensitive to the user’s input rv, in which case the user input is
irrelevant, i.e. social utility does not depend on it.

In fact, from Dwork’s result on the impossibility of absolute disclosure prevention,
it follows that any useful data disclosure leads to unbounded privacy losses
against adversaries with arbitrary background knowledge [187]. By requiring
that users expose (the result of a function over) their data, the provision of
social utility entails some privacy loss. Hence, unless a user’s input data r to
social utility function hi is completely randomised, it is impossible to prevent
disclosure; however, fully randomising r leads to the destruction of social utility,
because if any random input r to h produces social utility, the input itself is
irrelevant and the user is unnecessary for the social utility production process,
i.e. the user does not produce utility, she is not a utility producer.

Hence, we conjecture that against adversaries with arbitrary background
knowledge, it is not possible to deploy UPO to satisfy social utility requirements.
Social utility requires the exposure of useful (i.e. non-fully randomised) user data,
which in turn leads to the impossibility of absolute disclosure prevention, which
means that it must be impossible to satisfy A(x′) < A(x) ∧ uh(o′h) = uh(o′h).
Social utility requires that we trade utility off for privacy. This is why Dwork et
al. propose to shift from absolute guarantees to relative guarantees of privacy
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and use differentially-private mechanisms that rely on UDO to trade utility off
for privacy [187, 189, 191].

The disclosure requirements that either personal or social utility impose therefore
have implications for both system design and privacy engineering, raising
questions regarding the adequacy of obfuscation. Since personal utility does not
inherently require users’ data disclosure, we may posit that we must only rely on
UPO to address users’ privacy concerns, i.e. personal utility should not require
users to degrade ri in a way that reduces utility, as personal utility alone does
not impose the disclosure of ri in the first place. The use of UDO to balance
personal utility and privacy therefore points to two possible pitfalls: either a
suboptimal design, this is, the design unnecessarily relies on UDO instead of
UPO; or a constraint in the system design, i.e. the system architecture forces
users to give away utility in exchange for privacy protection.

Moreover, the gradual protection that we may expect from obfuscation tools in
that “the more obfuscation the more privacy protection” is at odds with the fact
that personal utility alone does not fundamentally require any disclosure at all.
Obfuscation subjects utility consumers to unnecessary privacy risks whenever
protection is less-than-perfect, i.e. wheneverA(x) > 0. This ultimately questions
the legitimacy of relying on obfuscation tools to engineer utility consumers’
privacy. However, as we show below in Sect. 2.2.3, obfuscation provides a
mechanism of response to privacy-invasive system architectures.

Conversely, since social utility mandates users’ data disclosure, UDO seems to
be the only solution to fully address users’ privacy concerns against adversaries
with arbitrary background knowledge. Since social utility implicitly requires
disclosing some data to adversaries, there is no workaround to the trade-off
between utility and privacy.

We illustrate the interplay between UPO, UDO and personal and social utility
in the next section.

2.2.3 Obfuscation-based privacy-preserving location-based ser-
vices

To illustrate the interplay between utility-preserving obfuscation (UPO), utility-
degrading obfuscation (UDO) and personal and social utility, we provide an
example in the context of location-based services (LBSs).

We consider an entity that offers LBSs online, e.g. such as Google Maps8.
We refer to this entity as the service provider. The provider offers, among

8See https://www.google.com/maps

https://www.google.com/maps
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other services, geolocation (i.e. displaying the current location of the user on a
map), driving or walking directions in real time (from the users’ location) and
suggestions for nearby restaurants, shops or any other type of public or private
establishment users may be interested in. Users send queries {qi, (li, ti)} to
request the service qi of their choice together with their actual location (li) and
time (ti). Figure 2.6 provides a depiction of a generic LBS.

Figure 2.6: Interactions between user and service provider on a typical LBS.
Image includes the following icons from www.flaticon.com: Woman on phone, cutlery, map,
gasoline pump, WC sign (author: Freepik), map location, map (author: Smashicons), map
(author: Vectors Market).

We further consider three use cases depending on the extent to which the
provider leverages the users’ input data on the services it offers:

No personalisation. Services depend on public information and individual
user queries alone, e.g. the provider computes routes for each user
independently from previous queries, be these queries from the same
user or others.

Individual personalisation. Services depend on each individual user’s
previous queries, e.g. the provider may offer personalised driving directions
based on the types of roads a user often chooses (from previously proposed
itineraries) and the kind of instructions and map schematisations she finds
easier to understand (e.g. based on previous erroneous turns and total
amount of time needed to complete a journey).

Collective inputs and personalisation. Services depend on the usage pat-
terns of all users, i.e. the provider relies on positive or negative feedback
from users to improve the service for all. Moreover, the provider
also leverages users’ real time location information, e.g. to take traffic
congestion into account (based on users’ current position on the roads)
when suggesting driving directions .

www.flaticon.com


36 ON OBFUSCATION

We assume that users consider the service provider to be adversarial, i.e. in
spite of the benefits users find in personalisation and collective inputs, they are
concerned the provider processes their location and usage information for other
purposes, e.g. to offer them targeted advertising or lure them into spending
more time using the service. Hence, users wish to minimise the amount of
information the provider learns about them.

To that end, users turn to two types of location obfuscation solutions. On the
one hand, solutions that rely on dummy queries [320, 321, 358, 565]. These
tools automatically generate fake queries dj with strategically chosen locations
(lj , tj) and add them to the stream of unmodified real queries qi with actual
locations (li, ti). These tools depend on achieving indistinguishability between
real and dummy queries, compelling the provider to respond to dummy queries
even if the tool filters such responses from users’ view. We note that tools that
generate dummy queries do not degrade real user queries. Instead, they aim
to degrade the outcome of a function g(r′) the adversary computes on those
queries, e.g. a querying profile x. Hence, under certain conditions we review
below, these tools provide utility-preserving obfuscation (UPO). On the other
hand, users may turn to solutions that rely on spatial and temporal degradation
of user queries before they are sent out to the provider [27, 186, 232, 253];
i.e. sending queries with a modified location and time (l′i, t′i) that are less
accurate, imprecise (or both) than the original (liti). We note that since
these tools degrade user queries’ accuracy and precision, they often represent
utility-degrading obfuscation (UDO) solutions.

Users that seek no personalisation or individual personalisation are strictly
utility consumers, i.e. they share their data with the provider to benefit from
the services on offer while expecting no one else to benefit from their data.
Users have no incentives to share information related to their location or usage
(e.g. type and frequency of queries they issue) other than to obtain the services
they seek. As mentioned earlier, if users solely seek personal utility then there
is no inescapable need for data disclosure. For example, in a trivial privacy-
preserving implementation of the service that entails no user data disclosure,
the service provider ships to users the code and maps they need to run the
service themselves and reveal nothing. Less trivial implementations rely on
cryptographic protocols such as private information retrieval [417], private
equality testing [366] or homomorphic cryptography [544]. Cryptographic
solutions however require modifications on the side of the service provider and,
as we discuss in Sect. 2.3, this may not always be possible. Obfuscation tools on
the other hand can be deployed without any changes on the side of the provider.
Privacy engineers should therefore in this context aim to design obfuscation
tools that satisfy u(o′) = u(o) and A(x′) < A(x) —ideally A(x′) = 0.
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Obfuscation tools that rely on dummy queries satisfy that requirement. Let us
first consider the no personalisation use case. An obfuscation tool that sends
dummy queries on behalf of the user without interfering with the user’s real
queries preserves utility by ensuring that the user gets the same responses she
expects without dummy queries. Moreover, assuming the tool deploys a sound
obfuscation strategy, the adversary is unable to tell which queries are real and
therefore unable to determine the user’s position or usage patterns. As a result,
obfuscation tools that rely on dummy queries provide UPO; since u(o′) = u(o)
and, considering perfect obfuscation, A(x′) = 0. In practice however perfect
obfuscation is hardly ever possible, thus A(x′) < A(x), still satisfying the
UPO requirement.

However, this obfuscation tool does not satisfy the UPO requirement in the
individual personalisation use case because dummy queries obfuscate the real
usage patterns the service provider relies on to provide personalisation. Worse
still, rather than losing personalisation and defaulting to the no personalisation
utility baseline, they obtain spurious personalisation from dummy queries. It is
still possible however to provide UPO with dummy traffic, only at a higher cost
and level of complexity. Let us assume the user has the ability to create multiple
accounts on the service, obtaining personalisation in each of those accounts
individually, i.e. services get personalised for each account based on previous
usage on that account alone. Let us further consider a tool that populates with
dummy queries a number of these alternative user accounts confining all real
user activity to one account in which no dummy traffic is added. This tool
preserves personalisation on the user account without revealing to the adversary
which account contains the real user behaviour; the user still obtains utility from
personalisation in her account whereas an adversary needs to determine who
among the multiple simulated selves is the real one. Still, users may not always
be able to create multiple personal accounts, thereby imposing an architectural
restriction that undermines the deployment of UPO.

Users that consider collective inputs and personalisation are both utility
consumers and producers, i.e. they share their data with the provider to benefit
from the services on offer and contribute to improve them for others. Users
thus have incentives to share information related to their location or usage
—even if some users may overlook such incentives and become free-riders, an
issue Brunton and Nissenbaum discuss in their political and ethical study of
obfuscation [100]. Since social utility requires them to contribute with their
data to other people’s services, they need to trade off social utility for privacy.
Cryptographic tools such as multiparty computation (MPC) enable users to
provide social utility without the need of a third party such as a centralised
service provider that collects inputs from every user. However, they still require
statistical disclosure control (SDC) tools to limit the amount of information
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recipients of social utility may learn about utility producers from the results of
the MPC functions.

Social utility and privacy are at odds because social utility requires users to
disclose information to potentially adversarial users. Even the obfuscation tool
we propose to preserve individual personalisation degrades social utility (for all
users, including the one with the obfuscation tool), as the provider may either
discard the input of the obfuscating individual or include one or several dummy
accounts as input to the collective personalisation algorithm. Similarly, the
provider cannot determine where obfuscating users really are. Services that
depend on collective inputs such as real-time traffic congestion information thus
suffer from spurious input data. If the provider removes obfuscating users from
the dataset, it underestimates traffic congestion, whereas including all or a set
of dummy accounts conversely overestimates it. We note however that quality
of service (QoS) degradation may be minimal, depending on factors such as the
percentage of obfuscating users or how uniformly distributed across the dataset
the impact of obfuscation is, e.g. in the particular example of traffic congestion
reports, whether all obfuscating users drive in a particular area or distribute
themselves uniformly across the area under observation.

2.3 Why data obfuscation?

In this section we examine technical requirements and constraints that motivate
the use of obfuscation tools over other privacy technologies, such as cryptographic
and anonymity tools.9

Data obfuscation design features.

First and foremost, obfuscation is syntax-preserving [360]. It modifies the
data values in a system without effecting any changes the system is unable
to process, enabling privacy engineers to apply data obfuscation in a running
system without requiring or imposing changes to a system’s design.

Secondly and as a counterpoint to being syntax-preserving, obfuscation degrades
data integrity. While obfuscation does not require or impose system design
changes, it alters the data systems process, thus potentially altering their
operations and outcomes.

9We examine the technical constraints that motivate the use of obfuscation from a
computer science perspective. For a more philosophical account of the reasons that animate
and justify the use of obfuscation, we refer the reader to Brunton and Nissenbaum’s study of
obfuscation as a tool for user privacy and protest [100].
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Lastly, and in part as a result of it being syntax-preserving, data obfuscation
can be deployed unilaterally. Data obfuscation modifies users’ individual data
inputs to a system, hence enabling users to deploy obfuscation tools on their
own, without the assistance of the service provider.

These features provide a number of advantages to rely on obfuscation as an
alternative to or in combination with other privacy technologies.

Cryptographic solutions.

The model of data obfuscation introduced in Sect. 2.2 describes systems where
users obtain utility from revealing data to an adversarial entity and how
obfuscation tools modify those data to reduce the information adversaries
acquire while attempting to preserve as much as users’ utility as possible.

Cryptographic tools recast this model by hiding intervening user data from the
adversary while guaranteeing users’ utility. These tools rely on computations
over encrypted data that adversaries are unable to decrypt and thus have no
access to. This highlights in turn why obfuscation tools cannot always be
replaced with cryptography. Since the very purpose of cryptography is to
hide data from adversaries, cryptographic solutions cannot entirely address the
disclosure requirements implicit in the provision of social utility, even if they
can be engineered to reveal no more than what is strictly necessary [560], e.g. as
long as the function a set of individuals compute through an MPC protocol
is deterministic, it is impossible to establish any type of privacy guarantees
against adversaries with arbitrary background knowledge, as per Dwork et al.’s
result on the impossibility of absolute disclosure prevention [190]. At the same
time, obfuscation cannot replace cryptographic solutions where data accuracy
and precision are critical, such as in user authentication [129, 464].

When it comes to the provision of personal utility as defined in Sect. 2.2
however, cryptography represents the ideal solution: it preserves all utility for
users while hiding their data from adversaries —even and especially if the latter
are service providers. Private information retrieval (PIR) is a prime example of
such a cryptographic solution. PIR enables users to obtain information from
a database without disclosing to the database holder which information they
retrieve [231, 419, 564]. Users thus obtain the same utility as from a non-privacy
preserving database, namely, they retrieve the documents they are after, while
the database holder learns nothing about the documents they retrieve.

Other examples include homomorphic encryption [234, 527] and multiparty
computation [85, 141, 148, 242]. While currently inefficient for most practical
applications, homomorphic encryption enables computation over encrypted
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data, hence further allowing a user to outsource private data processing to
untrusted, adversarial parties [328], e.g. users may send data to “the cloud” and
use its computing power to operate on those data without the cloud provider
being able to decrypt (and therefore pry into) the data it hosts and enables
computations over. Secure multiparty computation (MPC) on the other hand
enables a set of mutually distrusting parties to compute a function over their
private inputs, yet these parties implicitly trust the output’s recipients with the
output’s value —or implicitly assume that it is infeasible to recover individual
inputs from the output alone, disregarding the threat of auxiliary information.
Applications of MPC include, among others, secure distributed voting [54, 283],
and private auctions [86, 85].

What these cryptographic solutions have in common is that they require
changes to the system model, and thus the involvement of multiple parties that
agree to jointly run a cryptographic protocol. Individuals cannot deploy these
cryptographic solutions unilaterally. Whereas it is possible for an individual to
send her data encrypted to the cloud without the involvement of the service
provider or any other party, she still requires the service provider to enable
homomorphic computations over her data. Similarly, a user cannot unilaterally
deploy PIR; it is the service provider who must deploy the infrastructure and
interface for users to query their services privately.

Hence, cryptographic solutions may not always be available. Other factors that
further discourage the deployment of cryptographic solutions include companies’
vested interest in data collection, both users’ and service providers’ unawareness
of privacy problems and crypto solutions, as well as the additional cost of
deployment. We review these factors below.

Vested interest in data collection. Service providers that obtain a benefit
from data collection have no incentives in deploying cryptographic solutions
that effectively starve them of users’ data. Today’s dominant online
business model whereby companies obtain their revenue through the
monetisation of user data explains the lack of incentives for service
providers to offer cryptographic privacy protection online. Narayanan
argues that “[crypto-for-privacy’s] goal can be thought of as roughly to
prohibit secondary use of data” and that “misaligned economic incentives”
explain why “secondary use is in fact a business imperative” [399, 400].

Unawareness. Even if providers do not have a vested interest in collecting
user data, they may be unaware of security and privacy issues in the
service they provide, as well as the availability of cryptographic solutions
that address those issues [400]. Furthermore, service providers often see
privacy problems as requiring privacy policies, terms of use and other
legal instruments that, even if necessary, do not essentially make the
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service more privacy-friendly [400]. Moreover, a lack of institutional
regulation requiring strong, technical privacy protection instead of data
protection policies does little to encourage the adoption of cryptographic
solutions [472, 329].10

If service providers have little pressure from regulators to deploy
cryptographic privacy protections, users’ or market pressure is weaker
still. Narayanan argues that for people to rely on cryptographic tools,
they need to be aware not only of their utility and existence, but also
the underlying problems these tools address [400]. Besides, even if some
users may be aware of the underlying privacy problems of relying on a
particular online service, only a critical mass of users can effect enough
pressure to encourage the service provider to deploy these solutions.
Users’ unawareness and lack of technical understanding of cryptography
further discourages service providers to adopt cryptographic solutions,
as users may see no additional value in a secure system. Abu-Salma
et al. have shown in the context of secure messaging that people do
not understand what end-to-end encryption (E2EE) implies, that they
assess reliability and security from the quality of service they experience
and regard secure services as futile [2], further supporting Narayanan’s
argument against the classic trust model that assumes users can control
and trust their devices [400].
Usability concerns have traditionally been put forward as an explanation
for the dearth of crypto-for-privacy online, with infamously hard-to-
use solutions such as PGP as a prominent example of crypto’s lack of
usability [551]. However, recent user-friendly cryptographic solutions
such as OTR [19, 506] and most importantly the deployment of E2EE
in popular instant messaging (IM) apps such as Facebook’s Messenger,
Telegram and Whatsapp [202] call into question long-held assumptions
on the usability of cryptography, which Abu-Salma et al. dismiss as a
relevant obstacle to adoption [2]. Still, research has shown users’ inability
to assess E2EE’s reliability and security in those apps, thus questioning
how usable E2EE in IM really is despite world-wide adoption [281, 475].

Cost. Service providers willing to deploy cryptographic solutions to protect
their users’ privacy face higher costs and challenges brought about by
the deployment of cryptography. Deploying cryptography requires human
expertise, dedicated hardware and software, and imposes an additional

10In the European Union (EU), the general data protection regulation (GDPR), requiring
that companies implement privacy by design (PbD) [204], represents an exception to globally
weak regulation over the collection and processing of personal data online. Legal experts
expect that the EU, as the biggest single market in the world, will exert its influence setting a
gold standard on privacy regulation around the world [18, 459]. The extent to which the GDPR
encourages the adoption of strong privacy solutions in practice remains to be determined.
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computational and communication burden, all of which contribute to
higher costs in running a service.
Expertise in cryptography is a critical issue since few software developers
have the necessary training and skills that cryptography demands.
According to Belovin, “the major issue [of deploying crypto online] has
been one of cryptographic engineering: turning academic papers into a
secure, implementable specification. But there is missing science as well,
especially when it comes to efficient implementation techniques” [62].
Narayanan further supports Belovin’s argument by claiming that “the
idea that a developer who isn’t a crypto expert could read a modern
paper and understand and implement the protocol in a bug-free way is
laughably unrealistic” [400]. In-house developers thus seldom have the
necessary skills to, first, identify privacy problems and, secondly, to
deploy the set of cryptographic solutions that address them. Training
personnel or hiring highly demanded crypto experts is also expensive,
thus increasing operating costs of running the service. Narayanan points
to “misaligned incentives” ; cryptography for privacy is hard to sell and
expensive to implement [400].
Moreover, cryptography also imposes an additional communication and
computation burden. Whereas many efficient cryptographic solutions are
available [19, 71, 194, 575], others still require advances and optimisations
before they can be efficiently deployed at scale, like in the case of fully
homomorphic encryption [491], private set intersection [325] and functional
encryption [230]. Companies may not always have the computational
resources available or be willing to invest in additional resources to execute
fast enough the more expensive cryptography protocols. Furthermore,
small, low-power devices such as implantable medical devices and
“smart” user devices are resource-constrained and potentially unable
to handle complex and expensive cryptography. Indeed, a whole field
of research is devoted to the development of lightweight cryptography
solutions [84]. Efficiency limitations may thus further hinder the adoption
of cryptography.

In short, obfuscation arises as an alternative to cryptographic solutions where
the latter are not or cannot be deployed. Still, we note that cryptography
and obfuscation are not mutually exclusive. We illustrate in Chapter 5
how cryptography can assist achieving indistinguishability, a key obfuscation
engineering requirement.
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Anonymous communication.

Anonymous communication systems such as Tor and I2P enable Internet users to
communicate or request services online without revealing their identity (sender
anonymity) or who they communicate with (recipient anonymity) [176, 434,
570]. Where obfuscation modifies the input data ri users reveal to adversaries,
anonymous communication breaks the link between the source of the data
(i.e. the user) and the data itself. Hence, adversaries either collect data on
someone whose identity cannot be determined (within a sender anonymity
set [434]), or on someone whose identity is known but whose communication
partners and requested services cannot be determined (within the recipient
anonymity set).

Anonymity thus tackles privacy concerns by breaking the link between
communicating entities and their identities. Users may request and receive
services anonymously, so that service providers and network eavesdroppers
cannot determine what these users do. One may therefore argue that anonymity
systems provide, within certain limits and assumptions,11 a solution for users
to conceal their identity or activities online.

Anonymity is however not always desirable or possible. For online services
which require persistent interactions or user authentication, such as social
media platforms, anonymity degrades to pseudonymity at best [445]. Users
may log in to a web service through an anonymous communications channel
to (a) hide their location from the service provider and (b) hide the services
they log in to from entities monitoring the users’ local network. However,
even if users hide their IP from the service they log in to and authenticate
themselves using a pseudonym, their activity in the system may be sufficient
to re-identify them. Rao and Rohatgi point to two types of information that
may enable identification of pseudonymous users: syntactic and semantic [445].
Syntactic information relates to features of text users write such as “vocabulary,
sizes of sentences and paragraphs, use of punctuation, frequency of blank lines,
common misspellings, etc”. Semantic information relates to the themes and
concepts users express in their communications. Recent advances in adversarial
stylometry have indeed shown that people have unique writing styles that enable
identification the way fingerprints do [94, 374]. Other non-linguistic sources
of information such as location data, social interactions or metadata further
compromise pseudonymity [164, 245, 402].

11Tor for instance offers no resistance to global passive adversaries or targeted traffic
confirmation attacks [176]. High latency anonymity systems such as Mixmaster and
Mixminion [154] on the other hand aim to resist these attacks, but at the cost of high
delays that make them unsuitable for real-time online activities such as web browsing [394].
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Yet even if users remain pseudonymous there are privacy concerns that go
beyond identity. Both commercial and political marketers are often uninterested
in what most would consider users’ identifying information such as name or ID
number. Instead, they hope to obtain the necessary information to assign people
to a relevant market or population segment that determines, for commercial
marketers, which products (if any) they should target to them and, for political
microtargeting, which messages they should expose a particular population
segment to in order to rally their support. In this sense, pseudonymity is of
little help to prevent targeted advertising and political microtargeting and the
privacy problems that come with them, such as influencing future purchases
through various marketing manipulations, typecasting and lack of oversight over
unethical campaigning practices [537, 556].

Obfuscation responds to these threats by polluting user data so that they lose
their potential for identification and do not bear the profiling and predictive
power that adversaries expect to acquire. Both anonymous communications
and obfuscation thus may be leveraged to tackle complementary aspects of
privacy protection.

Obfuscation as additional protection. Obfuscation offers an additional layer
of protection to both cryptographic tools and anonymous communication
networks. Cryptosystems may include backdoors, fall prey to faulty
implementations or use proprietary systems and implementations that impede
independent reviewing, undermining the trust users place in these systems. If
the cryptosystems users rely on are compromised, obfuscation helps mitigating
the effects of the breach, offering, in cybersecurity parlance, increased resilience
against security breaches [269]. Similarly and in addition to the reasons that
motivate the use of both anonymity systems and obfuscation, obfuscation tools
offer, in certain contexts, additional protection when anonymous communications
fail, e.g. search engine users who fell prey to Cargenie Mellon University’s
infamous large-scale identification attack on Tor could have benefited from an
extra layer of protection by using a tool that, by sending fake search queries,
obfuscated their web search activity [177] (q.v. Chapter 4).

2.4 Utility-preserving obfuscation and chaff

Utility-preserving obfuscation (UPO) requires that users’ online activities are
either left intact or replaced by activities that produce identical or equivalent
user utility. Of these two alternatives, we have already hinted at a solution that
falls within the former, namely, in the location-based service (LBS) scenario we
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have examined in Sect. 2.2.3, the generation of fake online activity (i.e. fake
queries) pollutes the data adversaries obtain on users while ensuring users still
receive the same responses to their actual queries (assuming no personalisation,
that is). The second alternative involves replacing users’ activities with modified
versions that produce identical or equivalent results while minimising privacy
losses, a process commonly referred to in the literature as sanitisation.

We recall that the data obfuscation model we introduce in Sect. 2.2 proposes
two sets of functions: those that provide personal utility, {fi}, and those that
lead to privacy loss, {gi}. The replacement or sanitisation strategy entails the
removal or destruction of sensitive or private features from the data a user
provides to an adversary in exchange for utility. In other words, to modify the
user activity by degrading the data features that {gi} requires while retaining
the necessary features that {fi} requires to preserve utility, e.g. by adding noise
“in directions along which private features are concentrated”, to achieve “full
privacy without sacrificing utility”, namely, UPO [296]. However, it is unclear
whether sanitisation alone can achieve any rigorous guarantee of privacy and
fully preserve utility at the same time [296].

Moreover, the design of replacement strategies requires sufficient knowledge
of the mapping between users’ actions and the corresponding outputs, this is,
of the set of functions {fi} that provide utility, as designers must ensure that
any noise addition strategy does not degrade {fi} outcomes. However, such
knowledge may not always be available, e.g. in a search engine with millions
of input word combinations and millions of retrievable webpages, retrieving
the full mapping inputs-outputs requires exhaustive search over all possible
combinations. Similarly, service providers may be unwilling to disclose the set
of functions {fi} to retain intellectual property rights over them [524].

Moreover, having access to the set of functions {fi} questions the legitimacy of
information disclosure in the first place, as one could theoretically have users
computing {fi} locally and privately, on their own devices, without disclosing
the input data ri to an adversary. Xu et al. justify the use of sanitisation
mechanisms as opposed to having users computing {fi} themselves in situations
where, e.g. “the software [that computes {fi}] may be too big and require
special hardware” [559].

Conversely, obfuscation strategies that rely on the generation of additional,
separate, fake user activity while leaving user actions intact need only to rely
on the assumption that each output oi exclusively depends on its corresponding
input ri; in other words, the output oi to any input ri depends on that particular
input alone. Under this assumption, we do not require previous knowledge
on the particular set of utility-bearing functions {fi} to ensure UPO, as fake
activity has no impact over the utility users obtain from their own activity.
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At the same time, under the assumption of indistinguishability between real
and fake activity —the critical requirement for any such obfuscation strategy
to work—, the adversary’s gain function depends on a polluted set of input
data r′ that the adversary should be unable to de-obfuscate, in turn (hopefully)
degrading the adversary’s gain. Hence, this type of obfuscation strategy, which
we refer to as chaff, represents a UPO mechanism.

We devote the remainder of this thesis to the study of chaff-based obfuscation.
We note that privacy engineers may also choose to deploy chaff for UDO.
However, in this thesis we do not examine the trade-offs between utility and
privacy that arise in chaff-based UDO.

Chaff.

Chaff designates fake, dummy actions automatically generated on behalf of the
user bearing no relation to the utility users expect to obtain from a service.
While useless with respect to users’ functional requirements [259], chaff has the
potential to obfuscate usage patterns when intertwined with users’ real activities
—provided that adversarial observers are unable to “separate the wheat from
the chaff”. Chaff may pollute adversaries’ observations to the point of rendering
data collection and processing futile, as adversaries cannot determine which
fraction of the observed activities users generate and which fraction obfuscation
tools are responsible for.

Historically, the origins of chaff as countermeasure (and etymology of its
security-related meaning) date back to the chaff strategy and submarine decoys
independently developed by both Allies and Axis powers during World War II
to overwhelm enemy radar and sonar systems with false signals [391, 452].
WWII chaff consisted of small aluminium strips that planes seeking to escape
the enemy’s radars would drop to jam the signal radars expected to detect
to locate targets. Hence, upon successful chaff release, radars would obtain a
noisy signal and be unable to precisely locate the position of the enemy plane.12

WWII teems with examples of military dummies and decoys deployment as
a way to hide information from the enemy, deceive the enemy into attacking
or prevent it from attacking, with some of these military strategies carrying
up to today [456].

12Rieback et al. note that “The German countryside became littered with chaff, which
people used to decorate their Christmas trees” [452]. In an ironic twist of history, after the
war, Alcoa, the company that supplied chaff to the US military, went on to repurpose chaff in
the manufacture of aluminium Christmas trees —in spite of the risk of electrocution during
decoration. Indeed, many of the companies supplying the war effort resorted to Christmas
items to repurpose their output [284].
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Both terms dummy and decoy denote fake items or actions strategically designed
to resemble their real counterparts, hence both terms are interchangeable in
many contexts. The computer security literature however often favours either
of these terms for particular uses. Dummies denote fake actions or entities
whose purpose is to either hide or disguise information. Decoys represent
traps and lures, particular types of dummies intended to attract, misguide,
deceive and learn information about adversaries as part of a strategy to protect
information. In this thesis we focus on the study of dummies as a means to hide
information through obfuscation, rather than through disguise or deception.
We shed further light on these terminological nuances through an overview of
past work on dummies in computer security and privacy.

2.4.1 Digital chaff: dummy traffic and other dummies

Computer security researchers pioneered the use of chaff for privacy protection
in communication systems by proposing the use of dummy traffic as a traffic
analysis countermeasure. In a 1964 paper, Baran proposes to use “a ‘dummy’
or filler stream of bits [to conceal] traffic loading” in the context of security
and secrecy of distributed communications [47]. Later in 1977, Kent proposes
the use of dummy traffic to defend against traffic analysis in “terminal-host
communication” [318], i.e. to hide “the frequency, length and origin-destination
patterns of message traffic” in otherwise link-to-link or end-to-end encrypted
communications. Baran and Kent point to privacy concerns stemming not from
communication-over-insecure-channels content disclosure —as content may be
encrypted and thus effectively hidden from unauthorised access— but from
communication patterns, this is, the fact that who, when and how often people
communicate leaks information about their communication. The introduction
of dummy traffic seeks to prevent this leakage by burying real communication
patterns in a fog of fake communication, ultimately providing communication
undetectability [434], namely, an adversary monitoring network traffic cannot
(ideally) determine whether observed traffic patterns are real or fake and, as a
result, cannot determine who, when and how often people communicate.13

Relying on dummy traffic to defend against traffic analysis in digital networks
indeed becomes a popular idea through the 80s and early 90s [116, 405, 536].
Of special relevance to our work is Chaum’s 1981 seminal paper on untraceable
electronic mail [116], marking the beginning of the research field of anonymous
communications and more generally privacy technologies research [152, 156].
Chaum proposes the use of mixes, this is, computers in a communication network

13Achieving this level of privacy, along the lines of Shannon’s perfect secrecy [483], requires
however full network padding, i.e. adopting predefined dummy patterns independent from
real ones in every transmission link in the network [218].
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that relay messages hiding the correspondence between inputs and outputs by
changing their appearance and order (i.e. re-encrypting messages and choosing
a random output order, respectively) to hide the link between communication
source and destination. Chaum however notes that mixes do not hide the number
of messages a user sends or receives, hence he proposes, as a remedy, that senders
generate randomly addressed dummy messages that recipients discard upon
reception. Neither can mixing alone protect against powerful, global adversaries
in low-latency anonymous communication systems [117, 159, 349], motivating
the introduction of dummy traffic to prevent traffic analysis attacks [75, 171];
the rationale is analogous to the motivation behind Baran and Kent’s proposals,
i.e. to prevent an adversary from determining whether a particular instance
of traffic is real or not, thereby introducing further uncertainty about the
correspondence between a mix’s inputs and outputs.

Anonymous communication networks may also benefit from the generation of
dummy traffic at the end hosts to address the threat of website fingerprinting,
whereby a local adversary monitors the encrypted connection of a user
to the anonymous communication network and attempts to determine the
website the user visits based on features such as total connection time,
direction bandwidth and data bursts [192]. The addition of dummy traffic
pollutes websites’ identifying traffic features, mitigating the risk of website
fingerprinting [105, 192, 309, 424, 546].

The use of dummies as a mechanism to hide patterns goes beyond anonymity
systems. In wireless sensor networks [78, 254], the addition of both dummy
nodes and dummy traffic helps preventing adversaries from locating critical
nodes in the network, forcing adversaries not only to discriminate real from
dummy communication but also real from dummy nodes. Zhou et al. use dummy
data blocks and dummy read and write accesses in an encrypted file system
in an attempt to conceal the location of user data therein [525, 576], i.e. an
adversary should not ideally distinguish which blocks in the file system host
random bits and which ones host user data. Dummy traffic has also found its
way into early proposals of private database joins as a mechanism to leverage
yet protect against untrusted servers [352]. In this scenario, an untrusted server
hosts two databases with encrypted records to be combined if one or more
of their attributes match, e.g. to combine those records both databases hold
on a matching set of individuals. A trusted but resource-constrained secure
computation component (SCC) reads two records (one from each database)
at a time, determines if they must be joined and outputs the result back to
the untrusted server. To hide from the untrusted server the result of the join
operation, Li et al. propose to pad with dummy CPU cycles the time the SCC
takes in determining whether or not there is a match, as matches take longer
computing time. Moreover, to conceal the existence of a match from read
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and write accesses (as in a non-private join only matches would be written on
the server) the SCC is to output both matching and non matching records,
adding dummy records for every non-matching record. Since all the records
the SCC outputs are encrypted, only those parties with legitimate access to
the outcome of the join operation are able to decrypt them and separate wheat
(the matching, joined records) from the chaff (the dummy ones) [352]. CPU
cycles and memory accesses as sources of information leakage are reminiscent
of classic side-channel vulnerabilities in cryptographic hardware such as timing
and power consumption analysis [308, 327]. Indeed, countermeasures to these
side-channel attacks include flattening the power consumption signal through
fixed time implementations or the addition of random delays and dummy
operations [23, 327]. Whereas we acknowledge the analogies in the use of dummy
operations and padding in both hardware security and privacy technologies
research, we do not study such analogies in this thesis.

The scenarios above show how security researchers have leveraged the use of
dummies —whether as traffic, sensors, CPU cycles or memory accesses— to
hide patterns. However, not only are dummies useful to hide patterns and
metadata but also represent an alternative to provide content confidentiality
whenever the use of encryption is neither permitted nor available.

A prominent example of using dummies to provide content confidentiality
dates back to the “Crypto Wars” of the 1990s [217]. In the midst of
a policy debate over whether law enforcement should have surreptitious
access to the content of encrypted communications (i.e. a backdoor to the
decryption key), Rivest proposed chaffing and winnowing (C&W), a scheme
that provides communications confidentiality without encryption, i.e. relying
on authentication alone [453].14 Rivest argued that since C&W provides
confidentiality through authentication messages alone it should bypass any
legal restrictions on encryption.15 Chaffing and winnowing works by appending
a message authentication code (MAC) to every block of (plaintext) data two
communicating parties exchange and injecting in-between blocks of dummy
data with random, fake MACs. Communicating parties agree on a secret
authentication key that allows them to discard dummy messages upon reception,
as the MACs of dummy blocks do not match the (plaintext) data. An adversary
however, having no access to the authentication key, cannot distinguish valid

14A decade later, UK’s Regulation of Investigatory Powers Act 2000 (RIPA) rekindled
academics’ interest in this scheme [132].

15In their security analysis of Rivest’s scheme, Bellare and Boldyreva argue that chaffing and
winnowing is encryption as it provides security properties equivalent to those of symmetric
encryption; highlighting in turn divergences of what cryptographers and policy makers
understand as encryption, i.e. the former defining encryption in terms of outcomes and security
properties, while the latter vaguely referring to the mechanisms underpinning traditional
encryption mechanisms rather than to what they achieve [60].
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from invalid MACs, as a secure MAC should in fact be indistinguishable from a
random tag. Still, since C&W sends data blocks in plaintext, adversaries exploit
the content of messages to distinguish real from dummy ones, highlighting
the challenge of generating dummy messages that pass as real ones. C&W
overcomes this problem by splitting the data in single bits and sending as
dummies each bit’s complementary, foiling any attacks that rely on content and
providing in turn perfect indistinguishability —and therefore perfect secrecy.
We note however that C&W does not by itself conceal the who, when and how
often anonymous communication systems aim to hide, i.e. C&W hides content,
not communication metadata.

Similarly, Herley and Florêncio study the problem of password protection
from keyloggers in untrusted end-user devices [277]. Keyloggers are pieces of
malware that capture all user keystrokes in a device, thereby being able to
obtain passwords and any other data users type on their keyboards. Herley
and Florêncio note that keyloggers capture keystrokes at a low OS call level;
keyloggers are able to capture everything the user types but lack context on
where and why the user has typed it beyond the active OS window, i.e. keyloggers
can tell whether the user has typed text in her email client or her browser, but
not where within those programs or the specific purpose of the input. Conversely,
browsers only capture keystrokes they can interpret such as shortcuts keys or
text written in form fields, dropping any other keystrokes they do not know how
to interpret. Herley and Florêncio leverage this divergence in inputs processing
to pollute the sequence of keystrokes on the browser that keyloggers capture
without impacting the browser’s behaviour: they propose to inject random
keystrokes between every key of the user’s password. After injection, keyloggers
no longer recover the characters of the user password but a long string of
random characters with the actual password keys interspersed in between them;
recovering the actual password’s sequence of characters thus becomes intractable
as the number of random keystrokes increases.

The use of dummies for content confidentiality has also found prominent use in
privacy-preserving biometrics with error correction codes (ECCs) and so-called
chaff points central to the design of fuzzy extractors [113]. In their seminal paper
on fuzzy vaults, Juels and Sudan propose a scheme to hide a secret s in a public
vault ϑS so that only those who know an underlying set of elements S are able
to obtain s [312]. The vault is fuzzy because it also allows those that produce
a set S′ close to S (“close” in that they only differ in a previously defined
number of elements) to open the vault. Juels and Sudan’s fuzzy vault scheme
works as follows. They encode the secret s as a polynomial p (e.g. through
an embedding of s in p’s coefficients) over a single variable φ. Then, they
evaluate the polynomial over the set of elements in S (which they treat as
φ-coordinate values) producing a codeword as a set of pairs (φi, λi), where φi
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represents the elements in S and λi = p(φi). The number i of elements depends
on the maximum distance between S and S′ the fuzzy vault must tolerate. The
codeword (φi, λi) enables an ECC to recover the polynomial p and therefore
the secret s. However, only those in possession of a set S′ close to S must be
able to open the vault. To prevent unauthorised access to s, they obfuscate the
codeword (φi, λi) with random chaff points {(φj , λj)} that lie outside p. This
ensures that an adversary unable to produce a set S′ close to S feeds a mix of
genuine and random chaff points to the ECC, preventing in turn the ECC from
being able to recover the polynomial p —and thus s. The security of the scheme
depends on the additional number of chaff points, with larger amounts of chaff
points providing higher security as the number of alternative polynomials other
than p the ECC recovers increases.

Hence, a user of an online service may store a biometric template (a set
of points that represent e.g. her fingerprint) in a third-party server for
subsequent authentication with the online service. To protect the template
after unauthorised leakage or theft, either the user or the third-party server
may choose to hide the original template among a set of chaff points. While
legitimate users can produce at any time a set of points close to the original
template (the template derives from their own bodies after all), adversaries
obtain an obfuscated template from which they cannot recover the original.
Moreover, biometrics are noisy and inconsistent, i.e. with every new reading,
a user’s fingerprint is likely to be similar but not entirely the same due to
measuring errors and misalignments, hence the convenience of a fuzzy scheme.

The division across both content and metadata confidentiality may not always
be obvious or relevant in the study of chaff, with location privacy a prominent
example of this dichotomy [63]. We may classify location privacy as a content
confidentiality problem whenever users explicitly provide their location, such as
in location based services where users request driving directions between two
geographical points or search the nearest restaurants to their current position.
Conversely, whenever users implicitly provide their location, such as through
their current IP address or through the request of services in mobile edge
clouds [276], location privacy becomes a metadata confidentiality problem.
Regardless of this classification, what matters in terms of privacy engineering
is whether or not information about users’ locations is required to sustain the
provision of utility users expect and whether system designers face trade-offs
between utility and privacy.

Location privacy researchers have proposed the use of dummy locations or
trajectories as a mechanism to conceal users’ current location or moving
habits [276, 321, 358, 482, 565]. The underlying rationale behind using dummies
to provide location privacy is analogous to the scenarios above: mixing true and
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fake locations so that an adversary collecting users’ data cannot learn about
their actual locations or moving habits.

We may also generate dummies to conceal both content and metadata. Whereas
the generation of dummies for content confidentiality may implicitly obfuscate
certain metadata, preventing information leakages from the latter requires
dummy generation strategies specifically tailored to that goal. A representative
example of the use of dummies for protection of both content and metadata is
private web search. Search engines such as Google and Bing have the ability
to build search profiles on their users, who send their queries for relevant
websites on the Internet. Search engines can build profiles from individual
queries by classifying these queries according to topic, time frame or source
(e.g. origin IP). Users’ search profiles capture what users are interested in as
well as the level and evolution of their interests, potentially revealing sensitive
information and enabling further inferences on their personality and habits.
Profiles thus leverage not only queries’ content but also all sorts of metadata.
Consequently, there are a number of solutions that propose to generate dummy
queries to protect against web search profiling [182, 197, 294, 397, 426, 448, 563].
We devote Chapter 4 to the study of these solutions.

Similarly, since DNS resolvers query DNS directory services on behalf of users,
they stand in an unparalleled position to monitor the domain names users
request and are capable of logging users’ browsing histories. To protect against
privacy-invasive DNS resolvers, researchers have proposed the use of range
queries, i.e. sets of k − 1 hostnames simultaneously sent with the user’s actual
requested hostname [207]. Zhao et al. claim that if we randomly generate the set
of k − 1 hostnames with each name’s probability similar and “no special trait”,
the DNS resolver can only correctly guess the true target with a probability
inversely proportional to the range query set size, i.e. 1/k [572]. Zhao et al.’s
scheme assumes an honest-but-curious adversary, namely, the DNS resolver
provides a response for each of the k hostnames; the requester then simply
filters out (discards) the k− 1 dummy hostnames it added to her query. Further
refinements of this scheme require changes on the DNS protocol with the
cooperation of two non-colluding DNS resolvers [573], sending dummy queries
to several servers [111, 112] and deploying DHT-based DNS [359].

Lastly, AdNauseam seeks to enable users to conceal which advertisements
they click on from advertising networks by automatically clicking on all
advertisements present in the websites they visit [295].

Query-response services such as LBSs, web search and privacy preserving-DNS
we have just reviewed necessarily assume an honest-but-curious (HbC) adversary,
this is, the adversary attempts to filter out dummy queries from the user profiles
it builds but does not actively disrupt service provision, i.e. an adversarial
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service provider sends responses to all queries (both real and dummy) back
to the user, it does not ignore queries nor does it refuse to provide responses.
Moreover, these schemes also generally assume an uncooperative service provider
and users uninterested in service personalisation dependent on previous queries,
as otherwise the design needs to face trade-offs between the data users need to
reveal for personalisation and the resulting privacy loss.

In fact, the use of chaff or dummies in all the scenarios above represents UPO
because dummies do not interfere with what designers consider provides utility
to users, e.g. they omit service personalisation based on previous user activity.
Dummy traffic in anonymous communication networks may increase delays
by increasing traffic load in the network, but does not preclude the user from
surfing the web in any way (this is, assuming acceptable delays that prevent a
usability nightmare). Rivest’s C&W similarly increases the load on the network,
but does not undermine or hinder the ability of two people to communicate.

The assumption that dummies have no effect on user utility (UPO) and that
adversaries are honest-but-curious further explains why in the scenarios we
describe above DGS designers are unconcerned, as long as adversaries cannot
filter dummies out, about the particular mix of reals and dummies adversaries
retrieve. On the one hand, dummies’ lack of impact on user utility precludes any
motivation to craft DGSs beyond pattern and content hiding, as the particular
combination of both reals and dummies a DGS generates is only valuable insofar
as it withstands adversarial filtering. In fact, if dummies had an effect on user
utility and we attempted to account for their impact by selectively generating
a particular set of dummies, strategic adversaries may filter them out from
their observations, unfolding a cat-and-mouse game between DGS designers and
adversaries that evokes adversarial learning [357] —with DGS designers playing
the role of the attacker— and protective optimisation technologies (POTs) [261],
where users try to game optimisation systems by selectively changing inputs and
constraints to these systems. Hence, when neither UPO nor HbC assumptions
hold, i.e. if upon detecting obfuscation or other interventions against data
collection adversaries degrade the quality of service or block users altogether,
privacy engineers may resort to alternative solutions to game, mislead or bypass
these adversaries.

Morphing and mimicry. Steganographic hiding and tool undetectability.

The deployment of dummies in a service works as privacy-enhancing UPO
insofar as adversaries powerful enough to disrupt the service (such as the
provider) tolerate them, as otherwise users become vulnerable to quality of
service degradation or being cut off from the service.
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State censors are an archetypal example of this type of adversaries; they block
citizens from accessing websites or using online services that run against the
state’s interests. Whereas citizens may attempt to circumvent censorship by
hiding the websites they access behind an anonymous communication network
such as Tor, the censor may choose in turn to block services that enable users to
circumvent it, e.g. the censor may block Tor altogether, preventing all citizens
to use it [552].

Censorship circumvention tools (CCTs) necessarily rely on undetectability to
succeed, this is, ensuring that a censor cannot distinguish accesses to allowed
websites from those to forbidden ones [319, 344]. Researchers attempt to
achieve undetectability by, among other strategies, concealing users’ accesses
to services that enable and mediate access to forbidden websites, such as
Tor [97, 211, 291, 552]. These strategies rely on some sort of traffic shaping to
make accesses to forbidden resources look like accesses to permitted services such
as cloud storage and VoIP or like random packets whose patterns do not match
protocols the censor routinely blocks. In particular, a subset of these strategies
relies on mimicry, this is, shaping a blacklisted communication protocol’s traffic
so that it looks like a whitelisted protocol’s packets [319, 386, 543, 550]. To
match the traffic patterns of a whitelisted protocol, these solutions rely on traffic
shaping operations such as split and splice, delays, padding and dummy packets.

Using dummies for mimicry reveals a fundamental shift in threat models that,
whereas we do not study in detail in this thesis, need to consider in the design
of obfuscation tools —as we discuss in Sect. 3.4. The systems we review earlier
defend against abusive data collection, injecting dummies to spoil the quality
of the data adversaries wish to collect and exploit. We often assume that these
adversaries are honest-but-curious thus unlikely to interfere with quality of
service while doing their best to filter away as many dummies as possible. In
contrast, mimicry as deployed by CCTs seeks to evade adversarial detection,
e.g. to prevent blocking and denial of service (DoS) or simply to go unnoticed
and avoid grabbing an eavesdropper’s attention.

The divergence in threat models further motivates differing dummy generation
strategies. In defending against data collection, more dummies (should) translate
into better protection by burying real actions into an ever greater level of noise.16

Besides, successful adversarial filtering causes lower privacy levels, not DoS.
In contrast, in enabling mimicry, the protocol or pattern we aim to mimic
dictates the amount and type of dummies we require and successful adversarial
filtering may prompt DoS, as adversaries may have incentives not only to filter
dummies, but to discard utility-bearing data as well, e.g. blocking protocol
packets carrying real web browsing requests.

16Under the assumption that a sound dummy generation strategy is in place.
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Lastly, these two threat models point to two different albeit tightly linked
approaches to privacy protection: obfuscation and steganography [306]. The
former protects secrets by degrading the information made available about them.
The latter protects secrets by hiding them within other data that ideally makes
them invisible, attempting to conceal the existence of the secret itself. Designers
need not restrict themselves to one type of strategy and may deploy both
dummies that seek steganographic stealth and obfuscation. A paradigmatic
example of this dual strategy is StegoTorus, which seeks to circumvent censorship
by padding Tor traffic to mimic an “innocuous” cover protocol while generating
dummy traffic to other, unrelated hosts [550].

Dummies or padding? A note on terminology. Various authors loosely refer
to both adding dummies or padding indistinctly to denote the same set of
practices [309, 353, 424, 487, 546] or choose either term to refer to different
types of practices [105, 192, 290], e.g. padding to denote modifying the size of
real messages (e.g. appending zero- or random-valued bytes) and dummies to
denote adding fake messages to a stream of real messages.

In this thesis we propose and adopt the following convention to refer to either
padding or dummies. We say that padding denotes the addition of non-
information bearing bits (e.g. random or zeroed) to a real entity, i.e. be it
bytes to a packet, characters to a message or different weights and components
to a profile resulting from processing various sources of data. We say that a
dummy denotes an independent entity shaped in the form of a real one that
attempts to function as and elicit the same kind of responses that the real
entity it represents does, e.g. a dummy packet, a dummy message or a dummy
profile. Padding extends real entities so that, taken as a whole, the padded
entity contains both real entity and padding. Dummies are entirely fake and
independent from their real counterparts.

Still, adding dummies induces padding and padding requires dummies, e.g. we
may consider that the addition of dummy characters or keystrokes results in a
padded message while padding the communication between two people requires
the generation of dummy messages. If we can define a conceptual hierarchy
whereby multiple real entities become an independent, higher level entity of its
own, dummies induce padding at that higher level in the conceptual hierarchy,
e.g. dummy reads and writes in memory induce padding of memory access
patterns, dummy packets in network transmissions induce link padding.
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2.4.2 Deceive and lure: decoys

Another role dummies play in computer security is that of decoys, as instruments
of deception and distraction. Decoys share many similarities with other dummies
in that they attempt to replicate adversaries’ targets and prevent them from
distinguishing reals from decoys. In his work on deception techniques, Cohen
describes the idea underlying decoys as “to fill the search space of the attacker’s
intelligence effort with [dummies] so that detection and differentiation of real
targets becomes difficult or expensive” [133]. However, decoys go a step beyond
the types of dummies we have reviewed so far in that they are intended to serve
as traps or bait that enable the monitoring and observation of adversaries to
gather more information about them. In other words, decoys are dummies with
a penchant for entrapment.

Honeypots exemplify the use of dummies as decoys. Scottberg et al. define
a honeypot as [479]:

“a program that takes the appearance of an attractive service, set of
services, an entire operating system, or even an entire network, but
is in reality a tightly sealed compartment built to lure and contain an
attacker (a sandbox where intruders cannot harm production systems
or data) —effectively shunting an intruder safely from production
systems for covert analysis.”

Scottberg et al.’s definition further highlights the deception strategy underlying
decoys: they seek to lure adversaries to attractive yet bogus services, trap them
there and learn about them while, at the same time, protect real targets.
Bowen et al. echo this same idea defining honeypots as “deception-based
information resources that have no production value other than to attract and
detect adversaries” [91]. Similarly, Stolfo et al. emphasise the dual value of
decoys in their work on “decoy offensive technology” against data leakages from
the cloud: decoys help detecting unauthorised access to a system or resource
and confuse adversaries “with bogus information” [507].

Honeypots find numerous applications, from integrating defences against
external attackers on critical infrastructure [510] or complementing data
security in the cloud [507] to being part of the security and privacy toolkit in
opportunistic networks [354] and defending against data leaks from insiders,
e.g. enticing malicious users within an organisation to open decoy documents
containing bogus credentials that, once opened, trigger a security alert to notify
security administrators [91].
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Honeypots have also been reconceptualised and adapted to other contexts.
Spitzner defines honeytokens to describe individual decoys (e.g. files, credentials,
records) that comprise a larger honeypot [502], while Yuill et al. refer to
honeyfiles, namely, decoy documents that seek to detect external adversaries
masquerading as legitimate users with access to a file system [462, 569]. The
advent of online social networks (OSNs) has prompted work on social honeypots,
i.e. fake profiles connected to legitimate users that automatically generate
content to lure OSNs spammers, gather information about them and so be able
to preemptively detect them [345]; Herrera-Joancomartí and Pérez-Solà extend
this concept to propose social honeynets, i.e. meshes of decoy profiles that
seek to trap web crawlers to prevent them from mass harvesting information
in OSNs [279].

2.5 Conclusion

We have started this chapter pointing out the panoply of technologies that rely
on or provide some form of obfuscation to achieve various security and privacy
properties, arguing that obfuscation is too vague a word to neatly delimit the
conceptual boundaries over the kind of obfuscation tools we study in this thesis.

To better define those boundaries, we have examined the concept of obfuscation
across security and privacy research, identifying three subcommunities each
with their own understanding of obfuscation. Software engineers’ refer to
program obfuscation to denote a set of techniques that modify a program’s
code, increasing the complexity of the reverse-engineering process that enables
adversaries to learn the program’s purpose or internal structure. Cryptographers
similarly refer to program obfuscation to denote a set of techniques that modify
a program’s code to make it indistinguishable from another obfuscated program
with the same functionality. Privacy engineers and experts however refer to
obfuscation to denote a series of techniques that rely on data inaccuracy and
imprecision to limit the privacy risk of revealing data to an adversary. Our
work belongs in the latter community, we focus on privacy engineering through
data obfuscation as data inaccuracy and imprecision.

We have proposed an abstract model of data obfuscation and defined the concepts
of personal utility, privacy loss and social utility. Depending on how obfuscation
deals with trade-offs between personal utility and adversarial gain, we distinguish
between utility-degrading obfuscation (UDO) and utility-preserving obfuscation
(UPO): UDO minimises privacy loss by degrading personal utility, whereas
UPO minimises privacy loss with no impact over personal utility. We have
argued that personal utility alone does not impose trade-offs between utility and
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privacy that mandate the use of UDO, whereas the provision of social utility,
inherently requiring the disclosure of user data to adversarial parties, requires
the use of UDO to address the privacy threats that derive from adversaries with
arbitrary background knowledge.

We have examined the technical requirements and constraints that motivate the
use of obfuscation, in particular as an alternative to cryptographic and anonymity
tools. Because data obfuscation is inherently syntax-preserving, users can
unilaterally deploy obfuscation tools to protect themselves against adversarial,
uncooperative service providers that refuse the adoption of cryptography-based
privacy preserving systems. Moreover, obfuscation offers protection in those
situations where user anonymity is neither desirable nor possible, in addition to
an additional layer of protection to anonymous users.

In this thesis we focus on UPO and, in particular, in the study of UPO through
chaff. Chaff represents fake, dummy actions on an online service automatically
generated on behalf of the user which bear no relation to the utility users expect
from the service. Assuming a service where the provider treats each of a user’s
service requests with independence from each other and provides responses or
outputs that do not depend on that user’s previous requests and inputs (e.g. as
in personalised services), chaff enables to preserve all utility for a user’s service
requests while polluting the data an adversary gathers about that user. In fact,
chaff enables UPO without the need to determine the set of functions {fi} that
provide utility to users.

We have provided an overview of the use of chaff in security and privacy
research, highlighting the different types of dummy or fake actions and their
uses, i.e. dummies for obfuscation and steganography, decoys as traps and lures
for adversaries. All these techniques have in common their ability or aim to
preserve users’ utility while minimising the threats posed by adversaries. Their
applicability however depends on the adversary they defend against as well as
the particular protection goal or privacy property, e.g. dummies for obfuscation
attempt to starve an honest-but-curious adversary of information, whereas
dummies for steganography attempt to prevent an adversary from detecting
the existence of data or a denial of service attack.

We devote the remainder of this thesis to the study of chaff-based profile
obfuscation tools (Protos). In the next chapter we propose an abstract model
and analytical framework for the design and evaluation of Protos and examine
key elements in Protos design.



Chapter 3

Chaff-based
profile obfuscation

It’s a very clever machine. Manipulative. Cunning.
The only problem with Leoben isn’t that he lies,
that’d be too easy; it’s that he mixes lies with truth.

—Commander Adama, BSG S01E08

Profiling describes the process of collecting data on users’ behavioural patterns
and processing them into representations of aggregate data that provide higher-
level information, i.e. profiles. Profiling gives rise to several privacy problems,
from revealing sensitive or personal information about profiled individuals to
enabling subsequent decision-making algorithms, impacting individuals in ways
that escape their control.

In this chapter, we provide an abstract model of profiling and introduce Protos,
utility-preserving chaff-based profile obfuscation tools that seek to keep users’
profiles confidential, undermining the profiling process itself. We introduce
an analysis framework consisting of several privacy measures at the designers’
disposal and discuss the rationale behind each type of measure and implications
of using them for Protos’ analysis and design. Furthermore, we provide an
overview of key Proto design issues, focusing on a Proto’s dummy generation
strategy (DGS) and user interaction, highlighting the role of usability in Protos’
design. We conclude with a discussion of the assumptions over the adversary
that Protos’ design and deployment depends on, examining the threats that
other adversaries pose to Protos.

59
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This chapter lays out the model and analytical framework that we rely on to
study Protos in this thesis. In Chapters 4 and 5 we instantiate the general
Protos model in two particular scenarios, web search and online communication
services, respectively. Through these two use cases we further examine and
discuss Protos’ analysis and design issues.

3.1 An abstract model of profiling

We consider an individual or set of individuals that use one or several digital
services, e.g. an online newspaper, a search engine, Internet browsing or any
application on a smartphone. We make no assumptions about the number of
services or their type. For simplicity however we often refer to one individual
that uses one service.Moreover, we also refer to individuals as users and to
specify particular users we adopt the set of placeholder names «Alice, Bob,
Charlie,...» commonly used in cryptography.

The provision of the service involves the generation of protocol messages that
various components or entities of a system exchange. We variously refer to these
messages as actions, events or by the specific name they take in a particular
context or system of choice e.g. queries in a web search service or packets and
frames in data transmission protocols such as IP and Ethernet, respectively.
We denote the protocol messages users generate as r ∈ R, with R the universe
of possible user-generated protocol messages. Each protocol message r elicits
a service response o ∈ O that in turn comprises additional protocol messages
users receive from the service provider.

Moreover, we consider that the service runs across two trust domains, namely,
the user side and the provider side, according to a classic client-server
architecture [73]. Figure 3.1 depicts the system model.

We assume that the user side is free from interference from the service provider,
i.e. by default the service provider has neither access to nor visibility over
the client side; users’ activities only become visible to the provider after the
corresponding protocol messages leave the client side. However, as Narayanan
points out in his critique of trust models underlying crypto solutions, we
acknowledge that this assumption is increasingly becoming less and less realistic
in current “devices or end nodes and the software running on them”, as
“consumer technology has evolved away from [the client-server] model in the
past decade or so. Hardware and software are increasingly vertically integrated
and packed together in a way that users can’t fully control or modify” [400].
Any privacy guarantees Protos may be able to offer entirely depend on the
security of the software and hardware on which Protos run, i.e. if an adversarial
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Figure 3.1: Abstract profiling model.

software or software provider is able to compromise the user device, the privacy
protections that Protos offer become meaningless. This shift compels us to
reconsider the underlying trust model that Protos depend on and opens up
additional design and implementation challenges which are outside of the scope
of this thesis. We further discuss the implications of the Protos’ underlying
trust model in Sect. 3.4.1.

3.1.1 Threat model: profiling.

We consider an adversarial entity that monitors the exchange of protocol
messages within the system or collection of systems that enable a digital service.
We refer to this entity as the adversary or profiler, indistinctly.

The adversary processes a user’s protocol messages r ∈ R into a profile.
We model a profile x as a multinomial distribution x = {xi}, where each
component xi represents the probability that a profiling strategy —namely, a
function g(·)— assigns to a category i the profiler is interested in. The choice
of categories i and the meaning or interpretation of probabilities {xi} depend
on the profiling function g. Hence, the adversary obtains profile x as:

x = g([r1, r2, . . . , rn]) = g(r) (3.1)

with r = [r1, r2, . . . , rn] the sequence of protocol messages user activity triggers.
Figure 3.1 depicts adversarial profiling.

We do not make any assumptions about how g interprets and processes sequences
of protocol messages to assign a probability xi to each category i; we simply
consider that the adversary chooses g according to its informational needs, what
it wishes to learn.
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Building user profiles poses a privacy threat to users. Profiles may reveal, among
other sensitive data, their usage patterns (day, time, frequency), interests and
service predilection (among the options available in the demanded service) as
well as users’ personal details that even if not explicit in their use of the service
the adversary may deduce, i.e. inferences from data. In this abstract model
we do not limit or make any assumptions about the particular privacy threats
users worry about. We simply assume that profiles disclose information that
violates users’ privacy.

3.1.2 Countering profiling: profile obfuscation tools

A profile obfuscation tool (Proto) automatically generates dummy activities
on a service on behalf of a user, its goal to prevent an adversary from obtaining
the user’s profile x.

Protos simulate user activity on the service by generating dummy protocol
messages d from a universe of protocol messages D. A Proto’s dummy generation
strategy (DGS) governs the selection of dummy messages. The Proto mediates
individuals’ use of the service by intercepting protocol messages r that derive
from real users’ activities and delaying or modifying them according to the
DGS. We however note that any modifications the Proto performs on users’
activities are utility preserving, i.e. modifications may increase cost yet never
degrade utility.

Protos operate on the user side, which as we have mentioned in Sect. 3.1, we
assume to be out of adversarial reach and therefore trustworthy, i.e. the user
side is free from adversarial tampering or interference. Similarly, we assume
the Proto’s implementation to be secure and resistant to adversarial tampering,
i.e. we consider Protos’ resistance to adversarial tampering to be a security
problem orthogonal to profiling.

By virtue of generating dummy activity, the Proto pollutes the flow of protocol
messages the adversary collects. The adversary no longer sees a sequence of
real messages r. Instead, it observes a combined sequence of real and dummy
messages q = r ∗ d, with ∗ denoting the operation of interleaving both real
and dummy messages. Hence, if the adversary processes the sequence q with
profiling strategy g, it retrieves an observed profile y = g(q) that should no
longer inform the adversary about the original or real profile x. However,
we consider a strategic adversary that attempts to undo the obfuscation the
Proto injects in an attempt to recover the original profile x, as we detail in the
following section.
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3.1.3 Adversary model

We consider the following adversary model in the design and evaluation of Protos.

Goals. The adversary’s goal is to obtain a user’s profile x, with x as defined
in Eq. 3.1.

Capabilities. The adversary is able to eavesdrop on a subset (potentially all)
of the service’s protocol messages exchanged between the user and server
side. Moreover, the adversary is able to detect whether or not a user
deploys a Proto and retrieve, test and examine the user’s Proto to devise
its attack strategies in accordance to the Proto’s design. The adversary
has an indiscriminate amount of background or auxiliary information
on users. This information may relate to a particular individual, to an
“average” user of the service or to the general population at large.

Strategies. As a strategic adversary, it does its best to retrieve x, filtering as
many dummy protocol messages d as possible to recover an approximation
x̂ of the real profile with as little noise as possible, i.e. ideally x̂ = x.
Still, we assume that the adversary does not interfere with users’ service
requests —regardless of its ability to do so, which we make no assumptions
about—, i.e. it does not drop, delay or modify any of the protocol messages,
either real or dummy. The adversary is, in short, honest-but-curious.

As an example of this kind of adversary that we focus on throughout this
thesis, we consider an honest-but-curious adversarial service provider. A service
provider’s ability to monitor all user activity within the service places it in
an unparalleled position to profile its users. We however acknowledge that a
provider’s incentives may not always align to enable Protos users to continue
using the service; in Sect. 3.4.1 we discuss the factors that may encourage a
provider to either allow or ban Protos as well as solutions to discourage, prevent
or bypass a service provider’s Protos ban. Lastly, we note that we use the
terms adversary, service provider and profiler interchangeably in the remainder
of this thesis.

Table 3.1 summarises the notation we have introduced in this section so far and
anticipates further notation we introduce in the remainder of this chapter.

3.2 Analysis

We state in the previous section that the goal of a Proto is to prevent an
adversary from obtaining a user’s profile x. In this section we provide an
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Symbol Meaning Symbol Meaning

r Real user action, event or proto-
col message

R R.v. of real actions

r Ordered sequence of real actions
[r1, r2, . . . , rm]

R R.v. of sequences of real actions

R Universe of r R Universe of sequences r

d Dummy action D R.v. over dummy actions
d Ordered sequence of dummy

actions [d1, d2, . . . , dm]
D R.v. over sequences d

D Universe of dummies d D Universe of sequences d

q Action (real or dummy) Q R.v. over actions qi
q Ordered sequence of actions

[q1, q2, . . . , qm]
Q R.v. over ordered sequences q

Q Universe of events q Q Universe of sequences q

x User real profile y User’s observed profile
X R.v. over real user profiles Y R.v. of observed profiles
X Universe of x Y Universe of y
r̂ Sequence the adversary recovers x̂ Profile the adversary recovers

Ω Obfuscator g Profiling strategy

` Distance E Expected value

H Shannon’s entropy H∞ Min-entropy
I Mutual information L∞ Min-entropy leakage
C Channel capacity C∞ Min-capacity

( )β Adversary’s belief G Adversary’s information gain

E Expected estimation error

Table 3.1: Summary of notation.

analytical framework to determine the extent to which a Proto meets that
goal, assisting in turn the selection of Protos’s general design principles that we
explore in the next section.

We distinguish between two approaches in the analysis of Protos: mechanism-
centred (MCA) and attack-centred (ACA). Each of these approaches comprises
a range of metrics that enable privacy engineers to evaluate Protos according to
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various goals. Mechanism-centred approaches analyse Protos with independence
of any particular adversary or attack strategy, they focus on the study of how
Protos obfuscate, the relation between their inputs and outputs, rather than on
the exploits an adversary may deploy to undermine them. Conversely, attack-
centred approaches analyse the ability of an adversary to undermine a Proto.
They consider a particular attack or family of attacks that they deploy against
the Proto, evaluating the success of the adversary at retrieving a user’s profile x.
Figure 3.2 illustrates how MCA focuses on the relationship between a Proto’s
input sequence r and its output sequence q, abstracting from further adversarial
filtering, whereas ACA takes into account the adversary’s attack that produces
a filtered sequence r̂.

One conceptual difference between MCA and ACA worth noting is that MCA
measures relate to a Proto’s leakage, this is, how much information Protos
leak or disclose, regardless of what an adversary does with that information.
ACA measures on the other hand relate to adversarial retrieval, this is, the
extent to which an adversary takes advantage of the information the Proto
leaks and invades users’ privacy. In other words, MCA measures capture
the effectiveness of the obfuscation mechanism alone, abstracting away from
particular adversarial details, whereas ACA measures capture the combined,
intertwined effect of obfuscation and adversarial attack, i.e. they capture a
Proto’s effectiveness through a measure of adversarial success.

Yet another conceptual difference between MCA and ACA relates to their
role in assisting Protos’ design and evaluation. MCA measures abstract away
from particular adversaries and attack strategies; hence, they assist Protos’
design as generic constraints or protection goals, i.e. privacy engineers may
require that a Proto satisfies a particular measure of privacy without the need
to describe an adversary’s attack strategy and background knowledge down to
the last detail. ACA measures however take into account precisely those details
about the adversary, hence, they better assist evaluation of Protos’ effectiveness
in particular scenarios against particular adversaries. We further discuss the
suitability of MCA and ACA measures —over which there is no consensus—
in Sect. 3.2.3.

3.2.1 Mechanism-centred analysis

MCA focuses on assessing Protos’ effectiveness based on the obfuscation
mechanism or dummy generation strategy alone, i.e. they do not consider
a particular adversary or attack. Rather, as Fig. 3.2 illustrates, MCA examines
the relationship between non-obfuscated inputs and obfuscated outputs to
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Figure 3.2: Process flow conceptualisation of mechanism-centred and attack-
centred analyses.

determine the extent to which an adversary may exploit a Proto’s output to
retrieve the original input.

We distinguish two families of metrics that fall within mechanism-centred
analysis: measures of indistinguishability and measures of leakage.

Indistinguishability.

Indistinguishability measures a Proto’s ability to generate output sequences of
protocol messages {qi} so that for any particular output q it is impossible to
distinguish the sequence of real protocol messages r the Proto took as input.

The notion of indistinguishability has its roots in cryptography [107]. To assess
the security of cryptosystems, cryptographers rely on various tests of
indistinguishability such as resistance to chosen-plaintext attacks [139] or chosen-
ciphertext attacks [398, 440]. While each of these tests considers a different
setting as to what an adversary is able to obtain from a cryptosystem, the essence
of an indistinguishability test is the following. The adversary (e.g. in public-
key cryptography, a probabilistic polynomial-time Turing machine) selects two
messages m0 and m1 and sends them to an encryption oracle. The oracle flips
a coin to determine the value of a bit b ∈ {0, 1} and outputs cb, the encryption
of mb. If the adversary cannot determine the value of b with higher probability
than 1/2, namely, random choice, then the cryptosystem is secure in terms of
indistinguishability [142]. Indistinguishability entails semantic security [549],
which in turn is the computational analogue to perfect secrecy [244], a major
goal in the design of secure cryptosystems.
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Several works have proposed privacy definitions based on the notion of
indistinguishability [278, 562], the most prominent to date being that of
differential privacy (DP) [189] . Initially defined as ε-indistinguishability, DP
requires that the outcome o of a function f over a database DB is equally likely
(within a multiplicative factor eε) if the input to the function is a database DB′
that differs from DB in only one row —supposedly capturing the contribution
of an individual [322]—, for all pairs of databases DB and DB′ and all possible
outcomes o of the function f . In other words, input databases DB and DB′
should be ε-indistinguishable based on outcome o alone, i.e. an adversary should
not be able to distinguish whether it was DB or DB′ that produced o.

Similarly, we may rely on notions of indistinguishability in the analysis of profile
obfuscation. Let us consider an obfuscator Ω that takes as input a sequence
of real messages r ∈ R and outputs a sequence q ∈ Q. Ideally, we would like
that Ω outputs q with similar probability for any r, so that an adversary upon
retrieving q cannot determine which r has engendered it, consequently being
unable to retrieve x = g(r). We therefore aim to measure the ability of Ω to
generate indistinguishable outcomes. To do that, we first borrow Duchi et al.’s
definition of ε-LDP [185] to define ε-profile indistinguishability (εPI).
Definition 3.2.1. ε-profile indistinguishability (εPI). Let r and r′ be sequences
of real actions from the universe R of possible sequences users generate. Let q
be a sequence of both real and dummy actions from the universe of possible
sequences Q a Proto generates and S a subset of sequences q. We define ε-profile
indistinguishability of an obfuscation mechanism Ω as:

ε = sup
S∈Q, r,r′∈R

∣∣∣∣ ln Ω(S | r)
Ω(S | r′)

∣∣∣∣ (3.2)

where Ω(S|r) represents the conditional probability of the obfuscator Ω
generating a subset S of output sequences q given real sequence of actions
r. By convention [27], we consider | ln Ω(q | r)

Ω(q | r′) | = 0 when Ω(q | r) = Ω(q | r′) = 0
and | ln Ω(q | r)

Ω(q | r′) | =∞ when either Ω(q | r) = 0 or Ω(q | r′) = 0.

An obfuscator that ensures ε-indistinguishability for a bounded ε is effectively a
locally differentially private mechanism.
Definition 3.2.2. ε-local differential privacy. An obfuscator Ω is ε-locally
differentially private if:

sup
S∈Q, r,r′∈R

Ω(S | r)
Ω(S | r′) ≤ e

ε (3.3)

Parameter ε is therefore a multiplicative measure of the distance between
distributions, denoting how distinguishable input real sequences r and r′ are
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given output sequence q. A Proto’s obfuscation mechanism Ω induces the
same output distribution over q given r or r′ when ε = 0, resulting in perfect
indistinguishability; conversely, when ε = ∞ there is at least one qi that
unequivocally leads back to either r or r′, resulting in perfect distinguishability
between r and r′ for that particular qi.
Definition 3.2.3. Statistical distance. We consider the statistical distance
(SD) between the probability distributions over sets of output sequences S ∈ Q
of a profile obfuscation mechanism Ω given input sequences r and r′ as:

SD(Ω(R),Ω(R′)) = sup
S∈Q, r,r′∈R

∣∣Ω(S | r)− Ω(S | r′)
∣∣ (3.4)

where Ω(S | r) represents the conditional probability of obfuscator Ω generating
a subset of output sequences S given input real sequence r.

We note that ε-indistinguishability represents a worst-case multiplicative distance
in that regardless of how statistically close distributions Ω(q | r) and Ω(q | r′)
are, ε =∞ when one distribution assigns a zero-value in a particular q and the
other assigns a non-zero. Conversely, statistical distance may be arbitrarily low
even when one qi leads to perfect distinguishability, e.g. if Ω(q | r) > 0 and
Ω(q | r′) = 0 [189].

Choosing between ε-indistinguishability or statistical distance hence depends
on how stringent a definition of indistinguishability we seek, further having
implications in mechanism design; e.g. we may choose to construct an obfuscator
that ensures a certain degree of indistinguishability for every input sequence
ri or choose to disregard certain sequences rj , providing no guarantee of
indistinguishability for those sequences but still ensuring that the probability
of any sequence q is not much greater or smaller for any input r or r′. The
former requirement imposes a ε-DP bound, whereas the latter we can satisfy
with an SD bound.

Similarly, as has already been amply discussed in the literature [188, 332, 526]
we may relax ε-differential privacy into (ε, δ)-differential privacy. Dwork et al.
introduce the concept of δ-approximate ε-indistinguishability to relax the
strict requirement that ε-indistinguishability imposes when the probability
of some input-output combinations “are not specially likely” [188], i.e. ensuring
ε-differential privacy with a leeway additive factor δ. In other words, δ bounds
the probability that an obfuscator leaks “much more information than for
ε-differential privacy” [377].
Definition 3.2.4. (ε, δ)-local differential privacy. An obfuscator Ω is (ε, δ)-
locally differentially private [52] if for any pair of input sequences r, r′ and any
subset of S over the range of output sequences Q:

Ω(S | r) ≤ eεΩ(S | r′) + δ (3.5)
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with δ = 0 becoming ε-LDP

Hence, (ε, δ)-local differential privacy gives an obfuscator a degree of
flexibility δ to disclose more information than if purely ε-differentially private.
Kasivisiwanathan and Smith warn however that (ε, δ)-differential privacy is only
meaningful for values δ comparatively smaller than ε, as otherwise the definition
reverts to statistical distance and loses the stringent privacy properties that a
multiplicative distance provides [314, 315].

We may introduce an additional relaxation that ties the indistinguishability
requirement to a distance or similarity between real sequences of actions `(r, r′),
thereby explicitly defining that distant or dissimilar real sequences of actions
need not be as indistinguishable from each other as similar sequences [27]. “Pure”
ε-LDP imposes that an obfuscator Ω engenders a similar probability distribution
over output sequences q for any input sequence r or r′. This means that even
if r and r′ are extremely dissimilar sequences, Ω must add sufficient chaff to
bound the dissimilarity between the probability distributions over the resulting
sequences q and q′ by parameter ε. Conversely, by incorporating a notion of
distance ` we impose that Ω adds enough chaff to make similar sequences r and
r′ indistinguishable, yet not so much chaff that any two sequences are equally
indistinguishable. In other words, the more similar, the more indistinguishable
two sequences are. Such parametrisation thus becomes useful in scenarios where
indistinguishability is most important between similar sequences, e.g. in the
context of private web search, a user may wish to conceal her interests within a
particular niche and related topics (e.g. strategy board games, 1920s’ modernist
literature, new queer cinema) rather than conceal her interests overall. Moreover,
applying such a distance-based relaxation enables designers to navigate trade-
offs between a limited budget of resources for obfuscation (e.g., bandwidth) and
privacy, as we propose in Sect. 3.3.2.

Definition 3.2.5. (ε, `, δ)-local differential privacy. An obfuscator Ω is (ε, d, δ)-
locally differentially private [52] if for any pair of input sequences r, r′ and any
subset S of output sequences q:

Ω(S | r) ≤ eε·`(r,r′)Ω(S | r′) + δ (3.6)

with δ = 0 becoming (ε, `)-LDP.

Hence, (ε, `, δ)-LDP introduces vulnerabilities if users require indistinguishability
between sequences of actions which lie far away in `-space. (ε, `, δ)-LDP relies
on assumptions on what it means for users that the adversary cannot distinguish
across sequences of actions. To illustrate this, let us consider two GPS users,
Alice and Bob, that wish to escape location profiling. Alice wishes to prevent
the profiler from determining with precision her location, e.g. she does not mind
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that the adversary knows she is in the city she resides, but prefers not to reveal
whether she is at home, at work or at any other location within the city. Bob
on the other hand is a frequent traveller that wishes to prevent the profiler
from determining the city in which he is and is in fact unconcerned about the
adversary learning his precise position within the city, for having background
information about his job already discloses where he will be (e.g. headquarters
of a company, government offices or religious temple). An (ε, `, δ)-LDP with
` the Euclidean distance satisfies Alice’s privacy requirements, for locations
within the city are more indistinguishable than two locations in two separate
cities. On the other hand, the same Proto with the same ε value offers worse
privacy guarantees to Bob, as it spends most of its dummies to better conceal
locations within small radiuses, rather than generate alternative locations in
far-away cities. Hence, by incorporating a distance ` into ε-LDP, we restrict the
privacy guarantees the measure offers with respect to a particular interpretation
of privacy.

Moreover, we note that we formalise the definitions above with respect to the
sequences of real protocol messages r and obfuscated sequences of messages q
instead of the real profile x = g(r) and observed profile y = g(q) to avoid making
any assumptions about the effect of the profiling strategy on the distribution
Ω(y | x) with respect to Ω(q | r). Indeed, depending on the profiling strategy
g, several sequences {qi} may map to the same observed profile y so that the
distance SD(Ω(y | x),Ω(y | x′)) < SD(Ω(q | r),Ω(q | r′)), yet the adversary
retains the ability to attack the Proto with information on Ω(q | r), in turn
undermining the expected level of indistinguishability. We further illustrate the
consequences of incorporating assumptions about the distance across sequences
and adversarial profiling functions in the case of private web search, which we
study in Chapter 4.

Information leakage.

Information theory represents an alternative to measures of statistical distance,
conceptualising a Proto as a communication channel through which an individual
transmits a sequence of messages r to an adversary, who receives a noisy sequence
of messages q, as Fig. 3.3 shows. Information theory enables the assessment of
a Proto’s ability to protect profiles by measuring the amount of information the
channel (the Proto) leaks, i.e. how much information q carries about r. If the
channel is “perfectly noisy” sequence q provides no information on the input
sequence r, only noise; as a result it is no easier to determine profile x after
obtaining q than before, i.e. with prior information about x alone. Conversely,
if the channel introduces no noise, output q univocally reveals channel’s input
sequence r, from which an adversary trivially computes x.
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Figure 3.3: A Proto as a noisy channel. Output sequences q result
from the tranmission of sequences r through a Proto that adds
sequences of dummies d.

As alternative conceptualisations of the same problem, there are equivalences
between information theoretical and statistical distance measures [149].
Designers may therefore choose either set of analytical tools in their assessment
of Protos according to their needs. In this section we describe the differences in
interpretation and meaning of both sets of tools to inform that selection process.

Let us consider a user that relies on a Proto to obfuscate her profile x and an
adversary that captures the observed sequence q and attempts to recover x. We
consider that, before acquiring the observed sequence q, the adversary has an
initial uncertainty on what the user profile x may be based on prior information
alone. Subsequently, once the adversary obtains q she uses the information q
leaks about r to better determine the value of x.

Smith informally defines [492]:

initial uncertainty = information leaked + remaining uncertainty

so that

information leaked = initial uncertainty − remaining uncertainty

proposing to quantify uncertainty with entropy.

We thus consider a Proto as a leaky channel that takes as input a sequence
of actions r = [r1, r2, . . . , rmr ] of length mr and outputs, according to some
obfuscation function Ω, a sequence of actions q = [q1, q2, . . . , qmq ] of length
mq ≥ mr. Random variables R and Q characterise the probability distribution
over the input and output sequences P (R = r ) and P (Q = q ), respectively.
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Definition 3.2.6. Shannon’s entropy. Let r be a sequence of real protocol
messages [r1, r2, . . . , rm] and R the discrete random variable that determines
the probability distribution over the universe R of possible real sequences. We
define the entropy H of random variable R as:

H(R) = E(− log(P (R ) ) ) = −
∑
r∈R

P ( r ) log(P ( r )) (3.7)

with logarithm base 2 giving the entropy in bits.

Shannon’s entropy is a measure of the uncertainty over the value a random
variable may take. Measured in bits, it provides a lower bound of the average
number of binary questions an adversary must ask to determine the value
of the random variable [104]. Entropy H(R) thus measures Smith’s initial
uncertainty (or a priori uncertainty) about the input sequence r that enters
a Proto, whereas H(Q) measures the adversary’s a priori uncertainty about
the value the Proto outputs. Random variables R and Q are not however
independent but linked through the obfuscation function or leaky channel Ω.
Once the adversary acquires q, the uncertainty about the input sequence r
decreases due to the relationship between both random variables according to
the conditional probability P ( r | q ).

Definition 3.2.7. Conditional entropy. Let r be a sequence of real actions
[r1, r2, . . . , rmr ], q a sequence of both real and dummy actions q1, q2, . . . , qmq
and R and Q the discrete random variables that determine their probability
distribution over the universes R and Q of possible sequences, respectively. We
define the conditional entropy or equivocation H of random variable R given
random variable Q as:

H(R | Q) = −
∑

r∈R,q∈Q
P ( r | q ) log(P ( r | q )) (3.8)

The conditional entropy hence represents Smith’s remaining uncertainty about
r once the Proto reveals q. Ideally, H(R | Q) = H(R), which means that
the Proto leaks no information, i.e. the uncertainty about r is the same
regardless of whether the adversary obtains q; the initial and remaining
uncertainty are the same. Conversely, the Proto leaks all information about r
when H(R | Q) = 0, i.e. the uncertainty about r is zero, so the adversary can
trivially recover x̂ = g(r) = x.

Given the entropy of a random variable (r.v.) and the conditional entropy given
another r.v., we measure the information one provides about the other, i.e. the
information q leaks about r —and vice versa— using mutual information.
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Definition 3.2.8. Mutual information (MI). We define the mutual informa-
tion I between random variable R and random variable Q as:

I(R;Q) ≡ H(R)−H(R | Q)

≡ H(R) + H(Q)−H(R,Q)

=
∑
r∈R

∑
q∈Q

P ( r, q ) log P ( r | q )
P ( r )P ( q )

(3.9)

MI hence measures the information leaked,1 the information the channel or
obfuscator Ω reveals about r.

Mutual information is a popular measure of information leakage in the security
and privacy literature [12, 61, 145, 149, 561, 578]. Shannon himself initiated the
study of “secrecy systems” under information theory [483], showing that such
systems provide perfect secrecy when H(R | Q) = H(R)⇔ I(R;Q) = 0. Closest
to our work on profile obfuscation is Erola et al.’s profile exposure level (PEL),
in the context of personalised web search [203]. Erola et al. define PEL as the
mutual information between the probability distribution over the search queries
a user submits (R) and the probability distribution over the search queries the
user appears to submit (Q), a combination of a subset of her own queries and a
subset of queries she receives from other users via a P2P mechanism. In fact
PEL is essentially Eq. 3.9.

MI however provides a measure of the channel’s information leakage only for
a particular probability distribution of R [114, 149]. Mutual information says
little about the performance of Ω as a whole, i.e. for any probability distribution
other than P (R ). Hence, to determine the channel’s or obfuscator’s information
leakage in any potential scenario, we need to consider the mutual information
between inputs and outputs to the channel over all possible input probability
distributions, namely, the channel’s capacity.

Definition 3.2.9. Channel capacity. We define the channel capacity C of an
obfuscation channel Ω as the maximum information leakage over all possible
probability distributions of the input random variable R.

C = sup
PR(r)

I(R;Q) (3.10)

Ideally, a perfect obfuscator has C = 0, i.e. it leaks no information on no
matter what input probability distribution. Channel capacity characterises a

1Note that the first equivalence I(R;Q) ≡ H(R) − H(R | Q) corresponds to Smith’s
informal definition «information leaked = initial uncertainty − remaining uncertainty».
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Proto’s ability to obfuscate profiles for any input probability distribution of
real sequences r, providing a tight upper bound on the channel’s information
leakage. Chatzikokolakis et al. remark that while mutual information depends
on the input distribution and therefore on the systems’ users, channel capacity
depends only on the obfuscator, not on the input distribution which, even if
known, may change after time. Yet Chatzikokolakis et al. also concede that
whenever we are able to accurately determine the input distribution, mutual
information provides a tighter measure of information leakage as we do not need
to consider input distributions under which the obfuscator performs worse [114].

Entropy, mutual information and capacity all provide to Protos analysts and
designers intuitive measures of information leakage, the decrease in adversarial
uncertainty the Proto enables. Shannon’s entropy, in Cachin’s interpretation,
measures the average number of binary questions an adversary needs to ask
about r to determine its value [104]; yet this interpretation does not necessarily
capture the attacks we anticipate from the adversary.

Among other authors, Smith has prominently questioned the research
community’s overreliance in Shannon’s entropy as a one-size-fits-all measure
of uncertainty, echoing previous warnings from Shannon himself that mutual
information “is certainly no panacea” [484, 493]. Smith shows that in the context
of adversaries attempting to learn a secret (i.e. confidentiality) Shannon’s entropy
underestimates the vulnerability of a secret against an adversary that recovers
the secret after just one guess (i.e. the first guess) by selecting the highest
probability candidate [493]. Pliam also shows that there is an unbounded gap
between Shannon’s entropy and marginal guesswork, related to the minimum
number of searches a brute-force attacker must perform to attain a certain
probability of success [436]. In the context of profile obfuscation this means
that the higher the probability max(P (R = r )), the lower the uncertainty
of such an adversary, as the more likely sequence r is, the more likely the
adversary guesses it correctly; yet Shannon’s entropy may remain arbitrarily
high as long as there are sufficient alternative sequences r′ with non-negligible
probability. These critiques illustrate that the measures we choose to evaluate
profile obfuscation must align with the attack strategies we envision in the
adversary model, e.g. min-entropy better suits the measure of information
leakage against single-guess adversaries; marginal guesswork may better capture
a system’s weakness against brute-force attacks. More recently, the notion of
g-leakage provides a generalisation of min-entropy that uses gain functions to
capture a variety of adversarial attack strategies [22].

We have defined the adversary’s goal (in Sect. 3.1.3) as to obtain a user’s profile x
and the adversary’s strategy as to filter as many dummies as possible. We make



ANALYSIS 75

however no assumptions on the number of attempts or guesses an adversary
performs to retrieve x. The adversary may resort to an attack strategy that
recovers a single profile x̂ with the highest probability of being x. Alternatively,
the adversary may rely instead on a strategy that delivers the top k most likely
profiles and carry on under the assumption that any of those profiles may be x
—to lessen the probability of focusing on a single x̂ that does not match x.

In this analysis framework we do not attempt to provide a mapping between
information-theoretic measures and the adversaries and attack strategies they
best attend to, as this mapping depends on particularities that we cannot
anticipate for each possible scenario [375].2 Rather, we seek to illustrate and
provide an interpretation of how to analyse a Proto’s privacy protection with
information-theoretical measures. Analysts and designers must therefore select
the particular information-theoretical measure that best meets their needs.

Still, an adversary that succeeds in recovering x̂ = x by filtering the observed
sequence q that maximises P ( r | q ) has been shown to represent an upper
bound on information leakage [22]. Hence, we consider min-entropy and the
notion of min-capacity as a measure of worst-case leakage and extend the
analysis framework with min-entropy measures to account for the worst-case,
as a counterpoint to classic Shannon entropy-based measures. We follow on the
work of Smith and others on min-entropy as a measure of information flow to
provide the definitions below [180, 330, 493, 492].
Definition 3.2.10. Min-entropy. We define the min-entropy H∞ of a random
variable R as:

H∞(R) = − log( max
r∈R

(P ( r )) ) (3.11)

We note that min-entropy equals Shannon’s entropy when R is uniformly
distributed, i.e. P (R = r ) = 1

|R| ⇒ H(R) = H∞(R) = log |R|, as this represents
a worst-case uncertainty for the adversary, who has no advantage over any
first-guess r.
Definition 3.2.11. Conditional min-entropy. We define the conditional min-
entropy of a random variable R given random variable Q as:3

H∞(R | Q) = − log
∑
q∈Q

P ( q ) max
r∈R

P ( r | q ) = − log
∑
q∈Q

max
r∈R

P ( r, q ) (3.12)

2Alvim et al. provide a first step in this direction motivating various gain functions and
their significance in particular instantiations of g-leakage [22].

3Various authors have noted that there is no universal consensus on the definition of
conditional min-entropy. Cachin [104] defines it as H∞(R | Q) = −

∑
q P ( q )H∞(R | Q = q),

yet observes that such a definition, even if derived from Shannon’s conditional entropy, no
longer satisfies the property whereby the conditional on Q is smaller than the marginal on R. In
this work, similarly to Smith, we adopt Dodis et al.’s definition [180, 493]. Dodis et al. further
justify why favour this definition in the analysis of security properties [180].
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Conditional min-entropy H∞(R | Q) measures the worst-case uncertainty of the
adversary after obtaining q.

Smith further defines min-entropy leakage as the difference between the min-
entropy of a channel’s input random variable probability distribution and the
entropy of the input conditioned on the channel’s output probability distribution,
thus representing the amount of information the channel leaks in terms of min-
entropy [493].

Definition 3.2.12. Min-entropy leakage. We define the min-entropy leakage
L∞ as:

L∞(R;Q) = H∞(R)−H∞(R | Q) =

= log
∑

q P ( q ) maxr P ( r | q )
maxr P ( r ) = log

∑
q maxr P ( r, q )

maxr
∑

q P ( r, q )

(3.13)

Smith notes that whereas L∞ is analogous to mutual information in that it
represents the channel’s information leakage given certain input and output
random variables, unlike mutual information min-entropy leakage is not
symmetric, i.e. I(R;Q) = I(Q;R) but L∞(R;Q) 6= L∞(Q;R) in general.

Lastly, to capture the min-entropy leakage under any input probability
distribution, we similarly define a channel’s min-capacity.

Definition 3.2.13. Min-capacity. We define a channel’s min-capacity as:

C∞ = sup
R
L∞(R;Q) = log

∑
q∈Q

max
r∈R

P ( q | r ) (3.14)

Köpf and Smith provide a proof of the last equality relation [330, 493].

Independence from adversarial knowledge.

Mechanism-centred analysis (MCA) focuses on the study of a Proto’s obfuscation
mechanism alone, disregarding external factors to the mechanism itself over
which we may have little or no control (e.g. sources of information adversaries
exploit unknowingly to the Proto’s designers), thereby enabling them to abstract
away from such factors.

Under certain assumptions, mechanism-centred analysis provides privacy
assurances independently from adversarial knowledge. Differentially-private
mechanism design represents a prominent example of attempting to enforce
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such a property. The guarantee differential privacy offers —namely, that the
probability of a privacy breach will be more or less the same whether or not
a user participates in the system— holds, under certain assumptions about
the data-generation process [189, 322], regardless of what the adversary knows.
Indistinguishability measures’ independence from adversarial knowledge stems
from the fact that they make no assumptions about an obfuscation mechanism’s
input data probability distribution. Hence, they represent a property of the
mechanism itself, unrelated to what the adversary does or knows [191].

Similarly, a channel’s (min-)capacity measures the maximum amount of leaked
information, providing an upper bound on what the adversary may feasibly
extract from the system. Information-theoretical measures do however depend
on the mechanism’s input data probability distribution. Capacity therefore is
not independent from the input data probability distribution per se, yet by
considering all possible probability distributions, it also becomes a property of
the mechanism itself and therefore independent from adversary knowledge [145].

Still, ε-indistinguishability and min-capacity provide different types of
guarantees. Indistinguishability focuses on the multiplicative distance between
the probability of any two inputs ri, rj given an output q, which ensures a
minimum level of privacy for each particular user input; capacity on the other
hand provides an average of the amount of information the mechanism leaks,
yet offers no bounds on the distinguishability between any two profiles: the
mechanism may expose some users’ real profiles x at the same time that it
leaks very little on others. In fact, ε-indistinguishability entails bounds on
information leakage but the opposite is not generally true, as previous work
studying the relationship between both types of measures shows [21, 51, 145].

Hence, ε-indistinguishability is best suited to deal with scenarios with stringent
privacy requirements, i.e. where privacy guarantees must hold for every Proto’s
user and against any possible adversary. However, it is too expensive to
guarantee ε-DP in many settings, in particular those where the universe of
sequences exhibits high dimensionality, leading in turn to high sensitivity, like
in the context of location privacy [82, 421]. Still, as we illustrate in Sect. 3.3,
since one of the key Proto design requirements is indistinguishability between
real and dummy actions, it is useful to think about how obfuscation maps
real to output sequences as the probability of any real sequence leading to the
same output sequence; hence, indistinguishability measures remain useful as a
conceptual tool to think about DGS design in general.

On the other hand, by providing an average measure of the protection a Proto
affords, information theoretical measures are best suited to scenarios where
designers face severe trade-offs between privacy and cost (in terms of the amount
of dummies a Proto must generate) and it is possible to sacrifice privacy for
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individual users, focusing on the average level of protection a Proto provides to
the general population of users.

Furthermore, mechanism-centred analyses provide abstract measures of privacy
which, being detached from any particular adversary or attack, are often hard to
interpret or decide upon [421]. It is unclear which value to assign to ε or δ other
than ε = δ = 0 when designing a locally differentially private mechanism with
no social utility requirements. The privacy guarantee ε-indistinguishability
provides is relative, i.e. it holds regardless of the adversary’s background
knowledge, yet does not say what an adversary armed with sufficient knowledge
actually learns. To determine the absolute level of privacy, we must consider
a particular adversary with a concrete instance of background knowledge and
attack strategy [488]. Information-theoretic measures on the other hand do
capture an absolute level of privacy, i.e. the number of bits of information
leakage; however, it is still hard to interpret that number of bits as the
risk a Proto’s user faces. Besides, information-theoretic measures implicitly
assume the adversary possesses accurate information on a mechanism’s input
data probability distribution, i.e. an accurate prior, thus overestimating the
knowledge misinformed adversaries gain from the disclosure of obfuscated
data [130, 270]. Conversely, by focusing on specific adversaries and attack
strategies, attack-centred analysis (ACA) provide an easier-to-interpret set of
measures, arguably better capturing the actual level of user privacy towards
those adversaries [488, 490].

3.2.2 Attack-centred analysis

We consider two attack-centred analysis (ACA) measures: information gain
and expected estimation error. The former is a variant of information leakage
that measures the amount of information the adversary actually gains instead
of the amount the mechanism leaks; it facilitates the introduction of additional
constraints on what specific adversaries actually know a priori (accurately or
not) about the Protos’ input data or additional side knowledge they extract
from the Proto. The latter further considers the distance between the profiles
x̂ the adversary recovers and the actual profiles x as a measure of how much
better it is in terms of users’ privacy that the adversary recovers x̂ instead of x.

Information gain. The information-theoretic measures we introduce in
Sect. 3.2.1 assess the amount of information Protos leak by comparing the
uncertainty about a random variable’s value before and after observing
the output of a channel. These measures implicitly assume a powerful,
knowledgeable adversary, namely, an adversary that initially knows the Proto’s
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inputs’ probability distribution —thus has uncertainty H(R)— and attempts
to determine particular channel inputs from the channel output —resulting in
uncertainty H(R | Q).

In practice however, as Clarkson et al. illustrate [130, 131], before obtaining a
Proto’s output an adversary may expect from an incorrect prior a particular
sequence r with little uncertainty. Let us use β as a subindex to denote an
adversary’s prior or belief. When the Proto’s output q contradicts the adversary’s
prior and outputs a sequence q so that, e.g. P ( q | r )→ 0 while Pβ(r)→ 1, the
adversary’s uncertainty increases, yet the channel still leaks information that
the adversary may exploit to correct her erroneous belief. Conversely, when
the Proto’s output q strongly supports an erroneous prior, the adversary may
wrongly recover a profile x̂ 6= x with high certainty or, by chance, the actual
profile x. These later artifacts however tend to disappear with an increasing
number of observations, as the Proto leaks more information.

Moreover, Franz et al. warn against adversaries that obtain side knowledge about
a Proto’s input-output relation, learning information beyond what both outputs
and obfuscation mechanism leak [216], even if, as Hamadou et al. indicate, such
side knowledge may also be erroneous [271]. As an example, adversaries may
possess background knowledge on the interests of a Proto’s user v, enabling
them to obtain more information about her profile xv than what adversaries
with only access to the population’s prior P (X = x ) are able to.

To incorporate an adversary’s (potentially inaccurate) prior and side information
into the evaluation, previous authors have resorted to information gain, defined
as the Kullback-Leibler divergence between an adversary’s belief —that includes
both prior and side knowledge [271]— and the actual Proto’s input value r
before and after observation.

Definition 3.2.14. Information gain. Let b(r) and b(r|q) represent adversary
beliefs that the Proto obfuscates some real sequence r before and after observing
the obfuscated sequence q, i.e. b(r) = Pβ(R = r) and b(r|q) = Pβ(R = r | q),
respectively. Let δ(r) represent the probability distribution P ( r ) taking values
P ( r ) = 1 when r = rx and P ( r ) = 0 otherwise, i.e. the degenerate probability
distribution that determines the actual input sequence rx to the Proto. We define
the information gain G of an adversary with belief pβ from an observation q as:

G = DKL( δ(r) || b(r) )−DKL( δ(r) || b(r|q) ) = log(Pβ(rx|q))− log(Pβ(rx))
(3.15)

with logarithm base 2 giving information gain in bits.

Clarkson et al. provide an intuitive interpretation of information gain measured
in bits, namely, “k bits of leakage correspond to a k-fold doubling of the
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probability that the attacker ascribes to reality” [131], e.g. if an adversary
assigns a prior probability Pβ(rx) = 0.1 to the correct sequence rx and gains 3
bits of information, the posteriori belief becomes Pβ(rx | q) = Pβ(rx) · 23 = 0.8.

Information gain provides a measure that is specific to an adversary with a
particular instance of prior information and side knowledge, thus does not
capture a Proto’s performance against adversaries with more or less knowledge
—accurate or otherwise. Since information leakage measures such as mutual
information and capacity implicitly assume an adversary with perfect prior
and no side information, one may demand that we subject them to the same
criticism. Conceptually however there is a difference between measuring what
an adversary learns and what the channel or Proto leaks. The former always
depends on adversarial beliefs, whereas the latter is a function of the inputs
and outputs to the channel alone.

Adversaries with incorrect prior knowledge are in general of lesser concern
in the design of Protos, as wrong prior adversarial beliefs hinder adversaries’
ability to recover users’ real profiles. Hamadou et al. [270] show that min-
conditional entropy is always smaller than or equal to the min-conditional
entropy of an adversary with wrong beliefs, i.e. H∞(R | Q) ≤ Hβ∞(R | Q),
with Hβ∞ representing the uncertainty of an adversary whose prior belief Pβ(r)
is incorrect.

On the other hand, adversaries with accurate side knowledge pose a greater
threat than those without, yet designers are unlikely to be able to precisely
determine the side knowledge adversaries have or may be able to acquire in the
future. In general, designing a tool with a particular instance of adversarial
beliefs in mind renders Protos vulnerable to adversaries with beliefs other that
what designers account for. However, information gain still assists targeted
analyses when we wish to ascertain the ability of particular adversaries in
breaching users’ privacy, e.g. as part of an audit or privacy impact assessment.

Expected estimation error. In the context of their work on privacy-preserving
location-based services (LBSs), Shokri et al. argue that [490]:

«Neither the uncertainty metric nor the inaccuracy metric,
however, quantify the privacy of the users. What matters for a
user is whether the attacker finds the correct answer to his attack,
or, alternatively, how close the attacker’s output is to the correct
answer.»

Shokri et al.’s definitions of uncertainty and inaccuracy loosely map to our
framework’s information leakage and information gain, respectively. Their
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claim echoes our previous observations on the difficulty of interpreting measures
that are detached from a specific adversary or attack in return for generality:
avoiding assumptions about adversarial beliefs and attack strategies prevents
us from estimating how successful the adversary is at retrieving a user’s real
profile x.

Shokri et al. hence propose expected estimation error (EEE), a probabilistic
measure of how close the adversary gets to the user profile. We note that none of
the previous measures we have defined so far consider the profile x̂ the adversary
recovers or the actual user profile x; they disregard them because those are
specific to the adversary’s profiling strategy, which they abstract away from to
provide a measure independent from it. Conversely, expected estimation error
incorporates both the adversary’s beliefs and its profiling and attack strategies
to consider what the adversary retrieves and how ‘bad’ such result is in terms of
user privacy. We borrow Shokri et al.’s definitions of expected estimation error
and expected distortion privacy to define a slight variant of expected estimation
error [488, 490].

Definition 3.2.15. Expected estimation error. Let P ( x ) represent the
probability distribution of a user’s input profiles to the Proto —each profile
the result of applying the profiling function g to a user input sequences r—
i.e. P ( x ) = P ( g(r) ).4 Let P ( q | x ) similarly represent the conditional
probability that the Proto outputs a sequence q given that the input sequence r
maps to profile x = g(r). Further, let P ( x̂ | q ) represent the probability
distribution that results from the attack strategy and (estimated) prior
knowledge the adversary relies on to recover a filtered profile x̂ from an observed
sequence q and,5 lastly, let `(x̂,x) represent the distance at which the profile
x̂ the adversary recovers and the real profile x are, this distance according to
the user’s privacy requirements, i.e. the greater `(x̂,x) is, the better for user

4 Shokri’s definition of expected distortion privacy uses π(x) instead of P ( x ), with π(x)
representing P ( x ) as given by prior, publicly available information [488]. Shokri notes that
π(x) does not however denote an adversary’s auxiliary knowledge, which is generally unknown,
i.e. π(x) represents our estimation of what the adversary knows based on publicly available
information, not what the adversary really knows (e.g. through other information channels
that neither we know nor control). This is however merely a matter of orthodoxy on the
impossibility of absolute disclosure prevention against adversaries with arbitrary knowledge.
Using π(x) instead of P ( x ) is consistent with Shokri’s goal, namely, to design an obfuscation
mechanism that optimises the obfuscation strategy based on previous disclosures assuming an
informed adversary that uses an optimal attack strategy. Conversely, we consider an adversary
with potentially incorrect prior knowledge and suboptimal attack strategy. Hence, we use
P ( x ) to average over the actual probability of profiles x and incorporate the adversary’s prior
knowledge (which, as Shokri, we acknowledge is an estimation, nor the actual knowledge) in
the term that Shokri reserves for the inference attack alone, i.e. P ( x̂ | q ). These changes
enable us to measure the expected estimation error of adversaries with incorrect priors.

5See Footnote 4.
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privacy. We define expected estimation error E as:

E =
∑

x
P ( x )

∑
q
P ( q | x )

∑
x̂

P ( x̂ | q ) · `(x̂,x) (3.16)

We note how EEE incorporates previous measures’ assumptions about a Proto’s
inputs and operation and further integrates the adversary’s beliefs and attack
strategy. The first two summations

∑
x P ( x )

∑
q P ( q | x ), characterise the

channel as information leakage measures do, albeit assuming a single input
probability distribution, thus with the limitations and decreased generality
of mutual information as opposed to capacity (which considers all possible
probability distributions) and indistinguishability (which is independent from
the probability distribution). The term

∑
x̂ P ( x̂ | q ) captures the attack

strategy of the adversary as the probability that the adversary recovers a
filtered profile x̂ after updating its prior knowledge with its observation of
obfuscated sequence of actions q.6 Lastly, the term `(x̂,x) incorporates a
definition of how x̂ contributes to user privacy, namely, it measures how better
it is for users that the adversary recovers x̂ as opposed to x [488].

EEE indeed represents the last step in a sequence of measures from more
abstract and general —less details about the adversary—, to less abstract
and general —more details about the adversary. We depict this idea in
Fig. 3.4. MCA measures either omit an adversary’s side knowledge and attack
strategies (indistinguishability) or assume them implicitly (no side information
and Bayesian updating in information leakage measures). ACA measures on the
other hand incorporate particular details of an adversary. Information leakage
considers a particular instance of background knowledge, while EEE further
considers the particular profiles x̂ the adversary recovers, thereby implying
that not every profile x̂ the adversary recovers is equally bad for the user,
which in turn depends on a particular adversarial post-processing strategy,
namely, the actions the adversary performs upon such a profile and expected
user outcomes thereof.

Gervais et al. [235] further propose to compare the effect of obfuscation on
profiling relative to an unobfuscated profile, thereby implying that the profiling
strategy itself is imperfect and may benefit the user when profiled in an
advantageous way as opposed to previous measures that abstract away from the
particular profiling strategy. In this framework however we do not consider the
posterior effects of profiling on users, as we further explain in Sect. 3.3.

Yet EEE as an absolute measure of privacy conflates the effect on users’ privacy
of the obfuscation mechanism with the adversary’s prior and side knowledge

6See Footnote 4
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Figure 3.4: Less adversarial assumptions confer measures more generality.

as well as its attack strategy. EEE does not compare the users’ privacy before
and after the adversary observes the outputs of a Proto, this is, it does not
compare the probability that the adversary recovers a profile x̂ before seeing
any obfuscator’s output with the probability that the adversary recovers x̂
after observing an obfuscated sequence q. An adversary with an exceptionally
good prior may perform equally well without the Proto’s output, highlighting
the impossibility of absolute disclosure prevention that motivates differential
privacy [190]. Hence, even if EEE provides a good measure of privacy against a
particular adversary, it does not properly acknowledge the Proto’s ability to
thwart the adversary.

Lastly, we note that EEE provides an adversary’s average error over all possible
recovered profiles x̂, as opposed to a worst case that considers an adversary
that exclusively selects the filtered profile x̂ that maximises maxx̂ P ( x̂ | q ),
as min-capacity and information gain implicitly do. It is however straight-
forward to obtain a worst-case measure by replacing the sum

∑
x̂ P ( x̂ | q )

with maxx̂ P ( x̂ | q ).

3.2.3 Choosing between MCA or ACA

Disagreements between proponents of different types of measures abound in
the literature. Andrés et al. argue that EEE is “explicitly defined in terms of
the attacker’s prior knowledge, and is therefore unsuitable for scenarios where
the prior is unknown” [27]; they propose geo-indistinguishability, a measure of
location privacy based on differential privacy. On the other hand, as a relative
measure, the ε in ε-geo-indistinguishability says very little about what the
adversary actually knows about the location of a user, as that requires a specific
evaluation that takes an adversary’s prior and side knowledge into consideration.
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Similarly, Li et al. [350] argue, in the context of website fingerprint defence
evaluation, that “validating [defences] by accuracy alone is flawed [...] when
accuracy is low, its corresponding information leakage is far from certain”, and
propose mutual information as a measure of information leakage. Li et al.’s
critique echoes a previous point about the difference between mechanism- and
attack-centred analyses. ACA measures conflate the performance of the Proto
with the attack’s prior knowledge and attack strategy. Adversarial success
may result from a weak Proto or robust side information, i.e. the adversary
may gain little information from the Proto, yet enough to support strong
side knowledge and breach users’ privacy, thus underestimating the Proto’s
performance. Conversely, adversarial failure may either result from a robust
Proto or flawed side information and a suboptimal attack strategy, with the
latter leading to the overestimation of a Proto’s performance.

Hence, the choice between MCA and ACA depends on how much generality
and stringent a measure of privacy we seek. MCA measures provide stronger,
more general privacy guarantees as they do not rest upon specific assumptions
on adversarial knowledge, i.e. they are resilient to changes in the attack the
adversary deploys and the knowledge it has. The capacity of a Proto does not
depend on the side knowledge an adversary has; similarly, differential privacy
bounds hold regardless of which adversary we may consider.

However, such generality comes at the expense of expressiveness. MCA focuses
on the performance of the mechanism alone, on how much information the
mechanism gives away, and does not capture what information the adversary
actually recovers, what a particular adversary actually learns. By considering
particular adversaries and attacks, i.e. particular contexts, ACA provide more
expressive measures of the privacy breaches users are subjected to. However,
ACA loses the generality that MCA provides, as particular ACA results do
not generally hold for other adversaries and contexts, potentially under- or
overestimating Protos’ performance.

Moreover, MCA and ACA lend themselves to different roles in the design
and evaluation process. Indistinguishability constraints such as differential
privacy represent strong privacy properties but, in many practical applications,
unachievable goals. Moreover, unless differential privacy guarantees are
embedded in Proto’s design from the beginning, the formulations we provide
above, from Eq. 3.2 to Eq. 3.6, do not easily lend themselves to Proto’s evaluation.
In other words, while we may attempt to design Protos’ to guarantee the
indistinguishability goals above, it is not trivial to determine the extent to
which a Proto that was not designed for such notions of indistinguishability
satisfies a particular level of ε-, (ε, δ) or (ε, `, δ)-differential privacy. In this sense,
further work that focuses on the quantification of Protos’ indistinguishability
is required, e.g. along the lines of recent work on anonymous communications
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evaluation through game-based indistinguishability definitions [34]. Conversely,
ACA measures are best suited to determine the threat that particular adversaries
pose to Protos, to evaluate Protos’ deployment in particular contexts, taking
into account publicly available information that adversaries may exploit or
side-channel leakages to which MCA is oblivious.

Lastly, we note that the selection of measures we have provided in this
section has allowed us to illustrate the differences between the two types
of analyses, mechanism-centred and attack-centred, yet this set of measures is
not comprehensive, with possible variations or combinations of the above also
possible, depending upon the particular context or Proto under evaluation.

3.3 Protos’ engineering

Proto design requires the formulation of a dummy generation strategy (DGS)
that determines which dummies to generate, how many, at which frequency
and how to interweave them with the user’s real activities. While not the main
focus of this thesis, in this section we overview key decision elements in the
design and implementation of Protos.

We distinguish three phases in Proto design. First, determining the privacy
goals a Proto must fulfil and the adversary the Proto must defend against, which
in turn require the selection of a privacy measure to evaluate the subsequent
Proto design. Second, dummy generation strategy (DGS) design, which requires
determining the amount and type of dummies the Proto must generate as well
as the frequency at which it generates them to guarantee the previously defined
privacy requirements. Third and last, Proto’s implementation, which involves
the development of an actual software tool that executes the DGS and users
install on their devices to protect their privacy.

3.3.1 Privacy requirements

Earlier in Sect. 3.1.1 we state that we generally consider the threat of profiling,
i.e. the fact that the adversary collects user data from a service’s usage and can
extract information from them, without focusing on any particular user concern
or privacy goal. In practice however, Protos’ design requires the definition
of the particular privacy properties we intend to provide. User concerns and
adversarial goals inform the privacy properties of choice.
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Users’ privacy concerns.

User privacy concerns are the ultimate guiding principle in Proto design. Users
may have a variety of concerns about profiling, from concerns about what the
adversary is able to learn about their interests, their daily routines on the
service (when, how often and how long they use the service), how information
may leak to other, non-authorised parties or how that information may be
misused about them, among many other concerns. Concerns may also range
from very broad, e.g. revealing the least possible information to an adversary
about their use of the service, to more specific, having little or no interest
in concealing certain information while being more conservative about other
aspects, placing different levels of sensitivity to the activities they perform on
the service, e.g. users of a web search engine may forgo concealing their more
mundane interests yet wish to conceal those they consider of higher sensitivity,
e.g. that disclose a health condition.

Then, we must determine whether and how Protos can mitigate the privacy
concerns that users raise, as Protos may not be able to tackle some of these
concerns, e.g. users may raise concerns about the subsequent effects of profiling
or targeting based on particular activities, yet Protos may be inadequate to
address some of these concerns (see discussion in Sect. 3.4.1). We formalise how
Protos tackle users’ privacy concerns through privacy properties that capture
the technical goal of the Proto that better addresses such concerns, i.e. this
involves mapping user concerns to Protos’ technical requirements. In Sect. 4.2.1
and 5.2.1 we propose several privacy properties as goals to address a series of
underlying privacy concerns in two particular contexts: web search and online
communication, respectively.

Adversary model.

The adversary we wish to defend against and the amount of information
available we have about it must inform Proto design. Protecting against
multiple adversaries about whom we know little requires balancing trade-offs
in the level of protection we can afford against several types of attacks and
instances of prior and side knowledge. Indeed, in many scenarios we may have
little information about the capabilities, attack strategies and motivations of
an adversary. Conversely, protecting against a single adversary with explicit
adversarial goals and narrowly-defined capabilities allows us to strategically
design a Proto to target that adversary in particular.

Furthermore, we may deem it futile to attempt to protect against knowledgeable
adversaries that already possess precise information about the user or can
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acquire it through alternative channels. We may therefore choose to forgo the
protection of that information that we consider the adversary already has or
can readily acquire and focus on the obfuscation of additional information items
the adversary could acquire from the system where the user requires the Proto.

Operationalisation.

Once we select the privacy properties of interest and the adversary model,
we convert the Proto’s privacy requirements into a measure that captures
the extent to which the Proto fulfils them. To do that, we may instantiate
any of the measures we provide in Sect. 3.2, as we illustrate through the
two use cases we examine in Chapters 4 and 5. In the remainder of this
section we rely on indistinguishability measures to illustrate general aspects
of Proto design that are independent from the adversary model. We choose
indistinguishability measures because they represent the most stringent privacy
guarantees; moreover, indistinguishability intuitively relates to a key requirement
of every DGS, namely, that reals and dummies be indistinguishable.

We acknowledge that perfect indistinguishability represents an ideal protection
goal that is rarely achievable in practice, yet this also enables us to illustrate
the stringent requirements of perfect obfuscation.

3.3.2 Dummy generation strategy design

The core component of a Proto is its dummy generation strategy (DGS), which
defines which dummies to generate, how many, how often and how to interleave
them with the protocol messages that real user activity generates. In this section
we review key aspects in DGS design. We note however that the overview we
provide in this section does not seek to provide guidance to actual, practical
implementation of DGSs. Rather, we seek to highlight the main elements in
DGS design and, in the process, show that achieving ideal or perfect obfuscation
is in practice almost always impossible.

To reflect on ideal DGS construction, we borrow the term ‘supersequence’ from
Wang et al.’s work on website fingerprinting defences [545]. Protos generate
supersequences q of real sequences r, i.e. a supersequence q combines both the
sequence of real actions r = [ri] and the additional dummy actions {di} that a
DGS generates.

The DGS is in charge of deciding which dummy actions di to generate to
obfuscate real sequences of actions ri through supersequences qi; the DGS is
hence responsible for the mapping Ω(Q | R) that, as we have seen in Section 3.2,
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defines a Proto’s effectiveness, i.e. if multiple sequences {ri} have a similar
probability Ω(q | ri), the Proto achieves indistinguishability across {ri} and
leaks no information about which particular ri produces q, prompting the
adversary to guess based on prior or side information alone.

The pool of dummies.

To create a supersequence, a DGS requires a pool of dummy actions D = {di} to
generate, viz. all potential actions including not only the type of action, such as
a query in a web search engine or a message in a social networking site, but also
details about that particular action that an adversary may exploit to classify or
discriminate across actions. These details include, e.g. content or metadata such
as length and issuing time. Moreover, to generate viable dummies and enable
the service provider to process dummy activity indistinguishably from real
activity, the DGS must issue dummies according to protocol description, i.e. the
DGS must ensure that dummies follow the same format specification as real
protocol messages. Proper dummies’ formatting further prevents leaking side-
channel information that the adversary exploits to filter dummies out. Besides,
determining the proper formatting of dummy messages has implications for
resource management, i.e. the bandwidth or processing power requirements that
dummy messages impose on both users and system providers.

The ideal pool of dummies includes all possible real actions so that D = R.7
However, it is not always possible to measure or predict the complete universe
of real actions R and, in practice, the pool of dummy actions may include a
subset of real actions D ⊂ R or an overlapping set of actions D∩R 6= ∅∧D * R
—e.g. in the context of private web search, it is not possible to determine the
universe of real queries a priori, as this depends on infinite combinations of
terms as well as the inclusion of new terms;8 hence we assign an inaccurate
prediction RDGS of potential queries to the pool.

Averting distinguishing features. In the process of identifying which features
about users’ actions an adversary may obtain and exploit we must examine
which of those distinguishing features are useful, i.e. which features contribute
to the users’ utility and cannot be discarded or modified without utility loss,
and which ones are not —we recall from Sect. 2.2 that the notion of utility we
consider is limited to that deriving from data disclosure to an adversary— e.g. as
we show in Chapter 5, a DGS designer may use content encryption in instant

7Generating dummy actions that do not belong to the universe of real actions, d /∈ R,
represents a waste of resources against informed adversaries who, among other strategies,
exploit membership in R to distinguish reals from dummies.

8 Mitchell reports that from 2003 to 2012 Google had “answered 450 billion unique queries”
and that “16 to 20% of queries that got asked every day [had] never been asked before” [385].
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messaging services to enormously compress the universe of real actions and
prevent an adversary from exploiting content to distinguish real from dummy
messages, whereas, as we show in Chapter 4, in online web search this is not
possible if we consider the search engine provider itself to be the adversary, as
it needs to see a query’s content to generate the corresponding search results.

More generally, a Proto’s DGS may choose to either replace or incorporate real
patterns with dummy equivalents or vice versa, i.e. the DGS may attempt to
generate dummies that look as if the user generates them [82, 321], or modify
the reals so that it looks like it is the DGS who generates them, e.g. replacing
scheduled dummies with delayed real actions to fit into a predefined DGS
dummy generation pattern [153] or altering the format of real queries to map a
predefined universe of equivalent dummy actions —yet the DGS must beware
the changes it performs on real actions to prevent utility loss, as otherwise the
DGS operates on the realm of utility-degrading obfuscation (q.v. Sect. 4.3.2).

Supersequences.

To achieve indistinguishability between any two real sequences ri, rj , the Proto
must output the same q for both ri and rj . Hence, the DGS must strive to
create supersequences q that contain both ri and rj . Figure 3.5 illustrates this
process; the DGS ensures indistinguishability between r1, r2 and r3 when it
outputs q with the same probability for any of the ri it “contains”. Hence, to
create a supersequence q that multiple real sequences ri map to, the DGS needs
to generate successions di of dummy actions that are consistent with the set of
actions present in sequences ri.

The budget of dummies.

The budget of dummies or amount of resources available for obfuscation (e.g. in
terms of bandwidth, memory or system capacity) further determines the level
of protection a Proto is able to afford and therefore constrains DGS design and
supersequence construction. Given an unlimited supply of resources, Protos can
provide perfect security, (i.e. Protos leak no information from the observation
of (obfuscated) user activity; their capacity C is zero) if all possible real actions
r ∈ R are generated simultaneously at a constant rate independent from real
user activity —what we refer to as a flooding DGS— resulting in a unique
supersequence q that any other sequence ri maps to.

Whereas in settings with a small universe of actions (where |R| → 0) deploying
flooding may be feasible (e.g. in C&W, low-bandwidth communication and
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Figure 3.5: Supersequence composition. A Proto outputs
supersequence q when input is r1. Each geometrical form represents
an action q, with grey background for real actions r and white
background for dummies d. All r1, r2 and r3 are subsequences of q,
thus indistinguishable.a

aWe note however that the Proto only achieves perfect indistinguishability iff
Ω(q | r1) = Ω(q | r2) = Ω(q | r3). An adversary may still exploit the sequences’
prior probability P ( ri ) to identify the most likely sequence ri.

restricting the universe of actions to one bit enables flooding by sending the
complementary dummy bit to every user bit [453]), flooding becomes unrealisable
or its cost prohibitive otherwise, e.g. generating each possible user query in
web search (where |R| � 0) is both impractical —in terms of bandwidth and
(most notably the client’s) system capacity— and impossible, as we cannot
foresee new user queries in advance.9 A trade-off between indistiguishability
and cost thus arises when a limited budget of resources precludes the possibility
to ensure indistinguishability to the level we desire.

Spending fewer resources than needed necessarily translates in diminished
indistinguishability, e.g. we may partition the universe of real sequences R into
several anonymity sets that map to shorter supersequences [545]. Figure 3.6
illustrates this process. Sequences r4, r5 and r6 map to a supersequence q2 that
does not require the addition of many dummies to each of these sequences; the
same occurs with sequences r7, r8 and r9, mapping to supersequence q3. Hence,
we generate less dummies than a unique supersequence requires, however, an
adversary that observes q3 knows that neither r4, r5 or r6 could have led to
that supersequence, similarly for q2 and r7, r8 and r9.

Moreover, a less resource-intensive dummy generation strategy necessarily
incorporates a notion of distance to the level of indistinguishability, i.e. to save
dummies, we map sequences to supersequences close in the sequence space

9See Footnote 8



PROTOS’ ENGINEERING 91

with greater probability than to supersequences which are far away. Hence, an
adversary can exploit the distance between a supersequence and the subset of
real sequences that with higher probability lead to it.

Resource scarcity has further implications for privacy protection allocation across
the Proto’s user base. To save dummies, Protos must output supersequences qi
that include as many real ri as possible while keeping the amount of dummies
every user has to generate within a limited budget. Hence, Protos under
resource scarcity constraints may generate supersequences qi that include the
most probable user sequences ri : P ( ri ) >> P ( rj ) and sacrifice rare user
sequences rj : P ( rj ) → 0 that impose a prohibitive amount of overhead for
most other users, thus offering disparate levels of privacy to its user base.
Alternatively however, Protos may also require that every user generates an
increased amount of dummies that guarantees a minimum level of privacy for
all users.

Figure 3.6: Saving dummies. We split the universe of real sequences to create
shorter common supersequences, resulting in various anonymity sets of (similar)
real sequences.

Figures 3.7 to 3.10 further illustrate the process whereby Protos produce
mappings between input sequences ri and output supersequences q with
decreasing levels of indistinguishability. Figure 3.7 depicts an ideal scenario
where εPI takes ε = 0 and there is no information leakage; all sequences in
universe R map to a unique supersequence q. However, the Protos may not have
enough resources available to bring each sequence ri to q. Figure 3.8 depicts
a slightly less-than-ideal scenario where the universe of sequences splits in R1
and R2, mapping to either q1 or q2, respectively. Thus the Proto creates two
anonymity sets, i.e. the Proto leaks whether a sequence ri belongs to R1 or R2,
but sequences within each of those sets are indistinguishable. Figure 3.9 depicts
a more fragmented input universe, with real sequences in various anonymity
sets leading to a subset of supersequences with differing probabilities. Lastly,
Fig. 3.10 depicts the more general scenario where each input sequence leads
to one or several output supersequences with its own probability distribution.
Moreover, input sequences R \RDGS that the DGS did not anticipate lead to
new supersequences outside of QDGS.
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Figure 3.7: Perfect indistinguishability: every real sequence leads to the same
supersequence.

Figure 3.8: Binary split: two supersequences, two anonymity sets.

Figure 3.9: Four supersequences with increasingly complex mapping to inputs.
The matrix on the right side of the figure represents the conditional probability
of each input anonymity set mapping to an output supersequence.
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Figure 3.10: A less ideal scenario. Known sequences ri ∈ RDGS, i ∈ [1,m]
lead to supersequences in QDGS with differing probabilities. Furthermore,
sequences ri, i ∈ [(m+ 1),m′] outside of the universe of known real sequences
RDGS lead to sequences qj , j ∈ [(n+ 1), n′] outside of the universe of planned
supersequences QDGS.

We note that the measure of indistinguishability we introduce in Sect. 3.2.1 and
its variants capture losses in indistinguishability through various parameters.
A DGS that foregoes the protection of rare sequences rj while protecting the
majority of expected sequences ri may satisfy (ε, δ)-local-privacy by ensuring
εPI for ri yet with δ > 0 that accounts for rare rj . Alternatively, a DGS that
exploits the similarity of sequences ri (according to some measure of distance `)
to generate supersequences q under resource constraints may choose to satisfy
(ε, `, δ)-local differential privacy.

The shortest common supersequence problem. Challenges and additional
observations in supersequence composition.

Wang et al. examine supersequence composition in the context of designing
defences against website fingerprinting and note that optimal solutions require
solving two hard problems [545], namely, anonymity set selection, which requires
choosing which sequences map to which supersequences, and supersequence
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construction [442], which requires solving the shortest common supersequence
(SCS) problem, in general NP-hard [305, 545]. Wang et al. thus point to the
need to develop appropriate heuristics for each particular system and context.

Moreover, additional challenges render strategic supersequence composition
unrealisable in practice. As we note above, we are often unable to determine the
probability P ( r ); the universe of real actions R and the multiple combinations
thereof too large to sample or estimate (see e.g. Bindschaedler and Shokri,
2016 [82]). Information leakage is hence unavoidable when a user performs an
action r that the DGS has not accounted for. Moreover, users generate actions in
real time; the DGS does not know the r that results from user activity until she
performs the last action in a sequence, hence the DGS cannot ensure a particular
mapping r→ q on the fly as it generates dummies oblivious to the ensuing r.
Real sequence batching may however be possible in certain scenarios [423, 546]
without forcing unacceptable delays upon users; alternatively, a Proto may
include a predictive engine to anticipate real sequences and generate dummies
accordingly.10 However, none of these methods can ensure a predetermined
mapping P ( q | ri ) that guarantees a particular level of indistinguishability.

A related point is the set of rules that informs sequence length, i.e. the points
at which the DGS considers a sequence starts and ends. In DGS analysis, we
may consider the totality of a user’s activity —even across periods of inactivity
where the user goes offline and comes back online— as one single sequence, then
try to determine the probability that such a sequence could have engendered
the observed supersequence. In practice however, this is hard to implement
for reasons similar to the above. The DGS can only probabilistically predict
when a sequence will start or end, let alone when users go offline and come
back online to use again the system. Hence, supersequence composition further
depends on the criteria we impose on sequence length, which in turn depends
on the budget of dummies and the privacy requirements.

As a result, strategic supersequence composition represents an ideal DGS
design goal that is hardly ever achievable in practice. Only through flooding
can one ensure or approximate a predetermined mapping P ( q | r ). The
flooding strategy generates vast amounts of dummy traffic to “bury” the real
sequence into the resulting supersequence. It relies on the assumption that the
resulting SNR is low enough to prevent an adversary to tell apart real from
dummy actions. At the extreme, the flooding strategy becomes provably secure
through full padding, whereby the DGS generates each possible action in the
universe of actions R at a frequency independent from —yet informed by—
the user’s behaviour, e.g. the heartbeat mechanism in anonymous low-volume

10Such a predictive engine would run locally on the client side, without leaking any
information about users’ behavioural patterns.
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communication system Drac conceals control communication from adversaries by
sending dummies between users at a constant rate and replacing dummies with
reals when appropriate [153], while Loopix sends dummy messages according
to a Poisson process to ensure perfect sender unobservability [435]. Perfect
padding ensures perfect indistinguishability through a unique supersequence q,
i.e. ∀i, j : Pr q | ri = P ( q | rj ) = 1; however, this strategy requires a large
budget of dummies when |R| >> 0.

3.3.3 Implementation

In addition to DGS design, a Proto requires an actual implementation as a tool
that users install in their devices to run parallel to their own user activity. We
briefly review usability and security challenges in Protos implementation.

Usability.

Protos unburden users from the task of obfuscation by automatically generating
dummies and relaying real actions on their behalf, yet users need to install
and run the Proto in their devices and interact with the Proto to activate and
deactivate obfuscation, select the budget of dummies and set any other Proto
configuration options available, as well as to determine whether the Proto is
providing the protection they seek (e.g. to increase obfuscation resources or
discontinue Protos’ use altogether; to ensure they are using the tool correctly).

Based on previous work from Shackel, Sasse proposes four usability require-
ments [467]:

Performance. Designers must ensure that intended users can achieve from
the Proto the outcomes they are after.

Learnability. Designers must minimise the amount of learning or practice that
users require to use the Proto.

Cost. Designers must minimise user cost (e.g. physical or mental strain [467]).

Satisfaction. Designers should promote a pleasurable experience of the system.

Protos’ conceptual and technical complexity represents a major usability issue [3].
On the one hand, we wish to free users from the burden of obfuscation, allowing
them to afford privacy protection without the need to do anything beyond
“using the service (the Proto applies to) as usual”. Protos should not degrade
UX, e.g. Protos must not require users to manually filter responses to dummy
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actions. On the other hand, we wish that users understand the implications
of using obfuscation, the limitations of a particular Proto or DGS and the
necessary precautions they must take to maximise the benefit they obtain from
the tool, e.g. by hiding dummies from users’ view, the latter may neither be
aware of nor approve of the kinds of dummy actions the Proto generates. Protos
must ensure that users understand a DGS’ “side-effects” and minimise any
negative impact on users; they must also communicate the kind of privacy
protection they afford, under which conditions, to prevent misleading users
into a false sense of security. Protos must also ensure users operate the tool
correctly, maximising the benefit they obtain from it. In short, Protos must
strike a balance between involving users in the complex obfuscation process
or promote a comfortable obliviousness, a common dilemma in security and
privacy tools.

Usability is a critical issue in the successful deployment of not only software
applications in general, but in security and privacy tools and systems in
particular, with security and privacy experts often considering “people as
‘the weakest link’ in their efforts to deploy effective security” [467] as well
as acknowledging that security and privacy technologies “are hard to use” [240].
Users without the proper security training make mistakes they are unaware of,
bypass or disable security features when they prevent them to complete a task or
take shortcuts or workarounds to inconvenient security methods [9, 76]. Hence,
usability becomes a security requirement in itself; as founders and directors
of The Tor Project Roger Dingledine and Nick Matthewson argue, “if the
people who need to use a system can’t or won’t use it correctly, its ideal security
properties are irrelevant” [175].

Moreover, adoption is a critical factor in services where users interact with
each other, as even if users can deploy obfuscation unilaterally with respect to
the service provider, they still need to cooperate with each other to achieve
indistinguishability (q.v. Chapter 5). Security and privacy scholars have
speculated that poor usability underlies the low adoption of security and privacy
technology and that if privacy tools were more usable, more people would
actually use them [2, 106, 297, 412]. Recent work has however questioned this
belief [2, 450], as the main driver for users’ adoption of any technology is utility
and performance, rather than security [179].

Research on usable security and privacy has advanced in several fronts.
A vast body of research has sought to investigate how users understand and
conceptualise security and privacy technologies with the aims of both identifying
conceptual mismatches that may explain poor security practices and devising
communication strategies aligned with users’ perceptions [2, 228, 369, 414, 444].
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Rader has explored users’ perceptions towards data collection by Internet
companies such as Facebook or Google, revealing that users who are aware
of data aggregation seem to show less concern, while those who know the
potential ramifications of data collection and subsequent potential inferences
indicate greater concern [441]. Melicher et al. study users’ perceptions to online
tracking, showing that regardless of their general attitude towards it, users
accept tracking in particular websites and contexts depending on factors such
as site content or frequency of visits, which current anti-tracking tools are
unsuitable to cater to [380]. Yet they also report on users’ misconceptions about
the information trackers may gather about them and the tracking process, a
result that Mathur et al. confirm [369]. Such misconceptions have however little
impact on users’ attitudes towards tracking, which users perceive as unavoidable,
therefore considering any attempts to prevent it futile, explaining in turn why
users may mistrust current anti-tracking tools, while other users opine that
anti-tracking tools require too much effort [380]. Mathur et al. in fact report
that existing anti-tracking tools contribute little to rectify users’ misconceptions
or dispel their mistrust, a result that Schaub et al. had already previously
reported, finding that users believe anti-tracking tools themselves would track
them [369, 471].

On the other hand, Abu et al. reveal that despite wide adoption of E2EE, users
have misconceptions around its security, thinking e.g. that third parties can still
access E2EE messages or that conventional telephony services such as SMS and
phone calls are more or as secure as E2EE [1]. De Luca et al. in fact suggest that
security and privacy concerns cannot explain the wide adoption of E2EE [162].
Instead, most users choose services with E2EE because of peer influence, thus
linking adoption to network effects [25]. Similarly, Rajivan et al.’s study on
mobile app privacy risk communication through icons suggests privacy risk has
no influence on app selection [443]. Abu et al. thus argue for the need to realign
users’ perceptions with the actual privacy properties E2EE provides as a way
to prevent users’ hopelessness and cynicism towards effective protection [1], yet
the work of Rajivan finds that priming for privacy has a limited effect on users’
final decisions of app selection [443].

Several authors have advocated raising awareness and educating users on security
and privacy issues so to enable them to make better informed decisions and
develop the necessary skills to protect themselves [223, 222, 292, 323, 469].
Designers thus seek to expose users to and engage them in security and privacy
protection processes, encouraging them to learn along the way [10, 215, 458].
Sasse however highlights the difference between teaching users to learn how
to use complex security systems so they can use them properly, imposing an
unreasonable burden on them, and designing systems “to make it easy for users
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to do the right thing, with a minimum amount of effort and knowledge” [179,
324, 467, 468, 470].

Research has explored the advantages and disadvantages of exposing users to the
technical complexities of E2EE. Ruoti et al. build upon previous research that
suggests a strong user preference to avoid dealing with key management, yet find
that in their experiments users have greater trust and make less mistakes when
using manual encryption as opposed to an integrated solution that performs
encryption opaquely, without their involvement [458]. Atwater et al. contest
however Ruoti et al.’s result, reporting that users perceive web browser extensions
as less secure or trustworthy than standalone applications and that users
“overwhelmingly prefer integrated encryption software [as opposed to standalone
encryption software] due to the enhanced user experience it provides” [33].

Designers of security and privacy tools face a dichotomy between visible,
transparent implementations that expose users to and involve them in
the underlying security and privacy mechanisms, and opaque, integrated
implementations that hide the technical complexity from users. Integrating
security and privacy in existing systems extends the user base beyond those with
enough motivation and awareness to seek a standalone solution to address their
security and privacy concerns [162]. Yet even if transparent implementations
may raise users’ awareness and encourage them to learn, in turn promoting less
security mistakes, “if a supporting task conflicts with a production task, users
will attempt to work around it or cut it out altogether” [467].

Despite the profusion of research on users’ perceptions towards and on
the usability of security and privacy technologies, to the best of our
knowledge no previous work examines users’ perceptions towards chaff-based
profile obfuscation or Protos’s usability; understandably in part as Protos’
implementations remain anecdotal. A prominent exception is the work of Howe
and Nissenbaum, authors of two Protos, TrackMeNot and AdNauseam, with a
considerable user base and therefore available user feedback [294, 295].11

Towards Protos’ usability. Considering previous research and particularities
of Protos, we discuss design decisions towards Protos’ usability.

Visibility and filtering of dummy actions. Whereas Protos must ensure that no
adversary can filter dummy actions, they must on the other hand filter them
from the user to prevent hindering or interfering with her actions on the service,
i.e. Protos must be able to capture service provider responses to dummy actions

11 Whereas downloads do not represent active users, on 6 December 2018 the Mozilla
Firefox Add-ons portal reported almost a million downloads of TrackMeNot and almost a
quarter of a million downloads of AdNauseam. TrackMeNot averaged a 3/5 rating with 128
reviews and AdNauseam a 4/5 rating with 172 reviews.
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and filter them out so that they do not impact UX. Imperceptible filtering
however undermines users’ awareness of the dummy actions the Proto generates,
thus risking nurturing a false sense of security by keeping users oblivious to
the effect dummy actions can have on them. Protos may therefore incorporate
feedback and awareness mechanisms that provide users with information on
dummy activity, e.g. AdNauseam logs dummy clicks on ads in a vault that users
can consult at any time yet do not have to deal with in any way [295], even if
such a logging strategy is limited as it cannot explain the full ramifications of
dummy clicks for users’ online experience.

Protos can filter dummies with relative ease if the user requires no one but
the adversary to observe her real actions, e.g. as in query-response services
such as web search or navigation apps; the Proto simply intercepts and filters
responses to the dummy queries it sends so the user sees neither dummy queries
nor responses. However, whenever users obtain utility from disclosing their real
actions to legitimate, non-adversarial parties,12 e.g. such as in social networking
sites, where users publicly post information for other people, Protos must find
a mechanism to enable these parties to filter out dummies without exposing
additional data to the adversary, essentially requiring these legitimate third
parties to share some secret piece of information with the Protos user that
enables them to filter the dummies out. In practice, this requires other users
to install Protos (or compatible tools that do not obfuscate but can interpret
obfuscated data) and devising a signalling scheme that enables legitimate parties
to de-obfuscate user data. As we show in Chapter 5, we resort to cryptography
to tag dummies for legitimate parties.

Integration. Protos designers may conceive Protos as standalone solutions that
users install and use on top of the services on which they require protection or
incorporate Protos to an existing system or application. We find prominent
examples in Tor and E2EE services of the increased usability integration affords.
In the case of Tor, the TBB (a modified version of browser Mozilla Firefox
with Tor built in it) represents a clear improvement in usability, as users do not
need to install standalone Tor and manually configure it to use their browsers
anonymously; instead, they use Tor Browser as they would use any other
browser [128, 346, 413].13 Similarly, in the case of E2EE, as we mention earlier,
Atwater et al.’s user study on encryption tools reveals that users prefer encryption
integrated on the email client as opposed to having to handle a separate tool.
Mathur et al. also recommend the integration of tracking protection in browsers
as opposed to requiring users install third party extensions [369].

12We note that this differs from the concept of social utility we introduce in Sect. 2.2,
which captures the utility users obtain from revealing information to adversarial third parties.

13Almost as they would use any browser. The Tor project warns users of a few habits they
need to change when they browse the Internet to use Tor effectively [520].
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Integrating Protos as part of services users already use may not only contribute
to usability but also adoption. Users who would normally have no interest in
a standalone Proto may be willing to use an integrated tool instead if it does
not alter their UX. Wide adoption is indeed critical in scenarios that require
a collective pool of obfuscating users, as we examine in Chapter 5. Tor is a
paradigm of the importance of wide adoption because the greater the number
and diversity of Tor users, the more anonymity each user enjoys [175].

Communicating limitations. Previous studies have shown that users often have
inaccurate or mistaken mental models of security and privacy risks online; they
also misinterpret the protections security and privacy tools afford them, either
by assuming that no tool can protect them against certain privacy invasions or
the opposite, assuming protection from risks the tool does not even consider.
Protos must therefore find strategies to communicate the privacy protection
they afford and under which conditions, warning users of any limitations.

Customisation. Ardagna et al. highlight the dichotomy between usability
and expressiveness, the former understood as avoiding complexity and
communicating to users in the simplest way, the latter enabling them to tweak
the tool and set individual configurations [30].

Dingledine and Matthewson however rail “against options”, arguing [175]:

“Extra options often delegate security decisions to those least able
to understand what they imply[, o]ptions make code harder to audit
by increasing the volume of code, by increasing the number of possible
configurations exponentially, and by guaranteeing that non-default
configurations will receive little testing in the field. [D]esigners
often end up with a situation where they need to choose between
‘insecure’ and ‘inconvenient’ as the default configuration meaning
they’ve already made a mistake in designing their application[, as
m]ost users stay with default configurations as long as they work,
and only reconfigure their software as necessary to make it usable”

Dingledine and Matthewson’s argument connects with the idea of sticky defaults
and the philosophy of privacy by default, whereby default privacy settings and
configurations should offer the most privacy friendly and usable experience to
prevent uninformed or misled users to inadvertently degrade the level of privacy
protection the Proto affords [553].

Ardagna et al. express a similar view arguing that [30]:

“Complex policy specifications, fine-grained configurations and
explicit technological details discourage users from fully exploiting the
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provided functionalities. Our goal is then to allow users to express
privacy preferences in an intuitive and straightforward way.”

Lastly, we must recognise the subversive and playful character of obfuscation.
Involving users and exposing them to the obfuscation process, letting them fiddle
with the dummies the Proto generates, pretending to generate activity they do
not; these activities go against all we know about users’ mistaken perception of
security and privacy online and may be counterproductive towards securing their
protection, yet they can also contribute to raise users’ awareness, encourage
adoption and improve UX, offering a pleasurable, entertaining incursion into
protest and resistance against profiling online [98, 433, 572].

Security against adversarial tampering: preventing side-channel attacks.

Earlier in Sect. 3.1.2 we mention that we assume Protos operate on a
secure, trustworthy client in the user’s device and consider the security of
Protos themselves against adversarial tampering to be an orthogonal problem
to profiling.

Moreover, a Protos implementation must ensure that adversaries cannot find a
workaround to the DGS by exploiting any vulnerabilities that the DGS does
not account for, e.g. differences between the processing time of real and dummy
actions or neglected metadata that the DGS is oblivious to.

We acknowledge that regardless of the privacy guarantees a DGS may offer, such
guarantees become meaningless if the Protos implementation itself is insecure
against tampering that enables an adversary to, e.g. break into the Proto to
tag dummy actions and discard them later upon reception.

3.4 Discussion

3.4.1 On Protos’ adversary model

In the design and analysis of Protos we assume an honest-but-curious
adversary or eavesdropper, i.e. an adversary that, under the condition of
indistinguishability between dummies and reals, processes dummies the same
way it processes real actions. Moreover, we assume the adversary is strategic,
i.e. that it will do anything in its power (even if within the limitations it has
as an eavesdropper) to undo obfuscation and break users’ privacy protection.
Moreover, a strategic adversary knows that the user deploys a Proto (i.e. it
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detects the presence of the tool), the Proto’s design and can determine or
estimate the operation parameters.

We discuss the rationale that motivates this choice and the consequences of
using Protos against other types of adversaries.

The naive adversary. A naive adversary does not “attack” Protos, i.e. it does
not attempt to filter dummies, treating all protocol messages, both real and
dummy, as real. An adversary may be naive because it is unintentionally unaware
of the Proto’s deployment or existence, or because it chooses to ignore it. Naive
adversaries may have insufficient resources or incentives to detect or attack
Protos, e.g. if the cost of attacking a Proto in terms of human capital and
computational resources is not worthwhile, or if the Protos’ user base is small
enough to discard their data at the expense of almost negligible impact on their
profiling practices.

Since naive adversaries do not attempt to filter dummies, their “attack strategy”
involves deterministically producing a filtered profile x̂ = y; there is no notion
of uncertainty or probabilistic filtering, naive adversaries take y as correct,
i.e. y ≡ x. To measure the degree of protection Protos afford against naive
adversaries we remove the “probabilistic component” from the analysis framework
we introduce in Sect. 3.2, thus probabilistic measures become meaningless: it
makes no sense to talk of indistinguishability, entropy or information gain. On
the other hand, stripping away the probabilistic component from EEE leaves us
with `(x, x̂) which, in the case of a naive adversary becomes Enaive = `(x,y) as
x̂ = y. Hence, one measure of protection of Protos against naive adversaries is
the distance `(x,y), which has further implications for DGS design.

Since naive adversaries do not attempt filtering, a DGS may trivially produce
an output q that maximises `(x,y) with no concern for indistinguishability
whatsoever.14 However, whereas DGS designs against strategic adversaries
implicitly protect from naive adversaries (as maximising E against a strategic
adversary requires generating supersequences r that induce distances `(x̂,x) ≤
`(y,x) as large as possible), the opposite is not true: a DGS that
maximises distance `(y,x) with no concern for indistinguishability (i.e. so
that P ( x | y ) = 1) provides no protection against strategic adversaries. Protos’
designs that assume naive adversaries thus place users in a vulnerable position,
as nothing prevents naive adversaries from becoming strategic and break
Protos’ security.

14In fact, the absence of filtering removes the need for reals and dummies to be
indistinguishable in any way.
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Moreover, Protos cannot protect individuals who seek to escape behavioural
targeting against naive adversaries,15 as this class of adversaries treats every
observed action as real, therefore using all user activity, both real and dummy, to
profile users. Strategic adversaries on the other hand filter obfuscated sequences
q to retrieve an approximate profile x̂ 6= y, thereby potentially discarding in the
process real actions that users wish to prevent being targeted on. Still, Protos
cannot guarantee complete protection against behavioural targeting by strategic
adversaries either, as they lack the ability to force adversaries to discard all real
queries. This lack of control over filtering is in fact a limitation of all chaff-based
obfuscation tools, as the obfuscated stream of activity the adversary observes
still contains all of a user’s real actions.

Adversarial post-profiling decision making. Protos’ utility depends on
assumptions about adversarial post-profiling decision making, i.e. what we
assume adversaries do with partially obfuscated profiles x̂ and its impact on
users, highlighting two different but related privacy problems of profiling. Firstly,
profiling involves data collection and aggregation through monitoring users’
activities and building profiles out of them, revealing information about users’
behaviour and identity. Secondly, profiles become instrumental to further
adversarial decision making; adversaries build profiles that inform subsequent
processes and decisions that may affect the very same users whom the adversary
builds profiles on. Protos undermine data collection and aggregation by
disrupting the quality and veracity of the data adversaries collect. However,
how adversaries ultimately choose to use obfuscated profiles to make decisions
is outside the control of Protos.

Our definition of strategic adversary implicitly entails that it attempts to filter
from the observed profile y as much noise as possible, feeding a filtered profile
x̂ to whichever processes the real profile x would be normally fed to. Such
processes may or may not have a direct impact on Protos’ users, e.g. Protos for
web search are likely to have an influence over the adverts users encounter online
if such adverts depend on their web search queries, while users may not perceive
a direct impact if their queries inform a company’s investment strategy. Protos
design does not seek to strategically correct or tame the algorithmic outcomes
that profiling informs, i.e. Protos attempt to thwart or hinder profiling, not
manipulate or change its consequences in a specific way.

Other lines of research have examined how to correct or influence algorithmic
outcomes such as those that derive from profiling. Adversarial (machine)

15With behavioural targeting we denote practices beyond its meaning in online
advertising [378], i.e. any practices informed by an individual’s observed behaviour, such as
predictive policing or credit scoring [431, 518].
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learning studies how adversaries may bias algorithmic outcomes by strategically
polluting a machine learning algorithm’s input data (i.e. injecting noise), either
during training or testing [108, 357]. Adversarial learning considers those
running the algorithms to be honest and legitimate and those polluting the
inputs to the algorithms adversarial. However, we may reverse the roles to
defend users put at a disadvantage by algorithmic decision making by careless
or malicious entities running the algorithms [261], which is the idea underlying
Gürses et al.’s protective optimisation technologies (POTs), tools that rely
on adversarial learning techniques to protect populations and environments
from the negative outcomes that optimisation systems cause [55, 261]. Protos
thus differ from adversarial learning in that the former seek to undermine or
prevent profiling, rather than manipulating it; they are oblivious to the impact
obfuscated profiles have on users, the underlying assumption that users are
either indifferent to the side effects of profiling or willing to bear those effects as
a way of protest [100]. Otherwise, Protos do not provide an adequate solution
to their privacy problems.

Protos may however obfuscate profiles to such an extent that they become useless
to the adversary who, unable to effectively filter them, refrains from using them,
abandoning further processing too. This is in fact Protos’ ideal and optimal
outcome, to thwart profiling and, as a result, any further processing. Protos’
ability to prevent profiling thus depends on the adversaries’ ability to assume
the cost of polluting their databases with obfuscated profiles, i.e. whenever
adversaries require very accurate profiling data, Protos have the potential to
thwart profiling.

On Protos (un)detectability. Profilers unaware of Protos’ adoption among
their userbase effectively become naive adversaries, processing obfuscated profiles
with potentially unexpected and undesirable side effects for Proto’s users. To
force naive adversaries to become strategic and (hopefully) discourage profiling,
Protos designers have incentives to signal Protos’ deployment to profilers,
warning them about the presence of dummies in the stream of data they collect.
Alerting adversaries of Protos deployment highlights the difference with a
steganographic hiding or mimicry-based defence strategy: Protos do not seek to
deceive or mislead the adversary into believing a user’s profile is y instead of x,
as the consequences for the user of further processing y may be as detrimental
or worse than those of processing x.

Therefore, Protos require tool detectability to alert adversaries of the presence
of obfuscation and encourage them to discard obfuscated profiles. There are
however exceptions to the detectability requirement.
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In their analysis of AdNauseam, a Protos against tracking and profiling by
online advertisers, Howe and Nissenbaum discuss its potential to provide social
privacy, i.e. to protect not only AdNauseam users from profiling but non-users
too [295]. AdNauseam pollutes the data trackers collect on users’ clicks on
adverts; if trackers combine the ad-clicking behavioural information from both
AdNauseam users and non-users, they pollute the behavioural models that
govern the optimisation process that determines which adverts to serve to
users [304, 369, 541, 568]. Howe and Nissenbaum posit that if such behavioural
models are no longer reliable to target advertising to users, they lose their
value, which in turn desincentivises profiling, illustrating how AdNauseam users
contribute to the discontinuation of profiling for everyone [295].

For AdNauseam to pollute profilers’ behavioural models, profilers need to
incorporate AdNauseam users’ obfuscated profiles to their behavioural models.
Profilers may however refrain from doing so if they are unable to filter dummy
clicks from AdNauseam users’ clicking behaviour data, discarding it instead
to keep a behavioural model built on non-obfuscated profiles alone.16 Thus
the potential of AdNauseam or any other Protos for social privacy is lost if
profilers detect the presence of AdNauseam and discard user clicking data,17

even if from the point of view of individual privacy this is an ideal outcome,
as trackers no longer profile the AdNauseam user. To pollute the behavioural
models by forcing profilers to combine the profiles of those who use Protos and
those who do not, Protos must therefore seek tool undetectability, preventing
trackers to sift AdNauseam users out from their databases.

Tool undetectability brings about a number of dilemmas and trade-offs. Firstly,
it restricts the number of dummies Protos are able to generate. A Proto that
generates dummies at a rate well beyond a human’s increases the chances that
the profiler detects it. Such a restriction further impacts a Proto’s ability to
provide profile confidentiality, as the budget of dummies is limited to plausible
rates of action generation which may be insufficient to cover up users’ real

16In fact, click fraud is a massive problem to the online advertising business. The
Association of National Advertisers (ANA) reports that in 2017 “9 per cent of desktop
display ad spending and 22 per cent of desktop video ad spending is lost to fraud”, bringing
fraud losses at $6.5bn [127, 251], whereas WPP, a British multinational advertising company,
estimates more than $15bn in losses [226, 446]. Hence, advertisers have strong incentives
to tackle click fraud and block fake clicks. In particular, besides banning AdNauseam itself,
Google has actively sought to mitigate click fraud [295, 347, 408].

17Lost to the extent that adversaries can discard detectable Protos’ users profile data and
keep profiling non-users as usual, meaning that non-users do not benefit from the privacy
protection that being a potential Proto user confers them, i.e. adversaries know that their
profiles have not been obfuscated. Protos however contribute to social privacy in other ways,
e.g. by enabling Protos’ users to voice their discontent thus pushing for more privacy-friendly
practices which then become available to everyone and by refusing to be part of the aggregated
models profiles build, undermining their richness and value.
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activities. Hence, escaping detectability may involve relinquishing profile
confidentiality. Secondly, ensuring tool undetectability becomes analogous to
deploying a collective, distributed Proto that instead of obfuscating individual
users’ profiles, seeks to obfuscate the collective profile of the user population.
Hence, undetectability requires indistinguishability between Protos’ users and
non-users, in addition to indistinguishability between real and dummy actions,
resulting in two levels of obfuscation and indistinguishability: at the action
level and the user level. Protos obfuscate individual users’ profiles; undetectable
Protos obfuscate profiles of users’ profiles. Lastly, tool undetectability seeks
to ensure adversaries cannot distinguish between Protos users and non-users,
thus processing the former’s observed profiles y as real and triggering in turn
potentially negative side effects deriving from obfuscated profiles. As we have
noted above, POTs can more adequately respond to this problem by strategically
polluting the inputs to guarantee both tool undetectability or stealth and prevent
negative side effects for obfuscating users.

The honest-but-curious assumption. Protos assume an HbC adversary,
namely, an adversary that does not interfere with the quality of service Protos’
users receive. Protos require that this assumption holds for their successful
deployment, especially since we consider service providers as reference Protos
adversaries, thus conferring them the ability to provide or withhold service at
their will.

Contrary to HbC adversaries, active adversaries disrupt the protocol that
provides utility to users to undermine indistinguishability between reals and
dummies. An active adversary may strategically discard user actions or provide
responses that do not match the action request, forcing users to repeat their
commands and slowing them down, eroding QoS. Active adversaries may also
subject users to antibot tests that a Proto would be unable to respond to,
e.g. forcing users to solve captchas [534]. A Proto would need to adapt to
such an adversary, attempting to minimise QoS damage and responding to
the adversary’s attempts at eroding the indistinguishability between reals
and dummies. Worse still, adversaries may simply ban users from the service if
they detect the use of obfuscation, e.g. by forbidding obfuscation in their terms
of service and legitimising that decision on the additional burden dummies
impose on the system. Adversaries may in fact refuse to bear the cost of
processing dummies. Protos offer no recourse against banning.

For the honest-but-curious assumption to hold, the cost for the adversary of
actively attacking Protos must be greater than permitting them. In terms of
human labour and computing power, active adversaries unlikely require more
resources than HbC adversaries require for eavesdropping and filtering. Banning
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comes at negligible cost, as it only requires Protos detection. A more probable
cause for adversaries to be HbC relates to their image and public relations as well
as the legal framework that regulates their operations. Banning users or actively
sabotaging Protos portrays service providers as privacy-invasive and unwilling
to acknowledge or concede their users’ discontent at their profiling practices.
Banning Protos’ users risks further alienating them and encouraging them
to change provider altogether, thereby further eroding their trust and losing
them to competitors. Moreover, regulatory policy to protect Protos users may
dissuade adversaries against active attacks. Justifying the legitimacy of Protos,
explaining their role as a mechanism of expression and protest, contributes to
forge a favourable public opinion and perception that pressures adversaries to
relent and lawmakers to intervene. Brunton and Nissenbaum’s work on the
ethics of obfuscation provides an analysis of the factors that legitimise the
deployment of Protos [98, 100].

Protection, expression and subversion. Howe recognises three main aims of
obfuscation tools: protection, expression and subversion [293]. Through the
paragraphs above we have implicitly laid out the conditions and assumptions
that intervene in the attainment of each of those goals. We have focused our
analysis of protection in terms of both profile confidentiality and the negative
effects of subsequent decision making. A Proto provides profile confidentiality
if it generates enough indistinguishable dummy traffic to prevent a strategic
adversary from retrieving the user’s profile x. Protos’ ability to protect against
subsequent processing is largely out of the designer’s control: it is up to the
adversary to decide whether or not to feed polluted profiles x̂ to the algorithmic
machinery on which subsequent outcomes depend.

We have conceptualised expression as tool detectability. Undetectable tools
preclude user expression by remaining invisible to the adversary. Detectable
tools on the other hand make themselves visible to the adversary, thereby
prompting an attack or response.

Lastly, we analyse the trade-off between subversion and the two previous goals.
Simply by obfuscating profiles, Protos disrupt the data collection process. The
extent to which they do so depends however on a set of assumptions. If a
Proto is undetectable, a profiler incorporates a user’s obfuscated profile y as
is and succeeds at polluting the profiler’s database. However, we recall that
undetectability comes at the expense of expression and possibly requires a
limit on the amount of dummies a Proto can generate to avoid detectability,
thereby undermining protection. Moreover, undetectability means that a profiler
processes a user’s obfuscated profile y as is, therefore a user must be ready to
bear the burden of further processing on y. Hence, under the assumption of
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undetectability, Protos realise subversion at the expense of diminished protection
and expression.

On the other hand, if a Proto is detectable, a profiler may choose to either
attempt to filter and process a user’s obfuscated profile y, discard it or ban the
user altogether. Let us assume that a Proto’s subversive impact is greater when it
incorporates a user’s obfuscated profile y than if it discards the user’s data (with
banning the user altogether having an equivalent impact to discarding data).

Detectability imposes no upper limits on the amount of dummies a Proto can
generate; therefore, omitting any other constraints on the budget of dummies,
such as cost, a detectable Proto can attempt to maximise a user’s profile
confidentiality. Let us further assume that the probability that an adversary
incorporates an obfuscated profile to its database instead of discarding it depends
on its ability to filter it, i.e. a profiler that can obtain an accurate approximation
of the original profile is more likely to incorporate it than if it is unable to remove
any noise. Under this assumption, increasing levels of profile confidentiality offer
more privacy protection but prompt adversaries to discard obfuscated profiles,
whereas low levels of profile confidentiality offer less privacy protection but
encourage adversaries to incorporate them to their profiling database. Hence, we
observe an unproductive relationship between protection and subversion. As we
increase protection, we limit a Proto’s potential for subversion by encouraging
profilers to discard user data; however, decreasing protection further undermines
a Proto’s potential for subversion by limiting the amount of noise an obfuscated
profile introduces in the profiler’s database.

The profiling function. The general profiling model we provide in Sect. 3.1
implicitly assumes that the profiling function g takes as input an individual
user’s activity data r, rather the data of all users of the service. In practice,
profilers cluster and separate users in categories informed by the data of the
whole user population. Moreover, changes in input data and adversarial goals
over time further imply dynamic profiling, i.e. whereas we assume the profiling
function r to be stable, profiling changes are bound to change over time, even
optimising outcomes in real-time. In this thesis we abstract away from such
complexity, yet acknowledge that, similarly to ongoing work on POTs, a more
realistic, practical model of profiling should account for the dynamic nature
of profiling [261]

Trust. Security and privacy engineering mandates designers should minimise
the trust assumptions they place on components and entities systems require to
work, as failing those assumptions the system faces additional vulnerabilities
designers did not account for.
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The Protos’ model relies on the assumption that the environment on which
Protos run is trustworthy (i.e. free from adversarial interference and tampering)
by virtue of deploying adequate security measures which are out of the scope of
this thesis (q.v. Sect. 3.1.2 and 3.3.3).

Recent trends have shown tech giants such as Apple and Google moving towards
ever greater vertical integration, producing everything their customers need
to use their services and products, from the devices and hardware within
to the operating system, software applications and platforms that provide
online services. Narayanan has pointed that this results in hardware and
software “packed together in a way that users can’t fully control or modify. [...]
Combined with the fact that today’s software typically updates automatically,
not trusting vendors isn’t an option anymore” [400]. When users rely on
the very adversary that profiles them to supply them with the software and
hardware on which Protos run, the assumption that the client side is trustworthy
becomes meaningless. Instead, we need to rely on the HbC assumption (namely,
that the adversary permits the deployment of Protos because of market or
regulatory forces) while deploying mechanisms to detect adversarial tampering
and interference.

Lastly, users may not trust Protos developers themselves, lacking the means
or expertise to validate Protos’ privacy claims. Indeed previous research
has shown that users perceive third-party extensions and applications to be
untrustworthy [33, 471].

The security and privacy research community has often promoted open-source
designs as a way to increase security and reliability, owing to, as Fuggetta notes,
two main factors [221]. First, anyone can examine and evaluate open-source
designs, enabling public scrutiny and validation that in turn enables finding
design flaws or malicious code; whereas it is unlikely and unreasonable to expect
non-experts users to examine Protos’s code [467], other privacy engineers or
researchers may be willing to do [90, 535]. Secondly, open-source also enables
developers to fix the design flaws they or others encounter. However, Schryen
refutes these arguments echoing Levy’s “Sure, the source code is available. But
is anyone reading it?” and noting that “in the Open-BSD source, foundational
vulnerabilities have a median lifetime of at least 2.6 years” ; he concludes that
there is no difference in terms of “vulnerability disclosure and vendors’ patching
behavior” between open and closed-source software [476].

Whereas we advocate for open-source Protos, given non-expert users’ lack of
knowledge in computer security and privacy, open-source scrutiny is unlikely to
have an effect on their perception. Therefore, designers must devise alternative
communication methods to tackle users’ concerns or, as we discuss earlier in
Sect. 3.3.3, opt for smooth, transparent integration into users’ workflow.
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3.4.2 On Protos’ cost

In addition to the role of service providers as gatekeepers for Protos’ users,
Protos’ viability depends on the cost of generating dummies. For Protos to
be viable, the cost of generating dummies must be negligible, as if the cost is
too high, any level of privacy that requires generating a significant amount of
dummies becomes too expensive, e.g. whereas users may obfuscate searches for
products on Amazon by using a Proto that automatically generates dummy
searches, obfuscating their purchasing profile becomes prohibitively expensive,
requiring users to make dummy purchases of goods —not to mention the
handling of deliveries.

3.5 Conclusion

In this chapter we have proposed an abstract model for chaff-based profile
obfuscation tools (Protos). We have formalised profiling as a privacy threat for
users of online services, introduced Protos as an abstract solution that relies on
chaff to thwart profiling and assumed an honest-but-curious service provider as
the reference adversary that Protos protect against.

To assist Protos’ design and evaluation, we have further introduced a set of
measures for the analysis and evaluation of Protos, distinguishing between
mechanism-centred analysis (MCA) measures, such as indistinguishability and
mutual information, and attack-centred analysis (ACA) measures, such as
information gain and expected estimation error.

MCA measures focus on the analysis of the relationship between a Proto’s
inputs and outputs alone; they capture the amount of information Protos
leak, regardless of whether and how an adversary leverages that information.
They also represent general privacy measures that do not focus on particular
adversaries or scenarios, abstracting and, under certain conditions, being
independent from adversary knowledge, which makes them specially suitable for
DGS design. ACA measures on the other hand focus on particular adversaries
and attack strategies; they capture the amount of information an adversary
obtains, how close an adversary gets to its goal —with its corresponding effect
on user privacy. ACA are thus particularly useful to assess the impact that
particular adversaries may have on users’ privacy, e.g. as part of an audit or
privacy impact assessment. Hence, both types of measures play a role in Protos’
design and evaluation.

Furthermore, we have examined key aspects in Protos’ design, distinguishing
three phases in the design process: first, privacy requirements elicitation,
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adversary modelling and privacy properties operationalisation. We illustrate
how to address this phase of the process through the use cases we study in
chapters 4 and 5. Secondly, DGS design. We have highlighted the challenge
of determining the pool of dummies, namely, the type and format of the
dummy actions a Proto generates, in particular when the universe of real
actions is unknown or ever-expanding. We have conceptualised the sequence
that results from combining real and dummy actions as a supersequence and
illustrated the importance of ensuring that several real sequences map to the
same supersequence to ensure indistinguishability. Moreover, we have examined
the challenges in supersequence composition when a limited budget of dummies
limits the number of real sequences that map to the same supersequence. Thirdly,
Protos’ implementation. We have argued that usability represents a paramount
design issue, as on it depends that users can reap the benefits a Proto offers by
using the tool correctly and at no detriment to their user experience. We have
reviewed previous work on security and privacy tools’ usability, extrapolating
their findings to Protos design. Protos should require as less user effort and
technical expertise as possible; previous studies indicate a strong user preference
towards integrated privacy solutions that do not interfere with the way users
are accustomed to using a service. Among other consequences, this entails
that Protos should minimise dummies’ impact on user experience and develop
effective communication strategies.

Lastly, we have discussed the implications that assuming an honest-but-curious
(HbC) adversary have on Protos’ deployment when in practice adversaries may
behave otherwise, focusing on two main types of adversaries: naive, who do
not attack Protos, and active, who threaten denial of service. Protos do not
protect against the effects that derive from profiling based on dummy actions;
likewise, Protos cannot protect against an active adversaries that disrupt quality
of service for Protos’ users.

In this chapter we have introduced an abstract Protos and provided general
analysis and design principles. To illustrate how the general Protos model
instantiates in practice as well as how the analysis and design principles apply in
concrete scenarios, we devote the next two chapters, Chapter 4 and Chapter 5,
to examine the analysis and design of Protos in two use cases: web search and
online communication services.

Two use cases.

In Chapter 4 we instantiate the general Protos analysis framework to evaluate
chaff-based private web search (CBPWS) tools, this is, Protos for web search that
seek to conceal users’ search interests from the search engine provider. CBPWS
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illustrates how users may unilaterally deploy Protos against uncooperative
service providers to avert web search profiling. CBPWS further highlights the
complexity of achieving indistinguishability between real actions and dummy
actions when the size of the universe of real actions’ tends to infinity and the
random variable over real actions is hard to model.

In Chapter 5 we instantiate the general Protos analysis framework to evaluate
communication profile confidentiality (CPC) tools, namely, Protos that seek
to conceal users’ communication patterns from the provider of an online
communication service. CPC tools illustrate how even if users can unilaterally
deploy Protos against adversarial, uncooperative service providers, in certain
contexts they require cooperation from other users to achieve any meaningful
level of protection. CPC tools further illustrate how encryption enables
content indistinguishability, thereby significantly easing the task of generating
indistinguishable dummy actions. At the same time, enabling content
indistinguishability exposes and highlights the importance of metadata in Protos’
design. We resort to CPC tools to examine the metadata selection process,
namely, which metadata a DGS must consider to ensure indistinguishability
between real and dummy actions. We show how to leverage mutual information
as an information leakage measure to assist the metadata selection process and,
in particular, how to simplify mutual information computation to speed up
preliminary design assessments. We further examine, in the context of online
communication, the role that stakeholders other than designers and privacy
engineers may play in the successful deployment of Protos. We analyse the role
service providers may play in the deployment of encryption in social networking
sites (SNSs) —that ensures content indistinguishability for CPC tools— and
the role users’ perceptions towards third-party E2EE tools (TPETs) may play
in the uptake of CPC tools.



Chapter 4

Private Web Search

Once we searched Google, but now Google searches us.
—Shoshana Zuboff.

To think strategically one has to imagine oneself in the
enemy’s place. [...] Misinterpreting an enemy can lead,
in the long run, to defeat —one’s own. This is how
sometimes empires fall.

—John Berger, Hold everything dear.

Web search has become an indispensable online service, the “primary means
by which individuals access Internet content” [200], allowing Internet users to
find the information, services and resources they seek online. In web search,
users compose search queries comprised of one or several keywords that capture
what users are looking for. Users send their queries to a search engine or search
provider, which in turn searches on its databases and returns a list of potentially
relevant candidate sites to the user.

In currently dominant web search service architectures like that of Google, Bing
or Baidu, search providers collect all users’ search queries [200]. Search query
collection enables user profiling to better target users with advertising, thereby
supporting service subsidisation, i.e. requiring no payment fee from users; it
also enables service improvement and personalisation. However, web search
profiling poses several privacy risks, enabling providers to determine, among
other sensitive or personal traits, users’ geographical location, education level,
occupation, sexual orientation and health status [302, 307, 514]. The infamous

113
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AOL scandal has highlighted the privacy risks of collecting search data, showing
not only how easy it is for third parties to re-identify web search users from
supposedly “anonymised” data, but also how sensitive web search data is [48].
Moreover, beyond the privacy risks of inferring and disclosing users’ personal
details, web search profiling raises additional questions relating to the algorithmic
processes that feed on users’ profiles, posing risks of algorithmic isolation,
discrimination and manipulation [201, 383, 407].

In light of these threats, users have several options to protect their privacy
online. Online privacy and consumer protection advocates propose a series
of actions that users can undertake to protect themselves, such as avoiding
signing up to personal web search accounts, regularly deleting their cookies,
distributing search queries across various search engines or simply watching
what they search for [178, 486]. These actions however increase the burden
on web search users and disrupt their user experience, even if there are tool
designs to automate and assist users in some of these tasks, e.g. by partitioning
user queries across interest categories and sending those belonging to different
categories to different search engines, using different cookies [310]. Still, such
rudimentary solutions have limited efficacy, e.g. search providers have the means
to cookieless tracking [409].

Alternatively, users can switch to more privacy-friendly web search engines
that promise not to log their queries, such as Startpage1 or DuckDuckGo.2
However, users may still mistrust these search providers or be unwilling to
disclose their search queries, as nothing other than good faith prevents providers
from profiling. Besides, malicious insiders or eavesdroppers can still gain access
to users’ queries, the latter potentially able to do so even when users send their
queries over a TLS-encrypted connection [415].

Users may also connect to the search engine through an anonymous web browsing
system such as Tor, that makes them appear as someone different in each
session [74, 176, 449, 461]. Anonymous web browsing hinders the creation of
search profiles through session unlinkability, as search engines cannot ideally link
users’ search queries across different sessions. Using anonymous web browsing
however comes at the cost of a slower user experience that users may be
unwilling to tolerate [227, 228]. Moreover, eavesdroppers may still rely on query
fingerprinting to re-identify some user queries [415], while one-hop anonymisers
represent a single point of failure that requires users trust the anonymising proxy,
offering little or no advantage to a good-faith, privacy-friendly search engine [79].

Other researchers have proposed the use of collaborative relaying systems,
whereby a pool of users relays queries between each other before sending them

1Previously known as Ixquick, available at https://www.startpage.com/.
2Available at https://duckduckgo.com/

https://www.startpage.com/
https://duckduckgo.com/
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to the search engine. Hence, the latter cannot ideally determine who among
the pool of users is the originator of each query [109, 203, 313, 532], yet these
proposals open additional privacy problems as web search users gain visibility
over other users’ queries, e.g. Erola et al. and Viejo et al. propose to use an
online social network’s friends as relay nodes, exposing users’ queries to their
friends, even if relaying operations seek to hide the originator [203, 532]. Some
proposals rely on cryptography to broadcast queries’ search results to the whole
group so that each user retrieves its search query result anonymously, yet do not
consider the threat of de-anonymisation from exposed search results [109, 313],
an issue that Lindell and Waisbard’s proposal addresses, albeit still leaking
search results to the entity that coordinates the users’ pool [355].

Private information retrieval (PIR) on the other hand offers provably-secure
solutions to conceal search queries from the search engine, enabling a user
to retrieve records from a database without the database owner determining
which records she accesses [123, 337]. While these cryptography-based solutions
provide strong privacy guarantees, their complexity is linear on the database
size and therefore remains prohibitively expensive for certain applications that
involve very large databases, such as web search [64, 15]. Proposals that weaken
the security guarantees in exchange for greater efficiency do exist [170, 519],
however, search engines have little incentive to implement costly protocols they
cannot profit from.

Obfuscation tools on the other hand enable users to unilaterally protect their
privacy, without the need to rely on other, potentially malicious users, slow
anonymous communication systems, or the cooperation of web search providers.
On the one hand, utility-degrading solutions such as Masood et al.’s propose to
replace user queries with alternative queries that pose a lower privacy threat
at the cost of some utility penalty [368]. On the other hand, utility-preserving
solutions rely on chaff or dummy queries to obfuscate the search profile the
search engine retrieves, enabling the concealment of a user’s actual search queries
and interests. Toledo et al. argue that chaff-based private web search (CBPWS)
tools represent a relaxation of PIR; instead of retrieving all possible records in
the database with each user request, they retrieve a subset of records, thereby
leaking which records the user does not access. Still, one major advantage of
CBPWS tools over PIR is that users do not require the cooperation of the
search engine to deploy them.

Besides protecting individual users against profiling, CBPWS diminishes the
utility of search profiles to search engines and, assuming that a sufficiently
large user base adopts CBPWS tools, further reduce the economic incentives
to perform profiling. CBPWS further provides an advantage over anonymity
systems in that both types of solutions prevent individual profiling, yet only
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the former pollutes the logs of queries across the userbase, therefore exhibiting
greater subversion potential.

Due to the advantages of CBPWS over other solutions, several researchers have
proposed designs and implementations of CBPWS [182, 198, 294, 397, 448]. In
this chapter we instantiate the general model and analysis framework of chaff-
based profile obfuscation (CPO) we have introduced in Chapter 3 to evaluate
CBPWS tools. Then, we evaluate several CBPWS proposals, uncovering
systematic vulnerabilities in their designs and flaws in their original evaluation.

4.1 Modelling chaff-based private web search

4.1.1 System model

We consider an online web search provider, i.e. an entity that provides an online
web search service. The search provider indexes websites by keywords related
to their content. Web search users compose queries comprised of one or more
keywords related to the topics they are interested in and send them to the
search provider. The provider compiles a list of web pages indexed by the query
keywords (according to some selection and ranking algorithm that we abstract
away from) and returns it to the user.

Figure 4.1 depicts the web search system model. We denote individual queries
as r, taken from a universe of queries R. For each query, the search engine
returns a set of web search results o.

We assume user devices are secure, namely, free from malware that may monitor
and leak information about their searches, i.e. user devices are trustworthy.

Figure 4.1: Web search system and threat models.
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4.1.2 Threat model

The search provider collects and processes each user’s sequence of search queries
r = [r1, r2, . . . , rn] into a profile, x. We model a search profile as a multinomial
distribution x = {xi}, where each element xi represents a probability the
providers’ profiling function assigns to a category i. The choice of categories i and
the meaning or interpretation of probability xi depend on the profiling function
g(r). We do not make any assumptions about g(·), i.e. it may map queries
to topics according to the keywords the queries contain and other contextual
information such as previous queries or search results Alice clicks on. Still, we
consider that g relies on two subfunctions or components. First, a semantic
classification algorithm SCA that maps queries to categories [59, 303]. Second,
a modulator MOD that weighs the contribution of each query or sequence of
queries in the profile according to the profiling strategy chosen by the adversary.

As an example, an SCA may attribute the query {red wine} to categories
[ alcoholic beverages ] and [ health ], assigning a different weight to each category.
Categories may range from very broad (e.g. health, sports, music) to very specific
(e.g. each keyword meaning representing its own category). The modulator
MOD on the other hand assigns e.g. greater weight to recent queries (in the
last month), discounting the weight of older queries, or adjusts the weight of
queries as a response to surges in topic popularity.

The profiling function g may more generally consider Alice’s search engine usage
patterns, e.g. the time of the day Alice uses the search engine or the volume
of queries at different times of the day. However, for simplicity and the sake
of illustration, we consider in the remainder of this chapter that the profiling
function g constructs each profile x by normalising the weights that an SCA
assigns to each query, namely:

xi =
∑
j

SCA(rj)[i]

x =
[ xi∑

i xi

] (4.1)

One interpretation of this profiling strategy is that xi represents the magnitude
of interest in topic i the provider assumes a user has.
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4.1.3 Chaff-based private web search tools

A chaff-based private web search (CBPWS) tool is a Proto that generates
dummy search queries and clicks on search results on behalf of the user to
prevent the adversary from retrieving the user’s search profile x.

We denote dummy search activity as d and, unless we state otherwise, we focus
on the generation of dummy search queries, abstracting away from the analysis
of clicks on results and any further activity on web search, which we discuss
in Sect. 4.4.4.

We conceptualise CBPWS tools through the following elements: the privacy
property, the privacy measure and the dummy generation strategy (DGS).

Privacy property. CBPWS tools generally aim to prevent the retrieval of
users’ search profiles x. However, such a goal is open to interpretation,
as it does not specify the information a profile contains. The privacy
property must therefore point to a more specific, narrower definition of
profile and level of protection.

Privacy measure. The privacy measure quantifies the privacy property the
tool is after. Whereas privacy properties often refer to abstract notions
of protection open to interpretation, privacy measures unambiguously
formalise and quantify privacy. Hence, privacy measures must capture and
accord with the privacy property the tool intends to provide. Moreover,
the privacy measure is the yardstick by which designers choose to evaluate
the CBPWS tool and set the desirable privacy level or bounds at which
the tool should operate to be effective. We have provided examples of
privacy measures that CBPWS designers may rely on in Sect. 3.2; we
show how to instantiate and adapt these measures for private web search
in Sect. 4.2.

Dummy generation strategy (DGS). The DGS governs how the CBPWS
tool generates dummy activity, i.e. the number of dummy queries
to generate, their content and semantics, their distribution amongst
categories, their sending time and any other metadata and relevant
features, as well as visits to search results.
Similarly to the profiling function g the adversary uses, the CBPWS
tool requires a profiling function gT for the DGS to generate dummy
activity. The tool’s gT may or may not match the adversary’s g, depending
on e.g. whether information about the adversary’s profiling strategy is
available or whether the tool chooses to defend against one specific profiling
algorithm. Still, the tool’s gT relies on internal modules analogous to the
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adversarial g, like modulators and semantic classification algorithms. For
simplicity, we generally consider throughout this chapter that gT = g.
We however discuss the implications of relying on a different gT 6= g
in Sect. 4.4.3.
Furthermore, we specifically consider the following dummy generation
strategy (DGS) parameters:

The dummy rate. We define the budget of dummies as a dummy rate
ρ which represents the proportion of dummy actions to total actions:

ρ = |d|
|d|+ |r|

where |d| and |r| represent the cardinality of the sequence of dummy
and real actions, respectively.
We may define different rates for dummy queries ρquery and dummy
clicks on search results ρclick. We recall however that in this chapter
we focus on the generation of dummy queries so unless we state
otherwise ρ refers to the ratio of dummy queries to total queries alone.
The dummy rate can alternatively be defined in terms of data volume
(e.g. MB) to better account for bandwidth constraints.

Dummy, target and observed profiles. The dummy profile w is the
outcome of applying gT to the sequence of dummy queries d the
DGS generates. The observed profile y is the result of applying gT
to the combined sequence of real and dummy queries q = r ∗ d. The
target profile yt represents the profile the DGS aims to build out of
both real and dummy activity, so that the observed profile y→ yt.
Figure 4.2 represents the processing of real and dummy activity into
profiles x, w and y.

Lastly, as any CPO tool, CBPWS tools must include a filter component to
prevent dummy activity from impacting user experience, as well as a user
interface to communicate with the user. Fig. 4.3 provides a modular depiction
of a CBPWS tool.

4.1.4 Adversary model

Once users deploy CBPWS tools, the adversary can no longer profile them as
usual, as processing both real and dummy search actions results in an observed
profile y that may bear no relation to the real profile x.

We instantiate the generic adversary model in Sect. 3.1.3 to model how the
adversarial profiler responds to CBPWS deployment.
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Figure 4.2: A CBPWS tool’s gT processes real activity into real profile x and
dummy activity into dummy profile w. Processing both types of activity results
in observed profile y.

Figure 4.3: Abstract modular depiction of a CBPWS tool.

Goals. The adversary aims to recover the real search profile, x, with x the
output of the adversarial profiling algorithm, x = g(r), that takes as input
a user’s sequence of search activities r.

Capabilities. The adversary is able to observe and log all user search activity,
both queries and clicks on search results. In this sense, the adversary might be
the search engine itself or any other entity able to intercept users’ queries to and
responses from the search engine. However, since the use of a secure channel
between web search users and the provider limits the attack capabilities of
external observers, we focus on adversarial search providers. Moreover, because
we assume user devices to be trustworthy, it follows that the adversary cannot
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Figure 4.4: P (X = x ) over profile space.

break into and manipulate them to reveal which queries are real and which
are dummy.

The search engine provider further possesses background knowledge on users’
profiles (e.g. a history of previous search queries) and other auxiliary information
such as trending topics on the Internet or datasets from other search engines.
We note that this implicitly assumes that there is a sufficiently large sample of
non-obfuscated search profiles available, i.e. many individuals do not attempt
to conceal their search interests.

We denote adversarial prior knowledge through the random variable Xβ , with
P (Xβ = x ) describing the adversary’s a priori belief on the probability that a
user has a particular profile x. We further denote knowledge on a particular
individual, say Alice, as b(A). Hence, P ( x | Xβ , b(A) ) represents the probability
of Alice’s real profile being x considering the adversary’s prior knowledge Xβ

and b(A).

Figure 4.4 shows an example of the probability density P (Xβ = x ), simplified
to three dimensions, i.e. profiles x = {x1, x2, x3} that have three components
0 ≤ xi ≤ 1 such that

∑
i x1 = 1. Darker areas represent highly likely profiles,

while lighter areas represent rarer profiles.

Strategy. The adversary is honest-but-curious (HbC) and does its best to
retrieve profile x. For analysis purposes, we classify adversaries’ attack strategies
in two categories:

Profile-based. Profile-based attacks exploit information about a tool’s DGS
at the profile level, i.e. they model the impact the DGS has on the users’



122 PRIVATE WEB SEARCH

Figure 4.5: The adversary processes both real and dummy activities into an
observed profile y which then post-processes into a filtered profile x̂.

profiles DGS and attempt to reverse or mitigate it. De-obfuscation attacks
exploit, among other DGS features, the target profile yt a DGS seeks
to project.
Profile-based attacks rely on profile filtering algorithms (PFAs) that apply
a set of filtering rules on the observed profile y to retrieve a filtered
profile x̂. A profile-based attack fully succeeds when the PFA recovers x̂
without noise, i.e. when x̂ = x.

Query-based. Query-based attacks exploit information about the tool’s DGS
mechanisms that seek to ensure indistinguishability between real and
dummy search actions. Query-based attacks exploit differences between
real and dummy actions’ features such as query semantics and grammar,
timing or metadata, to tell dummies apart and discard them.
Query-based attacks rely on dummy classification algorithms (DCAs) that
apply a set of classifying rules to tag the search activity as either real (r̂)
or dummy (d̂). A query-based attack fully succeeds when all queries r
and d are correctly classified as r̂ and d̂, respectively.

We note that classifying attacks as profile-based and query-based is ambiguous
and open to interpretation. Information about a tool’s obfuscation strategy
that PFAs exploit also enable DCAs to better distinguish between real and
dummy activity; a DCA’s classification output results in a filtered profile x̂ that
is closer to x. This classification however assists our analysis of CBPWS tools,
as we show in Sect. 4.3.

Figure 4.5 depicts the interaction between PFAs and DCA in the adversary’s
attack strategy to recover a filtered profile x̂ from the observed profile y.



ANALYSIS FRAMEWORK 123

Model summary.

CBPWS users generate real queries r that an adversary processes with a profiling
function g into a profile x. A CBPWS tool receives as input real queries r and
automatically generates dummy queries d according to a dummy generation
strategy (DGS). The CBPWS tool sends both real and dummy queries to the
adversarial web search provider, we refer to either type of query as q, to denote
that the query may be real or dummy. The adversary constructs an observed
profile y from the sequence of queries q. However, the adversary relies on
DCAs and PFAs to exploit DGS’s vulnerabilities and obtain a filtered profile
x̂. Table 4.1 provides an overview of the notation we have introduced so far in
this chapter.

4.2 Analysis framework

In this section we provide an analysis framework for CBPWS tools. To this
end, we first define a set of privacy properties for private web search. Then, we
instantiate the measures we introduce in Sect. 3.2 to capture such properties.
Table 4.2 offers a summary of additional notation we use throughout this section.

4.2.1 Privacy properties

There are a number of privacy properties that a CBPWS tool may attempt to
provide. The privacy concerns of any particular user relate to her own situation
and needs, thus making it impossible for a privacy engineer to account for all
possible privacy concerns in the design of a CBPWS tool.

Given the impossibility of providing an exhaustive list of the users’ privacy
concerns, we consider and redefine three general privacy properties that have
been implicitly or explicitly considered in previous CBPWS tool designs,
namely, profile confidentiality [198, 448], query deniability [396, 397] and query
undetectability [182, 294]. In Sect. 4.3 we illustrate how to leverage this analysis
framework to evaluate the very CBPWS tool designs that inspire it.

Profile confidentiality guarantees that the adversary cannot determine a
user’s search profile x.

Query deniability guarantees that users are able to deny having issued a
certain query, namely, if a user is accused of having searched for something,
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Symbol Meaning Symbol Meaning

r Real query d Dummy query

q Query (real or dummy)
the adversary observes

o Search result

r̂ Query adversary
classifies as real

d̂ Query adversary
classifies as dummy

r Sequence of real queries d Seq. of dummy queries

q Sequence of queries
(both real and dummy)

R Universe of real queries Q Universe of queries
(both real and dummy)

x = {xi} Real profile y = {yi} Observed profile

x̂ = {x̂i} Filtered profile yt = {yti} DGS’ target profile

w = {wi} Dummy profile

g Adversarial profiling
function

gT CBPWS tool profiling
function

ρ Dummy rate X Random variable over
real profiles x

Y Random variable over
observed profiles

X̂ Random variable over
filtered profiles x̂

SCA Semantic classification
algorithm

MOD Profile components
modulator

DCA Dummy classification
algorithm

PFA Profile filtering
algorithm

Xβ Adversarial prior
knowledge on X

b(A) Adversarial prior
knowledge on Alice’s
profile xA

Table 4.1: Overview of CBPWS model notation.
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she should be able to plausibly claim that it was the CBPWS tool instead,
i.e. that her query is an automatically generated dummy.

Query undetectability guarantees that the adversary classifies users’ search
queries as dummies, enabling users to evade targeting.

4.2.2 Privacy measures

Profile confidentiality.

MCA: As information leakage. We measure profile confidentiality using
mutual information (see Sect. 3.2.1). We choose mutual information to evaluate
CBPWS tools with independence of the adversary knowledge and particular
attack strategy. We favour mutual information over min-entropy leakage to
avoid making any assumptions about the number of guesses or candidate profiles
x̂ the adversary considers for each individual. Moreover, we focus on mutual
information instead of capacity because we do not aim to account for all possible
probability distributions of web search profiles P (X = x ).

Symbol Meaning Symbol Meaning

r̂ Query sequence adversary
classifies as real

d̂ Query sequence adversary
classifies as dummy

R R.v. over sequences of real
queries

Q R.v. over sequences of
observed queries

R Universe of real query
sequences

Rq Multiset of q subsequences

rd Query sequence to deny Rd Multiset of q subsequences
containing rd

Rc
d Multiset of q subsequences

complementary to Rd

` Distance

I Mutual information E Expected estimation error

NIND A priori deniability UIND A priori undetectability

N Deniability U Undetectability

Table 4.2: Overview of CBPWS’ analysis framework notation.
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We thus compute mutual information between the input (real) search activity
sequences random variable R and output (obfuscated) search activity sequences
random variable Q as:

I(R;Q) = H(R)−H(R | Q) (4.2)

We say that a CBPWS tool provides perfect profile confidentiality if the tool
leaks zero bits of information about the input real sequences X from the
output profiles ri; i.e. I(R;Q) = 0. Conversely, the tool provides no profile
confidentiality at all when the adversary gains H(R) bits of information from Q,
namely, H(R | Q) = 0 ⇒ I(R;Q) = H(R). In this case, the tool leaks enough
information for adversaries to perfectly reconstruct real profiles x from observed
profiles y.

Lastly, we recall that mutual information is an average measure of leakage, i.e. it
does not bound information leakage on particular individuals. Assessing the
information a CBPWS tool leaks about specific users requires restricting the
output random variable Q to the sequences the DGS generates on a particular
individual’s input, namely, compute I(R;QA) with QA = Ω(rA) for a user’s,
say Alice’s, search actions sequence rA. Besides, because we choose to abstract
away from adversarial knowledge, mutual information does not measure the
privacy protection against particular adversaries with arbitrary background
knowledge. We recall that accounting for specific instances of background
knowledge requires an attack-centred analysis (ACA), as enabled by expected
estimation error (EEE).

ACA: As expected estimation error. To evaluate the performance of a
CBPWS tool against a particular adversary or attack, we resort to expected
estimation error as given by Eq. 3.16. To recall,

E =
∑

x
P ( x )

∑
q
P ( q | x )

∑
x̂

P ( x̂ | q ) · `(x̂,x)

where x = g(r) represents a user’s profile, with r the user’s sequence of search
activities and g the adversary’s profiling function; q the obfuscated sequence of
search activities the adversary observes; x̂ the adversary’s estimation of the user
profile after processing and filtering q and `(x, x̂) a distance that represents
the privacy improvement that results from the adversary obtaining x̂ instead
of x. We do not specify the profiling function g or distance function `, as these
depend on the particular adversary against which we evaluate CBPWS tools.
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Deniability and undetectability.

We provide two alternative formulations of deniability and undetectability. On
the one hand, we provide an indistinguishability-based definition that enables a
mechanism-centred analysis (MCA). On the other hand, we provide an expected
estimation error definition that enables an attack-centred analysis (ACA).

As indistinguishability.

Deniability. Deniability requires that users are able to plausibly claim that a
particular query or sequence of queries is the outcome of the DGS as opposed to
their own search activity. Hence, we measure deniability as the probability that,
given an output sequence q, the CBPWS tool generates a query or sequence of
queries rd that we wish to deny. In other words, we measure the probability
that the DGS generates rd, as opposed to the user. Hence, we formalise a priori
deniability NIND for two sequences rd and q as:

NIND = P ( Rc
d | q ) (4.3)

where q denotes the output sequence of the CBPWS, Rd denotes the multiset of
subsequences of q that contain the query or sequence rd users wish to deny and
Rc
d = Rq \ Rd denotes the complementary set of Rd, i.e. the set of subsequences

of q that do not contain rd (see notation table in page 125). Expanding and
applying Bayes,

NIND =
∑

rj∈Rc
d

P ( rj | q ) =
∑

rj∈Rc
d
P ( q | rj ) · P ( rj )∑

ri∈Rq
P ( q | ri ) · P ( ri ) (4.4)

where the term P ( q | rj )
P ( q | ri ) measures CBPWS indistinguishability and P ( rj )

P ( ri ) the
ratio between the prior probability of the real subsequences in q that do not
contain rd and all the subsequences ri ∈ Rq.

A priori deniability takes its minimum value at NIND = 0, when P ( q | Rc
d ) = 0

(namely, the probability that the CBPWS tool generates sequence q from a
real sequence that does not contain rd is zero) or the prior P ( rj ) is zero. Its
maximum value depends on the interplay between the level of indistinguishability
and the priors. In particular, when all q subsequences are indistinguishable,
i.e. when P ( q | rj ) = P ( q | ri ) ∀ri, rj ∈ Rq deniability depends on the
cardinality of the multiset of possible sequences and their prior probability
alone, i.e.
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NIND =
∑

rj∈Rc
d
P ( rj )∑

ri∈Rq
P ( ri ) (4.5)

the rationale being that the CBPWS tool does not disclose any additional
information, so the adversary must guess based on prior probabilities and
background knowledge alone. If we further consider that all prior sequences
have the same probability P ( ri ) = P ( rj ) then NIND = |Rc

d|
|Rq| .

Dependence on the cardinality of Rq and prior probabilities further highlights
the interplay between indistinguishability and deniability. On the one hand,
the more indistinguishable subsequences in q, the higher the chance that their
combined prior probability offsets that of subsequences Rd, increasing deniability.
On the other hand, for a given indistinguishability level, the higher the prior
probability of subsequence rd, the harder it is for users to deny.

Undetectability. Undetectability requires that adversaries classify a particular
query or sequence of queries as dummy rather than real. Hence, we measure
undetectability as the probability that, given an output sequence q, the CBPWS
has generated it. We formalise a priori undetectability UIND for two particular
sequences rd and q as:

UIND = P ( Rc
d | q ) =

∑
rj∈Rc

d

P ( rj | q ) =
∑

rj∈Rc
d
P ( q | rj ) · P ( rj )∑

ri∈Rq
P ( q | ri ) · P ( ri ) (4.6)

We note that Eq. 4.6 matches Eqs. 4.3 and 4.4 above. A priori undetectability
equals a priori deniability, i.e. UIND = NIND, because they estimate classification
errors that have not yet taken place by computing the probability that a sequence
of queries is made of dummies. Both deniability and undetectability depend on
the probability that a query is a dummy, the former to enable a user to deny
having issued a query that the adversary correctly classifies as real, i.e. to claim
that her real query should have been classified as a dummy, the latter to actually
have the adversary classify real queries as dummies. Moreover, because we
formalise both properties in terms of indistinguishability, we abstract away from
the particular attack the adversary deploys and the errors therein, relying on
prior probabilities and the CBPWS operations alone. Hence, a priori, deniability
and undetectability are the same. A posteriori, however, the adversary may
deploy a suboptimal attack or attempt to minimise false positives (dummy
queries classified as real) at the expense of false negatives (real queries classified
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Figure 4.6: Dummy classification algorithm.

as dummy), thus making deniability and undetectability diverge. That is why
we refer to these indistinguishability-based measures as a priori.

As expected estimation error.

We consider the adversary relies on a DCA to classify queries as either dummy
or real, obtaining a sequence r̂. Figure 4.6 depicts an abstract representation of
a DCA and the classification process. To capture the actual level of deniability
and undetectability users have against a particular adversary, we formulate
them as expected estimation error (EEE). From Eq. 3.16, we substitute profiles
with sequences to obtain:

E =
∑

r
P ( r )

∑
r
P ( q | r )

∑
r̂
P ( r̂ | q ) · `(r̂, r)

where `(r̂, r) denotes either of the two distance functions we use to capture
deniability and undetectability, as we show below.

Deniability We measure the level of deniability (N) as the proportion of queries
a DCA classifies as real that are dummies. We define

`N ≡
|̂r \ r|
|̂r|

where |̂r \ r| represents the cardinality of the relative complement of r in r̂, namely,
the number of dummy queries the adversary assigns to the filtered sequence r.
The distance `N represents the ratio of dummy queries in the sequence of queries
the adversary classifies as real. Hence, we obtain deniability N as:

N = EN ≡
∑

r
P ( r )

∑
q
P ( q | r )

∑
r̂
P ( r̂ | q ) · |̂r \ r|

|̂r| (4.7)
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Undetectability We measure the level of undetectability (U) as the proportion
of real queries a DCA classifies as dummy. We define

`U ≡
|r \ r̂|
|r|

where |r \ r̂| represents the cardinality of the relative complement of r̂ in r,
namely, the number of real queries the adversary classifies as dummies. The
distance `U represents the proportion of real queries the adversary classifies
as dummy with respect to the total number of real queries. Hence, we obtain
undetectability U as:

U = EU ≡
∑

r
P ( r )

∑
q
P ( q | r )

∑
r̂
P ( r̂ | q ) · |r \ r̂|

|r| (4.8)

A CBPWS provides zero deniability and undetectability if r̂ = r, i.e. either the
DGS reveals which queries are real and which ones are dummy or the adversary
has enough background information to accurately tell all real and dummy
queries apart. A CBPWS provides maximum deniability and undetectability
when the adversary’s best guess is to classify queries as dummies based on the
proportion of dummies issued by the obfuscation tool and the prior probability
of any query to be real.

On topic agnosticism.

We remark in Sect. 3.2 that EEE is unique among the analysis measures we
propose in that it incorporates the adversarial profiling function g that maps each
sequence of queries r to a profile x = g(r). Moreover, (ε, `, δ)-local differential
privacy (LDP) incorporates a notion of distance ` between sequences r and r′
that allows CBPWS designers to guarantee varying levels of indistinguishability
ε according to distance `(r, r′).

In private web search, measures that do not account for the profiling function g
and its semantic classification algorithm (SCA) are oblivious to the mapping
between queries and topics, which means that any dummy query that differs
from a real query obfuscates “equally well”. To illustrate, let us consider three
CBPWS tools, T1, T2 and T3, that process user query “Karl Marx”. Tool T1
generates dummy queries “Friedrich Engels” and “Rosa Luxemburg”. Tool T2
generates dummy queries “Charles Darwin” and “Leonardo da Vinci”. Tool
T3 generates dummy queries “homemade Nutella” and “Bohemian Rhapsody”.
Let us further consider that all three T1, T2 and T3 provide the same level of
deniability and undetectability, namely, N = U = 2

3 . The level of deniability
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T1 provides is worthless if we assume the user wishes to hide she is interested
in “communism”. However, if the user is interested in “famous bearded guys”
instead, T1 provides a plausible cover, while T2 does not. To believe that
T3 provides better cover simply because no apparent topic relationship exists
between real and dummy queries relies on a set of assumptions about the
mapping between queries and topics outside the control of a CBPWS tool,
i.e. the combination “Karl Marx, homemade Nutella, Bohemian Rhapsody” may
reinforce a user’s real profile components xi in ways that CBPWS designers are
not aware of.

Topic-agnostic measures are oblivious to query-topic mappings, thus potentially
capture indistinguishability between real and dummy queries that from the
user’s or adversary’s point of view are equivalent. Topic-aware measures on
the other hand capture a set of query-topic mappings to prevent paradoxes
like in the example above, yet at the risk of overestimating protection under
alternative query-topic mappings. As Fig. 3.4 illustrates, the more assumptions
underlie a measure, the less generality, yet more expressivity with respect to a
particular adversary and attack. The evaluation of CBPWS tools in Sect. 4.3
sheds further light on the implications of using either type of measure.

4.3 Evaluation of chaff-based private web search
tools

In this section we provide an overview of CBPWS tools that have been proposed
in the literature. We bring these designs under the model and analytical
framework we have introduced above to demonstrate our model’s ability
to describe diverse tools and the suitability of our analytical framework to
evaluate CBPWS.

Our evaluation reveals pervasive flaws and misconceptions in the design and
analysis of CBPWS tools. We analyse and deconstruct why existing tools fail to
adequately address the challenges that CBPWS involves, identifying common
pitfalls and solutions to address them.

Lastly, we note that bringing these tools under our framework involves replacing
the original notation and concepts they define with ours.
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4.3.1 GooPIR: h(k)-Private Information Retrieval3

GooPIR is a web search program available for Windows and Unix4 that adds
dummy keywords to users’ queries before forwarding them to Google, then
retrieves and returns to users only the search results that relate to the real
keywords [182]. Instead of generating and sending additional, separate dummy
queries as we model CBPWS in Sect. 4.1.3, GooPIR selects k − 1 dummy
queries and ‘ORs’ them to the real query r. In fact, GooPIR’s authors say to
rely on Google not only because of its popularity, but also because it offers
the possibility to OR query terms in a single query. A regular Google search
‘ANDs’ the keywords in each query, i.e. each search result is relevant to all the
keywords in a query. Conversely, in an OR-ed query, Google returns results for
each OR-ed keyword separately. GooPIR retrieves the results Google provides,
then returns to the user only those that relate to the real query, filtering away
dummy search results. GooPIR does not modify the real query’s keywords nor
intends to retrieve different results to what real queries alone produce. Hence,
in practice, OR-ing k − 1 dummy keywords to the real query is analogous to
sending k − 1 dummy queries simultaneously with the real query. Hence, to
better accommodate this design choice in our model, we denote each set of real
keywords as real query r, each set of dummy keywords as dummy query d, and
the set that GooPIR sends simultaneously as query q = {r ∨ d1 ∨ . . . ∨ dk−1}.

Privacy property and measure. GooPIR aims to offer what authors Domingo-
Ferrer et al. denominate h(k)-private information retrieval (h(k)-PIR). A
CBPWS satisfies h(k)-PIR if the uncertainty of any adversary about the real
query r corresponds to H(R̂) ≥ h(k), with R̂ the random variable that models
the ‘value’ the adversary estimates the real query r takes, for some function h
and a non-negative integer k so that h(k) ≥ 0.

Dummy generation strategy. GooPIR’s DGS relies on the following tactics:

Simultaneous submission of real and dummy queries as part of the same
query set q, to prevent the adversary from exploiting dummy queries’
timing and metadata to filter them away.

3Whereas throughout the evaluation of existing CBPWS tools we perform in this section
we adapt each paper’s notation to match the one we introduce in this thesis, in this particular
case we keep the author’s notation h(k) because it is included in the paper’s title. We however
warn that it conflicts with the notation of h as a social utility function (q.v. Sect. 2.2) and
that GooPIR’s h(k) is entirely unrelated to the concept of social utility.

4Available for download http://unescoprivacychair.urv.cat/goopir.php

http://unescoprivacychair.urv.cat/goopir.php
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Equally popular accompanying dummies. GooPIR’s designers acknowl-
edge that the adversary may be able to use a DCA that exploits the
popularity of queries to identify and remove dummies, i.e. with more
popular queries having a higher probability of being the real query. To
overcome this threat, GooPIR computes the popularity of the real query
then selects k − 1 dummy queries with a similar popularity. GooPIR
assumes query popularity to be proportional to the frequency of its
keywords’ appearance in the Web and that a public dictionary labelled
with such frequencies is available.

Fixed sets of accompanying dummies. To prevent disclosure attacks [13,
151] GooPIR always expands each real query r with the same set of
k − 1 dummy queries. Thus GooPIR prevents recurrent real queries from
appearing more frequently than dummies, thwarting adversaries’ attempts
to perform frequency analyses to identify them.

Evaluation

Authors Domingo-Ferrer et al. provide an evaluation of GooPIR, concluding
that it provides h(k)-PIR [182]. Their analysis however underestimates the
adversary; it disregards adversaries’ background knowledge and neglects the
fact that adversaries can exploit topic correlations across sequences of queries r.

GooPIR’s privacy measure, h(k)-PIR. GooPIR’s h(k)-PIR is an attack-
centred analysis (ACA) measure of the adversary’s uncertainty about users’ real
queries, namely, the entropy of the random variable the adversary estimates to
describe real query values, H(R̂). GooPIR’s h(k)-PIR differs from information
gain (q.v. Sect. 3.2.2) in that it does not consider an adversary’s prior belief.
Whereas h(k)-PIR measures the privacy threat an adversary poses, it does not
capture to what extent GooPIR (or any other CBPWS tool) is responsible for
it, i.e. h(k)-PIR is oblivious to the relationship between the prior information of
the adversary about Pβ(R = r) and the estimation Pβ(R = r | Q = q) = P ( R̂ ).

Hence, as an ACA measure that focuses on adversarial uncertainty, h(k)-PIR
is inadequate as a general CBPWS design constraint. No CBPWS can bound
the uncertainty of the adversary; if the adversary has extremely accurate prior
knowledge —so that H(R̂) < h(k) before observing a CBPWS tool’s output— the
CBPWS can at most, on average,5 prevent the adversary from gaining additional

5On particular attack scenarios and observations the entropy of the adversary may increase,
e.g. if by chance the user’s behaviour contradicts the (accurate) background knowledge the
adversary has about her [130, 173]. This is why information gain is a more suitable measure
to evaluate particular attacks and scenarios (q.v. Sect. 3.2.2).
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knowledge and further reducing H(R̂), rather than increasing its uncertainty
to H(R̂) ≥ h(k). Conversely, mechanism-centred analysis (MCA) measures such
as indistinguishability and information leakage (q.v. Sect. 3.2.1), abstract away
from adversaries’ knowledge and focus on the obfuscation mechanism alone,
offering more general guarantees that apply to a wider range of adversaries,
prior beliefs Pβ(R = r) and prior probability distributions P (R = r ); that is
why we favour them to impose design constraints.

GooPIR’s DGS. Since no CBPWS can control the prior knowledge of an
adversary, it follows that GooPIR cannot generally provide h(k)-PIR.

Let us however assume a weaker adversary, namely, one that does not have
information about each particular user —say Alice, with PA(RA = r)— yet
has perfect information on the probability distribution of the general user
population, i.e. Pβ(R = r) = P (R = r ). Let us further assume that, for
each real query r, GooPIR generates k − 1 dummy queries dj with exactly
the same prior probability P ( r ) = P ( dj ),∀j ∈ {1, k − 1} —that GooPIR
assumes to match its online popularity, as we examine below. Under these
conditions, according to GooPIR’s designers, the adversary cannot distinguish
real queries from dummies and, as a result, GooPIR would provide h(k)-PIR
with h(k) = H(R) = log(k).

However, unless we assume that there is no logical sequence, no dependence
between successive user queries, such guarantees do not hold, as GooPIR
disregards the semantic relationship between real keywords in successive user
queries. Because GooPIR chooses dummies for each query independently,
it does not hide correlations between real terms relating to a particular
topic or family of topics. As an example, let us consider k = 3 and the
following three sets of queries: q1 = {“lion”, “airport”, “vacancy”}, q2 =
{“song”, “shower”, “leopard”}, q3 = {“stock”, “tiger”, “ribbon”}. Figure 4.7
depicts the web search provider receiving these three queries. A DCA uses a
SCA to learn that topic “big cats” appears more often than others, hence it is
more likely that the user sent queries {“lion”, “leopard”, “tiger”} than any other
combination, even if the frequency of the keywords in each query is roughly the
same and each real real keyword is always accompanied by the same dummies.
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Figure 4.7: SCA attack on GooPIR, exploiting topic similarity across successive
queries. Connected keywords over white background most likely to be real.
Greyed-out keywords discarded as dummies.

If h(k) = H(R̂) = log(k), it follows that in terms of deniability:6

N[h(k)=log(k)] =
∑
r

P ( r )
∑
q

P ( q | r )
∑
r̂

P ( r̂ | q ) · |r̂ \ r|
|r̂|

(4.9a)

=
∑
r

P ( r )
∑
q

��
���:

1
P ( q | r )

k−1∑
1

1
k

(4.9b)

= k − 1
k

∑
r

P ( r ) = k − 1
k

= ρ (4.9c)

i.e. deniability matches the dummy rate, as that is precisely the ratio of
dummies the adversary classifies as real. However, Eq. 4.9a requires that
∀r, P ( r ) =

∏
r∈r P ( r ). Under this assumption, P ( r̂ | q ) · |̂r \ r| follows a

binomial distribution with parameters n = |̂r| and p = (k − 1)/k, with p the
marginal probability of any query r̂ being a dummy, as the adversary’s optimal
strategy involves randomly selecting one query from each query set of k queries
in a sequence of |q| = |̂r| querysets, with a success probability (for the user) of
selecting a dummy within each queryset of k−1

k . Hence,∑
r̂
P ( r̂ | q ) · |̂r \ r|

|̂r| = k − 1
k

However, this is not generally true if P ( r ) 6=
∏
r∈r P ( r ), i.e. if users do not

generate each query independently of other queries.
6For brevity we omit results for undetectability, as assuming h(k) = log(k) implies U = N.
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Despite the fact that GooPIR disregards topic correlation across query sequences,
thereby underestimating the level of indistinguishability between reals and
dummies, we further examine the role of two of GooPIR’s DGS elements in
achieving indistinguishability.

We recall that a priori deniability

NIND =
∑

rj∈Rc
d
P ( q | rj ) · P ( rj )∑

ri∈Rq
P ( q | ri ) · P ( ri )

where the term P ( q | rj )
P ( q | ri ) represents a CBPWS tool’s indistinguishability and

the term P ( rj )
P ( ri ) the relationship between priors.

GooPIR’s fixed set of accompanying dummies ensures that ∀ri, rj ∈ q, P ( q | ri ) =
P ( q | rj ) = 1, even if it fails to ensure indistinguishability because it does not
account for sequences of queries r so that ∀r, r′ ∈ q, P ( q | r ) = P ( q | r′ ) = 1.
If we assumed independence between queries however, GooPIR would indeed
provide indistinguishability between real and dummy queries so that, for each
query ri in query set q:

NIND(ri) =
∑
rj∈q|rj 6=ri P ( rj )∑

rj∈q P ( rj ) (4.10)

showing that, despite indistinguishability between {ri} ∈ q, the adversary can
still exploit knowledge about a priori probabilities to undermine deniability, e.g. if
the CBPWS tool accompanies a popular query rd with extremely uncommon
queries rj so that

∑
rj∈q|rj 6=rd P ( rj )�

∑
ri∈q P ( ri ) then NIND(rd)→ 0.

To prevent that
∑
rj∈q|rj 6=rd P ( rj )�

∑
ri∈q P ( ri ), GooPIR resorts to equally

popular accompanying dummies, in an attempt to ensure that P ( ri ) '
P ( rj ) ∀ri, rj ∈ q. This equalises deniability for every query so that

NIND(rd) =
∑
rj∈q|rj 6=rd P ( rj )∑

ri∈q P ( ri ) = k − 1
k

These two GooPIR DGS’s elements illustrate the type of guarantees indistin-
guishability, as a measure, provides and limitations thereof. On the one hand,
indistinguishability holds regardless of what the adversary knows or the prior
probability distributions P (R = r ) and user Alice’s PA(R = r); i.e. with fixed
sets of accompanying dummies, no amount of adversarial knowledge or changes
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in P (R = r ) can alter the fact that P ( q | rj ) = P ( q | ri ), ∀ri, rj ∈ q. On the
other hand, because indistinguishability is oblivious to external information
sources a Proto cannot control, adversaries can still exploit those sources
of knowledge the CBPWS does not account for to undermine its protection.
With fixed sets of accompanying dummies alone, an uninformed adversary
cannot distinguish which of the k queries in q is the real query, all of them
are equally likely with P ( ri ∈ q ) = 1

k . An informed adversary can however
determine that one of the queries ri has a higher probability of being real, thus
defeating the CBPWS tool’s protection. Hence, a CBPWS tool can account
for the prior probability P (R = r ) and strategically select accompanying sets
of equally likely queries, so that the informed adversary cannot exploit that
knowledge in its attack. Still, whereas fixed sets of accompanying dummies
guarantees indistinguishability regardless of priors and adversary knowledge,
equally popular queries depends on an assumption about what the adversary
knows and succumbs to changes, alterations and misestimations. GooPIR
assumes probability distribution P (R = r ) equals queries’ online popularity
according to some universal reference dictionary or corpus, thus does not account
for and is vulnerable to attacks based on the evolution, popularity shifts and
trends of web search, or specific information about individual users, e.g. the
adversary may detect a sudden increase in query frequency related to trends
and viral content of interest to the user, as the probability of choosing those
terms would not be explained by the dictionary alone —unless such a dictionary
is made aware of short-lived surges of query term popularity.

Moreover, by equalising deniability and undetectability to k−1
k the equally

popular queries strategy forestalls the ability of users to enjoy higher
levels of deniability or undetectability if the prior probability or adversarial
knowledge is in their favour, e.g. in the example we provide earlier, where∑
rj∈q|rj 6=rd P ( rj )�

∑
ri∈q P ( ri ), if the user’s query is actually one of the

uncommon queries rj , a priori rj becomes undetectable, as NIND(rj)→ 1.

Conclusion. GooPIR’s DGS relies on simultaneous submissions and fixed sets
of accompanying dummies seeking to ensure indistinguishability between reals
and dummies. Whereas the rationale for both strategies is well founded, it
disregards topic correlations across sequences of queries that enable a DCA
to tell reals and dummies apart. Moreover, its equally popular dummies
strategy seeks to prevent an adversary from exploiting information about
the popularity of queries, yet assumes that popularity to be static and
true, disregarding mismatches between online popularity and the actual prior
probability distribution P (R = r ), as well any other additional source
of information.
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4.3.2 Plausibly deniable search

Murugesan and Clifton propose Plausibly deniable search (PDS), a CBPWS
tool that aims to enable a user to plausibly deny her search queries [396, 397].
Similarly to GooPIR, PDS accompanies each real query r with k − 1 dummy
queries to compose a set of k queries Sq and defeat timing attacks; it also
relies on assumptions about adversarial knowledge and attack strategies that
undermine the privacy guarantees it purports to offer.

Privacy property and measure. Muruguesan and Clifton seek to provide
Plausible Deniable Privacy (PD-Privacy), which they define as a property of
queryset Sq = {q1, . . . , qk}, where one query qi is the real user query qv and the
remaining k − 1 queries are dummies. Set Sq satisfies k-PD-Privacy if:

i) any query qj ∈ Sq leads to Sq with equal probability.

ii) all qj ∈ Sq relate to different topics.

iii) all qj ∈ Sq are equally plausible, i.e. the probability that the CBPWS
generates any qj ∈ Sq is similar to the probability that users gener-
ate qj themselves.

Dummy generation strategy. To guarantee PD-Privacy, Murugesan and
Clifton propose the following tactics:

Simultaneous submission. Analogously to GooPIR, each real query is
accompanied by k − 1 dummy queries to prevent an adversary from
exploiting query timing and metadata.

Canonicalisation. PDS substitutes user queries with canonical queries [396,
397]. PDS builds a dictionary of canonical terms that represent the
universe of documents that users are interested in, then generates a set of
canonical queries by selecting the canonical terms that are closest in the
semantic space, i.e. PDS assigns semantically similar terms —assuming
they retrieve the same or similar documents— to a single, canonical query.
Thus PDS assigns to each real query qv the canonical query qi that is
closest in the distance space, so to obtain equal or similar as possible
results to the ones the real user query qv would retrieve.
As canonicalisation entails a potential drop in user utility, PDS does not
satisfy the fundamental utility-preserving principle underlying Protos.
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Instead, PDS better represents a hybrid approach that combines utility-
preserving and utility-degrading obfuscation. In our analysis of PDS, we
do not examine the canonicalisation strategy’s impact on utility, implicitly
assuming that the universe of canonical queries is rich enough and there
is a sound replacement strategy to preserve user utility. At the same
time, we acknowledge that realising such a canonicalisation strategy is far
from trivial.

PD-Querysets. In addition to replacing the real user query qv with a canonical
query qi, PDS’s DGS generates PD-Querysets, this is, sets Sq of k canonical
queries that PDS submits simultaneously. PDS generates PD-Querysets
according to the following principles:

Coverage. PDS ensures that there is a query qi ∈ Q that is equal or
similar enough to qv to retrieve similar results from the search engine
to the ones qv obtains.

Deniability. PDS ensures that for every qj ∈ Q there is at least one
user query q′v that maps to canonical query qj . We note that PDS’s
definition of deniability is independent and differs from our definition
of deniability in Sect. 4.2.2.

Diversity. PDS groups k canonical queries that are as far as possible
from each other in the semantic space, seeking to satisfy PD-Privacy’s
second requirement.

Plausibility. PDS groups k canonical queries according to the number
of real queries that map to them. Canonical queries to which a
large number of real queries map to are included in the same PD-
Queryset. Similarly, PDS groups in the same PD-Queryset canonical
queries to which a small number of real queries map to, queries PDS
considers implausible.

Murugesan and Clifton acknowledge that, similarly to GooPIR, PDS does not
defend against attacks that exploit sequences of edited queries, this is, sequences
of queries that users send to narrow down their search or further explore a topic.
They argue that PDS may not protect against this threat, as it is possible that
dummy queries’ topics in a sequence of PD-Querysets do not match, i.e. that
dummy queries in the first queryset relate to different topics than the ones in the
second query set and so on. As each query set Q is generated independently from
each other, if sequential real queries map to different canonical queries, PDS
does not guarantee that the corresponding dummy queries in their respective
query sets are related to each other the way that real queries are.
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Evaluation.

PD-Privacy. We review the three conditions Murugesan and Clifton set for a
CBPWS tool to satisfy k-PD-Privacy.

The first condition enforces query indistinguishability, requiring that a CBPWS
tool generates a query set Sq with the same probability for any qj ∈ Sq,
i.e. requiring that P (Sq | qj ) = P (Sq | qi ) ∀qi, qj ∈ Sq. As in our evaluation
of GooPIR (q.v. Sect. 4.3.1), indistinguishability is oblivious to the prior and
the adversary’s knowledge and postprocessing activities, which means that it
holds regardless of them, yet does not capture the actual privacy threat such
unaccounted-for variables pose.

The second condition enforces a notion of privacy specific to a definition of,
on the one hand, a query’s topic and, on the other hand, a notion of distance
between topics that represents how “different” topics are, i.e. implicitly requiring
a certain distance `(x,y), with x = g(qv). Such a constraint however does not
necessarily translate into a guaranteed distance `(x, x̂) that leads to profile
confidentiality, as it disregards adversarial filtering and post-processing. In
other words, enforcing a minimum distance `(x,y) does not necessarily lead to
a minimum distance `(x, x̂).

The third condition enforces a deniability bound, requiring that the prob-
ability that the user generates any query in query set Sq is the same,
i.e. P ( qj ) = P ( qi ) ∀qi, qj ∈ Sq, so that, similarly to GooPIR, N = |Sq|−1

|Sq| .

Similarly to GooPIR, the deniability condition implies that a CBPWS tool
cannot generally enforce k-PD-Privacy. As we have examined in the case of
GooPIR, deniability depends on assumptions about the prior probability of
users’ search activity sequences, so adversaries can exploit flawed assumptions
about P (R = r ) that a CBPWS tool incorporates.

Lastly, the level of k in k-PD-Privacy conflates the interplay between the three
conditions above, e.g. let us consider two CBPWS tools that satisfy k-PD-
Privacy, one with high topic diversity, the other with low topic diversity; k does
not account for the difference in topic diversity.

PDS’s DGS. Similarly to GooPIR, since PDS can neither control the prior
probabilities P (R = r ) nor the prior P (Rβ = r ) adversaries relies on, it follows
that it cannot generally satisfy k-PD-Privacy.

PDS’s simultaneous submission and canonicalisation prevents an adversary from
exploiting divergences between real queries’ and dummy queries’ timing and
syntax, respectively, to distinguish them. Whereas simultaneous submission
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forces dummy queries into real timing patterns, canonicalisation forces real
queries into “dummy querying” syntax. Both represent sound piecemeal
strategies to hamper an adversary’s efforts to tell real and dummy queries apart.

PDS’s assumptions in its PD-Queryset construction about what makes
queries diverse (in terms of topic similarity) and plausible introduce however
vulnerabilities an adversary can exploit and PDS disregards.

PDS defines topic similarity as the distance between two queries in a semantic
space, assuming a function gT that maps queries to the semantic space and
a particular measure of semantic distance, namely, cosine similarity. Hence,
queries are diverse if they are far from each other on the semantic space.
Moreover, PDS ties plausibility to the semantic space by using the relative
density of real queries in the semantic space around the neighbourhood of the
canonical query they map to, assuming a large corpus of queries Sr is available
to estimate such density. Thus queries that map to canonical queries with a
high relative density (many real queries map to that canonical query) end up in
a query set with other canonical queries whose neighbourhood in the semantic
space is high density. We note that this notion of plausibility is a spin on
GooPIR’s understanding of plausibility by focusing not on individual queries’
popularity, but groups of queries that, taken together, lead to a popular topic.
This divergence across interpretations further highlights that designers adopt
non-universal definitions of what makes a query plausible.

In fact, because the notion of plausibility PDS adopts is only one among many,
the ability of PDS to ensure plausibility relies on the assumption that the
adversary uses the same g as PDS, i.e. that g = gT . If the adversary uses a
different SCA, the semantic relationships that PDS seeks to enforce may no
longer hold, undermining the plausibility of dummy queries.

To illustrate this, consider the following example using a PDS system with k = 2,
i.e. PDS generates one dummy query to accompany each real query. Let us say
that a user issues the queries {Justin Bieber}, {Toy Story}, {Disneyland}, and
that according to SCAPDS the dominant topics of these queries are “music”,
“cartoons”, and “amusement parks”, respectively. Let us further say that, also
according to SCAPDS, PDS masks these categories with dummy queries about
“history”, “physics”, and “cars”, respectively. Now consider that the adversary
implements a different SCAAdv that classifies all three real queries above as
being related to “entertainment for children”, rather than individually associated
to “music”, “cartoons”, and “amusement parks”. Given SCAAdv, it is apparent
to the adversary that kids-related topics appear more often than others, hence
that kids-related queries are probably the user’s real queries.
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Conclusion. PDS relies on equally plausible, simultaneously sent, fixed sets
of dummy queries, yet by incorporating assumptions about which topics a
query belongs to and what plausibility means, it underestimates the ability of
an adversary to exploit those very assumptions to its advantage. Thus PDS
highlights the lack of control designers have over g and the risks of relying on
assumptions a CBPWS tool has no effective control over.

4.3.3 TrackMeNot 2.0

TrackMeNot (TMN) is a CBPWS tool designed by Howe and Nissembaum [294].
Implemented as a browser plugin for both Firefox and Chrome,7 the first design
of TMN [294] suffered from critical flaws that undermined its ability to meet
its own privacy goals. Several authors, amongst whom ourselves, pointed out
to or demonstrated an adversary’s ability to filter out dummies from a user’s
TMN-obfuscated web search activity [17, 42, 430, 473]. As a response to such
criticisms, Toubiana et al. released an improved version [523] —what we refer
to as TMN 2.0— that we evaluate in the remainder of this section.

Privacy property and measure. The new version of TMN sets itself two
objectives: query indistinguishability and side channel leakage prevention.
Toubiana et al. say that a a CBPWS tool provides indistinguishability if:

∀q ∈ q, P ( q /∈ r̂ | q ∈ r ) = P ( q /∈ r̂ | q /∈ r ) = ρ (4.11)

simplifying,

∀q ∈ q, P ( q /∈ r̂ ) = ρ (4.12)

Toubiana et al. define two variants of indistinguishability. On the one hand,
topic-exposed indistinguishability, whereby a user’s estimated profile x̂ has the
same non-zero components as her real profile x, formally:

∀xi ∈ x, xi = 0⇒ x̂i = 0 (4.13)

On the other hand, topic-obfuscated indistinguishability, whereby a user’s
estimated profile x̂ has n > m non-zero components, with m the number
of non-zero components originally in x, namely,

7The extension can be obtained at https://cs.nyu.edu/trackmenot/

https://cs.nyu.edu/trackmenot/
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‖x̂‖0 − ‖x‖0 = n−m (4.14)

where ‖ · ‖0 represents the L0 “norm”.

TMN’s authors provide a set of guidelines towards side channel leakage
prevention such as indistinguishability of query metadata and browser behaviour,
as well as clicks on web search results. However, they do not formalise how to
measure a CBPWS tool’s ability to prevent side channel leakage.

Dummy generation strategy.

TMN assumes the search engine publishes a universe of topics T that it uses to
classify user queries. According to this universe of topics T , each of a user’s
profile coordinates xi represents the weight of a topic τi ∈ T in the user’s profile.
To generate dummy queries, TMN relies on the following elements:

Frequency profile. TMN computes a frequency profile of a user’s search
activity that consists of query frequency across topics, keyword frequency
within topic and relative popularity of n-grams; TMN generates dummy
queries that follow a similar frequency profile.

Timing profile. TMN analyses user search behaviour timing patterns,
maintaining weekly and daily profiles to generate dummy queries that
approximately replicate the timing and the inter-arrival times of users’
genuine web search activity. Moreover, TMN only generates queries when
the browser is active, yet does not weave dummies into a sequence of user
queries in a topic. Instead, it generates a temporally correlated sequence
of dummy queries in a target topic τi.

To provide topic-exposed indistinguishability, TMN uses public RSS feeds to
generate queries that relate to topics τi | xi > 0.

To provide topic-obfuscated indistinguishability, TMN expands the frequency
profile to identify long-term and time-varying interest topics, so that for each
frequency range TMN generates dummy queries at a similar frequency pattern
on at least one additional topic τi | xi = 0.

Evaluation.

Toubiana et al. argue that TMN does not attempt to provide robust privacy
guarantees, that rather it seeks to protect against general bot detection tools [523,
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566]. TMN’s authors evaluate the ability of generic search bot detection tool to
detect TMN queries, showing in their experiments that it fails. However, the
bot specification they use in the experiments does not exploit any of TMN’s
design particularities, which means that TMN assumes a naive adversary that
does not exploit all the information available about the tool and therefore does
not even detect it.

Assuming a naive adversary does not justify the complexity of TMN’s DGS,
as a naive adversary may require TMN to implement little to no measures to
achieve indistinguishability. Moreover, it offers little guarantees against future
general bot detection tools that incorporate TMN’s dummy generation patterns.
Hence, we examine both TMN’s DGS and the measures it implements towards
tool undetectability (q.v. Sections 3.4.1 and 2.4.1).

TMN’s indistinguishability. TMN adopts an attack-centred analysis (ACA)
by focusing on adversarial classification performance. TMN’s query indistin-
guishability requires that an adversary classifies real and dummy queries based
on the dummy rate alone, i.e. so that the posterior probability that the adversary
classifies any query as a dummy coincides with the a priori probability that
any query is dummy. As in our previous evaluation of GooPIR and Plausibly
deniable search (PDS), such a privacy goal requires a CBPWS to assume a
particular distribution over the space of real query sequences R or a particular
instance of adversarial knowledge.

TMN’s two flavours of indistinguishability, topic-exposed and topic-obfuscated,
further require mapping queries to topics. Hence, whereas Eq. 4.11 imposes
a privacy requirement through a topic-agnostic measure, its realisations as
topic-exposed and topic-obfuscated mandate additional assumptions about
the profiling function g, thus representing a largely unrealisable requirement
if we expect a CBPWS tool to provide resistance against arbitrary profiling
functions gi.

TMN’s DGS. Toubiana et al. evaluate TMN against generic bot detection
tools and argue that “[TMN] can not be detected and no features let a search
engine distinguish artificial and user queries” [523]. Their evaluation however
largely underestimates the ability of an adversary to detect TMN, as generic bot
detection tools do not target the features that make TMN potentially detectable,
e.g. they do not test TMN’s detectability by training a classifier with both
TMN and non-TMN web search activity samples. Hence, TMN’s undetectability
largely rests on the assumption that the adversary does not strive to detect it.
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Moreover, Toubiana et al. do not evaluate TMN’s ability to provide query
indistinguishability, be it topic-exposed or topic-obfuscated. Rather, they
test whether a search engine that publishes the user search profiles it builds
incorporates TMN’s dummy queries, concluding that since it does, they must
be indistinguishable [523].

In light of such divergence between TMN’s stated privacy goals and its evaluation,
we briefly examine to what extent TMN’s DGS can meet its stated design goals.

TMN suffers from the same vulnerability as PDS in that it assumes a mapping
between queries and topics, yet does not consider the ability of an adversary
to exploit alternative mappings that reveal relationships between a users’ real
queries TMN’s SCA disregards.

Moreover, its DGS to provide topic-obfuscated indistinguishability fails to
provide ρ indistinguishability by design because it partitions the set of real and
dummy profile components in two: by replicating the frequency profile of a user’s
queries related to one particular topic τi | xi > 0, in another topic τj | xj = 0,
TMN exposes that one of them is entirely dummy and the adversary entirely
filters the dummy component xj with probability 1/2, regardless of ρ’s value.

Lastly, as we discuss in Sect. 3.4.1, tool undetectability and profile confidentiality
impose conflicting constraints on a CBPWS’s DGS. On the one hand, tool
undetectability requires that CBPWS’s users exhibit similar activity patterns
to those that do not use a CBPWS tool, thus severely limiting the rate ρ at
which the tool can generate dummies, e.g. a user that generates many dummies
may be detected as a bot, as no human can generate queries at such rate on so
many different topics. On the other hand, a small rate ρ has an impact on the
maximum indistinguishability level a CBPWS can attain, thus undermining
profile confidentiality. Toubiana et al’s evaluation of TMN disregards the
trade-offs between tool undetectability and profile confidentiality.

Conclusion. TMN illustrates the consequences of discrepancies between a
CBPWS tool’s stated goals, its operationalisation in privacy measures and its
DGS. Moreover, by assuming a naive adversary that does not strive to attack
the tool, TMN’s authors foreclose a thorough evaluation of TMN’s resistance
against attacks.

4.3.4 PRAW - A PRivAcy model for the Web.

Privacy model for the web (PRAW) is a CBPWS tool that has undergone several
rounds of analysis and refinements [195, 196, 197, 198, 335, 485]. PRAW differs
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from the CBPWS tools we have examined so far in that it considers as adversary
the Internet service provider as opposed to the search engine. Moreover, PRAW
considers that the adversary builds profiles out of the keywords on the sites
that users’ clicked query search results link to, as opposed to the keywords
on users’ search queries. Whereas we may argue that dummy queries are an
integral part of a CBPWS tool’s design, we also note that the other CBPWS
tools we examine in this chapter disregard the generation of dummy clicks on
search results, thus rendering dummy queries completely distinguishable from
real queries. Hence, in our analysis and evaluation of PRAW we abstract away
from dummy search query generation and focus on its DGS of clicks on search
results, even if we acknowledge that a sound CBPWS tool must account for
both dummy queries and clicks on search results (q.v. Sect. 4.4.4).

Privacy definition. PRAW defines privacy in web search as the distance
between a user’s real profile x and the obfuscated, observed profile y.

Privacy measure. PRAW uses the cosine similarity between profiles as a
measure of privacy; so that the less similar x and y are (greater distance), the
smaller SC(x,y) is and the less information y gives away about x.

PRAW’s authors refer to the similarity SC(x,y) as the level of privacy “from
PRAW’s point of view” and suggest to use SC(x, x̂) as an “external privacy
measure, from an attacker’s point of view, [...] assuming an attack on the
system” [198].

Dummy generation strategy. Concordant with PRAW’s privacy definition,
its DGS seeks to generate dummies that decrease the similarity SC(x,y) to
maximise the level of privacy.

PRAW relies on an SCA to build profiles x and y from the terms in each visited
web page. PRAW measures the level of privacy protection as the distance
between x and y and communicates this number to the user, so that she can
choose to generate more dummy traffic to increase her level of privacy protection.

PRAW’s DGS performs (on average) k dummy visits for each real visit, so
that ρvisits ' k/(1+k), and generates dummy queries using “a mix of terms,
originating in [the real user profile x], along with random terms originating from
an internal database of terms that is a glossary of terms related to the general
domain of the user’s interests” [198]. The goal of this strategy is to obtain
search results that relate to topics that are not too different from those the user
is interested in to prevent an adversary from deploying clustering attacks that
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distinguish real and dummy visits based on their topic [198]. PRAW’s authors
acknowledge that such a strategy may reveal users’ broader interests, but argue
that it is necessary to generate plausible dummy visits and that preventing
the adversary from inferring specific topics of interest offers sufficient privacy
protection, e.g. the adversary may learn about users’ interest in computer
security, but not about what exactly they are interested in within that domain,
be it cryptography or malware detection.

Among the search results returned to each dummy query, PRAW clicks on a
random subselection of them. Moreover, because users tend to follow hyperlinks
within the pages they visit, PRAW similarly clicks on links to a random depth on
dummy visits to boost indistinguishability between real and dummy visits. To
undermine an adversary’s ability to exploit time patterns and tell dummy visits
apart, PRAW monitors user clicking patterns and simulates similar clicking
behaviour in terms of both time between clicks and time spent browsing.

Evaluation.

Privacy as similarity. PRAW defines privacy “from PRAW’s point of view” as
the similarity SC(x,y) and privacy “from an attacker’s point of view” as the
similarity SC(x, x̂). According to the terminology we introduce in Sect. 3.2,
PRAW’s authors implicitly refer to two types of measures or analyses: MCA
and ACA, respectively. However, similarity or distance measures are unsuitable
for MCA analysis because they implicitly assume a naive adversary that does
not attack the CBPWS tool, namely, an adversary that observes y and does
not attempt to filter it.

To illustrate why distances `(x,y) are inadequate measures of privacy, let us
assume that PRAW relies on a DGS that chooses an observed profile yi for
every real profile xi according to an optimisation function f(SC(x,y), ρvisits)
that maximises the distance `(x,y) for a budget of dummy visits ρvisits. Let
us further assume that for each xi there is a unique yi that satisfies the
condition above. This DGS fails to provide any privacy protection because
even if similarity SC(xi,yi) is minimum (and therefore distance is maximum), a
strategic adversary can revert the optimisation function SC(xi,yi) to retrieve the
xi that triggers each yi, as ∀j 6= i, P ( xj | yi ) = 0 ⇐⇒ P ( xi | yi ) = 1, j = i.
Therefore, this DGS does not offer any protection and the similarity SC(x, y),
even if minimum, is meaningless.

Conversely, as we explain in Sect. 3.2, distances `(x, x̂) are appropriate measures
of privacy for particular adversaries and attacks. If an adversary deploys a
suboptimal attack or relies on imprecise or limited background knowledge,
the distance `(x, x̂) that measures how close to x the profiles x̂ the adversary
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estimates are underestimates the ability of a more knowledgeable adversary to get
closer to x, as `(x, x̂) does not capture all the information the CBPWS tool leaks.
Moreover, the use of a distance `(x, x̂) assumes a particular profiling function g
and metric space that ` induces that do not necessarily match the adversary’s,
thus further overestimating the privacy level, as we have earlier discussed in the
analyses of both PDS and TMN (q.v. Sections 4.3.2 and 4.3.3, respectively).

PRAW’s authors argue that SC(x, x̂) = 0 represents zero similarity and therefore
maximum privacy, whereas SC(x, x̂) = 1 represents maximum similarity and
therefore minimum privacy. Yet the lower bound SC(x, x̂) = 0 fails to
acknowledge that the expected distance between profiles x and x̂ bounds
the maximum average level of privacy any CBPWS tool can attain.

To illustrate why SC(x, x̂) = 0 represents an unattainable goal, let us assume
that PRAW relies on a DGS that, for each page the user visits, it generates a
dummy visit to each and every other page on the internet.8 Since all possible
webpages are visited with every new user visit, this DGS provides perfect
privacy: of all the pages the user could have visited, the DGS visits them all. As
a result, the best attack strategy is no better than choosing user profiles based
on prior knowledge alone, which means that the resulting distance SC(x, x̂)
cannot be larger than the expected value of the distance between any two x,
namely, IE[SC(X,X)].

PRAW’s DGS. PRAW’s authors have evaluated PRAW’s ability to withstand
clustering attacks [198], finding that dummy queries are hard to filter based
on their topic with reasonably low similarity SC(x, x̂). They thus conclude
that PRAW provides an adequate level of privacy protection. Their evaluation
however considers an adversary that uses clustering blindly, that does not
strategically exploit PRAW’s weaknesses, thereby underestimating a strategic
adversary’s ability to compromise PRAW’s DGS.

Despite the fact that PRAW defines privacy as the distance between x and y,
its DGS does not strategically generate dummy visits to maximise that distance.
In fact, PRAW’s designers argue that observed profiles y should gravitate
around the real profiles’ general interests to prevent easy filtering of dummy
visits, which introduces a contradictory constraint whose impact on privacy
they do not assess. PRAW’s DGS does not strategically attempt to maximise
the distance between x and y within the general topics to which x relates either,
which means that PRAW’s DGS design principles are in contradiction with
PRAW’s privacy definition.

8More accurately, every other page on the Internet retrievable through queries to the
search engine or linked by visited webpages.
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Figure 4.8: P ( x | y, ` ) assuming that P (X = x ) is uniform (e.g. due unavailable
information).

Regardless, we note that PRAW’s stated goal to attempt to generate observed
profiles y as dissimilar as possible from real profiles x is a counterproductive
strategy, since a strategic adversary can exploit information about the induced
distances to better filter y into x̂.

Elovici et al. report that PRAW’s strategy works in such a way that
the similarity SC(x,y) is a function of the dummy generation rate ρvisits,
e.g. generating 2 to 10 dummy visits per real visit results in similarities between
0.17 and 0.07, respectively [195]. Since it is possible to infer the dummy
rate from the total number of visits [430], a PFA can exploit the correlation
between SC(x,y) and the dummy generation rate ρvisits to significantly reduce
uncertainty on x.

Figure 4.8 shows the space X of possible profiles x when considering three
categories or topics (vectors x = {x1, x2, x3} are such that

∑
i xi = 1). Let

us consider that PRAW produces profile y, which in Fig. 4.8 corresponds to
the point marked as •. Given PRAW’s DGS, the real profile x that triggers
observation y lies with high probability at distance ¯̀ from y, where ¯̀ is the
expected distance between profiles given ρ. In Fig. 4.8, we depict higher
probability densities P ( x | y, ` ) in a darker shade, assuming that, a priori, any
profile xi is equally likely, i.e. P ( xi ) = P ( xj ), ∀xi,xj . The set of candidate
profiles x form a circle of radius ¯̀ centred around y whose width is given
by the variance of `. PRAW’s DGS leaks that the user’s real profile most
likely lies in these dark areas —thus significantly leaking information about x,
i.e. H(X | Y ) < H(X).
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Figure 4.9: P ( x | y, ¯̀) and P ( x′ | y, ¯̀′ ) assuming that P (X = x ) is as
depicted in Fig. 4.4 (on page 121) and available to the adversary.

An adversary that knows the prior probability P (X = x ) can exploit
PRAW’s information leakage to improve its estimation x̂. Let us consider
that Figure 4.4 (on page 121) depicts the prior probability P (X = x ). Using
Bayes’ theorem, the adversary computes the posterior probability P (X | Y, ¯̀),
with ¯̀the expected distance `(x,y) given ρ. This attack enables the adversary to
narrow down the set of highly likely profiles to those x that are both reasonably
common in the population and that lie at a distance ¯̀ from the observed profile y.
Fig. 4.9 depicts the outcome of combining information about PRAW’s DGS and
background information on X, given two possible estimated distances ¯̀ and ¯̀′.

PRAW considers that privacy is proportional to distance (inversely proportional
to cosine similarity), so that if ¯̀′ < ¯̀ a DGS that enforces distance ¯̀ provides
a higher level of privacy than a DGS’ enforcing ¯̀′. We note that in the
scenario Fig. 4.9 depicts, considering background information may result in ¯̀′
corresponding to a higher level of uncertainty on x (larger dark surface) than ¯̀;
i.e. H(x | y, ¯̀′) higher than H(X̂ | x) although ¯̀′ < ¯̀. This further illustrates
that distance `(x,y) is not necessarily proportional to privacy and that a DGS
that maximises a particular geometric distance leaks information about x that
a strategic adversary exploits to produce a better estimation x̂.

Conclusion. PRAW measures the privacy it provides as the distance between
the user’s real profile x and the obfuscated profile y. We demonstrate the
inadequacy of equating such a distance with the level of privacy a CBPWS
tool provides and show that a strategic adversary can precisely exploit induced
distances to obtain estimated profiles x̂ so that `(x, x̂) < `(x,y).



CBPWS TOOL EVALUATION 151

4.3.5 Optimized query forgery for private information retrieval

Rebollo-Monedero and Forné propose “Optimized query forgery for private
information retrieval” (OQF-PIR) [448], a CBPWS DGS design that seeks to
optimise profile confidentiality given a limited budget of dummy queries.

Similarly to PRAW, OQF-PIR seeks to hide user profiles rather than individual
queries. However, OQF-PIR’s underlying privacy definition differs from PRAW’s
in that it is a function of the distance between a user’s observed profile and
the population’s average profile, rather than the distance between the observed
profile and the original profile. Moreover, OQF-PIR seeks to optimally use the
budget of dummy queries to maximise privacy protection, whereas PRAW’s DGS
does not.

Privacy definition. OQF-PIR’s authors claim that “whenever the user’s
[profile] differs from the population’s, a privacy attacker will have actually
gained some information about the user, in contrast to the statistics of the
general population” [448]. They define the population’s profile xp as the expected
value of the search engine users’ real profiles and assume that the number of
OQF-PIR users is small enough for their impact on profile xp to be negligible,
i.e. xp = E[X].

Privacy measure. OQF-PIR’s authors propose to measure the amount of infor-
mation an adversary gains as the Kullback-Leibler divergence (KLD) between a
user’s observed profile y and the population’s profile xp, i.e. DKL( y ||xp ) [140].
They interpret DKL( y ||xp ) as a measure of dissimilarity between the observed
and population profiles or, more precisely, the adversary’s information gain
about the user’s profile from observing y instead of the population profile xp
(cf. Sect. 3.2.2). Hence they consider that to attain perfect privacy the adversary
must learn nothing about the user profile, namely, according to their privacy
measure, that DKL( y ||xp ) = 0⇐⇒ y = xp.

Dummy generation strategy. OQF-PIR’s goal is to optimally minimise
DKL( y ||xp ). OQF-PIR models the observed profile y as a weighted function
of the real profile x and a dummy profile w:

y = (1− ρ)x + ρw (4.15)

where w is a multinomial distribution whose elements wi represent the fraction
of dummy queries in category i the DGS must generate. OQF-PIR implicitly
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assumes an SCAOQF that identifies query topics to construct the profiles x, w
and y. The weighting factor ρ represents the dummy rate so that for a given
real profile x, the optimal dummy profile w minimises DKL( y ||yt ).

OQF-PIR’s optimisation algorithm first orders the profile categories such that

x1

yt1
≤ · · · ≤ xi

yti
≤ · · · ≤ xn

ytn
, (4.16)

where the last component xn
ytn

leads to critical redundancy ρcrit = 1− ytn
xn

, namely,
the minimum budget of dummy queries OQF-PIR requires to provide perfect
profile confidentiality.

OQF-PIR allocates the budget of dummy queries according to a water-filling
algorithm [225], i.e. it adds dummies to the ‘deepest’ components wi first until
the budget is exhausted.

To illustrate how the water-filling strategy works, let us consider the following
user and population’s profiles (whose components are already ordered according
to Eq. 4.16):

x = (0.15, 0.25, 0.1, 0.3, 0.2)

xp = (0.3, 0.3, 0.1, 0.2, 0.1)

It follows that ρcrit = 1− ytn
xn

= 1− 0.1
0.2 = 0.5, so the optimal w:

wcrit = xp − x
ρcrit

+ x = (0.45, 0.35, 0.1, 0.1, 0)

Figure 4.10 depicts how the water-filling algorithm underlying OQF-PIR’s
design allocates the budget of dummy queries in this particular example. For
budgets of dummy queries below critical redundancy, the water-filling algorithm
fills the ‘deepest’ components first. Hence, in this particular scenario, OQF-PIR
assigns the first dummy queries to the first category until it is “filled” to the
level of the second. Then OQF-PIR assigns dummy queries both to the first
and second categories until both are at the level of the third and fourth, filling
each level until it exhausts the budget of dummy queries.

Evaluation

Privacy as deviation from the average. OQF-PIR’s definition of privacy
implicitly assumes an adversary that before it observes any search activity
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Figure 4.10: OQF-PIR’s DGS allocates budgets of dummy queries below critical
redundancy ρcrit according to a water-filling strategy.

from a user, it assigns to her a candidate profile based on prior information
alone, namely, xp. OQF-PIR’s authors consider that if after observing a
user’s (obfuscated) sequence of search activity q the observation contradicts
the adversary’s prior, the CBPWS tool enables the adversary to gain some
knowledge; if on the contrary the observation matches the adversary’s prior, the
CBPWS tool leaks no information to the adversary. The measure of information
gain we define in Sect. 3.2.2 operationalises this definition of privacy protection.

Moreover, OQF-PIR assumes the adversary knows the prior P ( R = r ) so
that Pβ(R = r) = P ( R = r ). Since OQF-PIR’s authors consider the search
engine provider as adversary, they reason that the information the search engine
provider has from all users enables it to derive the prior probability distribution
P ( R = r ) and therefore P (X = x ).

OQF-PIR’s authors assume the adversary selects xp = E[X] as a priori guess,
yet E[X] represents an average profile that no user may have (e.g. the expected
value rolling a six-sided die is 3.5, yet no side of the die has that particular value).
Moreover, whereas we may argue that by choosing xp = E[X] the adversary
minimises, a priori, its expected estimation error, it still represents a particular
attack strategy, thereby undermining the generality of OQF-PIR’s privacy
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definition, as it does not capture the privacy threat an adversary with more or
less knowledge, or an alternative “guessing strategy”, poses to a CBPWS tool.

Furthermore, we note that according to this metric a user whose profile coincides
with the population’s average (i.e. x = xp) enjoys perfect privacy protection
even if she does not use a CBPWS tool, implying that only users who deviate
from the average need privacy protection.

OQF-PIR’s measure of privacy. We argue that DKL( y ||xp ) does not
appropriately operationalise OQF-PIR’s privacy definition. Beyond the
limitations of assuming the adversary’s a priori guess is the average population’s
profile xp = E[X], the measure DKL( y ||xp ) implicitly assumes a naive
adversary that does not attack OQF-PIR, that does not filter y and takes
it as the best approximation of x. In other words, OQF-PIR assumes that
x̂ = y and proposes DKL( y ||xp ) as a measure instead of DKL( x̂ ||xp ), which
actually captures the information gain in retrieving x̂ as opposed to xp.9

OQF-PIR’s DGS. OQF-PIR assumes a naive adversary, thus implicitly
conflating x̂ = y. However, a strategic adversary can exploit OQF-PIR’s
deterministic water-filling algorithm and target profile yt = xp to obtain a
estimated x̂ closer to x than y is. We show how an adversarial DCA can
identify (some of the) real queries and a PFA yield a better estimate x̂.

DCA-based attack. Let us consider an observed profile y = g(q) such
that its k last components yi have bigger values than xp (i.e. xpi < yi, for
n− k < i ≤ n), and let T denote the set of categories T = {τi}n−k<i≤n.
The water-filling mechanism OQF-PIR implements does not generate any queries
on those k categories, as they would take y further from, rather than closer to,
the target profile yt. A DCA can exploit this to identify queries qT that according
to SCAOQF relate to topics in set T and classify them as real. Thus, these
queries enjoy neither undetectability nor deniability, as P ( q|qT ∈ Rc

d ) = 0.

PFA-based attack. OQF-PIR assumes that the dummy rate ρ is a secret
parameter; however, it is possible to estimate a rate ρ̂ ' ρ from the overall
number of queries and OQF-PIR’s default configuration parameters. To

9We note that DKL( x̂ ||xp ) implicitly assumes a deterministic adversary that retrieves x̂
with probability Pβ(x̂) = 1. To account for a probabilistic adversary that considers a range of
possible x̂i, we may instantiate Eq. 3.15 to measure the amount of information G an adversary
gains about x from observing y compared to guessing x based on the prior alone. Formally,

G = log(Pβ(x|y))− log(Pβ(x)) (4.17)
with Pβ(x) = P(X = x) assuming the adversary has perfect information about the prior.

Moreover, Eq. 4.17 does not impose xp as the adversary’s a priori candidate profile.
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illustrate how an adversary exploits an estimated ρ̂, let us consider a three-
dimensional profile space formed by categories or topics (τ1, τ2, τ3), and a
population profile that lies at the centre of the space, i.e. at point yt = ( 1

3 ,
1
3 ,

1
3 ).

Figure 4.11 represents this scenario.

Figure 4.11: Exploiting distance ρ to attack OQF-PIR. Observed profiles, target
profile and estimated real profiles as a function of ρ in the profile space.

Through its water-filling algorithm, OQF-PIR generates dummies in a
deterministic way. Let us say an adversary observes profile y, that we represent
as a square dot in Fig. 4.11. The components of y are such that yτ2 < yτ3 < yτ1 ;
the gap between the two smallest components (yτ2 and yτ3) indicates that ρ
is too small to fill the smallest component (yτ2). The DGS must thus have
generated dummies with a vector w = (wτ1 , wτ2 , wτ3) = (0, 1, 0) and it is
possible to estimate profile x as:

x̂ = ( yτ1

1− ρ̂ ,
yτ2 − ρ̂
1− ρ̂ ,

yτ3

1− ρ̂ ) .

We note that ρ̂→ ρ =⇒ x̂→ x, meaning that the adversary retrieves x̂ = x if
it accurately estimates ρ.

Figure 4.11 depicts as a dark (vertical) short line the likely profiles x that
OQF-PIR might have obfuscated into y. Even when the estimation of ρ has
low confidence, the set of likely x is rather limited.

The point we mark as • in Fig. 4.11 corresponds to another possible observation
y′ = (y′τ1

, y′τ2
, y′τ3

) such that y′τ1
= y′τ2

< y′τ3
. In this case, the DGS generates

enough dummies to fill the weakest category (either τ1 or τ2), but not enough to
bring y to yt. Hence, w′ = (w′τ1

, w′τ2
, 0) with w′τ1

+w′τ2
= 1 and x̂′τ3

= y′
τ3/(1−ρ̂).

A dark diagonal line in the upper right corner of the profile space in Fig. 4.11
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represents the space of likely real profiles x′. While y′ leaves some room for
uncertainty, the set of likely real profiles x′ is still rather limited.

Lastly, Figure 4.12 represents a scenario in which the dummy rate ρ is sufficient
to achieve y = yt. A dark inner triangle represents the space of likely profiles x
that OQF-PIR obfuscates into y = yt given ρ̂. Even in this case OQF-PIR fails
to provide a high level of profile protection. Moreover, an adversary may exploit
background information to further reduce her uncertainty on x, similarly to
the attack on PRAW we examine in Sect. 4.3.4; yet according to OQF-PIR’s
definition of privacy, a user whose y = yt enjoys perfect privacy protection.

Figure 4.12: Probability of x given y = yt and dummy rate equals ρ.

Conclusion. OQF-PIR’s privacy definition and DGS further illustrate the
inadequacy of equating a CBPWS tool’s privacy protection with a distance
`(x,y) rather than `(x, x̂), as that disregards a strategic adversary’s ability to
filter out dummies and obtain a better estimation x̂. Moreover, OQF-PIR’s
underlying water-filling algorithm demonstrates the vulnerabilities deterministic
DGSs introduce.

4.3.6 Other tools

Bucket. Pang et al. propose “Bucket”, a tool that generates dummy search
queries to protect user privacy in web search [426]. Whereas not strictly a
CBPWS tool, as it relies on the search engine to filter the dummy results
from users and therefore requires the service provider’s cooperation, Bucket
implements a DGS that shares many similarities with GooPIR’s and PDS’s.
Bucket relies on query expansion by adding dummy keywords to the actual
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user search query to prevent sending individual real queries and dummy queries.
Moreover, it accounts for query specificity (analogously to GooPIR’s popularity
or PDS’s plausibility) and distance on a semantic space (like PDS’s diversity)
to prevent the adversary from exploiting semantics and the prior probability of
search queries. Unlike other tools, in its CBPWS model Bucket does account
for sequences of queries rather than individual queries alone, considering that
the adversary identifies the most probable sequence of queries as real. Moreover,
it also acknowledges that an adversary’s prior beliefs Pβ(r) are “not known in
advance and may vary among different adversaries” as well as that “quantifying
the semantic similarity between two query sequences is an open problem, due to
the correlations among the terms across queries.”

However, like other CBPWS tools we have examined so far, Bucket disregards
a strategic adversary that exploits all the available information about the tool
to undermine obfuscation; Bucket implicitly assumes its profiling function gT
and underlying semantic classification algorithm SCA match the adversary’s,
or that the adversary cannot exploit alternative SCAs to undermine query
indistinguishability. Furthermore, Bucket neither formalises nor operationalises
the privacy property it is after, considering that ensuring semantic diversity
within querysets and similar specificity across a real query’s accompanying
dummies suffices to guarantee (an undetermined level of) user’s privacy.

TopPriv To dispense with Bucket’s service provider cooperation requirement,
Pang et al. propose TopPriv, a CBPWS tool that, similarly to OQF-PIR,
seeks to limit the amount of information adversaries gain on users’ search
interests [425]. TopPriv proposes (ε1, ε2)-privacy, where both ε1 and ε2 capture
changes in the adversary’s beliefs about a users’ interest in a topic. TopPriv
considers that the adversary has a prior belief Pβ(xp), which updates with each
query r into Pβ(xi | r) for each topic category i its SCATopPriv considers. If the
change in probability Pβ(xi | q) − Pβ(xpi ) exceeds ε1, TopPriv says that user
query r reveals the user’s interests; hence, TopPriv generates k dummy queries
so that Pβ(xi | q) − Pβ(xpi ) ≤ ε2. TopPriv’s DGS therefore selects dummy
queries to manipulate the adversarial observation so that real queries’ topics
fall below the ε2 threshold and the adversary assigns dummy queries’ topics,
which conversely exceed the ε1 topics, as the users’ actual interests.

TopPriv’s (ε1, ε2)-privacy is analogous to information gain in that it measures
changes in an adversary’s beliefs about a user’s profile x. However, TopPriv
suffers from the same vulnerability as previous proposals we have examined
earlier: it considers a non-strategic adversary that does not attempt to filter
q, in this particular case by exploiting the fact that TopPriv’s DGS does not
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generate any dummy queries that increase Pβ(xi | q)− Pβ(xpi ) beyond ε2. Wang
et al. demonstrate the feasibility of such an attack [542].

HDGA. Wang et al. propose a new DGS, HDGA, to counter the attacks they
demonstrate on TopPriv [542]. Wang et al. provide no definition of privacy and
argue that “HDGA eschews the use of security metrics, other than the number
of dummy topics. Even carefully-chosen security metrics can actually decrease
security”, mistakenly identifying privacy measures as the culprit of previous
flawed DGS designs, rather than the disregard of strategic adversaries that filter
y into x̂. While seemingly aware of the threat strategic adversaries pose to
CBPWS tools, they do not subject HDGA to strategic attacks, assuming that
“[d]ummy queries are semantically coherent, so the adversary cannot identify
dummy queries by exploring query semantics”, yet HDGA’s underlying definition
of semantic coherence rests on assumptions about SCAHDGA that a strategic
adversary can exploit, as we have illustrated throughout this section.

Degeling and Herrmann Degeling and Herrmann propose a DGS against
online tracking by Google [167]. Not a CBPWS tool per se, as it does not
generate dummy queries to the search engine, Degeling and Herrmann’s proposal
focuses on Google’s ability to track users online, attempting to obfuscate the
user profiles Google builds and lets users control and review.

Degeling and Herrmann explicitly state that their proposal does not consider
a strategic adversary, their main goal being to assist “understanding profiling
and [foster] a privacy literacy that is necessary for users to stay autonomous
in the information society”. They study several strategies to manipulate the
profiles that Google builds and lets users control and review, even if they
acknowledge from previous work by Datta et al. that “Google is not reporting
all information that is used in a profile” [167]. Whereas we acknowledge the
role that feedback and transparency technologies have in promoting users’
understanding of technology and its impact on their privacy, we question to
what extent users can gain further understanding on profiling from a DGS that
they neither have any control over nor may understand how it works. Degeling
and Herrmann do not evaluate their proposal’s ability to foster privacy literacy.

Lastly, Degeling and Hermann note that the profiling function g an adversary
uses to compute a user’s profile x may not only take as input a user’s real
queries or visits r, but also other users’ interests, i.e. considering queries or sites
of users with whom a user’s behaviour overlaps, inducing in turn correlations
across users’ profiles. Moreover, they also observe that Google builds different
profiles y for the same sequence of visits q over time, thus hinting an evolving
profiling function g. None of the CBPWS tools we examine in this chapter
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consider network of temporal effects in the profiling function, further casting
doubt over the adequacy of relying on fixed assumptions about an adversary’s
profiling function g and semantic classification algorithm (SCA).

IQP. Ahmad et al. propose “Intent-aware query-obfuscation for privacy-
protection” (IQP), an CBPWS tool that, similarly to GooPIR, extends the
original query with k − 1 dummy queries [16]. IQP attempts to preserve user
utility and personalisation by building the user profile x and using it to filter
dummy queries and rerank search results accordingly. Ahmad et al. claim
IQP’s DGS is inspired by Bayes-optimal privacy [364], which is analogous to
the information gain measure we define in Sect. 3.2.2, yet do not use it in
their evaluation, defining two alternative privacy measures instead, a confusion
index (cIndex) and a transition index (tIndex), both essentially measures of
distance `(x,y), between a user’s real and observed profiles.

We note that IQP’s design suffers from similar flaws as previous CBPWS tools.
It assumes a naive adversary that does not attempt or is unable to filter dummy
queries, thereby assuming x̂ = y. Ahmad et al. therefore rely on `(x,y) as a
measure of privacy, instead of the distance `(x, x̂) at which a strategic adversary
estimates profiles x̂. In particular, IQP’s evaluation disregards the fact that
a strategic adversary can exploit the following elements of IQP’s DGS’s cover
(i.e. dummy) topic sampling:

Avoidance of similar topics. IQP selects “only a fraction of cover topics
from [a node in a topic tree’s] sibling nodes, the rest [...] randomly
sampled from the non-sibling nodes of similar prior probability”. [16]

Enforcement of similar specificity. IQP dynamically adjusts similar topic
avoidance according to the generality of the true user query, “if it is more
specific[, it selects] fewer cover topics from its sibling nodes, as they [share]
more common ancestors[,] and vice versa” [16].

Replication of intent transition patterns. IQP attempts to replicate topic
transitions in user queries by generating dummy queries following similar
transitions. However, Ahmad et al. note that “if they cannot follow
the detected transition on the intent tree[,] we [keep] them intact with
probability β, otherwise we use rejection sampling [to] select a new cover
topic” [16].

These features introduce differential treatment of real and cover topics and
therefore represent a vulnerability in IQP’s DGS design; however, since Ahmad
et al. implicitly assume a naive adversary, they do not examine their impact,
thus rendering IQP’s evaluation flawed. In addition to the above, we note that
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IQP, similar to previous designs, neither evaluates the impact of an adversary
that exploits an SCAA 6= SCAIQP.

4.4 Discussion, challenges and open problems

In this section we summarise and discuss the main findings in our evaluation
of CBPWS tools, pointing to limitations and further challenges in CBPWS’s
analysis and design.

4.4.1 Privacy requirements

In our analysis framework we introduce three privacy properties in an attempt
to capture a variety of privacy requirements CBPWS designers have previously
considered. We do not consider however that this set of privacy properties
must be the ultimate goal of every CBPWS tool. Designers must select which
privacy properties a CBPWS tool must satisfy according to users’ privacy
concerns and constraints, e.g. users may be unconcerned about disclosing their
general interests while wishing to blur particular details about their web search
activities; users may also be unwilling to increase the risk of targeting based on
sensitive dummy queries, adding a specific constraint to CBPWS design [294].
Moreover, perfect CBPWS seems impractical to achieve in reality and it is
unclear whether all users and applications require it, prompting designers to
define less demanding privacy requirements and accept trade-offs between what
is ideally desirable and what is practically possible.

CBPWS is inadequate to address certain privacy requirements, e.g. it cannot
prevent an adversary from raising a flag if the user submits a particular query,
even when the probability of such a query being dummy is high. In this
particular scenario, CBPWS requires a critical mass of users that raises the
cost of false positives to the adversary, namely, forcing the adversary to devote
an increasing amount of resources to deal with an increasing number of faulty
flags that threaten the integrity of the flagging process. Hence, users can no
longer rely on CBPWS tools to unilaterally prevent targeting, as they require a
cooperative pool of users.

In addition, rather than voicing privacy concerns that relate to their own
personal circumstances, users may seek to prevent the service provider from
exploiting their data in ways that go beyond the legitimate processing web
search provision requires, regardless of what that additional processing entails,
e.g. users may oppose the monetisation of their digital labour independently of
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the privacy risks they perceive in profiling [220]. Yet the opacity of adversarial
profiling poses a challenge to achieve this goal, as CBPWS designers lack the
necessary information to design DGSs that target the profiling practices users
wish to stop [160].

4.4.2 Privacy measures

Through our evaluation of CBPWS tools in the previous section, we observe
that the privacy requirements operationalisation process is often fraught with
errors. Existing CBPWS tool designs conflate mechanism-centred analysis
with attack-centred analysis, requiring that CBPWS tools generally satisfy a
definition of privacy that depends on adversarial performance and knowledge.
In other words, CBPWS tool designers impose ACA measures as general design
constraints without acknowledging that this type of measures incorporate
particular assumptions about adversarial knowledge and attack strategies. In
particular, using a distance measure `(x,y) between users’ real profiles x and
their corresponding obfuscated profiles y implicitly assumes a naive adversary
that does not filter y into a filtered profile x̂, thereby overestimating the level
of protection a CBPWS tool affords.

Our own set of CBPWS measures merits further discussion.

Information leakage. Information leakage provides an average measurement of
the privacy protection a CBPWS tool affords, thereby conflating high and low
privacy protection levels across users. As such, ensuring a particular level of
information leakage does not guarantee a minimum level of privacy protection to
all users. CBPWS designers may alternatively consider complementary measures
that capture a worst-case privacy level e.g. min-entropy leakage (q.v. Eq. 3.13
in Sect. 3.2.1).

On deniability and undetectability. Both deniability and undetectability depend
on the adversary’s attack strategy. Deniability is a meaningful property only as
long as users have the opportunity to contest claims the adversary makes about
their activities, e.g. if users’ web search activity become evidence in a trial, they
can attempt to deny having issued those queries, claiming them to result from
the CBPWS tool’s DGS instead, and that such dummy queries bear no relation
to their own search queries. However, if users do not have the chance to contest
the legitimacy of those decisions that, based on their profile, affect them, then
deniability becomes meaningless.

Undetectability on the other hand requires the adversary to be strategic. This
means that the adversary must filter out queries as dummies; only through
filtering can users have their real queries discarded, thus undetectable.
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A strategic adversary deploying an optimal attack should classify dummy queries
with probability equal to the dummy rate ρ̂, i.e. to find the exact number of
dummies the DGS generates. Hence in practice the maximum level of deniability
depends on the adversary’s estimation of the probability of a query being dummy
P ( ρ ) or the ability of Alice to plausibly claim a more advantageous ρ. For a
given adversary and attack, we can expect that a higher value ρ̂ > ρ results in
higher deniability. Deniability similarly increases if Alice can claim that the
DGS generates queries at a rate ρ′ > ρ. Conversely, the maximum level of
deniability may drop if the adversary estimates a probability ρ̂ < P ( d ) and
Alice cannot contest the accuracy of the estimation.

Similarly to deniability, the actual level of undetectability on specific, particular
cases depends on the adversary’s estimation of the rate at which dummies are
generated. This means that for certain users undetectability may surpass its
maximum expected level if the adversary’s DCA classifies users’ real queries as
dummies at a rate ρ̂ > ρ.

Lastly, we acknowledge that using CBPWS measures in practice poses several
challenges. It is far from trivial to estimate the probability distribution P (R ),
especially for CBPWS designers that, unlike web search providers, do not have
access to large datasets of search queries. Moreover, a strategic adversary does
not rely on a unique probability distribution P (R ); rather, it exploits additional
information to segment the target users and exploit their own subpopulation’s
probability distributions Psubpop(R = r), considering elements such as age,
language or socioeconomic status. Similarly, designers may be hardly able to
account for sporadic trends and changes in P (R ), namely, to consider a dynamic,
evolving distribution instead of assuming it to be static. The complexity of
estimating P (R ) thus represents a major challenge when using the measures
we introduce in Sect. 4.2.2.

4.4.3 Adversarial assumptions

The CBPWS tools we have evaluated implicitly assume a naive adversary that
processes observed profiles y as if they were the users’ real profiles x. They do
not however justify how users benefit from an adversary processing y instead of
x, i.e. they do not assess or question the impact of assuming a naive adversary.
In fact, it is unclear that profiling based on an obfuscated sequence of search
activity q has any advantages over the real sequence of actions r.

Several of the CBPWS tools we have evaluated base their DGS on a particular
profiling function gT and evaluate the privacy protection they offer assuming
that the adversary uses the same semantic classification algorithm. We have
shown that strategic adversaries can exploit a different g 6= gT to attack the DGS
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and undermine query indistinguishability. Designing DGSs that withstand such
an attack is a hard problem, as it is very difficult to account for every profiling
function the adversary may exploit. Ye et al. have previously acknowledged this
problem, alerting of the negative consequences it can have on CBPWS [563].

CBPWS tools require adversarial service providers to be honest-but-curious
(HbC). However, the conditions under which service providers remain HbC
require a delicate balance of incentives that may seldom hold in practice.
If few users rely on CBPWS tools, their impact on search engines’ profiling
practices is negligible and search engines can dismiss them as background
noise in their operations, effectively behaving as naive adversaries. This means
that CBPWS users do not benefit from either deniability or undetectability,
as the adversary treats all their queries as real. Moreover, they must accept
whichever consequences profiling based on the observed profile y has on them,
yet CBPWS tools do not optimise for profiling outcomes —disregarding in fact
the consequences of profiling based on either y or x̂— because their ultimate
goal is to thwart the profiling process altogether.

As the number of CBPWS users increases towards a critical mass that disrupts
profiling practices, the search engine faces several choices. It can attempt
to dissuade users from obfuscating their profiles, it can attempt to filter the
dummies from users’ profiles or it can entirely discard obfuscated profiles and
remove their data from the profiling process. Search engines can ban obfuscation
in their terms of service and subject CBPWS users to captchas [295], thereby
hindering or outright preventing them from obfuscating their search activity
whenever the dummy rate ρ exceeds a given threshold. Since ρ correlates with
the level of privacy protection, search engines can enable low dummy rates with
negligible impact on profiling while preventing users from deploying higher,
more robust dummy rates, insidiously nudging CBPWS users to lower their
protection. CBPWS users may however have the power to force search engines
to consent to the use of obfuscation, in which case search engines may either
attempt to filter dummies or entirely remove CBPWS users’ data. Either of
these two alternatives represents a positive outcome for CBPWS, the former
more likely when CBPWS are vulnerable to attack.

On tool undetectability. Proposals like OQF-PIR [448] and TopPriv [425]
implicitly assume that the adversary is unaware of the CBPWS tool, i.e. that
the tool is undetectable, while TrackMeNot 2.0 explicitly lists undetectability as
a requirement. We recall from our discussion in Sect. 3.4.1 that ensuring tool
undetectability involves a particular set of design requirements that guarantee
that the adversary cannot distinguish CBPWS users from non-users. None of
the proposals that implicitly or explicitly rely on tool undetectability however
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perform an evaluation of how undetectable their tool is under a strategic
adversary. Neither do they discuss the consequences of assuming a naive
adversary that processes y instead of x for the user. Howe and Nissenbaum
report this user concern when they first introduce TrackMeNot [294]; whenever
dummy queries relate to controversial topics, e.g. “bomb”, “HIV”, or “gay
marriage”, an undetectable CBPWS tool may prompt the profiler to classify
users as involved in subversive activities, suffering a particular disease or having
a certain sexual orientation. On the other hand, the opposite strategy (avoiding
such keywords in dummy queries) puts users in a delicate position: either they
expose themselves or they refrain from issuing queries related to sensitive topics,
effectively becoming their own censors. We note that self-censorship conflicts
directly with the purpose of private web search, that is, to allow users to freely
search for information without revealing their preferences.

4.4.4 Design issues

The magnitude of the universes of both real queries R and real sequences R
poses an extraordinary challenge to CBPWS designers, who cannot anticipate
in advance users’ real sequences of activities r to generate a corresponding
supersequence q = (r ∗ d) to guarantee indistinguishability across a number
of sequences in R, i.e. so that P ( q | ri ) = P ( q | rj ), ∀ri, rj ∈ R. Several
of the CBPWS tools we have examined propose strategies to overcome this
challenge and ensure some level of indistinguishability, but these strategies rely
on assumptions about the profiling function and distance across an underlying
semantic space that a strategic adversary can exploit. The magnitude of R
further precludes the viability of a flooding DGS or full padding to guarantee
perfect privacy protection (q.v. Sect. 3.3.2).

Moreover, the majority of tools we have evaluated in the previous section focus
on a single aspect of web search, be it search query generation, clicking on
results or web browsing to defeat profiling by a search engine that tracks users
across the web. In fact, profilers like Google have the ability to monitor not
only the users’ search queries and clicks on results, but also their web browsing
activity beyond the search engine, requiring a CBPWS tool to account for all
these activities. Failing to do so introduces vulnerabilities, e.g. adversaries can
exploit weak indistinguishability between real and dummy activities in web
browsing beyond the search engine to undermine indistinguishability between
real and dummy queries.

CBPWS designers must also account for all those features a search engine can
exploit to distinguish real from dummy activity, e.g. allowing users to rely
on search engines’ autocomplete functionality means the DGS must generate
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dummy queries using autocomplete too, as otherwise an adversary knows all
autocompleted queries are real. Similarly, if adversaries track users’ mouse
activity, a DGS must simulate dummy mouse activity. We have largely
abstracted away from the complexities of implementation and deployment
in our examination of CBPWS tools, yet in practice designers must account for
all sources of distinguishability.

4.4.5 Hybrid solutions and other alternatives

In this chapter we have examined “pure” CBPWS solutions, namely, tools
that exclusively rely on chaff to protect web search users from profiling. Other
authors have however proposed to combine CBPWS tools with other privacy
enhancing technologies (PETs) or to integrate them as part of a larger solution.

We point at the beginning of this chapter to anonymous web browsing systems
like Tor as an alternative to CBPWS tools. Anonymisers hinder the creation of
search profiles through query unlinkability, whereas obfuscation makes it harder
for the adversary to re-identify anonymous users through their queries. Users can
combine both, thus obtaining two layers of protection against profiling, although
at a higher cost both in terms of bandwidth and time due to increased latency.

Petit et al. propose obfuscation after aggregation [432]. They propose PEAS
(short for “Private, efficient and accurate web search”), a system that relies on
a trusted third party that collects user queries, forwards them to the search
engine in addition to dummy queries, then filters out dummy query results and
returns to PEAS users their queries’ results. Users cannot however unilaterally
deploy PEAS, a limitation that sets PEAS off from CBPWS. X-search, a similar
proposal by Mokhtar et al., relies on a proxy to mix several users’ queries,
incorporating a DGS that populates a pool of dummies with previous users’
queries, implicitly assuming that an adversary cannot distinguish dummy queries
if these are identical to previous user queries [64].

Other proposals dispense with the trusted third party and rely instead on a
network of users that relay user queries on behalf of each other, concealing from
the adversary who is the initiator of each query and hindering as a result user
profiling [109, 181, 532].

Lastly, designs may also combine utility-preserving chaff-based obfuscation à
la CBPWS with utility-degrading query obfuscation à la query scrambling of
Arampatzis et al. or Sánchez et al., among others [28, 463], which degrades the
accuracy of each query in pursuit of a balance between utility and privacy.
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4.4.6 Personalisation

One of the purported benefits of profiling is that it enables personalisation of web
search so that users can obtain more meaningful results, tailored to their precise
informational needs. We have largely abstracted away from personalisation in
web search, omitting the negative effect obfuscation may have on personalisation,
rendering search results less useful for users and thereby introducing a trade-off
between utility and privacy that, unless users are uninterested in personalisation,
places CBPWS on the realm of utility-degrading obfuscation (UDO).

Previous work has examined the trade-off between privacy and personalisation.
Shen et al. distinguish four types of software architectures around web search
and personalisation: no personalisation, server-side personalisation, client-side
personalisation and client-server collaborative personalisation [486]. Of these
four, CBPWS implicitly assumes the first, namely, that personalisation is a non-
issue —or even something that users would rather avoid—; however, CBPWS
designers may further consider client-side personalisation, whereby the CBPWS
tool profiles the user locally and filters and rearranges search results based
on x [146, 516]. In other words, users rely on the CBPWS tool for their own
profiling and personalisation, rather than on an adversarial search engine.

On the other hand, to personalise search results search engines may rely on
collective profiling rather than individual profiles or on features such as users’
language, locations or social network, thus rendering personalisation more
resilient to obfuscation (q.v. Sect. 2.2.3).10 Under collective personalisation,
CBPWS users effectively become free-riders on other users’ data disclosure,
benefiting from profiling practices they do not contribute to.

4.4.7 Ethics and politics

Relying on chaff to introducing noise in users’ profiles raises a host of ethical
questions, from claims of “misuse” of network resources to the “ungrateful”
and deliberate pollution of data service providers monetise in exchange for web
search services. For a discussion on the ethics and politics of chaff in general
and CBPWS in particular, we refer the interested reader to the work of Brunton,
Howe and Nissenbaum, who have studied at length the ethics and politics of
obfuscation [98, 100, 294, 295].

10In fact, there are reports that this is currently the case for Google Search [209, 272, 365].
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4.5 Conclusion

In this chapter we have studied the deployment of Protos to provide chaff-based
private web search (CBPWS). We have instantiated the general Protos model
in Sect. 3.1 to capture the particularities of online web search. Furthermore, we
have adapted Protos analysis measures both MCA and ACA to illustrate how
to measure the level of privacy protection CBPWS tools offer, operationalising
a candidate set of privacy properties for private web search.

Equipped with our CBPWS analysis framework, we have evaluated existing
CBPWS tool proposals, uncovering systematic flaws and misconceptions related
to the operationalisation of privacy properties and evaluation; all the CBPWS
tools we have studied implicitly assume a naive adversary that does not attack
the system, thereby overestimating the expected level of privacy protection they
provide. We have illustrated how a strategic adversary can exploit vulnerabilities
in these existing tools to undermine their protection.

CBPWS design involves addressing numerous challenges and problems. Among
these, we have highlighted the magnitude of the space of real sequences R and
the inability of CBPWS designers to anticipate users’ real activity sequences r
to generate obfuscated sequences q that guarantee indistinguishability across a
number of sequences rj large enough to defeat adversarial attacks and provide
a meaningful level of privacy protection. Besides, the opacity of adversarial
profiling practices means designers cannot tailor DGS to a profiling function
they do not know, opening additional vectors of attack for the adversary. These
issues complicate the design of robust CBPWS tools at affordable dummy rates
ρ to the extent that we must question whether it is possible to design both viable
and reliable CBPWS tools. Resorting to hybrid solutions e.g. that combine
anonymous web browsing with obfuscation, can counteract the limitations and
vulnerabilities of standalone CBPWS.

CBPWS relies on an honest-but-curious (HbC) adversary that processes user
web search activities in the presence of obfuscation while attempting to filter
out as many dummy queries as possible. We have warned about the delicate
balance of incentives that must hold in practice for an adversarial web search
provider to be HbC instead of outright block CBPWS users. Ensuring tool
undetectability can help CBPWS users to circumvent hostile service providers,
yet undetectability gives rise to a host of other issues; it is unclear what the
effects of obfuscated profiles are on users, i.e. the impact that algorithmic
decision making that takes as input y instead of x has on users. Protective
optimisation technologies (POTs) represent an alternative line of research to
address problems of detectability and algorithmic impact (q.v. Sect. 3.4.1).





Chapter 5

Communication profile
confidentiality

Deux cents grenadiers ont en quelques heures dressé
l’obélisque de Luqxor sur sa base ; suppose-t-on qu’un
seul homme, en deux cents jours, en serait venu à bout ?

—Pierre-Joseph Proudhon, Qu’est-ce que la propriété ?

If web search has become an indispensable online service, so have online
communication services.1 The advent of broadband and cheap terminal devices
has contributed to the implacable digitisation of human interactions [280]. Lured
by the immediacy, convenience and boundless reach of digital communication,
people increasingly resort to services like email, instant messaging (IM),
voice over IP (VoIP) or social networking sites (SNSs) to fulfil an ever
widening spectrum of communication activities such as talking to family and
friends, remotely contacting colleagues and clients at work, reuniting with old
acquaintances or sharing information and organising collectively.

Popular online communication services like GMail, Whatsapp, Skype or
Facebook, however, typically rely on centralised architectures whereby the
service provider is able to monitor and monetise all of its users’ interactions.
Online communication service providers profile users according to what
they say, to whom, when, where and how often, using that information

1According to Alexa, a popular web traffic analysis company, as of April 6th, 2019, Google
and Facebook are the most visited and third most visited websites, respectively, globally.
See https://www.alexa.com/topsites.
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to infer users’ weaknesses and needs and serve them profitable targeted
behavioural advertising [110, 165, 219].

Communication services represent a particularly prized asset to surveillance
capitalism, a gold mine of behavioural data. Human communication harbours
people’s emotions, fears and desires, their affinities, personality traits and
impulses [121]; its networked nature enables profilers to infer romantic
relationships and sexual orientation, reputation and trust, among several
other types of information [205, 300, 406]. Network effects further assist
providers to grow and entrench digital enclosures, locking-in their user base
to stave off competitors and claim exclusive ownership over communication
data [26, 538]. Whereas email users can communicate with one another
regardless of their email provider, services like Facebook, Whatsapp, Skype,
Twitter or Snapchat, to name a few, do not support inter-platform messaging.2
By denying interoperability with other services and providers, profilers exploit
network and bandwagon effects to shackle users to their services, as the more
users join a service, the more useful it becomes and the harder it is to leave or
for alternatives to compete [503, 538]. SNSs represent a paradigmatic example
of the value of networked communications for profilers. These sites gather large
amounts of personal information, including private, sensitive communication
between users and, as Dean argues, they “produce and circulate affect as a
binding technique”, thereby encouraging users to spend more time using the
service and, as a result, to generate more data [166]. Srnicek points to a “virtuous
cycle” whereby “more data means better machine learning, which means better
services and more users, which means more data”, shedding further light on
the network effects that contribute to service entrenchment [503].

Interest in mining communication data goes however beyond profilers and
advertisers. Digital communications represent a coveted target of state-
sponsored surveillance programmes. As whistleblower Edward Snowden has
revealed, the US National Security Agency (NSA) and UK’s Government
Communications Headquarters (GCHQ) have routinely collected —among other
types of data— email, video and voice chat, VoIP chats and social networking
details, either in transit or stored by cloud service providers, in some cases “with
the ambiguous complicity of Internet companies” [340, 363, 481].

Against the privacy threats that communication profiling and surveillance pose, a
first line of defence involves the use of encryption. End-to-end encryption (E2EE)
ensures that only sender and recipient can read the messages they exchange,
denying profilers access to the content of communication, i.e. what users say.

2Providers may however support interoperability across their own services, e.g. Facebook
plans to enable users from Facebook Messenger, Whatsapp and Instagram to be able to
message each other, all three services property of Facebook, Inc.; similarly, Microsoft enables
interoperability between its services Skype for Business and Teams [382, 582].
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Encryption tools such as PGP or Off-the-Record Messaging (OTR) enable users
of email and IM, respectively, to unilaterally encrypt their messages end-to-
end, regardless of service provider’s support for encryption [89]. Alternatively,
communication services like Whatsapp and Signal provide E2EE by default.

However, encryption does not prevent the collection and analysis of commu-
nication metadata such as sender and recipient, time, location, duration of
conversation or message volume and frequency. Communication metadata
often consists of structured data, rendering it cheap and easy to analyse, and
may reveal as much or even more information than content [208, 340]. In
particular, it reveals the underlying communication network, enabling inferences
that exploit community structure, i.e. the social graph [88, 333]. Previous
work has shown how telephone metadata reveals identity, location, relationship
status and partner, job type, age, number of family members, sensitive health
information or personality traits, among other attributes [122, 163, 372, 574].
NSA General Counsel Stewart Baker’s “metadata absolutely tells you everything
about somebody’s life. If you have enough metadata, you don’t really need
content” and General Michael Hayden’s more brazen “We kill people based on
metadata” highlight the privacy threats that metadata poses [134].

Several alternatives and privacy technologies seek to lessen the privacy
threats that stem from metadata. Anonymity systems such as Tor hamper
communication profiling by concealing the identities of communication parties,
i.e. who the sender and receiver of a given message are.3 However, for users of
communication services that take place within digital enclosures like Facebook,
Snapchat, Twitter or Whatsapp, anonymity systems offer no protection against
communication profiling. Even if users connect to Facebook or Twitter with
Tor, thereby concealing their IP address from the provider, they still need to
log-in to their personal accounts on the service, dynamiting their anonymity
in the process [402]. Moreover, Tor neither impedes nor alters in any way the
providers’ ability to monitor all user communications within the platform. In
practice, deploying anonymous communications against these providers —which
amount to global passive adversaries within their own walled gardens— would
require dedicated high-latency anonymity networks within the platform, e.g. on
Facebook, having users themselves acting as relays.

3To be precise, anonymity systems do not conceal metadata; rather, they undermine
its value —even if they may deploy strategies to prevent the collection of unnecessary
metadata, e.g. Tor relies on NoScript to prevent unnecessary scripts from acquiring identifying
information about a user. By sending messages through multiple relays, anonymity systems
produce more yet less valuable fragments of metadata, thereby increasing the complexity of
metadata collection and analysis. Anonymity systems also rely on metadata homogenisation,
e.g. making a browser’s fingerprint less unique, to prevent user identification [199].
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Alternatively, decentralised communication protocols such as XMPP or Diaspora
rule out dependence on an IM or SNS provider that monitors and controls all
user communications [80]. Decentralisation does not however prevent external
adversaries from collecting the metadata the underlying communication network
generates, plus it conjures a host of additional vulnerabilities [252]. To provide
metadata free communication, systems such as Ricochet4 or RetroShare [454]
combine decentralisation with anonymous communications. However, these
systems require users to move away from the services they already use, often at
unacceptable cost due to strong network effects [206, 503, 577]. In addition, the
technical complexity of these systems represents a usability hurdle for non-tech-
savvy users (e.g. Ricochet relies on random identifiers instead of usernames),
further undermining attempts by privacy-aware users to persuade others to
switch services.

Obfuscation on the other hand, while not exempt of its own usability challenges,
enables users to continue using their preferred communication services by
polluting the communication profiles that the adversary builds with users’
communication metadata. By relying on Protos to obfuscate communication
patterns, we prevent profilers from retrieving users’ real communication profiles.

There is however a shortage of research on standalone chaff-based profile
obfuscation tools. Early work on communications security propose chaff as an
additional, optional means to achieve a high level of traffic analysis resistance
through full padding of a communication network’s links [318, 536]. These
proposals however neither examine the level of protection that chaff provides
below full padding levels nor alternative strategies to full padding, relegating
the use of chaff to little more than an expensive idea. More recent proposals
study chaff as part of anonymous communication systems design, instead of
a standalone Proto [405, 420]. Hence, in this chapter we provide a first set of
contributions towards bridging this research gap.

This chapter is organised as follows. In Sect. 5.1 we instantiate the chaff-
based profile obfuscation (CPO) model to the particular scenario of online
communication services, introducing communication profile obfuscation tools
(cProtos). We introduce the cProtos’ analysis framework in Sect. 5.2. We
propose communication profile confidentiality (CPC) as reference privacy
property with two possible variants: contact-exposed and contact-hidden CPC,
both of which we operationalise using information leakage. We demonstrate
how to compute mutual information to measure information leakage and assist
cProtos’ DGS design for SNSs in Sect. 5.3. More particularly, we illustrate DGS
evaluation in Sect. 5.3.1 and side-channel information leakage from auxiliary
online social network (OSN) metadata in Sect. 5.3.2. We examine issues

4See https://ricochet.im/

https://ricochet.im/
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regarding the provision of E2EE in SNSs in Sect. 5.4, focusing on the role
social network providers (SNPs) can play as E2EE enablers in Sect. 5.4.1,
and attending to users’ attitudes and perceptions to third-party E2EE tools
(TPETs) in Sect. 5.4.2. Lastly, we discuss additional matters in Sect. 5.5 and
conclude in Sect. 5.6.

5.1 Modelling online communication profile
confidentiality

5.1.1 System model

We consider an online communication service, e.g. an online site or web
application that enables a set of users V to communicate with one another. We
abstract away from the particular communication type or medium, be it private
messages in a dedicated messaging application like Whatsapp, public posts in a
social networking site like Facebook or comments in a video sharing platform
like Youtube, and consider that users exchange messages.

We denote a user message as r and rely on additional subscripts to specify
sender and receiver. We denote a message Alice sends to Bob as rA,B and
a message that Alice or Bob exchange, regardless of who the sender is, as
rAB. To denote multirecipient messages, we may add subscripts accordingly,
e.g. denoting a message Bob sends to Alice, Carol and Frank as rB,ACF. However,
to avoid complex notation, we split multirecipient messages into as many
individual messages as recipients, e.g. we split rB,ACF into rB,A, rB,C and
rB,F. We denote the sequence of messages Alice sends as rA = [r1, r2, . . . , rm];
with rA,B denoting the sequence of messages Alice sends to Bob (disregarding
Bob’s responses) and rAB the sequence of messages Alice and Bob exchange
(including Bob’s responses).

Moreover, we consider a set of functions κi that evaluate the relationship among
any two users of the communication service, e.g. binary function κF classifies
two users as friends if the number of messages they exchange is greater than a
threshold θF . A function κ takes an arbitrary number of variables into account,
such as the timing and frequency of messages or the number of people two
people share as friends or contacts.

Each function κ induces a communication graph G := (V,E), where each vertex
v ∈ V represents a user and each e ∈ E represents the relationship between two
users vi and vj that function κ assigns to them, e.g. G := (V,EF ) represents
the friends’ graph, where an edge eF exists between two users if they are
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friends. Non-boolean functions κ induce a weighted graph G, where each edge
e represents the weight of the relationship between two users. For each user,
say Alice, GEi [A] denotes the local subgraph that Alice and her set of type Ei
relationships induce, e.g. GF [A] denotes the local subgraph that Alice induces
through her friend relationships.5

Whereas users may communicate using several interoperable communication
services or use various services that the same provider operates,6 for simplicity
and without loss of generality we consider one service that only one provider
is responsible for, which we refer to as, like in previous chapters, the
service provider.

We assume that user communication is encrypted end-to-end (E2EE), namely,
users communicate using encrypted messages so that no third party intercepting
or enabling the communication process e.g. the service provider can see that
users exchange encrypted messages, how many, how often, yet is unable to
decrypt them and thus retrieve their content. We however note that end-to-end
encryption (E2EE) is not a fundamental requirement or assumption in our
model; we show in Sect. 5.1.3 that Protos can incorporate E2EE to systems
where it is not available. Lastly, E2EE is still vulnerable to adversaries who
either steal the decryption keys or compromise users’ devices to eavesdrop on
their messages once decrypted on the client side. This is an orthogonal security
issue as we assume, like in previous chapters, that user devices are secure, i.e. free
from malware that monitors and leaks information about users’ communication.

Figure 5.1 provides a graphical depiction of the system and threat model.

5.1.2 Threat model

The online communication service provider observes all user communication,
i.e. the sequence of messages r that any user generates and therefore the sequence
of messages rAB that any two users exchange. Since users encrypt their messages
end-to-end, the service provider is unable to read their contents; however, it can
determine the number of messages users exchange, sender and receiver, their
timing and frequency.

The provider collects and processes each user’s sequence of messages r =
[r1, r2, . . . , rm] into a communication profile x. We model a communication
profile as a multinomial distribution x = {xi}, where each element xi represents

5We slightly abuse notation here and use GF instead of GEF to avoid double subscripts.
6As an example, Facebook Inc. owns Facebook, Whatsapp and Instagram thus provides

communication to all three services’ users, plus it currently has plans to make interplatform
communication possible [56]
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Figure 5.1: Online communication system and threat models.

a probability a profiling function assigns to a category i. The choice of categories
i and the meaning or interpretation of probability xi depend on the profiling
function g(r). We do not make any assumptions about g(·), i.e. it may map
messages to categories according to message size, recipient, sending time or any
other contextual information available to the adversary, e.g. each category xi
represents a recipient vi and the profiling function g simply counts the number
of messages user vi sends to vj . Under such g, communication profile x = {xi}
denotes the probability that a user, say Alice, sends a message to a recipient vi.
Despite the apparent simplicity of this profiling function, we note that choosing
how to count messages between senders and recipients is far from trivial, e.g. if
two people communicate over email, we may choose to count recipients in the CC
and BCC fields, count them only if they actively participate in the conversation,
or assign them a different weight than to participants in the TO field.

5.1.3 Communication Protos

A communication profile obfuscation tool (cProto) generates dummy messages
on behalf of the user to prevent the adversary from retrieving the user’s
communication profile x.

We denote dummy messages as d and define additional subtypes of communica-
tion types such as dummy posts or dummy comments when appropriate.
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Wemirror our model of chaff-based private web search (CBPWS) tools (q.v. 4.1.3)
to conceptualise cProtos. Hence, we define a privacy property, a privacy measure
and dummy generation strategy (DGS). We further consider a DGS’ dummy
rate ρ as the proportion of dummy messages to total messages, and dummy,
target and observed profiles (w,yt and y, respectively).

Content indistinguishability and filtering through cryptography.

cProtos differ from CBPWS tools in terms of the relationship between users and
the adversarial, uncooperative provider. In CBPWS, users interact with the
search engine provider alone, to whom they need to disclose their search queries
to obtain a list of search results. In communication services, users interact with
each other and do need to expose the content of their messages to the service
provider, who is merely an intermediary responsible for message transport and
storage. That is why in our cProtos model we assume the deployment of E2EE,
to prevent an adversarial provider from accessing messages’ content.

E2EE further assists dummy generation strategies (DGSs) design by facilitating
content indistinguishability across real and dummy messages. Assuming a
semantically secure cryptosystem, such as AES [147], encrypted real messages
are indistinguishable from dummy messages of the same length, regardless of
their corresponding content in plaintext. Hence, encryption not only ensures
content confidentiality, but it also relieves cProtos designers of the burden of
generating indistinguishable plaintext content for dummy messages. In fact, we
recall from Chapter 4 that one of the main hindrances in CBPWS tool design is
the large and unknown universe of user queries. CBPWS tools cannot anticipate
in advance the queries a user generates, thus complicating the task of mapping
real sequences to dummy supersequences. Encryption addresses this issue
and in turn simplifies DGS design by making both real and dummy messages
indistinguishable content-wise; DGS designers do not need to determine in
advance the universe of real messages, as encryption ensures that the adversary
cannot exploit it. An adversary can still however exploit message length to tell
real and dummy messages apart, a vulnerability cProtos designers can address
by splitting and padding real messages [447], fitting them to a predefined length
set that all real and dummy messages conform to.

On the other hand, whereas CBPWS tools do not need to disclose which queries
are real and dummy to anyone but the querying user herself, cProtos require
a mechanism that allows communicating users to filter out dummy messages,
as otherwise their own communication becomes polluted by noise. Dummy
message filtering must however be available only to communicating users, as
otherwise it compromises the indistinguishability between real and dummy
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messages towards adversarial parties who do not belong in the conversation,
such as the service provider. cProtos can also rely on E2EE to address this issue,
using message authentication codes (MACs). Following Rivest’s chaffing and
winnowing strategy [453], a cProto tags real and dummy messages with valid and
invalid MACs, respectively. As Rivest notes, a “typical MAC algorithm (such
as HMAC-SHA1) will appear to act like a ‘random function’ to the adversary,
and in such a case the adversary will not be able to distinguish wheat from
chaff” [453]. Communicating users can however easily discard dummy messages.
Upon message reception, users’ decryption application checks each message’s
MAC, discarding those messages that carry invalid MACs hence automatically
filtering out dummy messages.

cProtos can thus leverage E2EE to ensure both content indistinguishability
and (authorised) dummy message filtering. Whereas we assume that E2EE
is available by default to highlight the privacy risks involved in profiling
communication patterns, we acknowledge that this is not often the case in
online communication applications [249]. As we discuss later in Sect. 5.4.1,
cProtos designers can therefore choose to deploy E2EE in communication
services where it is not available to guarantee content indistinguishability (thus
confidentiality) and enable ease of authorised dummy message filtering. Still,
we note that despite the advantages that E2EE offers, encryption is not a
mandatory component of cProtos design; cProtos designers may attempt to
generate plausible dummy plaintext messages like CBPWS designers generate
dummy queries and devise alternative filtering strategies, like having users
agree out-of-band and in advance on real and dummy positions in a sequence
of messages [120]. Given however the superior security guarantees that E2EE
offers, we do not study any such alternatives in this chapter.

5.1.4 Adversary model

We mirror CBPWS’ adversary model to instantiate the general Protos adversary
model (q.v Sect. 3.1.3) in the particular case of cProtos. To avoid reproducing
CBPWS’ adversary model, we point the reader to Sect. 4.1.4 and provide here
a brief summary.

The adversary’s goal is to obtain users’ communication profiles x. However,
once users deploy cProtos, if the adversary processes both real and dummy
messages it obtains an observed profile y that may bear no relation to the real
profile x. To recover x, the adversary deploys attack strategies that seek to
remove as many dummy messages as possible from q, the sequence of messages,
both real and dummy, it observes from the user. As a result of an attack,
the adversary obtains a filtered profile x̂. The adversary is honest-but-curious
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(HbC), thus attempts to remove as much dummy messages as possible from q,
yet does not disrupt users’ quality of service (QoS).

As a minor point of divergence between CBPWS and cProtos, we do not
differentiate across two types of attack strategy, profile-based and message-
based. Although it remains a useful categorisation, we do not rely on it in
this chapter.

5.2 Analysis framework

We provide an analysis framework for cProtos. We define a set of privacy
properties for communication profile confidentiality and operationalise them
using the measure of information leakage we introduce in Sect. 3.2. Table 5.1
offers a summary of the specific notation we use throughout this section. We refer
the reader to Table 3.1 for general Protos notation we have previously introduced.

5.2.1 Privacy properties

Similarly to CBPWS, there is a plethora of privacy properties a cProto
may attempt to provide. Given the impossibility of providing an exhaustive
list of users’ privacy concerns and requirements, we focus on two flavours
of communication profile confidentiality (CPC), namely, contact-exposed and
contact-hiding.

Contact-exposed CPC guarantees that the adversary cannot determine a
user’s communication profile x among a users’ contacts, according to
a function κcontact that defines what a user contact is. For illustration
purposes we generally consider as contacts those individuals with whom
users communicate at least once, regardless of whether or not those
individuals respond. Hence, contact-exposed profile confidentiality
conceals the amount of messages users send to their contacts, but not the
list of contacts itself.

Contact-hidden CPC guarantees that the adversary cannot determine a
user’s communication profile x, including a user’s contacts, i.e. it hides
both the amount of messages users send to their contacts and who users’
contacts are.
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Symbol Meaning

v User
V Set of users / Set of graph nodes

rA,B Message Alice sends to Bob
rAB Sequence of messages between Alice and Bob

κ Relationship classification function
θ A threshold

G OSN/communication graph
E Set of graph edges

x Communication profile component
χ R.v. over (real) profile components
y Observed profile component
υ R.v. over observed profile components

σ Number of samples
∆ Quantisation step

M R.v. over number of messages
F R.v. over number of friends
Z R.v. over number of (public) posts

Table 5.1: Summary of notation.

5.2.2 Privacy measure

We choose to measure profile confidentiality through information leakage
(q.v. 3.2.1). We choose information leakage, a mechanism-centred analysis
(MCA) measure, to abstract away from particular adversaries and attack
strategies. Moreover, we favour information leakage over indistinguishability
measures because we do not intend to characterise the behaviour of a cProto for
every possible probability distribution P (R = r ) of input sequences. Instead, we
empirically assess information leakage over a selected range of input sequences,
as we further illustrate in Sect. 5.3.1.

We recall that to measure information leakage we use mutual information
as follows:
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I(R;Q) ≡ H(R)−H(R | Q)

=
∑
r∈R

∑
q∈Q

P ( r, q ) log P ( r | q )
P ( r )P ( q )

(5.1)

where R represents the random variable whose domain is the space R of real
sequences of messages r and Q represents the random variable whose domain is
the space Q of obfuscated sequences of messages q.

To measure contact-exposed CPC, we consider random variable RA over the
space of possible real message sequences RA whose underlying contact list is a
subset of Alice’s contact list κ(rA), i.e. RA = {ri : κ(ri) ⊆ κ(rA)}.

To measure contact-hidden CPC, we consider random variable R+
A over a

space of possible real messages sequences RA+ whose underlying contact list
includes and extends Alice’s contact list κ(rA), i.e. RA+ = {ri, rj : κ(ri) ⊆ κ(rA),
κ(rj) 6= κ(rA),∀rj ∈ R′ ⊆ R}.

Information leakage is minimal when I(R;Q) = 0 and maximal when I(R;Q) =
H(R), which corresponds to maximum and minimum levels of CPC. Moreover,
whenever I(R;Q) = 0, contact-hidden CPC offers greater privacy protection than
contact-exposed CPC. For intermediate values 0 < I(R;Q) < H(R) however,
information leakage is, as an average measure, not sufficiently expressive to
represent what precisely an adversary learns about a users’ communication
profile. In contact-exposed CPC, the bits of information a cProto leaks may
enable an adversary to determine the people the user contacts the most —
or the least. Similarly, in contact-hidden CPC, the number of bits may
prevent an adversary from determining a user’s real contacts among her
least contacted people, yet expose the section of her profile that relates to
her most frequent contacts. Accounting for more fine-grained notions of
privacy requires computing mutual information between sets of input sequences
accordingly, e.g. to capture whether a DGS leaks information about Alice’s
best friend, say Bob, we consider random variable RBFF that takes values 0
and 1 according to a function κ(r) : R 7→ (0, 1) that defines whether or not
Bob emerges from input sequence r as Alice’s best friend, respectively, and
compute mutual information I(RBFF;Q). We further illustrate how to compute
information leakage for alternative privacy requirements such as concealing best
friends in Sect. 5.3.1.
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5.3 Design and evaluation of cProtos for social
networking sites

OSNs pose a challenging scenario for cProtos design due to the wealth of user
information they contain and types of interactions they support. Users engage
in various types of online interaction, generating troves of metadata; they post
on their friends’ pages, participate in other users’ conversation threads and
comment on and further share news, photos and videos.

A first challenge we face in DGS design is the selection of metadata features we
wish to obfuscate or, equivalently, how to model sequences of messages r. Each
message users send generates several metadata, most obviously its intended
audience, day and time, but also user device and browser, time since last message
or time since previous interaction with a particular recipient, among others.
Accounting for each of these metadata increases the complexity of DGS design,
namely, we need to ensure that none of these metadata leaks information that
the adversary can exploit to distinguish real from dummy messages.

Moreover, the adversary has access to the OSN graph as well as to user activity
that does not leave visible traces on the site. The adversary can exploit graph
topology features such as who is “friends” with whom, how many friends two
users have in common or how “well connected” users are, as well as metadata
from e.g. users’ visits to their friends’ personal pages or the time they spend
examining a particular piece of content.

Since the adversary has access to and collects all OSN users’ activity, we need to
determine not only the set of metadata we wish to obfuscate, but also auxiliary
sources of information. Even if we determine that users require CPC for one
type of communication and not for others, say private messages and public posts,
respectively, correlations between types of communication require a coordinated
DGS to prevent side-channel leakage; if the user communication patterns we
intend to obfuscate correlate with other types of OSN activity, adversaries can
exploit unobfuscated activity to undermine a cProto’s DGS, e.g. if Alice sends
more private messages to those OSN friends on whose posts she comments the
most, an adversary can exploit information about unobfuscated Alice comments
on her friends’ posts to infer her private communication profile. Moreover,
social graph properties such as the number of friends users have in common
or their betweenness centrality in the network [239] may also correlate with
their communication patterns, as well as user activity that does not leave
visible traces on the site, providing side information to the adversary to discard
dummy messages. Obfuscating every type of user activity the OSN supports
increases DGS design complexity, yet if we dismiss sources of metadata to
simplify DGS design we risk overestimating the protection a cProto offers.
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In this section we demonstrate how to leverage the measurement of information
leakage to assist DGS design. First, in Sect. 5.3.1, we demonstrate how to
measure a DGS’s information leakage through a series of simplifications that
ease and hasten mutual information computation, thereby enabling exploratory
DGS evaluation. Then, in Sect. 5.3.2, we measure correlation strength between
OSN’s metadata sources to identify strongly correlated sources that we must
consider as well as weakly correlated or uncorrelated sources that we can safely
dismiss to simplify DGS design.

5.3.1 DGS evaluation

To illustrate how to measure a DGS’s information leakage, we compute mutual
information between real and obfuscated user communication in a series of
experiments where we vary the DGS, the OSN’s network topology and user
communication patterns. We run all experiments by generating synthetic traces
of OSN interactions using a Python OSN simulator of cProto users in OSNs [37].

First, we examine practical issues related to the computation of mutual
information as well as simplifications that ease DGS evaluation. Then, we
present the results of our experiments.

Computing mutual information.

Computing mutual information requires that we obtain the probability
distributions P (R = r ) and P (Q = q ), as well as the joint probability
distribution P ( r, q ). We can obtain random variable R by sampling observations
of user communication in OSNs either from existing OSN data or from simulated
OSN user interactions following models or known patterns of user communication
in OSNs [67, 68, 241, 533, 554]. We however refrain from obtaining the
observed sequences random variable Q and the joint variable (R,Q) analytically
due to the complexity of modelling interactions between users. Hence, we
estimate them from actual observations, namely, by sampling observations of
user communication that we obfuscate with cProtos.

Sampling. To estimate random variables R, Q and (R,Q) we run a cProtos
simulator that intertwines dummy interactions with user interactions [37]. In
each simulation run we obtain a sample of each random variable by selecting
a user vi uniformly at random and storing (ri, qi). We repeat this process to
obtain an arbitrary number σ of samples.



DESIGN AND EVALUATION 183

We compute probability P ( (R,Q) = (r, q) ) by counting the number of
occurrences c(r, q) of each pair of values (r, q) and dividing it by the total
number of samples σ. However, using a finite number of samples introduces an
error in the estimation. We model P (R,Q ) as a multinomial distribution and
use Bayesian inference to obtain a bound on this error.

The Dirichlet distribution is a conjugate prior for the multinomial distribution.
Its probability density function represents the belief that the probability of
occurrence of (r, q) is P ( r, q ) given it has been observed c(r, q) times. We
obtain σ′ samples P ( r, q ) using the Dirichlet distribution with ‘c(r, q)’ as
input parameters:

P (R,Q ) ∼ Dirichlet(c(r1, q1), ..., c(r|R|, q1), ..., c(r|R|, q|Q|)) (5.2)

where subindexes i, j as in represent a particular ri and qj in the space of real
sequences R and the space of obfuscated sequences Q.

For each sample drawn from the Dirichlet, we calculate mutual information
as follows:

I(R;Q) =
∑
r∈R

∑
q∈Q

P ( r, q ) log
(

P ( r, q )∑
r∈R P ( r, q ) ·

∑
q∈Q P ( r, q )

)
(5.3)

and take the median value of I(R;Q) as the estimated mutual information value.
To estimate error, we consider the interval containing a given percentage of
values around the median, e.g. we use the lowest value in the first quartile and
the highest value in the third quartile as error bounds, thus considering the
50% of values around the median.

Profiles and profile components to limit sampling requirements. The uni-
verse of sequences R and Q that we need to sample depends on the metadata
we select to characterise message sequences. We may count messages Alice
sends to Bob and Charlie, account for time between messages, time of day or
number of friends in common, among several other metadata. Each additional
variable represents an additional dimension in the sequence space, augmenting
the universe of possibilities we need to consider and sample. Each variable may
also provide to the adversary additional information to distinguish real from
dummy messages.

Any choice of sequence characterisation focuses on a set of metadata we assume
the adversary exploits, implicitly dismissing other potentially informative
metadata, e.g. by omitting the time of day a user sends messages in a



184 COMMUNICATION PROFILE CONFIDENTIALITY

sequence characterisation, we implicitly disregard the information it provides
to the adversary. Whereas omitting metadata disregards potential sources of
information leakage, it also simplifies DGS design and evaluation. Moreover,
accounting for fewer metadata enables us to measure the amount of information
those metadata alone leak, thereby isolating their contribution to information
leakage and assisting the identification of those features that leak the most
information. Hence, we can first design a simple DGS that considers a small
set of metadata and assess the level of CPC it provides before incorporating
additional metadata that increase DGS complexity.

Choosing fewer metadata further simplifies mutual information computation.
Since each additional source of metadata represents an additional variable
(with potentially infinite values) in the sequence space, fewer metadata leads
to a smaller universe of potential sequences we need to sample —thus less
time we employ collecting samples— and each sample requires less memory or
data storage. As a result, with shorter time and fewer memory requirements,
computation is more feasible.

In our DGS evaluation we choose to replace each sequence r with a profile
x = g(r) that we build as

x = [xij ] = g(r) = c(ri,j)∑
j c(ri,j)

where c(ri,j) represents a counter that g increments as follows. If vi sends
a message to vj as the only recipient, function g increases c(ri,j) by one. If
vi sends a message where vj is one among a group k recipients, function g
increases c(ri,j) by 1/k, regardless of any underlying recipient classification.

Hence, we compute mutual information between the random variables X and
Y that g induces as:

P (X,Y ) ∼ Dirichlet(c(x1,y1) + 1, . . .

. . . , c(xm,y1) + 1, . . . , c(xm,yn) + 1)
(5.4)

The “+1” in Eq. 5.4 indicate that we assume negligible prior knowledge on the
probability values we estimate, namely, we simply assume that all pairs (x,y)
have a probability greater than zero. We calculate mutual information according
to Eq. 5.3, simply replacing random variable (R,Q) with the corresponding
random variable over profiles (X,Y ) we compute in Eq. 5.4.

We acknowledge that replacing sequences r and q with profiles x and y
underestimates an adversary’s ability to distinguish real from dummy messages,
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as the profiling function g we consider disregards any information about a
sequence of messages other than the number of messages two users exchange.
However, this strategy also enables us to significantly shrink the sequence
space and focus on the information that obfuscated volume alone leaks about
the actual volume of communication between recipients. Moreover, because
throughout the simulations we run we only need to store profiles x, which
we can compute on the fly, instead of storing each message r a user sends
with its corresponding metadata, we drastically reduce simulations’ memory
requirements. In addition, less informative random variables provide a lower
bound on the amount of information a cProto leaks.

To shrink the sequence space and speed up mutual information computation
even further, we also consider random variables χ, υ and (χ, υ), over
real profile components x, observed profile components y and the joint
process (x, y), respectively. This means that instead of computing the
information leakage that observed profiles y = {yi} provide over real
profiles x = {xi} , we focus on their individual components yi and xi,
respectively. In so doing, we compute how much individual observed profile
components yi leak about the corresponding real component xi disregarding
the allocation of a profile’s weights among the remaining components yj , xj
—in turn simplifying computation.

Conversely, it is possible —computational resources allowing— to consider not
only sequences with a richer set of features, but also correlations among profiles
of several users, thereby incorporating the networked effects of communication,
e.g. we may evaluate the system as a whole by considering random variables
that capture every communication profile in the social network, rather than
individual user profiles. To do so, it suffices to replace the random variables
over sequences in Eqs. 5.2 and 5.3 with the random variables over all profiles in
the social network.

Quantisation. We quantise profile components x to constrain them to a
discrete set of values. The step of quantisation ∆ defines the length of the
interval where continuous values map to a single discrete value. The effect
of quantisation is twofold. On the one hand, increasing the quantisation step
shrinks the state space, reducing the number of samples required to compute
information leakage and speeding up mutual information computation. On the
other hand, large quantisation steps group many x values together, hence further
reducing the amount of information we consider available to an adversary.

Moreover, we may select uniform or non-uniform quantisation steps, e.g. we de-
fine an arbitrary threshold θ to group a user’s communication partners into
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“close friends” (i.e. vj such that xij ≥ θ), and “acquaintances” (i.e., vj such that
xij < θ), thereby implicitly applying a classification function κ{close friends}.

Evaluation.

Experimental setup. We generate synthetic traces of OSN communication
using Balsa et al.’s simulator of cProtos users in OSNs [37].

Network topology. We consider two toy-example social networks. The first has
size |V | = 20 users, each user having 6 friends. In particular, κF (vi) = {vj}, j =
{i− 3, i− 2, i− 1, i+ 1, i+ 2, i+ 3} mod 20. The second has size |V | = 4 and
is fully connected, namely, all users are friends with each other. These networks
are orders of magnitude smaller than typical OSNs, yet sufficient to illustrate
how to compute information leakage through mutual information.

User behaviour. To illustrate changes in the amount of information a cProto
leaks under different models of user communication behaviour, we consider two
types of communication profiles. On the one hand, worst case profiles model
scenarios in which users communicate in pairs, namely, each user exclusively
interacts with one of her friends, never with any of her other contacts. Hence,
each user profile xi has a single weight xij = 1, while the remaining weights
xik = 0,∀k 6= j. We consider this profile to be a worst case for cProtos because
the DGS must conceal one very strong relationship that concentrates all the
user’s interactions. On the other hand, skewed profiles model more realistic
scenarios in which users communicate with all their friends, yet a fraction of
friends receives significantly more traffic than others. We generate skewed
profiles following Diaz et al.’s method [174].

Dummy generation strategy. We consider two DGSs, a non-adaptive DGS and
an adaptive DGS, to illustrate how mutual information captures the difference
in the amount of information different DGSs leak.

The non-adaptive strategy selects a set of dummy weights wij for each user vi
by drawing samples from a uniform distribution, then normalising the resulting
vector w. Then, it generates dummy messages from vi to vj according to w
alone, this is, without taking into account previous interactions or the real
profile x. The non-adaptive strategy’s dummy weights wij are thus independent
from real weights xij and so is each dummy profile wi independent from xi.

The adaptive strategy similarly selects a set of target weights ytij for each user vi
by drawing samples from a uniform distribution, then normalising the resulting
vector yt. However, the adaptive strategy monitors user vi’s communication
and generates dummy traffic so that the observed profile y is as similar as
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possible to yt. To that end, whenever the y deviates from yt, the adaptive DGS
alters the recipients of subsequent dummy messages to bring y back to yt.

Quantisation. We perform uniform quantisation with the number of quantisation
steps varying between two and five, i.e. ∆ = {1/2, 1/3, 1/4, 1/5}. We expect
coarser intervals of quantisation, such as ∆ = 1/2, to lead to smaller values of
mutual information, showing that we lose information by reducing the universe
of values. Conversely, we retain more information —thus more accurately
measure information leakage— with smaller quantisation steps, e.g., ∆ = 1/5.

Moreover, we perform non-uniform quantisation to identify a user’s “best
friend”, which we define as the contact with whom a user interacts
the most, i.e. vj : j = arg maxj(xij). To this end, we define a per-user
threshold θi = max (xij), resulting in two quantisation intervals: one that
contains the maximum weight maxx(xij) and another for the remaining weights.

Sampling and error estimation. To minimise estimation error, for each
experiment we draw σ = 500 000 samples of (x,y) and (x, y) to compute
P ( x,y ) and P (x, y ), respectively. For each quantisation step ∆ we select the
median value of mutual information from σ′ = 1000 Dirichlet samples and the
values of the first and third quartiles as error estimators.

Results.

We present the results of our evaluation. In all figures, the vertical axis represents
mutual information and symbols represent different quantisation steps. The
horizontal axis represents the dummy rate ρ. We include ρ = 0 to represent the
special case where the DGS generates no dummies, so that the profile y the
adversary observes is the real profile, i.e. y = x. A dummy rate ρ = 0 leads to
maximal information leakage with mutual information taking value H(X) in
the case of communication profiles and H(χ) in the case of profile components.

To better illustrate the influence of other parameters, unless we state otherwise
we keep the quantisation step uniform and simulate skewed profiles. For each
quantisation step ∆ we represent the median value of mutual information. To
estimate error, we consider the lowest value in the first quartile and the highest
value in the third quartile as error bounds (i.e. the 50% of values around the
median); however, the figures below do not show these values as they are almost
identical to the median, thereby guaranteeing that we have drawn enough
samples of profile pairs (x,y) and profile components (x, y).
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Dummy generation strategy. We examine the difference in terms of
information leakage between non-adaptive and adaptive DGSs. We consider
the OSN with |V | = 20 users. Figures 5.2 and 5.3 show that the adaptive
DGS leaks less information than the non-adaptive DGS. Whereas the adaptive
DGS dynamically generates dummy messages to hide the real profile x in an
unrelated, random profile y→ yt, the non-adaptive DGS discloses a combined
profile y = x + w, so that for low dummy rates user profile x remains a
prominent component of y.

Dummy rate. Figures 5.2 and 5.3 further illustrate the dummy rate’s effect
on DGS effectiveness. More dummies decrease the dependence of the observed
profile (components) on the real one(s), thus reducing information leakage. Still,
higher dummy rates produce diminishing returns; a small amount of dummies
considerably reduces information leakage, yet further increasing the budget
of dummies does not lead to a proportional decrease in information leakage,
arguably due to the profiles’ skewness: small dummy rates quickly obfuscate
a profile’s weakest components, while hiding stronger components requires a
considerably larger budget of dummies.

Quantisation step. Figures 5.2 and 5.3 also show that the quantisation step
has a big influence on information leakage, since smaller quantisation steps
retain more information. However, we observe that the decay function is steeper
for small steps so that results across quantisation steps converge soon, suggesting
that it is possible to perform computationally inexpensive analyses to obtain a
first approximation of a DGS’s effectiveness.

Profiles and profile components. Figures 5.2 and 5.3 also illustrate the
decrease in information leakage when we consider profile components as opposed
to whole user profiles. By considering profiles as a whole, we measure the
information that interdependencies between interactions leak (e.g. when Alice
sends a message to Bob, she is not sending a message to Charlie) improving
profile components’ estimation accuracy. Still, information leakage similarly
decreases with higher dummy rates for both profiles and profile components,
thus justifying preliminary DGS evaluation with profile components to minimise
computational requirements.

Non-uniform quantisation. Figure 5.4 displays information leakage on profiles
and profile components under the adaptive (A) and non-adaptive (nA) strategies,
illustrating how we may use a non-uniform quantisation step to capture changes
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(a) Adaptive DGS. Profiles (b) Non Adaptive DGS. Profiles

Figure 5.2: Comparing adaptive and non-adaptive DGSs with information
leakage as I(X;Y ), |V | = 20 users, skewed profiles.

(a) Adaptive DGS. Profile components. (b) Non adaptive DGS. Profile components.

Figure 5.3: Comparing adaptive and non-adaptive DGSs with information
leakage as I(χ; υ), |V | = 20 users, skewed profiles.

in adversarial goals —in this particular case, to identify a user’s best friend.
Comparing Figure 5.4 with Figures 5.2 and 5.3, we observe that information
leakage decays more slowly for the same dummy rate increases when we use a
best-friend non-uniform quantisation step than when we use a uniform binary
quantisation step, demonstrating how none of the two DGS designs we consider
optimises the allocation of dummy messages to conceal best friends. Indeed,
none of the DGSs we consider selectively attempts to conceal any particular
component in profile x and, as a result, they conceal weaker components first
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and the strongest profile component (the “best friend”) last, requiring the largest
budget of dummy messages.

Figure 5.4 further confirms that the adaptive DGS performs significantly better
than the non-adaptive and that even if adversaries gain more information
by considering full profiles rather than individual profile components, a
profile component evaluation provides a good and less computationally
expensive approximation.

(a) Profiles (b) Profile components

Figure 5.4: Mutual information for non-uniform quantisation for adaptive (A)
and non-adaptive (nA) strategies. |V | = 20 users, skewed profiles.

Network topology and user behaviour. Lastly, we examine the impact of
social graph topology and user behaviour on DGS information leakage. We ran
simulations on the full-meshed network of size |V | = 4 for both skewed and
worst-case profiles, using the adaptive DGS.

Figure 5.5 illustrates how DGS effectiveness depends on user behaviour,
capturing the expected negative effect that worst-case profiles have on
information leakage. Figure 5.5b further shows that at dummy rate ρ = 0
diminishing the quantisation step has no effect on information leakage;
since users only communicate with one of their friends, regardless of the
quantisation step only two quantisation intervals have samples, namely, the
ones corresponding to x = 0 and x = 1. We note that at selected dummy
rates Fig. 5.5b reveals the existence of quantisation artefacts, namely, larger
information leakage for coarser quantisation steps. Still, mutual information
converges for all quantisation steps as the dummy rate increases.

Figure 5.5 also shows that information leakage decreases faster for skewed profiles
than in previous experimental settings with a not fully connected network of
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(a) Skewed profiles (b) Worst-case profiles

Figure 5.5: Effect of topology and user behaviour. |V | = 4 users, fully connected
topology.

size |V | = 20 (cf. Fig. 5.2a). These results demonstrate that DGS effectiveness
inversely decreases with the number of friends a user has on the OSN; the DGS
needs to distribute the same budget of dummies among a larger set of people,
thereby having less resources to cover strong profile components.

Conclusion.

In this section we have shown how to compute mutual information to measure
a DGS’s information leakage. We have tested several experimental parameters,
varying the DGS, network topology and user behaviour. Our results show
that mutual information captures changes in information leakage accordingly,
e.g. showing greater leakage for the non-adaptive DGS or less leakage for skewed
instead of worst-case profiles.

Because both the simulator and implementation we use to compute mutual
information are not optimised, they remain computationally intensive. Hence,
we consider networks which are orders of magnitude smaller than actual
OSNs to obtain results in reasonable time. Nevertheless, we show that it
is possible to speed up mutual information computation through strategic
selection of metadata and quantisation. Our results indicate that the decrease
of information leakage with increasing dummy rates is very similar for profiles
and profile components, hence we may perform the analysis uniquely on profile
components for preliminary DGS evaluation in larger networks. Considering
coarser quantisation intervals also provides very similar information to more
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fine-grained intervals. Hence, we can rely on coarse quantisation to speed up
DGSs evaluation.

5.3.2 Side channel leakage evaluation

Batina et al. argue that “side-channel analysis can be seen as the problem of
detecting a dependence between [two random] variables” [53]. Like previous work
on side-channel leakage analysis in cryptographic implementations [237, 505],
we use mutual information to evaluate information leakage from side-channel
sources of OSN metadata.

In the previous section we have examined techniques to simplify mutual
information computation that enable us to perform preliminary DGS evaluation.
We apply these same techniques to examine correlations across different sources
of metadata and determine which ones we need to consider in DGS design.

We consider an OSN where users engage in two main types of communication:
private and public. Private communication is E2E-encrypted, namely, only the
sender and designated recipients can access E2E-encrypted messages’ content.
Public communication on the other hand is accessible to everyone, with everyone
denoting a users’ friends, all OSN users or everyone on the net, depending on the
access control policy that both SNP and users define. We consider a cProto to
provide CPC for private communication and examine the leakage of information
about private communication that other OSN sources of metadata such as
public communication or the OSN’s topology reveal.

Experimental setup.

Dataset. We perform our study using Balsa et al.’s dataset from Belgian OSN
Netlog [40].7 The dataset comprises interaction metadata from the Dutch-
speaking subnetwork in Netlog, e.g. the sender, recipient and time of the
messages users exchange, but not messages’ content.

We select the following metadata for our analysis:

Friendship requests and acceptances. We consider that two users Alice
and Bob are friends when the dataset contains a friendship request from
Alice to Bob and a friendship acceptance from Bob to Alice.

7As of 2015, Netlog is no longer in service.
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Public posts. Public posts are messages that users leave on other users’
personal pages in the OSN and are publicly available for other Netlog
users to see.

Private messages. Users send private messages to select recipients that, unlike
public posts, are only visible to their senders and recipients through a
private inbox.

We note that as public posts are not E2E-encrypted, an adversary can also
exploit their content. However, we choose not to take post content analysis in
our analysis and focus exclusively on traffic data.

Moreover, we further note that Netlog did not implement E2EE, meaning that
Netlog’s service provider had access to all communication in plain text unless
users unilaterally deployed encryption (q.v. Sect. 5.4.1). Still, we simulate
encryption by disregarding private messages’ content.

Selected metadata. We consider the following random variables:

Over private messages,

the number of messages Alice sends to Bob, MA,B, and

the number of messages that Alice and Bob exchange, regardless of whether
Alice is sender or recipient, MAB.

Over network topology features,

the number of friends Bob has, FB;

the number of friends Alice and Bob have in common, FA∩B;

the number of friends that Alice and Bob have in total, namely, the cardinality
of the union of their sets of friends, FA∪B, and

the Jaccard coefficient over Alice and Bob’s sets of friends, J(FAB), which
equals the number of friends Alice and Bob have in common divided by
the number of friends they have in total, characterising the similarity
between their sets of friends [539].

Over public posts,

the number of posts Alice leaves for Bob, ZA,B, and
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Data source Features Visibility

Private messages MAB ; MA,B Private
Friends graph FA ; FA∩B ; FA∪B ; J(FAB) Public
Public posts ZA,B ; ZB,A

Posts graph FZA∩B; FZ
�

A∩B; F
�Z
A∩B; FZA∪B; FZ

�

A∪B; F
�Z
A∪B

Table 5.2: OSN features in correlation analysis.

the number of posts Alice and Bob exchange, regardless of whether Alice is
sender or recipient, ZAB.

Over network topology features that Alice and Bob’s posting friends induce,
namely, those friends Alice and Bob send to or receive posts from,

the number of mutual friends who either Alice or Bob posts to of receives
posts from, FZA∩B;

the number of mutual friends who either Alice of Bob posts to FZ�

A∩B;

the number of mutual friends who either Alice of Bob receives posts from
F

�Z
A∩B;

the total number of friends who either Alice or Bob posts to of receives posts
from, FZA∪B;

the total number of friends who either Alice of Bob posts to FZ�

A∪B, and

the total number of friends who either Alice of Bob receives posts from F
�Z
A∪B.

Moreover, we model some random variables over different time periods to
determine whether a longer or shorter history of available user behaviour
information leads to better correlations. We denote random variables over
alternative time periods with a superscript T, e.g. ZT.

Table 5.2 summarises the features we choose to examine.

Sampling. We use the sampling method we describe in Sect. 5.3.1. However,
rather than sampling from simulated data, we “sample” from the Netlog dataset.

We compute probability P ( (M,Z) = (m, z) ) by counting the number of
occurrences ‘c(m, z)’ of each pair of values (m, z) and dividing it by the total
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number of samples σ. Since a finite number of samples introduces an error
in the estimation, we model P (M,Z ) as a multinomial distribution and use
Bayesian inference to obtain a bound on this error as we describe in Sect. 5.3.1.

We take median values of mutual information as estimated values. To estimate
error, we consider the interval containing 99% of the values around the median.

Results.

We present the results of our experiments. Unless we state otherwise, all
figures in this section follow the same representation formula. They display
conditional probability distributions of the random variable we intend to
obfuscate (e.g. number of messages Alice sends to Bob) given the random
variable over the side-channel source (e.g. the number of friends Alice and
Bob have in common). The abscissa or horizontal axis represents values
of the random variable over side-channel metadata whereas the ordinate
or vertical axis represents conditional probability values. The figures also
feature error bars whenever significant, representing the standard error on
a 99% confidence interval.

Private messages given network topology features. Figure 5.6 shows the
probability of the number of messages two users exchange given a number of
topological features in their local network. Figure 5.6a shows that the number
of messages Alice sends to Bob is independent from the number of friends Bob
has. In fact, the entropy of the random variable over the number of messages
Alice sends to Bob equals H(MA,B) = 0.2044 bits, whereas conditioned on the
number of friends Bob has it barely drops to H(MA,B | FB) = 0.2037 bits (i.e.,
I(MA,B;FB) = 0.0007 bits). Hence, the number of friends Bob has does not
leak information about the number of messages Alice sends to him.

Similarly, neither the number of friends they have in common, the number of
friends they have in total or the Jaccard coefficient over their sets of friends
provides information about the number of private messages two users exchange,
as Figures 5.6b, 5.6c and 5.6d attest, respectively. The probability of any
number of messages stays relatively constant for numbers of mutual friends
below 1024. Beyond that number the error increases significantly —as few users
have more than 1024 mutual friends—, but with no indication of a potential
change in trend. Table 5.3 provides the list of information leakage values for
the topological features we evaluate, supporting the results in Fig. 5.6.



196 COMMUNICATION PROFILE CONFIDENTIALITY

(a) Probability of number of private messages sent given number of
recipient’s friends

(b) Probability of a number of private messages exchanged given
number of mutual friends

(c) Probability of a number of private messages
exchanged given union set of friends

(d) Probability of a number of private
messages exchanged given Jaccard coefficient
over friend set

Figure 5.6: Probability of number of private messages given graph topology.
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Bits
Ref.: H(MAB) 0.2751

I(MAB;FA∩B) 0.0006
I(MAB;FA∪B) 0.0017
I(MAB; J(FAB)) 0.0013

Table 5.3: Information leakage of various topological features.

Private messages given public posts. Figures 5.7a represents the probability
that Alice sends a number of messages to Bob given the number of posts she
writes to him in the same period of time (i.e. 6 months), whereas Figure 5.7b
represents the probability of the number of messages Alice sends to Bob given the
number of posts Alice receives from Bob in the same period. Both figures show
that the probability that Alice sends one or more messages to Bob significantly
rises when Alice leaves a post on Bob’s wall or she receives a post from him,
steadily increasing for even larger numbers of posts. However, the number of
posts Alice sends to or receives from Bob does not precisely determine the
number of private messages she sends to him, as the probability of sending
a particular number of private messages is similar for any number of posts
(despite the increasing gradient in Figures 5.7a and 5.7b, which is negligible
considering the logarithmic y-axis).

Figure 5.7c represents the probability that Alice sends a number of private
messages to Bob in a 6-month period given that Alice leaves a number of posts
for him in the previous 9 years, whereas Figure 5.7d represents the probability
that Alice sends a number of private messages to Bob on a 6-month period
given that Bob leaves a certain number of posts for her in the previous 9
years. In both cases, the probability that Alice sends messages to Bob increases
with the number of posts, yet the correlation between number of posts and
private messages is weak, suggesting that communication profiles are unstable,
that previous posting history is not as reliable a predictor of recent messaging
behaviour as recent posts.

Table 5.4 shows the mutual information between the random variables we
examine in Fig. 5.7, confirming that the number of posts two users exchange
does not provide significant information about the number of private messages
they exchange.

Private messages given posting friends. Figures 5.8a and 5.8b show that
the number of posting friends Alice and Bob have in common provides little
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(a) Probability of the number of sent
messages given number of sent posts.

(b) Probability of the number of sent mes-
sages given number of received posts.

(c) Probability of the number of sent
messages given number of posts sent over 9
years period.

(d) Probability of the number of sent
messages given number of posts received
over 9 years period.

Figure 5.7: Probability of messages sent given sent and received posts.

information about the number of private messages they exchange. When Alice
and Bob have more than one posting friend in common, the probability that
they exchange at least one message increases, yet does not provide sufficient
information to determine the precise amount of private messages they exchange.
We obtain similar results considering the union of posting friends, namely,
those friends that either Alice or Bob have sent a post to or received a post
from, in Fig. 5.8c. Table 5.5 shows information leakage from posting friends,
confirming the results in Figure 5.8 —including further experiments which we
do not include a figure for due to the similarity across results.
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Bits
Ref.: H(MA,B) 0.2044

I(MA,B;ZA,B) 0.0055
I(MA,B;ZB,A) 0.0048
I(MA,B;ZT

A,B) 0.0013
I(MA,B;ZT

B,A) 0.0011

Table 5.4: Information leakage of public posts.

Bits Bits
Ref.: H(MAB) 0.2751

I(MAB;FZA,B
A∩B ) 0.0025

I(MAB;FZAB,T
A∩B ) 0.0007 I(MAB;FZB,A

A∩B ) 0.0030
I(MAB;FZA,B,T

A∩B ) 0.0007 I(MAB;FZAB,T
A∪B ) 0.0015

I(MAB;FZB,A
A∩B ) 0.0021 I(MAB;FZA,B

A∪B ) 0.0014
I(MAB;FZAB

A∩B) 0.0039 I(MAB;FZB,A,T
A∪B ) 0.0021

Table 5.5: Conditional entropies given posting friends sets.

Conclusion.

The results above show that the side-channel sources of metadata we examine
leak no information about the number of private messages OSN users send
or exchange, suggesting that, at least in this particular OSN, it is possible to
disregard users’ public posts and certain properties of the subgraph they induce
to generate dummy messages and provide private-message CPC.

Still, given the limited sample of metadata we examine, we must not assume
the complete absence of correlations between the sources of information we
have evaluated. Other metadata variables such as the specific time users send
a post or the time elapsed since the previous post may leak more information.
Moreover, these results are specific to Netlog and we cannot generalise them or
claim the absence of correlations between these random variables for every OSN.

Lastly, whereas we acknowledge that it is impossible to perform such
measurement for every source of metadata in OSNs, the method we propose
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(a) Probability of a number of exchanged
messages given number of mutual posting
friends.

(b) Probability of a number of exchanged
messages given number of mutual posting
friends (over 9 years period).

10−4

10−2

100

(c) Probability of a number of exchanged messages
given union of posting friends set size (over 9 year
period).

Figure 5.8: Probability distributions of exchanged messages given posting
friends.

enables us at least to confirm or rule out expected sources of side-channel leakage
rather than blindly enlisting or excluding them from DGS design.

5.4 E2EE in SNSs

Whereas the cProtos model assumes that users exchange E2E-encrypted
messages, currently E2EE is not available for most SNS users. Instant messaging
applications such as Signal, Telegram and Whatsapp have successfully adopted
E2EE in recent years, yet popular SNSs like Facebook, Twitter, LinkedIn



E2EE IN SOCIAL NETWORKING SITES 201

or Flickr, to name a few, do not provide E2EE yet.8,9 Despite numerous
breaches into their systems [36, 370, 395, 556, 557] and promises old and
new to move towards E2EE, most SNSs do not protect users’ content with
E2EE [250, 582], hiding behind claims such as too much complexity and usability
problems [250, 384].10

E2EE does come with challenging key distribution and key discovery problems,
e.g. such as those that underlie PGP’s complexity and usability problems as
an E2EE mechanism for email. However, unlike email providers, who need
to ensure interoperability between users of other providers, SNPs have the
ability to unilaterally push changes in their respective OSN platforms as well
as the ability to leverage the implicit trust and social relationships between
their users [530].

Of course SNPs also have strong incentives to avoid the deployment of E2EE
as it threatens their business model, based on the monetisation of user data for
targeted, behavioural advertising. Moreover, pressure from governments and
law enforcement agencies to guarantee unfettered access to users’ data further
discourages the adoption of E2EE, even if increased calls for content moderation
and responsibility on the spread of misinformation provide counterincentives to
retain access to content [250, 403].

At the same time, in response to the numerous privacy breaches in SNSs and
SNPs’ inaction to strengthen their users’ privacy, researchers and developers
have advanced several proposals to enable E2EE in SNSs, be it through third-
party tools like browser plugins that users can deploy on the site, or through
alternative designs that propose new OSN platforms altogether [35, 57, 256,
301, 361]. However, these tools and alternatives have seen little adoption in
practice [4, 531].

8We note that some may argue that communication services like instant messaging or
email implicitly constitute OSNs too. However, we consider a narrower definition of OSN,
namely, boyd and Ellison’s, defining OSNs as “web-based services that allow individuals to
(1) construct a public or semi-public profile within a bounded system, (2) articulate a list
of other users with whom they share a connection, and (3) view and traverse their list of
connections and those made by others within the system” [92].

9Facebook provides E2EE as an option on its messaging mobile application Messenger,
while its subsidiary company, messaging mobile application Whatsapp, encrypts E2E by
default. Interactions on the Facebook site are not E2E-encrypted.

10In June 2014, in the wake of the Snowden revelations and much hype around end-to-
end encryption, Google launches a project to bring E2EE to its email service, Gmail. In
February 2017, Google announces it discontinues the project, after almost 3 years and scant
results [250]. In March 2019, Mark Zuckerberg, Facebook’s CEO, announces a move to bring
E2EE to Facebook [582]; however, this move seems to exclusively apply to the messaging
services of Facebook and its subsidiaries (WhatsApp, Instagram), rather than the whole
platform [298, 403].
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Security and privacy experts have attempted to explain why OSN’s users lack
interest in privacy technologies. Some argue that there is little interest in privacy
enhancing technologies (PETs) because these tools conceptualise privacy as
secrecy and secrecy is “antithetical to the notion of social interaction” [275].
Others point at the poor understanding of privacy problems in OSNs that users
have [373]. Despite the abundance of user studies about privacy in OSNs, the
perceptions and attitudes of users towards TPETs for SNSs remain largely
unexplored [531].

In the first half of this section we investigate the role that SNPs may play in
E2EE deployment, the advantages and disadvantages with respect to usability
and security. We consider three different possible roles SNPs can play in
enabling E2EE and examine the consequences of each of these roles for the
design and deployment of cProtos. We conclude that SNPs benefit from an
unparalleled position to deploy E2EE in their respective social networking
platforms, whereas TPETs face multiple usability and deployment obstacles.
However, the unparalleled position that SNPs enjoy also enables them to easily
undermine E2EE, whereas TPETs rely on and benefit from distributed trust.

Hence, in the second half of this section we present the results of a user study on
user perceptions towards TPETs for SNSs. We analyse participants’ responses
to identify obstacles that may impede the adoption of these tools, thereby
questioning the viability of TPETs as a vehicle for cProtos.

5.4.1 SNP as E2EE provider

A successful implementation of E2EE provides confidentiality, authenticity
and protection against man-in-the-middle (MitM) attacks. In this section
we consider three roles online SNPs can play in providing E2EE, outlining
advantages, challenges and threats, as well as discussing the implications for
cProtos deployment.

SNP as E2EE provider.

The SNP runs E2EE either integrated on the SNS or using client-side scripting.
The SNP is a trusted central authority that provides each user with a public-
private key pair or the means to generate them, e.g. through integrated client-side
code that runs on users’ browsers. The SNP works as certificate authority (CA)
and central directory, namely, it certifies, stores and ensures the availability of
users’ public keys. Users’ public keys are linked to users’ OSN profiles, i.e. to
user’s identities in the OSN. Users manage and store their own private keys
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and verify the authenticity of other users’ profiles, while the SNP ensures the
availability and authenticity of the public key linked to every profile, thereby
lessening the complexity of key management and its impact on users’ experience.

Challenges and responsibilities. Users may lose their private keys or access the
SNS from different devices, hence the SNP may add support for key recovery,
backup and synchronisation mechanisms, e.g. providing a public-private key pair
per device, similarly to iMessage [336].11 The SNP may enable users to encrypt
their private keys with a password (e.g. the one they use to log in to the SNS)
and store them on SNP servers so that users can later download them to other
devices, similarly to Firefox Sync’s synchronisation mechanism [496]. The SNP
may also implement an identity-based encryption (IBE) system defining users’
OSN identifiers (IDs) as public keys [87], thus becoming a private key generator
with the ability to regenerate private keys at any given time, enabling users to
synchronise new devices or restore lost keys. IBE further reduces the complexity
of key management by enabling OSN users to select as their public key relatable
IDs such as their e-mail address or telephone number [58]. However, we note
that IBE does not allow users to reuse IDs that became revoked public keys,
e.g. a user whose revoked public key was her email address can no longer use
her email address as a new public key. To support revocation it is possible to
attach an expiration date to each ID [87].

Possible threats. This model requires users to rely on the SNP as a trusted
party. As IBE private key generator, the SNP can decrypt all private messages.
If key generation happens client-side, the SNP may introduce backdoors that
allow it to covertly transfer a copy of all messages or private keys back to its
servers [416]. In both cases, law enforcement may compel SNPs to retrieve and
expose private keys, thereby defeating the very purpose of E2EE. Moreover,
as CA, the SNP can certify its own keys and use them to impersonate users,
launching hard-to-detect MitM attacks. SNPs can alleviate users’ concerns
through transparency, relying on schemes such as certificate transparency to
distribute trust among CAs [342].

SNP as participant in federated ID-based public key generation.

The SNP is part of a federation of multiple, independent semi-trusted entities
that implement a multiple-trusted authorities IBE scheme [119]. Each entity of
the federation acts as a private key generator (PKG) and follows a distributed
key generation (DKG) protocol based on verifiable secret sharing (VSS)

11Alternatively, Whatsapp, currently the most popular E2EE implementation, exclusively
relies on users’ phones as key storage and single decrypting device. However, the Whatsapp
model is inadequate to enable users general access to SNSs from different devices, as it requires
users to keep their phones connected at all times.
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which enables them to generate a master secret so that at least t entities
in the federation (assuming one secret share per entity) are necessary to
reconstruct it [58].

Upon user request and based on a public key the user chooses (e.g. her SNS
ID), each entity uses its own share of the master secret to provide a share of an
ID-based secret key. Each user’s private key thus results from the combination
of θ out of n shares, one per each independent entity in the federation. The user
collects one share from each entity and computes her private key client-side.
The ultimate goal is to prevent any of the providers or a coalition of less than θ of
them from retrieving the user’s private key, so that only users can retrieve their
own private keys [58].

Because each share is ID-based, each entity can provide its share from the
public key at any time. This way, in the event of private key loss or upon using
a new device, users can easily retrieve their private keys from θ of the share
holders. A federation of providers thus offers the convenience of IBE-based key
management while averting the threats that a single SNP acting as CA poses.

Challenges and responsibilities. Whereas distributed IBE provides convenient
key management, it still requires the selection of k entities to generate users’
secret keys. Holding users responsible for the manual selection of these entities
represents a usability challenge, therefore user-friendly methods must assist users
in the selection process. In particular, to reduce the risk of θ or more entities
colluding to reconstruct users’ private keys, the selection of share holders must
ensure that they operate under different jurisdictions to avoid that governments
are able to coerce enough share holders to recover users’ private keys. Moreover,
users must authenticate with each of the share holders to prevent unauthorised
parties to collect shares of their secret keys.

Possible Threats. Whereas this model shifts user trust from one single trusted
SNP to several semi-trusted federated entities, it is still vulnerable to collusion
of t or more SNPs. Hence, key security factors include the number n of different
entities, their incentives to collude, as well as the existence of an entity that can
coerce SNPs to disclose their shares, e.g. a government or supranational entity.

SNP as supporter.

The SNP supports third-party tools that provide E2EE encryption in OSNs,
typically browser plug-ins that independent developers and researchers design,
implement and maintain [57, 256, 326, 361]. Developers must release and
maintain plug-ins for different browsers, ideally for both desktop and mobile.
Since developers typically rely on limited time and resources to ensure constant,
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smooth tool maintenance and keeping up with constant browser and OSN
updates is hard, the SNP pushes changes to the OSN platform with care,
transparently, minimising impact on the plug-in.

To preserve user experience (UX), TPETs capture each HTML page before the
browser displays it to the user, decrypt any encrypted content (that the user
is able to decrypt) and replace it with its corresponding plaintext. The SNP
facilitates this task by providing parsing functionalities through an API. An
API provides a stable, black-box way of parsing the site that developers can
rely on independently from changes to the HTML.

The SNP further helps advertise and boost the visibility of these plug-ins,
e.g. similarly to Facebook’s new service trials, the SNP can recruit a subset of
users for early testing [509].

Challenges and responsibilities. With weaker SNP involvement, TPETs need
to overcome additional challenges. First, regarding key management, TPETs
require a mechanism that allows users to verify the authenticity of public
keys, rather than expecting non-tech-savvy users to import public keys from
a key server and perform offline fingerprint verification à la PGP [248, 480,
551]. TPETs must deal with key verification, loss and revocation effectively.
Popular E2EE messaging applications such as Whatsapp or Signal offer ease of
verification through QR code scanning of a “safety number”, yet user studies have
shown that users still fail to understand and therefore successfully execute the
verification process [1, 281, 475]. OTR suffers from similar usability issues [506].
Alternative proposals include key verification services based on key transparency
and monitoring such as CONIKS, whereby users’ clients monitor name-to-key
bindings to detect malicious or bogus key directories entries [379]. SNPs
can support the deployment of key verification services by acting as identity
providers, auditors and key directories, storing users’ public keys to guarantee
their availability and authenticity.

Management of private keys presents further usability challenges. TPETs typi-
cally generate public-private key pairs on the client side, storing users’ private
keys on their devices, which they implicitly assume to be trustworthy and secure.
Hence, users need to install the tool on every browser and device they use to
access the social networking site and synchronise or import private keys across
browsers and devices, a challenging process for non-expert users. Tool developers
can enable support for multiple key pairs, one for every browser and device, yet
this requires Alice to send messages to Bob encrypted with all his public keys,
and vice versa, adding further complexity to public key management. To prevent
private key loss and to ease access and storage, TPETs could encrypt private
keys with a password and upload them to the OSN; however, users typically
choose insecure passwords [9] and tend to forget them [214]. Developers may
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opt for using personal mobile phones as storage, yet this represents a brittle
alternative at best, as phones can unexpectedly stop working and are easily lost
and stolen.

User adoption represents another challenge. Whereas SNPs can seamlessly
integrate E2EE in the OSN, even turning it on by default, TPETs require that
users find and install them. Users may not be aware of the existence of these
plugins or realise that E2EE tools provide better protection than what the
SNP already offers [1, 39]. Moreover, users need their friends to also install the
tool, thereby posing a bootstrapping problem as early adopters are unable to
use E2EE until they convince their friends to adopt it too. Third-party tools
therefore depend on users’ ability to find them, to understand them and to
socialise their use.

Interoperability between E2EE tools from several third parties represents yet
another challenge, potentially leading to a landscape of tools so fragmented
that users require several tools to communicate with their OSN friends [69, 529].
Developers can tackle this problem by agreeing on an open standard to base
their tools on [460].

Possible threats. SNPs can abuse and subvert their supporting role for third-
party tools in several ways. SNPs can compromise the integrity and the
availability of encrypted messages by altering or removing ciphertext from their
servers. If an SNP serves as trusted public key directory, it can attempt to
impersonate users through a MitM attack; with no verification mechanism
in place —e.g. if users do not check fingerprints out of band— this attack
goes undetected.

Discussion.

Any of the three SNP roles we outline above enables or supports the deployment
of E2EE, thereby helping privacy engineers to build cProtos on top. However,
not every SNP role aligns with the cProtos’ adversary model.

If the SNP acts as either private-key generator or CA, it can undo E2EE and
defeat a cProtos that relies on encryption for content indistinguishability. Hence,
from a security and privacy perspective, this model is unacceptable, as the SNP
can impersonate OSN users and decrypt their messages, plus it spreads a false
sense of security among users, deceiving the public under claims of E2EE.

A federation of SNPs offers additional guarantees by distributing trust and
offers the convenience of having SNPs as providers while lessening the trust
users need to place on them. A federation also requires cooperation between
SNPs thus incentivises the deployment of standards that ensure interoperability.
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Third-party tools on the other hand minimise the trust that users need to
place on any SNP even further, but at the expense of diminished usability,
convenience and support.

Regardless of whether SNPs or third parties provide a client-side E2EE tool,
its code must be open source. Otherwise, users need to trust the developers as
they trust the SNP in the first model. Code auditing and oversight to ensure
that the tool is free from backdoors and unintentional vulnerabilities represents
an additional challenge.

We consider cProtos as independent third-party tools that users can install
to achieve CPC; cProtos designers may choose to either enhance existing
standalone TPETs with CPC capabilities or build separate cProtos that rely on
E2EE available in the SNS. One of the key underlying Protos design principles
however is to enable users to protect their privacy without the service provider’s
cooperation. Hence, in the next section we examine users’ attitudes to TPETs
in SNSs. We aim to study users’ perceptions of E2EE in SNSs and the use of
TPETs that cProtos designers may choose to extend.

5.4.2 Attitudes towards encryption in SNSs

We hypothesise two main problems motivate the adoption of TPETs:

– Insufficient protection against the SNP. Either because the SNP is
malicious or negligent of privacy.

– Inadequate access control tools. Because the access control tools available
at the SNS are insufficient or inadequate (e.g. Facebook’s privacy settings
do not enable arbitrary access control policies).

Throughout this section we refer to these reasons as access control problems
(ACP) and formulate the following hypotheses:

H1. OSN users are concerned about ACPs.

H2. OSN users feel responsible for addressing ACPs themselves.

H3. OSN users should use a (technical) tool to address ACPs.

H4. OSN users understand and agree with how TPETs address ACPs.

To validate these hypotheses, we perform a user study consisting of two
questionnaires and a guided tour to a TPET, namely, Scramble! [57].
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Design and setup. We validate hypotheses H1, H2 and H3 through an entry
questionnaire of 36 questions, of which we analyse a subset that we list in
Appendix A.1. We validate hypothesis H4 through a guided tour to Scramble!
and an exit questionnaire of 11 questions (see Appendix A.3). In addition, we
use the system usability scale (SUS), a 10-item attitude Likert scale widely used
in usability studies [96], to evaluate Scramble! ’s usability.

Because we want participants to evaluate how Scramble! solves ACPs (H4),
right before the guided tour we introduce them to ACPs on Facebook (see
documentation in Appendix A.2). Afterwards, we give participants a manual
to use Scramble!, including both an introduction to what Scramble! is, how it
works and the instructions for the guided tour. The guided tour involves all the
steps a new Scramble! user needs to follow to use the tool, including download,
installation and instructions to encrypt messages. We encourage them to send
encrypted messages to other participants.

We run the study in a laboratory environment during the first week of September
2013. At arrival, we instruct participants to log into one of 8 available
computers in the laboratory and send them an email with a link to the entry
questionnaire. They have 15 minutes to complete it, at which point they receive
the documentation for a 30-minutes guided tour to Scramble!. Then, they
receive a second email with the link to the exit questionnaire, which they have
10 minutes to complete.

We invite 52 students (42% female, average age = 21.5, SD = 2.6) from the
Center for Behavioral Decision Research Pool at Carnegie Mellon University
to participate in a study to “Test Scramble! – A Facebook app.” We pay
participants $10. All participants have been using Facebook for at least 2 years
and identify as active Facebook users.

Survey analysis. We rely on emergent coding [343] in two rounds of analysis
to process participants’ responses. In the first round we develop in-vivo codes,
namely, terms the participants themselves provide that summarise the concept
they refer to. In the second round we use thematic, hierarchical coding to group
in-vivo codes into themes and themes into broader, more general themes.

Results.

We present the results of our study. We use “quotation marks” to refer to
questions in the questionnaire and both “italics and quotation marks” to refer
to participants’ responses. We place participants’ quotes between parentheses
when we provide several examples of a certain attitude, perception or position.
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We do not aim to provide quantitative results, yet we mention the number
of participants that articulate a position to indicate whether it represents a
majority or a small minority.

Concern about ACPs (H1). We ask participants “Which privacy problems,
if any, do you encounter using Facebook?” (Q13) to find out whether users
refer to ACPs (H1). We classify participants’ responses in two categories: lack
of control over how information flows and lack of control over how others use
their information. Within the first category, participants express concern over
Facebook’s privacy settings (“privacy settings always seem to be reset to a lower
level after each update”) and their granularity (“[...] would be very helpful to be
able to decide exactly who can see each post / friend’s post / photo / piece of
info [...]”).12 Other participants refer to the difficulty of deleting information
(“even [if] you delete something still it can be seen by a search tool”). These
concerns are in line with ACPs. However, participants also voice concerns that
E2EE cannot address such as a lack of control over somebody else’s activities,
e.g. “I am able to stop people from seeing my posts, but not posts I’m tagged in”.

Similarly, relating to the lack of control over how others use their information,
participants mention problems that E2EE can solve, e.g. “my data being used
to target ads at me”, and cannot solve e.g. “Facebook tracking you across the
web”, “random people message me even though I don’t know them”, or “Some
random strangers sending me friend requests”.

We ask participants “What, if anything, would you add to, modify or delete
from Facebook’s privacy settings?” (Q17). Many participants point to the
inadequacy and lack of granularity of Facebook’s privacy settings, e.g. “want to
put limit to the photos one by one not the whole album”, “cover photos are all
public. I would change that”, “I would make it possible to hide specific things
from specific people”. Some participants point to enhanced protection from
web search, e.g. “[...] a function that makes your profile unsearchable for a
certain amount of time [...]”, “[...] that no one can find [my information] even
if googled”. Encryption offers fine-grained access control and disrupts search
engines’ ability to index content. However, some participants express a desire
“to see who has viewed my page”, “if any random user [...] viewed my pictures”,
while another participant requests the opposite “would never allow people to
see the profiles I’ve looked at”. Encryption does not offer this type of audit
capabilities. Some participants refer to Facebook’s terms of service and, more

12At the time of the study, Facebook provides privacy controls for items like posts but not
for e.g. single photos in an album. Besides, the predefined categories available on Facebook
limit a user’s ability to manage a particular post’s audience, e.g. Facebook users can share a
post with a particular subset of friends but not a particular subset of friends of friends, even
if sharing with all friends of friends is possible.
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specifically, to “what Facebook does with your data”. E2EE prevents access to
content —not metadata—, thus precludes its collection,

To questions “What privacy issues you have, if any, that you are not able to
solve with Facebook’s privacy settings?” (Q18) and (if any) “Which strategies
do you use to solve those privacy issues?”, most participants respond “none”.
We classify responses from participants who did have issues as:

Lack of control over other people’s activities (“Individuals comment in-
appropriately on [my] status”, “Friend requests from strangers”), with
coping strategies including “deleting the post”, “reporting [to Facebook]”
and “nothing”. TPETs do not provide solutions to these problems.

Lack of control or knowledge on Facebook’s uses of data (“to not sell
my data to companies”, “Tracking you across the web”, “Seeing who my
‘top friends’ are on chat or on my profile” or “The adds [sic] I see in
facebook are related to even my google searches, they interfere in to every
space of mine.”). Coping strategies include “ask explicitly if they are
okay”, “Firefox add-ons”, “nothing” and “never login in to facebook”,
respectively. TPETs mitigates some of these problems by denying data
access to the SNP.

Lack of control over cover photos with self-censorship as a solution (“Only
post [...] “appropriate” cover photos [...]”); TPETs address this problem.

Hence, all in all, we observe that users’ privacy concerns on Facebook overlap
with the reasons that motivate the adoption of TPETs.

Responsibility and control (H2). We assess participants’ desire for greater
control over their privacy and whether they feel responsible for taking measures
to mitigate ACPs. We ask participants “Who should decide...?” for a set of
decisions related to the visibility of their data (Q7) such as “...who is able
to see what you post on the site” or “...who is able to see your personal
details”. For all decisions but one, most participants think that they should
have control over those decisions themselves, being the average percentage of
You and Facebook across all decisions M = 81.3% (SD = 12.9%) and M = 23.9%
(SD = 14.1%), respectively. This desire for control clashes with the participants’
unwillingness to be the only responsible for several privacy-related issues [93].
We ask participants “Who should be responsible for the following [privacy
related] decisions?” such as “setting the proper privacy settings on your profile”
or “making sure private companies do not have access to the data you post to
the site without your permission.” Most participants consider that Facebook
should be responsible for issues such as “making sure your privacy settings
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work” or “making sure strangers cannot see your photos/posts online.” A few
participants even declare that Facebook should be responsible for “setting the
proper privacy settings on your profile” or even “making sure your friends do
not post photos of you that you do not like.” Most users attribute to Facebook
greater responsibility than control. Across all decisions, the percentage of You
and Facebook is M = 67.4% (SD = 21.1%) and M = 52.2% (SD = 27.8%),
respectively. We notice certain trends in how users assign responsibility. Users
attribute to Facebook responsibility for issues such as “preventing strangers
from logging in to your account” and “preventing people other than your friends
from reading your messages and seeing your photos”, i.e. issues that are out of
their control by default on Facebook, whereas they attribute to themselves the
responsibility for “what your friends can see in your profile”, i.e. matters for
which Facebook provides privacy controls.

In fact, to the question “On Facebook, what do you feel responsible for with
respect to your own privacy?” (Q11), most participants refer to what they
post (47%) and how they use the privacy controls that Facebook provides. For
instance, one participant writes: “[Block people. I]t is then facebook’s job to
make sure that they cannot message me from that point on”, or “I am not the
one who can guarantee the execution of [the privacy settings], Facebook does it.
At this level what choice do I have? To trust Facebook”. Participants also feel
responsible for the public content they post, but not what they say over private
messages. Participants explicitly mention that Facebook’s private domain falls
beyond the scope of their responsibility, e.g. “I feel responsible for the content
of my public posts/comments and photos posted to the public. I feel I should not
have to further manage private messages [...] which I want to remain private
and have selected as such”. Users focus on social privacy problems and barely
mention surveillance problems [260]; they consistently disregard the fact that
privacy settings do not prevent the service provider (Facebook) from being able
to access all their content, both public and private, e.g. “I would rather friends
send me private messages if they want to share something fun with me”.

Hence, even if participants show a desire for greater control over their privacy
on Facebook, they indicate no intention of taking matters into their own hands,
weakening the case for TPETs’ adoption.

Awareness of and attitudes towards alternative privacy controls (H3).
We ask participants “Which strategies or mechanisms do you know, even
if you do not use them, to prevent unintended recipients from having access
to your messages and information you send or post on Facebook?” (Q27).
Most participants (81%) respond “None”. Other participants point out to
strategies such as “limiting the amount of people [added] as friends”, tightening
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their privacy settings (including blocking people) and “deleting facebook”. One
participant mentions “encrypting messages/posts”. Further, we ask them “Why
would you, or would you not, use such a tool?” Most participants simply refer
to increased privacy as a reason (“I like to increase my privacy”), with some
providing more elaborate answers (“it would add an extra layer of protection
against marketering [sic] companies and online hackers”). At this point in the
questionnaire however, it is obvious that privacy plays a central role in the study,
hence participants’ answers may be motivated by a strong social desirability
bias [213]. A few other participants show more scepticism, e.g. “All ready, I’m
concerned with one such thing I’m using. I don’t want to involve something
else and provide my data to more sources” or “if it could actually protect me
from something I needed to be protected from”. Participants who respond that
they would not install such tools (20%) also declare that the tool itself can be
unreliable or leak their data (“I would not like to broadcast my privacy settings.
I would use the app only if it remains anonymous.”, “Not sure if it is safe to
install”) even suggesting that “they can be unreliable unless facebook certifies
the tool themselves”. Other participants dismiss the usefulness of such tools
as “I control what I share and I trust facebook to a certain extent” or “too
much effort for a trivial thing”. In short, the fact that users take advantage
of non-technical strategies to manage their privacy and the mistrust in the
effectiveness of alternative technical tools seem to offer little support for TPETs’
adoption.

Attitudes towards Scramble! (H4). We ask participants “Can you describe,
in a few words, your experience using Scramble!?” (Q36), and they express a
wide range of opinions. Many responses focus on the lack of usability: a steep
learning curve (“the learning curve took too much time”), how cumbersome
Scramble! is (cumbersome, “[ Scramble! requires] too many steps [...] to send a
message”). Lack of usability explains why Scramble! ’s SUS falls barely above
the middle score (M = 52.9, SD = 18.35, MAX = 95, MIN = 15). Many
perceive Scramble! to be useful but only for very private information, e.g. “It’s
a very great idea, but only useful for messages that really needed to be protected”,
“awesome for the people who want to send private [i]mportant [...] text messages”,
further linking this perception to poor usability, e.g. “It was effective, but too
complex to be integrated into my everyday routine. I am not THAT concerned
about my private messages to go through the hassle”. Some participants call
into question the benefits of Scramble!, e.g., “Easy, interesting, not sure about
the benefits, though”. Others describe the experience as both easy and fun.

We also ask participants “What would be the advantages, if any, of using a tool
like Scramble! over, or in combination with, other privacy controls?” (Q37).
Many participants (70%) give succinct answers (“more private communication”,
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“better privacy”) or simply repeat what they read in the documentation we give
them (see Appendix A.2). A couple of participants mention however that there
are no advantages of using Scramble! or that “I wouldn’t worry so much about
my Facebook messages being in the open.” One participant writes that “There
seems to be no advantage, as again facebook has all our public names and email
ids associated with that”.

Participants show further scepticism when we ask them “Scramble! encrypts
messages before you send or post them on Facebook. Do you think this is
a secure way to prevent unintended recipients from having access to them?”.
Even if most of them (77%) simply reply “yes”, others express e.g. “having a
simple private and public key mechanism may not be robust enough”, “yes, kind
of, I am sure they will find another way to decode it”, “To a point... unless
someone can figure it out and de-crypt it”, “that would require a second, and
third level of encryption, which I think is illogical”. Other participants do not see
cryptography as the source of mistrust, but rather its particular implementation
on Scramble! and the developers, e.g. “Probably yes, but remember we don’t
know whether scramble is a government controlled plug-in or actually developed
by Facebook itself”, “no, till proper and full information about, what scramble is,
how and why it encrypts our data”. Lastly, some participants’ concerns derive
from a misunderstanding of how Scramble! works, e.g. “what if you accidentally
send a message to someone who has scramble but they were an unintended
recipient can they still read your message? or do you have to add them to your
contact list first?”, while it does not matter who installs Scramble! or who is
on the user’s contact list as long as the public keys users select to encrypt a
message correspond to the intended recipients.

We ask participants “What do you think are the differences, if any, between
what Scramble! does and the privacy settings of Facebook?”. Most participants
(70%) refer to the documentation we give them (see Appendix A.2), while some
participant admit being unable to understand the differences between what
Scramble! does and what the privacy settings of Facebook do, e.g. “I don’t know
if Facebook uses encryption between two individual users like Scramble does”,
“im not exactly sure of how facebooks privacy stuff operates”.

To the question, “What, if anything, did you dislike about Scramble!?” (Q45),
one participant mentions that “[b]ecause messages sent to me were automatically
scrambled, I wasn’t sure if the person sent a scrambled message or a normal
one. I’m also not sure if anyone with scramble would be able to read a scrambled
message, or I would have to have them on my contacts list first”. One participant
asks “[w]hat if someone hacked into my facebook?” while another wondered
“[whether it would] be possible for third parties to figure out the encryption
mechanism”. Both responses suggest a lack of transparency and feedback to
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enable users to better understand how Scramble! works, contrasting with many
participants’ demands for higher automation.

In short, users’ inability to understand neither the type of protection E2EE
offers nor why E2EE works, a perception of encryption as too excessive a tool
to protect OSN communication and a mistrust in cryptography and third-party
tools all weaken the prospect of self-motivated TPETs’ adoption.

Discussion.

We have investigated user attitudes towards TPETs to determine whether TPETs
provide a suitable platform for designers to build cProtos on top, or rather
cProtos benefit from SNP-supported E2EE.

The study results indicate that OSN users’ attitudes are in line with the privacy
problems that TPETs aim to solve (H1), thus satisfying one of the prerequisites
for TPETs adoption. However, participants in our study seem to perceive
TPETs as disproportionate and ineffective, at too high a usability cost (H3, H4).
Their responses suggest that the burden of learning, adopting and using TPETs
offsets the low benefit they perceive E2EE provides.

Participants question the reliability of cryptography and third party tools,
showing scepticism towards their effectiveness. Some participants remark that
by using TPETs they need to trust the tool developers instead (or on top) of
the SNP. TPETs are typically open-source, thus under scrutiny by anybody.
Computer scientists rely on this property to justify that one does not need to
trust the developers, as anybody can examine the code (and change it) to make
sure it does what it is supposed to [286]. This in turn distributes the trust
users need to place on a single developer to the whole community. However,
the general Internet user may be unaware or unwilling to rely on this property
and current TPET designs do not tackle this issue. For other participants, the
complexity and obscurity of cryptography prevents them from understanding
how E2EE enhances content confidentiality over the mechanisms they already
use, as several participants demonstrate through their responses (cf. [1]).

Several authors obtain analogous results in the context of online tracking and
third party anti-tracking tools [369, 380, 471] (q.v. Sect. 3.3.3). Hence, we
conclude that users are unlikely to rely on TPETs if they do not understand
or know how to evaluate the protection these tools promise. In fact, TPETs
may leave users worse off if the latter do not understand how the former work.
In this study we choose not to test users’ ability to authenticate the public
keys they use to encrypt messages for each other, a task that users consistently
disregard [281, 475].
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Participants indicate a desire for seamless, nearly automatic integration between
the TPET and the social network (cf. [33]), thus supporting greater SNP
involvement in E2EE provision even if greater automation is likely to diminish
users’ oversight of their own privacy protection. Participants also raise concerns
with respect to the trust they need to place on yet another entity; SNPs can
enhance their trustworthiness through transparency. From a security engineering
perspective however, the less trust users need to place on the SNP, the better.
Yet participants’ actual perception is different: since they are not familiar with
the security advantages of open source code and trust distribution, they are
more willing to trust a powerful and popular entity such as Facebook than
independent developers they do not know.

Hence, unless designers manage to securely automate some tasks and engage
users in the kind of decision-making that TPETs require (e.g. leveraging
transparency and user feedback better [1, 443]), enhancing TPETs with cProtos’
capabilities seems pointless. SNS users are unlikely to seek TPETs on their own
and, by extension, cProtos.

In fact, participants’ attitude to TPETs casts doubt on their need for Protos.
If OSN users do not understand E2EE or perceive the need for content
confidentiality against the SNP it is at best doubtful that they seek CPC,
thus inhibiting Protos’ adoption [179]. Still, users may find obfuscation more
intuitive and easy to conceptualise than cryptography, even fun. cProtos
designers may therefore need to investigate avenues for greater OSN integration
and SNP involvement, in addition to user engagement [458].

5.5 Discussion

Privacy requirements.

In this chapter we propose two variants of CPC, namely, contact-exposed and
contact-hidden. Similarly to our selection of privacy requirements in CBPWS,
this selection illustrates one particular choice among many. Users may voice
other privacy concerns that require more specific definitions, e.g. concealing a
user’s k most contacted friends or concealing a user’s most stable relationships,
thereby introducing timing constraints that we have disregarded throughout
this section.
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Adversarial assumptions.

cProtos’ successful deployment depends on similar assumptions about the
adversary to the ones we have examined in Sect. 4.4.3, namely, the adversary
must be HbC. Whether or not this assumption holds in practice determines
the viability of Protos deployment. However, unlike in CBPWS, where users
can single-handedly deploy a CBPWS tool, cProtos require cooperation among
several users. If the dummy messages a cProto generates never elicit a response
from their recipients, an adversary can filter them out as dummies —unless
the user’s real messages never obtain a response either. Hence, as users need
to cooperate with one another, by design there are greater chances to reach a
critical mass that forces the adversary to acquiesce with obfuscation.

cProtos design.

There are a host of cProtos design issues that we have not dealt with in this
chapter. We have shown how to use information leakage with metadata selection
and simplification to perform preliminary DGS evaluation, as well as to measure
correlations between side-channel sources of information leakage that inform
DGS design. However, we have not addressed the numerous challenges that
cProtos DGS design itself poses.

To illustrate the challenges in DGS design, we briefly discuss here two of them.
First, cProtos design requires simulating conversations. If cProtos send dummy
messages which never elicit a response, an adversary can easily discard them as
dummies —except in the extreme case where users never obtain any response to
their messages. Moreover, real communication follows a set of patterns such as
time between messages or number of messages per conversation, among others,
which the adversary can exploit to filter out dummies. A user’s cProto must
therefore coordinate with other users’ cProtos to generate plausible conversations,
e.g. a cProto cannot unilaterally pursue a target profile yt (q.v. adaptive strategy
in Sect. 5.3.1), as it requires responses to make the dummy messages it sends
indistinguishable from real messages. Moreover, for real-time communication
services such as IM, cProtos must deal with the additional constraint that
communication partners must be online, e.g. a cProto that assigns a high value
to the target profile component ytj corresponding to a user vj that is seldom
online is likely to fail to plausibly ensure that yj = ytj .

Second, one of the two variants of CPC we propose, contact-hidden, requires
that users send dummy messages to people who are not in their contact list,
thereby requiring a “dummy contact” discovery mechanism for users to send
dummy messages to cProtos’ users outside of their contact list. Adding dummy
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contacts further requires a strategy to select plausible contacts, e.g. randomly
adding users that do not speak a common language or have no other friends or
context in common may enable an adversary to distinguish between real and
dummy conversations.

Hybrid solutions and other alternatives.

In CBPWS we refrain from exploring solutions that involve cooperation with
other users —such as those that involve submitting queries in other users’ behalf
or populate a pool of real user queries— to minimise dependence on third parties
and warrant individual users as much autonomy as possible. Conversely, cProtos
require cooperation between users by default, which means that solutions that
further leverage other users’ cooperation impose no additional trust requirements
in cProtos.

Systems like Drac rely on a user’s trusted friends to provide anonymous
communications with a user’s (non trusted) contacts and unobservable
communications with a user’s (trusted) friends [153]. Hybrid approaches may
thus combine CPO with message relaying through common friends or other
third parties —essentially constituting an anonymity system with dummy traffic
support [74]— to improve communication profile confidentiality.

Moreover, we have not explored the possibility of setting up Sybil accounts or
benign social bots to assist cProtos achieve contact-hidden CPC, i.e. enabling
users to send dummy messages to fake accounts on top of other cProtos
users [210]. The introduction of social bots further undermines profiling by
preventing profilers from determining not only which messages are real and
dummy but also which users are real and which are dummy. Introducing
plausible Sybil accounts is however far from trivial, as a large body of work on
Sybil attacks detection demonstrates [157, 540, 567]. Moreover, it also poses
additional ethical questions, e.g. regarding interactions with individuals that
do not use cProtos or the automatic spread of misinformation [210].

5.6 Conclusion

In this chapter we have studied the deployment of Protos to provide
communication profile confidentiality (CPC). We have instantiated the general
Protos model in Sect. 3.1 to capture the particularities of online communication.
Furthermore, we have proposed a set of privacy properties for CPC, contact-
exposed and contact-hidden CPC, and operationalised them using information
leakage as introduced in Sect. 3.2.1.
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Equipped with this analysis framework, we have proposed a set of techniques to
more efficiently compute mutual information and measure information leakage.
We have applied these techniques to evaluate the level of CPC a DGS offers in
the context of online social networking and measure side-channel information
leakage in SNSs, showing the suitability of using mutual information to measure
information leakage.

In addition to the performance gain that we obtain through the selection
of simpler metadata variables and coarse quantisation steps, there is ample
room for additional research on techniques that further speed up mutual
information computation. Bayesian inference techniques that use sampling
to reduce complexity is one such possible approach, as proposed in prior work
on mix networks’ analysis [158].

Furthermore, we have studied the role that SNPs can play in enabling E2EE in
SNSs, illustrating the trade-offs involved in relying on SNPs for E2EE provision.
SNPs stand in an exceptional position to enable E2EE on their platforms;
they can seamlessly integrate E2EE and simplify many of the technical and
usability challenges related to key management. However, trusting that SNPs
do not abuse their position of power on the platform to undermine E2EE
is incompatible with the Protos’ adversary model, whereas preventing such
abuses by technical means entails a host of additional challenges. Third-party
E2EE tools (TPETs) seek to address and forsake the need to trust the SNP by
distributing trust and oversight to the community of developers and users [286].
However, these tools require explicit user adoption and give rise to numerous
usability challenges.

To evaluate TPETs’ viability as a solution to bring E2EE to SNS and a platform
on top of which we build cProtos, we have studied users’ attitudes to TPETs.
We conclude that the complexity, users’ perception and understanding of E2EE
represents a major barrier to TPETs adoption. Opting for E2EE integration on
SNSs to minimise the complexity and usability challenges that users need to deal
with opens additional challenges with respect to transparency and oversight
as well as users’ perceptions to cProtos. We do not delve into these issues
in this thesis. Future work should explore solutions that account for users’
scepticism and mistrust in TPETs through integrated designs that minimise
usage complexity while promoting user engagement.



Chapter 6

Engineering privacy through
chaff: a profile obfuscator

Privacy research often takes place within the confines of a particular system or
application, be it web search privacy, communication confidentiality, location
privacy or anti-tracking protection, to name a few. Researchers study these
systems, the design particularities that make them problematic for users’
privacy and propose solutions in the course of a never-ending arms race where
researchers uncover vulnerabilities and propose attacks that in turn lead to
further improvements and better solutions.

The general Protos model we provide in Chapter 3, however, shifts the focus
from a particular system or application where privacy problems arise, such
as web search or communication confidentiality (as we examine in Chapters 4
and 5, respectively) to the defence mechanism itself, this is, chaff. The general
Protos model therefore represents an overarching framework that abstracts away
domain-specific particularities to focus on the methods that underpin privacy
protection through the use of chaff. As a conceptual construct, Protos bring a
variety of systems and solutions under the same analytical umbrella, encouraging
the study of chaff-based solutions across applications and the emergence of
universal design principles that generally apply to the deployment of chaff
against profiling.

Eliciting generic privacy solutions and design principles is the main goal of
privacy engineering. A novel, emerging research discipline, privacy engineering
seeks to lay out the fundamental principles that underlie privacy technology
design. Where privacy enhancing technologies (PETs) represent particular
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solutions to well-defined privacy problems, privacy engineering seeks to extract
the rules, guidelines and techniques privacy experts resort to when they design
privacy technologies. In other words, privacy engineering seeks to systematise
the knowledge that privacy experts have acquired through long experience and
practice designing —and breaking— privacy technologies [262, 477].

The shortage of privacy engineers or software developers with experience
on privacy preserving systems’ design calls for the advancement of privacy
engineering as a means to assist developers and non-experts in incorporating
privacy protection in the software development life cycle, either from the
beginning, as privacy by design mandates, or as a way to improve or amend
privacy-invasive systems [143].

In this chapter we contribute to privacy engineering by defining a new privacy
design pattern (PDP), namely, a chaff-based profile obfuscator (CBOR). CBOR
contributes to privacy engineering in several ways. First, it recasts the abstract
Protos model as a generic solution that privacy engineers can resort to to
tackle profiling, helping designers understand the fundamental principles that
underlie the use of chaff as a tool to protect against the privacy risks that
derive from profiling. Secondly, defining CBOR as a PDP helps to systematise
the knowledge on chaff-based profile obfuscation tools. The pattern makes
explicit the relationship between all solutions that rely on chaff to avert
the privacy problems profiling poses, thereby promoting a dialogue between
designers of Protos across several application domains. Lastly, it contributes
to both a privacy pattern catalogue and pattern language by specifying a
relationship with alternative patterns, subpatterns and patterns from other
systems, applications and domains, e.g. formalising the relationship between
patterns in the domain of anonymity systems and chaff-based obfuscation. A
pattern language strengthens the ties between the work of privacy engineers
across domains, e.g. by unifying terminology and making explicit that some of
the privacy solutions engineers in different domains rely on are equivalent and
follow the same underlying principles.

This chapter is structured as follows. In Section 6.1 we provide a brief
introduction to privacy engineering and privacy design patterns. In Section 6.2
we introduce chaff-based profile obfuscator (CBOR) as a new PDP. In Section 6.3
we discuss the implications and limitations of adding CBOR to the existing
privacy pattern catalogue. Lastly, we conclude and provide an overview of
future lines of work in Section 6.4.
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6.1 On privacy engineering and design patterns

Privacy engineering is an emerging discipline that deals with the study of the
methods, techniques and strategies that underlie the design and deployment
of privacy preserving systems; it deals with the systematisation of knowledge,
models and principles that underpin “the technological and organisational
components that implement privacy and data protection principles” [155].

As an academic discipline, privacy engineering emerges in part as a response
to the lack of expertise and know-how in privacy-aware systems’ design [143].
Spiekermann indicates that “privacy is simply not a primary consideration for
engineers when designing systems” [500], while Lahlou et al. report that systems’
designers perceive privacy as “either an abstract problem; not a problem yet
[...]; not a problem at all [...], not their problem” [339], i.e. people seldom code
or design systems with privacy in mind.

Research on the economics of privacy justifies the lack of privacy expertise
among systems’ designers. Among others, Acquisti has argued that, in the
absence of regulation, service providers have no incentives to bear the costs of
redesigning or amending their systems to address privacy issues, owing to users’
biases (incomplete information, bounded rationality and systematic deviations
from rationality) and an online business model built around the exploitation of
user data [4, 6, 400, 500]. This lack of incentives in turn extends to systems’
designers, who have no need to acquire the skills they require to deal with
privacy requirements. Moreover, acquiring these skills is hard, as designing for
privacy is far from trivial [143, 400]

Recent developments have however altered the balance of incentives, leading to
an increased interest in the development and advancement of privacy engineering.
Prominent privacy-related incidents such as the Snowden revelations or the
Facebook–Cambridge Analytica scandal have contributed to heightened public
awareness and scrutiny over online companies’ attitudes and behaviour towards
user privacy [169, 556]. In the European Union (EU), changes on the
regulatory framework that governs the acquisition and processing of online user
data through the general data protection regulation (GDPR) have prompted
companies to devote more resources to privacy management [204, 288].

Kenny and Borking’s early definition of privacy engineering as “a systematic
effort to embed privacy relevant legal primitives into technical and governance
design” conveys the discipline’s multidisciplinarity, spanning research fields
such as, among others, requirements engineering, policy specification and
human-computer interaction (HCI) or software engineering [255]. Across these
disciplines —and among other methods such as best practices or guidelines—,
researchers have resorted to design patterns to capture and share privacy
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engineering knowledge across practitioners [124]. Privacy design patterns
(PDPs), like their architecture or software engineering counterparts, describe
general solutions to common or recurrent privacy problems in such a way that
it is possible to reuse the solution in different systems or scenarios where those
problems occur [81, 229, 285].

PDPs are not PETs; they may describe an abstract, generic PET or
subcomponents which multiple PETs rely on. As Bier and Krempel emphasise,
whereas PETs represent concrete tools or standards and specifications, privacy
patterns are “technology-independent” descriptions that apply to “a variety of
use cases with a similar context” [81]. Hafiz, as one of the earliest proponents
of PDPs, highlights that “[a]lthough each domain has its own PETs, there are
design decisions that can be generalized. Understanding these design choices
and how they are used to solve a problem in a context benefits PET researchers
to develop solutions for new privacy challenges” [267]. PDPs represent such
an instrument, they generalise design decisions underlying multiple privacy
solutions to address new privacy challenges.

Doty and Gupta further add that “[u]nlike guidelines, regulations or best
practices, patterns are descriptive, rather than normative, facilitating discussion
and debate and providing education rather than insisting on particular solutions
or practices. Design patterns are also easily composable for differing situations
and at different levels of granularity, while remaining more actionable compared
to privacy design principles such as data minimization or transparency” [183].
Indeed, several authors have acknowledged PDPs’ instrumental value to
implement privacy by design (PbD), as PbD describes principles that are
too vague to enable direct application, while PDPs describe concrete, albeit
generalised solutions to build privacy-preserving systems or PETs [262, 285, 528].

Moreover, because privacy patterns ought to be domain-independent, they
establish bridges across the various disciplines that privacy engineering
encompasses. The relationships and interactions between patterns, their
arrangement in hierarchies and the abstraction or merger of design patterns
across domains contributes to the emergence of a common language of privacy
engineering which, in turn, helps prevent “duplicate effort [and facilitates]
communication between developers from different branches of technology” [81].
However, work on privacy patterns remains limited —with work on privacy
languages more limited still [348, 558].

We argue that it is possible to generalise many of the decisions that underlie
the design and deployment of Protos into a privacy design pattern. Whereas
the use cases we study in Chapters 4 and 5 show that each scenario requires
different decisions in the design and deployment of Protos, they also illustrate
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that some design concepts such as supersequences or indistinguishability (such
as those we discuss in Sect. 3.3) are applicable to both.

Proposing a pattern for Protos’ design provides several advantages. It formalises
and further roots a common analytical and design framework across Protos,
promoting cross-domain dialogue and the emergence of generic solutions and
methodologies that underlie every Proto, as well as a common language across
Protos and other PETs. As a result, a design pattern facilitates the design
of Protos in new situations or scenarios, as developers can more easily obtain
solutions by instantiating the pattern.

However, the current paucity of Proto’s designs —let alone implementations—
limits our ability to derive universal design principles that apply to any possible
Proto. Chung et al. refer to new, emerging patterns that capture rare solutions as
prepatterns. They argue that even if prepatterns are “not set in stone” and likely
to “evolve over time”, they represent useful tools towards early systematisation
of knowledge and cross-domain communication [124]. We propose such a
prepattern. Rather than an attempt to capture the decisions that Protos
designers face, the pattern we propose, a chaff-based profile obfuscator (CBOR),
represents a common framework and vehicle to build a common language around
Protos and across other PETs and patterns. We expect CBOR to evolve and
grow in detail as more Protos’ research and implementations emerge, eventually
becoming a complete pattern.

6.2 Chaff-based profile obfuscator

In this section we introduce chaff-based profile obfuscator (CBOR, ["si:bO:r]),
a privacy design (pre)pattern that describes a generic solution involving the use
of chaff to thwart profiling.

We rely on a template consisting of a selection of elements from pre-
vious templates, specially those used for the privacy pattern catalogues
available online, that we consider of special relevance for the description
of CBOR [103, 266, 229, 438, 439].

We construct a pattern language around CBOR through the template’s field
related patterns, specifying the relationships between CBOR and other privacy
patterns previously proposed in the literature.

Lastly, a note on terminology. We explicitly distinguish between CBOR and a
Proto, a CBPWS tool or a cProto to designate, through the former, the abstract
solution that the privacy design pattern captures and, through the latter, actual
implementations of CBOR, that is, PETs.
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Chaff-based profile obfuscator

Name: Chaff-based profile obfuscator (CBOR).

Intent: A chaff-based profile obfuscator automatically generates dummy, fake
activity (“chaff”) on an online service or set of services on a user’s behalf,
mixing the dummy actions it generates with the user’s.

Profilers monitor and collect users’ online activities, processing them into
individual profiles to derive information about each user. By injecting dummy
actions into a user’s activity flow, CBORs pollute and degrade user profiles,
preventing profilers from obtaining and exploiting users’ information.

CBORs thwart profiling and provide profile confidentiality.

Also known as: No aliases known.

Motivating example: Online tracking and behavioural profiling.

Advertising networks track Internet users online to gather information about
the sites users visit, how long they spend on each webpage, the keywords that
catch their attention or the sites they come referred from, among other types of
data advertisers use to profile users.

To track users online, these profilers use a variety of mechanisms, from (third-
party) cookies to more sophisticated tracking techniques such as device or
browser fingerprinting [199]. The information profilers collect enables them to
build consumer profiles that they can use to more effectively target advertising.
Consumer profiles convey information about how old users are, where they live,
their socioeconomic status and what they are interested in, among other personal
attributes. Profilers can also package and sell these profiles to others, be it
advertisers, companies or governments. Tracking enables profilers to “measure
user engagement and the effectiveness of ad campaigns” as well as to ensure
that “the same ad is not shown repeatedly to a given browser or user” [517].

To prevent tracking and profiling online, Internet users can resort to various
anti-tracking techniques, such as cookie removal or the use of anti-tracking tools
like Ghostery, uBlock or Privacy Badger [369], as well as explicitly signalling
that they oppose tracking by enabling the Do Not Track setting on their
browsers [193]. Moreover, users may also browse the Internet anonymously using
anonymous communication systems such as Tor [176]. Still, these techniques
present several limitations. Anti-tracking tools must adapt to new tracking
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techniques in an endless arms race and may cause undesirable side effects such
as preventing content to load or distort webpages’ appearance [369]; nothing
forces profilers to honour Do Not Track headers, as they do so voluntarily [193],
and the use of anonymous communications such as Tor requires users to cope
with slower browsing speeds, the inability to view certain content and other
usability challenges [521].

Alternatively, CBOR generates fake, dummy interactions with other websites.
The CBOR imposes no changes and has no impact on the websites users
visit while it pollutes the information profilers gather about them, potentially
rendering that information useless.

Context / Applicability: An individual or set of individuals uses one or several
digital services. In so doing, each user explicitly or implicitly generates data
that an entity collects and processes into a profile, with adverse consequences
for the user’s privacy.

The service provider offers no protection against profiling and the user has
few workarounds or alternatives to that service, e.g. because no other provider
offers such a service or because profiling is pervasive across service providers.
Network effects and costs (e.g. switching costs) may further shrink the space
of alternatives.

The service provider is uncooperative, namely, it does not intend to support
or assist in providing a solution to profiling; however, under certain conditions
(which we discuss in Forces below) it does not oppose the deployment of
privacy solutions.

Problem: An individual uses an online service generating data, both explicitly
and implicitly (metadata), that a profiler collects and processes into a profile.
Profiling has a negative impact on the user’s privacy as it reveals personal,
sensitive information that the profiler exploits or misuses to the user’s detriment.
The service provider does not offer a solution to avoid profiling and there are
no alternative services that enable the user to accomplish the same set of tasks
without exposing herself to profiling.

We wish to enable the user to continue benefiting from the same online service
with no utility loss, while preventing profilers from obtaining her user profile.

Forces.

A solution to the problem above must balance the following forces:
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No cooperation from the service provider. The service provider is unwill-
ing to collaborate in deploying privacy safeguards against profiling, be it,
among other reasons, because of a lack of incentives, (e.g. due to cost of
deploying privacy solutions) or a vested interest in perpetuating profiling
(e.g. loss of revenue from profilers).

Risk of denial of service (DoS). The service provider faces a trade-off
between consenting to the deployment of antiprofiling technologies and
denying service to users of such technologies, e.g. due to the reputational
risk involved in mistreating users who oppose profiling.

Cost for the provider. The cost for the service provider plays a major
role in determining whether it will consent to or oppose antiprofiling
technology. Shifting the cost of preventing profiling to the service
provider tips the balance in favour of DoS.

Quality of service (QoS). The user is unwilling to tolerate QoS degradation.

User participation. The user is willing and amenable to install additional
software or manage additional tools to protect herself against profiling.

User cost. The solution must not significantly increase user cost.

Minimise third-party trust. The solution must minimise the trust users
need to place on external third-parties to escape profiling.

Solution: Provide to the user a tool that automatically generates dummy
or fake user activity, polluting as a result the data the profiler acquires to
build profiles. The tool must generate dummy activity that is indistinguishable
from user activity to prevent profilers from discarding dummy actions and in a
sufficiently large volume and variety to leak no information about the user’s
activity (see design issues below).

Design Issues.

We distinguish two axes in CBOR design: its dummy generation strategy (DGS)
and its user interface (UI).1

Dummy generation strategy. The DGS is the set of rules that governs how the
CBOR generates dummy actions, when, how many, which type and how to mix
them with the user’s real actions.

1We note that the description of design issues draws heavily from content we have already
introduced in Sect. 3.3. We reorganise and include that content here for completeness.
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Selection of goal, adversary and measure of success. CBOR tailors the
generation of dummies to a particular protection goal, whether it is
to conceal certain user actions (a profile component) or disclose no
information to the profiler (the whole profile). Designers who implement
CBOR must also determine the capabilities of the profiler CBOR
withstands and protects against as well as a measure of success to
determine the extent to which CBOR meets the protection goal.

The budget of dummies. Each dummy action has a cost in terms of
processing power and bandwidth, both the user’s and the provider’s.
The processing power that CBOR requires to generate each dummy limits
the number and frequency of the dummies it can generate without slowing
down the user computer, in turn degrading user experience (UX). Users
may also need to pay for each dummy, e.g. as data on a limited mobile
data plan, thus limiting the budget of dummies CBOR can harness. The
service provider may also cap the number of actions it accepts from any
given user before subjecting them to antibot measures such as captchas.

Action diversity. The type of dummy actions CBOR generates has a direct
impact on the amount of information it leaks about a user’s profile. In
the behavioural profiling example we provide earlier, the user may visit
a handful of websites as part of her daily routine. On the one hand,
to conceal from the profiler the actual websites the user visits, CBOR
simulates visits to additional websites the user does not visit. On the
other hand, if the user does not wish to conceal the actual visited websites
but only the frequency and volume of visits, CBOR does not (need to)
simulate visits to any other websites the user does not herself visit.

User behaviour and indistinguishability. CBOR generates dummy ac-
tions which are indistinguishable from real actions. CBOR considers any
user action’s observable characteristics that enable a profiler to discern
real from dummy actions, including content, timing, frequency, among
any other data or metadata, as well as the prior probability that a
user generates a particular action rather than having been automatically
generated. CBOR also considers relationships across sequences of actions
such as logical order or semantic relationships that a profiler can exploit
to discard dummies.

Universe and probability of real actions. Depending on the context, it
may not be possible to determine the universe and a priori probability
of possible user actions, e.g. in web search, it is impossible to determine
a priori all possible user queries and how the probability evolves over
time. This has a negative impact over the DGS’s ability to achieve
indistinguishability between real and dummy actions.
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Lack of knowledge on profiling strategy. How profilers build profiles is in
most cases unknown, thus designers implementing CBOR must optimise
the generation of dummies against an unknown profiling strategy.

User interface. CBOR’s UI communicates with the user to ensure a correct
operation and meet the user’s requirements.

Minimise UX disruption. CBOR avoids or minimises disruption to UX.

Ensure user understanding. CBOR communicates to the user the privacy
guarantees it offers, ensuring that the user does not overestimate her level
of protection against profiling.

Enable customisation. CBOR allows users to customise the amount of
resources they spend on obfuscation, the level of protection they obtain
and the kind of protection they obtain, e.g. whether they choose to
conceal their usage patterns with respect to usage frequency or the type
of activities they perform on the service.

Consequences.

The pattern has the following positive consequences:

Benefits.

Profile confidentiality. Adding dummies to the stream of user actions
pollutes the data profilers gather about the user, thereby concealing
the actual user profile.

Social privacy. Profilers can either choose to discard obfuscated profiles or
attempt to remove the impact of dummies to incorporate a filtered profile
to its database. Regardless of the strategy the profiler chooses —but
assuming that profilers are unable to perfectly discard dummy actions—,
CBOR reduces the utility of the data profilers collect, in turn undermining
profiling in behalf of everyone.



CHAFF-BASED PROFILE OBFUSCATOR 229

The pattern has the following negative consequences:

Liabilities.

Obfuscated profiles’ side effects. Profilers may be unaware of or choose to
ignore the presence of obfuscated data in their dataset. Hence, the actions
and decisions these profiles inform no longer depend on the actual users’
profiles, but on an obfuscated version, thereby bringing upon users a series
of side effects that their real profile might not have triggered. Whereas
these effects may not necessarily be worse than those from real profiles
—and even improve outcomes for certain users—, profile obfuscation may
also harm users, leaving them worse off than before.
Obfuscated profiles’ effect may further spread to other system’s users and
the online service as a whole, subverting and potentially damaging it [100].
Strategic DGS design can mitigate some of these effects.
Moreover, to inform profilers about the use of obfuscation and dissuade
them from further processing users’ obfuscated profiles, CBOR may
explicitly signal the use of obfuscation by using a header like DoNotTrack’s
or incorporating any other tag that raises the profiler’s attention [193].
We however acknowledge that as online trackers may have incentives to
disregard a DoNotTrack header, profilers may also choose to ignore tags
that signal the use of obfuscation.

Waste [100]. One may consider the use of chaff wasteful if it draws on valuable
resources, be it through the generation of chaff itself (e.g. use of bandwidth
and electricity) or through the subsequent processes obfuscated profiles
trigger (from filtering and processing dummies to the wasteful decisions
dummies inform). Users and designers must decide whether the benefits
of chaff-based profile obfuscation (CPO) are worth the cost.

Known uses.

Private web search. Tools such as TrackMeNot (TMN), GooPIR and PRAW
rely on dummy web searches and web transactions to pollute the web search
profile search engines build on their users [294, 182, 198].

Anti-tracking and anti-behavioural advertising. AdNauseam extends content-
filtering, ad-blocking tool uBlock Origin with a dummy click generator to
obfuscate the profiles that online trackers build on Internet users [295].

Location privacy. Researchers have proposed multiple designs to achieve location
privacy through the generation of dummy user locations [274, 321, 356, 358, 411].
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Communication profile confidentiality. Balsa et al. propose the idea of a
profile obfuscator to provide communication profile confidentiality in social
networking sites [37].

Related patterns.

We classify related patterns into two categories: disclosure patterns and feedback
and awareness patterns. We borrow the term disclosure from Gürses et al.’s
subcategories of data minimisation [262]. Under the feedback and awareness
category we succinctly list a number of privacy design strategies that focus on
HCI, this is, a set of patterns that assist communication between CBOR and user.

Disclosure patterns. The following set of patterns relate to CBOR’s ability
to minimise information disclosure. Figure 6.1 depicts the relationship between
CBOR and these patterns.

Cover traffic [266, 267] or use of dummies [438, 439]. In the context of anonymous
communications, cover traffic refers to the use of dummy traffic to enhance the
level of anonymity the network provides. Cover traffic is therefore equivalent to
chaff, dummy traffic or dummy messages and therefore represents a subpattern
to CBOR.

Length padding [266, 267]. If the protocol messages that a users’ actions trigger
on the online service and the protocol messages that CBOR generates differ
in size, an adversary can exploit size differences to filter out dummy messages.
To avoid that, CBOR uses length padding of both real and dummy messages,
padding all protocol messages to a unique size or predefined set of sizes. Length
padding therefore represents a subpattern to CBOR.

Random wait, delayed routing and batched routing [266]. CBOR may alter the
timing of real actions by imposing a random wait between the time the user
generates them and the service provider observes them as well as simultaneously
send both real and dummy actions in batches. Whereas Hafiz originally
formulates these patterns in the context of anonymous communications, the same
privacy engineering principle applies to CBORs, i.e. CBOR strategically distorts
the temporal patterns of a users’ actions to make them indistinguishable from
dummy actions. Random wait, delayed routing and batched routing represent
subpatterns to CBOR.

Encryption with user-managed keys [439]. This pattern mandates the use of
encryption with a user’s own keys so that the service provider cannot access user
data in plaintext. Encryption not only enables users to store or exchange content
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confidentially, it also enables CBOR to guarantee content indistinguishability.
Hence, this pattern is a subpattern of CBOR.

Location granularity [439]. In location based services, location granularity helps
users control the level of detail of the information they provide to the service
provider. CBOR must similarly manipulate location granularity to achieve
indistinguishability between real and dummy locations if the user relies on a
privacy preserving mechanism that implements this privacy pattern. Moreover,
CBOR may impose a particular regime of location data granularity on the user
to ensure indistinguishability between real and dummy locations; however, this
may come at the expense of user utility, thus at odds with utility-preserving
obfuscation (UPO) principles (q.v. Sect. 2.2.1). Location granularity —as well
as a as-yet-to-be-specified data granularity pattern that applies more generally
to any domain beyond location based services— are subpatterns to CBOR.

Strip metadata [438, 439]. Strip metadata mandates the removal of metadata
that is superfluous or unnecessary to preserve user utility. CBOR strips
metadata to enhance indistinguishability between real and dummy actions,
specially whenever its DGS cannot plausibly generate dummy actions with
indistinguishable metadata and such metadata has no impact on user utility.

Link padding [266]. Researchers have proposed the use of link padding to
prevent traffic analysis attacks. Link padding involves modifying traffic patterns
between two entities —e.g. the number of protocol messages and their timing—
to prevent an adversary from learning information these entities intend to
conceal, e.g. as in website fingerprinting [192]. Link padding resorts to dummy
messages to ensure a constant or variable traffic rate [192, 218]. CBOR resorts to
strategies analogous to link padding, i.e. it manipulates the traffic patterns of the
protocol messages it relays (both real and dummy) to prevent an adversary from
distinguishing dummies. Length padding thus represents a subpattern to CBOR.

Anonymity set [266, 438, 439]. An anonymity set designates the smallest set
of individuals to whom we may assign the authorship of a particular action
or message, e.g. in anonymous communications, the sender of a message is
not identifiable within an anonymity set of potential senders of that message,
whereas in database anonymisation an anonymity set designates the set of data
subjects whom an anonymous data record may belong to. Similarly, CBOR’s
DGS generates supersequences of actions by interweaving real and dummy
actions, thereby engendering analogous relationships to an anonymity set. As
each supersequence contains several subsequences among which only one is real,
the set of possible subsequences represents a privacy construct analogous to an
anonymity set. Whereas the notion of identity or anonymity does not apply to
CBOR analysis, from the point of view of privacy engineering they represent
an analogous privacy design pattern, namely, hiding data by mixing it with
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data from other sources [266]. Hence, anonymity set represents, by analogy,
a CBOR subpattern.

Trustworthy privacy plug-in [438, 439]. Proposed in the context of privacy-
preserving smart metering [438, 451], this pattern represents a privacy-preserving
strategy that applies to a much wider variety of domains. A trustworthy
privacy plug-in mediates interaction between users and a privacy-invasive service
provider, manipulating the data that users generate and send to the service
provider to minimise the privacy risks that derive from those data. A standalone
implementation of CBOR necessarily requires a trustworthy privacy plug-in
(e.g. a browser extension) that users can deploy to generate dummy activity
on the online service of their choice. Hence, trustworthy privacy plug-in is a
subpattern of CBOR. However, as a component of a wider privacy-preserving
system, CBOR does not necessarily require a trustworthy privacy plug-in —
although it may still be part of one if the system itself is a plug-in.

User data confinement [438, 439] and personal data store [439]. These patterns
mandate shifting the processing and storage of user data from the service
provider to the user, i.e. in a client-server architecture, move the processing of
user data from the server to the client, preventing the service provider from
accessing any of the data involved. CBOR may rely on these patterns to counter
utility losses that derive from the use of obfuscation, e.g. in web search, CBOR
may counter the loss of personalisation by building a search profile and running
a personalisation algorithm on the client side.

Oblivious transfer [267]. Oblivious transfer represents an alternative privacy
design pattern to CBOR in several contexts, e.g. in private web search, a
cooperative search provider may implement an oblivious transfer protocol to
enable users to privately query the search engine, this is, so that the provider
cannot determine what users search for. Furthermore, there are conceptual
similarities between both privacy design patterns in that CBOR forces a
weakened version of 1-out-of-n oblivious transfer upon uncooperative service
providers by generating n actions out of which only 1 is the user’s real action.

Feedback and awareness. Several authors have proposed PDPs to better
communicate to users the privacy risks involved in data collection and processing,
as well as to design privacy controls and inform users about them [183, 212, 455].
However, these patterns focus on the description of engineering principles that
a data processor can adopt according to a privacy-by-policy approach, rather
than the privacy-by-architecture approach that CBOR represents [285, 501].
CBOR design considers data processors adversarial and the privacy policies the
latter implement insufficient or abusive [172]. Still, we can recast some of the
design patterns that enable a data processor to inform users about privacy risks
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or that enable a user to manage its privacy preferences to assist CBOR interface
design. In fact, CBOR implicitly takes on a data processor role by mediating
communication between users and profilers; therefore, some of the engineering
principles that assist a data processor to communicate with users can assist
CBOR design too. CBOR may further act as substitute for a non-cooperative
or adversarial data processor by informing individuals of the privacy risks
involved in using a service and how chaff-based profile obfuscation can help
them mitigate such risks. Hence, we select a sample of feedback and awareness
patterns, illustrating how they apply to CBOR design. These patterns point in
turn to other auxiliary or compound patterns that we do not examine here; we
refer the reader to the relevant literature instead [438, 439].

Increasing awareness of information aggregation [439]. This pattern mandates to
“provide users with knowledge of data aggregation’s ability to reveal undesirable
information to prevent them from over sharing [439]” and therefore applies
to CBOR design as a mechanism to provide users feedback on the amount of
information they leak and on the dummy budget they must allocate to prevent
profiling. CBOR may present users with several hypothetical profiling scenarios,
showing them what a profiler may learn about them and the protection options
the CBOR offers.

Impactful information and feedback, awareness feed and privacy mirrors [439].
CBOR must incorporate an awareness feed component that informs the user of
any limitations to the protection CBOR offers, informing the user of actions or
behaviour it cannot obfuscate, e.g. a chaff-based private web search (CBPWS)
tool with no protection against vanity searches must inform the user about the
consequences of such searches [495].

Privacy aware wording [439]. This privacy pattern mandates to communicate
to users “privacy related information using easily parsed and low difficultly
vocabulary, with short concise sentences and enough flow to persuade the user
to process it”. CBOR must incorporate privacy aware wording to enable users
to understand the protection it affords, its limitations and how to configure the
available options to maximise their privacy protection.

Icons for privacy policies / (Appropriate) Privacy icons / Privacy labels /
Privacy colour coding [439]. These design patterns describe the use of icons
to simplify complex privacy policies, communicating to users data processing
practices in an easy-to-understand, unambiguous way. CBOR may also resort
to privacy icons to, on the one hand, simplify a service provider’s privacy policy
whenever the latter is too complex for users to understand and, on the other
hand, communicate to users the effect of obfuscation on their privacy, according
to the DGS or privacy budget they select, if applicable.
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Classification.

First, we consider CBOR a high-level PDP because, unlike other lower level
PDPs, an instantiation of this pattern results in a standalone PET. Secondly,
as Hafiz et al. note, there are multiple classification schemes for security (and
therefore privacy) patterns [268]. We may consider classification across lines of
the security or privacy property a pattern aims to guarantee (e.g. confidentiality)
its context (application and involved stakeholders) or problem domain (i.e. the
threat model). In this pattern description, we consider the two classification
schemes for privacy design patterns that we are aware of, namely, Gürses et al.’s
data minimisation strategies and Hoepman’s privacy design strategies [262, 285].

Regarding Gürses et al.’s data minimisation strategies, CBOR relies on the
minimise disclosure strategy [262]. This pattern highlights the relevance
of Gürses et al.’s subcategories of data minimisation strategies because,
paradoxically, it adheres to data minimisation principles by providing more
data to profilers.

Regarding Hoepman’s privacy design strategies, CBOR implements the hide
strategy, even if it relies on multiple auxiliary subpatterns that implement
other strategies, such as minimise (e.g. by using “strip metadata”) or inform
(e.g. by using “increasing awareness of information aggregation”) [285].2
More particularly, according to Colesky and Hoepman’s privacy tactics, a
subcategorisation of privacy design strategies (PDSs), CBOR implements the
tactic obfuscate [135].

6.3 Discussion

Limitations.

Design patterns capture knowledge that derives from long experience, abstracting
well-tried solutions for recurrent problems. CBOR should ideally be based on
a large number of chaff-based profile obfuscation tools and systematise the
underlying engineering principles behind these solutions. However, because of
the limited number of Proto’s designs and implementations, CBOR cannot
but represent just a first proposal or approximation to that goal. As a
prepattern, CBOR requires changes and updates as more research on Protos

2Hafiz et al. highlight that it is difficult to find a classification scheme in which all patterns
neatly fit in, specially for more general or abstract patterns, which often straddle multiple
categories [268].
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and implementations thereof materialise. Through that process, CBOR requires
additional research on its applicability and suitability as a pattern [348].

We do not intend developers with no previous knowledge on privacy engineering
to be able to implement a Proto with the information CBOR provides. We
have not provided any pseudocode or implementation guidelines that developers
may use as guidance for their own instantiation of CBOR [229]. This is
however a limitation that most privacy patterns suffer from, as by themselves
they are “not sufficient to provide insight into the process through which [they]
can be applied” [262].

In its current definition, CBOR’s value resides in its ability to bring Protos
together under the same analytical framework and nudge researchers into
thinking about chaff-based obfuscation tools collectively, about the common
design principles and building blocks that underpin them, as well as interlinking
patterns across subfields in privacy engineering. This will in turn allow other
researchers to reuse the same design principles in other scenarios, preventing
them from incurring in the same mistakes others made before, as well as
contribute to a common privacy engineering language.

In their critical assessment of privacy patterns research, Lenhard et al. argue
that there is little research on how to connect several patterns in the development
process [348]. We have specified the relationship between CBOR and previously
defined patterns, mostly subpatterns that intervene as a building block in
Protos implementation. However, we have refrained from specifying how these
subpatterns interact within CBOR or how CBOR interacts with other patterns
as a subcomponent of a larger system, e.g. that integrates patterns for anonymity
or data security. Still, because CBOR represents a high-level privacy design
pattern that captures a standalone solution rather than a small component to
multiple systems, we do not consider the definition of interaction with other
high-level patterns a priority.

Building on top of previous patterns.

We have specified the relationship between CBOR and previously defined
patterns, even if the latter often “lack [...] detail and clarity in their descriptions”
as well as “vary strongly in their precision and their level of abstraction” [348],
this is, we have not attempted to redefine or amend existing patterns, we have
integrated them in their current form, even if ill-defined.

As a matter example, let us consider two patterns: “use of dummies” —of
paramount importance as a subpattern to CBOR— and “location granularity”.
In its current definition, use of dummies is both vague and flawed, e.g. defining
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its ‘Context’ as “applicable when it is not possible to avoid executing, delaying
or obfuscating the content of an action” when, in fact, CBOR may rely on
content encryption and action delays to ensure indistinguishability between
real and dummy actions. Moreover, as we have shown in Sect. 2.4.1, the
use of dummies extends beyond profile obfuscation to applications such as
steganographic hiding and mimicry —applications that the current definition of
this pattern does not acknowledge.

As for location granularity, this pattern describes the operation of increasing and
decreasing the amount of precision in location data as a trade-off between utility
and privacy. However, in privacy engineering such an operation applies to any
other type of data as long as it is possible to represent data values in varying
levels of precision or abstraction. It would therefore be more appropriate to
refer to a more generic privacy pattern “data granularity” instead of Location
granularity; however, such a pattern has not been formalised yet.

Moreover, as we note earlier, the patterns we have classified under the category
“feedback and awareness” have been previously cast as solutions for the data
controller, within a privacy-by-policy approach to privacy engineering [439, 501].
However, many of these patterns describe general HCI methods that privacy
engineers can repurpose in privacy-by-architecture PET design.

We may argue that building CBOR on top of faulty patterns is unwise, yet all
patterns require further evaluation and validation, CBOR included, therefore
we leave this task for future work [348].

6.4 Conclusion

In this chapter we have introduced CBOR, a new privacy design pattern that
describes a generic solution to thwart profiling through the use of chaff. CBOR
recasts the abstract model we propose in Chapter 3 as a generic solution that
privacy engineers can resort to to tackle profiling, capturing the knowledge and
experience we have acquired through the study of chaff-based profile obfuscation
in Chapters 4 and 5.

CBOR contributes to privacy engineering in several ways. It establishes a
common framework for the study, design and development of chaff-based profile
obfuscation tools, encouraging researchers and developers across domains to
think about Protos collectively, reusing components and adapting solutions
from other domains to their own, e.g. even if the CBPWS and communication
profile confidentiality (CPC) use cases we have examined in Chapters 4 and 5
impose different design requirements, CBPWS tools and CPC tools share the
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same general Proto’s underlying principles, such as reliance on action diversity
that ensure coverage for real sequences of actions among dummy sequences
and the probability of real actions to prevent adversaries from identifying real
sequences due to the low probability of dummy sequences.

Furthermore, CBOR contributes to a common language for not only Proto’s
developers but also for privacy engineers at large. We have shown how privacy
design patterns formulated in the context of anonymous communications are
analogous to design principles that underlie Protos, such as anonymity set or
the various operations to ensure indistinguishability between reals and dummies,
such as length padding and batched routing. CBOR thus contributes to the
harmonisation of privacy design patterns across application domains.

Still, due to the paucity of existing Proto’s designs and implementations from
which we can draw general design principles, CBOR represents a prepattern, i.e. it
does not offer a complete description of a solution that developers can implement
to address profiling. CBOR requires further research on the components and
subcomponents on which it depends, as well as validation from developers that
attempt to use it in practice. A mature privacy pattern could however become
the basis for standardisation efforts, e.g. leading to a standard such as ISO/IEC
PDTR 27550 in privacy engineering [299].



Chapter 7

Conclusion

Some will say that all we have are the pleasures of this moment,
but we must never settle for that minimal transport; we must
dream and enact new and better pleasures, other ways of being
in the world, and ultimately new worlds.

—José Esteban Muñoz,
Cruising Utopia: the then and there of queer futurity.

It’s been important for me to realise that hopelessness is a
feeling, it’s not a fact, and it actually has very little bearing
on what’s to come.

—Anohni.

In this final chapter we review the main findings we have contributed with,
discuss unresolved problems and identify avenues for future research. We start
by revisiting the seven main objectives we have set at the beginning of this
thesis (q.v. Sect. 1.2). We examine the extent to which we have addressed them
and lay out the limitations of our findings. Then, we identify gaps, discuss
further implications of our research and suggest promising lines of research to
be addressed in future work.

Our first objective was to delimit the conceptual boundaries across obfuscation
tools in computer security and privacy and develop a conceptual framework that
enables us to focus on a particular subset of obfuscation tools, namely, those that
protect users’ privacy against profiling without taking a toll on user utility. We
have identified three main subcommunities devoted to the study of obfuscation
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methods and tools —namely, software engineers, cryptographers and privacy
engineers— and examined the meaning that each subcommunity attributes to
obfuscation, outlining key characteristics of the notion of obfuscation within
that subcommunity. From our examination we have shown that both software
engineers and cryptographers work on a well-defined, concrete problem, that of
code obfuscation, yet their approach is different in terms of the methods they
use and the security guarantees they seek. On the other hand, privacy engineers
rely on obfuscation as a means to achieve a panoply of privacy properties,
lacking the focus of a single goal (e.g. code obfuscation) or set of obfuscation
methods. We have therefore argued that within privacy research the meaning
of obfuscation is vague and context-dependent, and there is no consensus or
universally accepted definition of what obfuscation entails or means, either in
terms of privacy goals or mechanisms of protection.

Whereas the vagueness of obfuscation as a process prevents us from identifying
a closed and well-defined set of obfuscation tools, we have not attempted to
delimit or constrain the notion of obfuscation within privacy research and
practice. Instead, we have proposed an abstract model that enables us to
focus on one particular type of obfuscation-based privacy enhancing technology
(ObPET), namely, those that rely on obfuscation as data degradation. This
categorisation has enabled us to distinguish between data-degradation tools
such as TrackMeNot (TMN) or differentially private mechanisms and other
obfuscation techniques such as onion routing or traffic morphing [176, 319].

Moreover, we have introduced the concepts of personal utility and adversarial
gain to establish a separation between two types of obfuscation tools: utility-
degrading obfuscation (UDO) tools that seek to strike a balance between
personal utility and adversarial gain, utility-preserving obfuscation (UPO) tools
that minimise adversarial gain taking no toll on personal utility. By further
introducing the concept of social utility we have reasoned about the conditions
that call for using either type of tools. On the one hand, the provision of
personal utility alone does not impose trade-offs between utility and privacy,
thereby enabling the use of UPO. On the other hand, the provision of social
utility necessarily requires UDO to provide robust meaningful privacy guarantees
against adversaries with arbitrary background knowledge.

We have examined the conditions that favour the use of tools that rely on
obfuscation as data degradation as opposed to other privacy enhancing tech-
nologies (PETs) such as cryptographic solutions or anonymous communication
systems, highlighting the role of uncooperative system providers that prevent
the deployment of cryptographic protocols such as private information retrieval
(PIR) or the role of service providers that impose user identification as a
precondition to using their services, among other hindrances to the deployment
of these PETs.
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Lastly, we have identified chaff as a key protection mechanism to enable UPO,
that is, the automatic generation on a user’s behalf of fake, dummy activity
that bear no relation to the utility user expects from their own activity while
degrading the quality of the data adversaries exploit. We have reviewed the
computer security and privacy engineering literature to examine previous uses of
chaff. Through this exercise we have distinguished between the use of dummies
and decoys, the former denoting fake activity that contributes to hide or disguise
information, the latter denoting fake activity that lures adversaries into traps
to simultaneously protect an asset and acquire further information about the
adversary. Furthermore, we have highlighted the role of the adversary model to
distinguish between the use of dummies to openly hide information and the use
of dummies to undetectably hide information, that is, through mimicry, as a
form of steganographic hiding.

The conceptual framework around ObPET that we have proposed establishes a
clear boundary between the kind of obfuscation tools we aim to study, i.e. tools
that rely on data degradation, as well as the mechanisms of obfuscation, i.e. tools
that rely on dummies. We acknowledge however that this is not the only
categorisation possible, that other conceptualisations and categorisations of
obfuscation tools may provide additional insights and prove instrumental in the
advancement of the theory of obfuscation. Future work must therefore further
study the relationship between different types of obfuscation, their properties
and their uses across computer security and privacy engineering.

Our second objective was to provide an analytical framework that enables the
systematic study of Protos. To that end, we have proposed a general model of
Protos that abstracts away from a particular service or system of application.
As part of the model, we have defined a reference adversary, which we have
assumed to be honest-but-curious (HbC) as a prerequisite for the viability of
Protos. Through our analysis of previous work on the measurement of the
privacy level that obfuscation tools afford we have introduced a toolbox of
privacy measures that assist Proto design and evaluation. We have categorised
these measures according to their abstraction level, that is, the number of
assumptions on adversary knowledge that underlie their application. This has
enabled us to distinguish two groups of privacy measures: mechanism-centred
analysis (MCA) measures, which abstract away from particular adversaries and
attacks, and attack-centred analysis (ACA) measures, that focus on particular
adversaries, attacks and instances of background knowledge.

Our third objective was to develop a conceptual framework to assist the design of
profile obfuscation tools (Protos). To that end, we have articulated the design of
dummy generation strategy (DGS) around the concept of supersequences [545].
We have introduced the common shortest supersequence problem that underlies
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optimal DGS design and examined the trade-off between the budget of dummies
and the level of indistinguishability a particular budget allows.

Our fourth objective was to assist Protos’ design in terms of usability. Due
to the scant number of previous work on Protos’ usability, we have examined
the literature on the usability of privacy and reviewed previous findings on the
usability of similar tools that extrapolate to Proto design. Moreover, we have
performed a user study on the viability of third-party E2EE tools (TPETs) as
a platform on top of which to implement Protos. Our results have supported
previous findings on the usability challenges involved in the deployment of end-
to-end encryption (E2EE) tools, third-party plug-ins and browser extensions.

Our fifth objective was to demonstrate the viability and adequacy of the
analytical and conceptual frameworks we have proposed for Protos’ analysis
and design. We have done so through two use cases, private web search and
communication profile confidentiality. We have instantiated the general Protos’
model to chaff-based private web search (CBPWS) tools and communication
profile confidentiality (CPC) tools, and proposed a set of privacy properties
in each of these contexts, using the Protos’ analytical framework we have
proposed to operationalise them. We have leveraged the Protos’ analysis and
design frameworks to revisit previous CBPWS designs, deconstructing these
designs and exposing the flaws that render them vulnerable to attack, as well as
highlighting fundamental challenges that underlie CBPWS tool design, e.g. the
immeasurable space of user queries and the epistemic asymmetry between
adversaries and Protos designers. In addition, we have proposed a set of
techniques to speed up the computation of information leakage measures in the
context of communication profile obfuscation tools’ (cProtos) evaluation and
illustrated how information leakage can inform the selection of features a DGS
must consider, thereby further assisting DGS design.

Our sixth objective was to set the basis of a design methodology for chaff-
based profile obfuscation. We have proposed a new privacy design (pre)pattern,
a chaff-based profile obfuscator, as a generic solution that privacy engineers
can resort to to tackle profiling. Through this pattern we have captured the
knowledge and experience we have so far acquired through the study of chaff-
based profile obfuscation, thereby setting the basis for additional advances
in Protos’ design. Chaff-based profile obfuscator (CBOR) further contributes
to privacy engineering by promoting a common Protos’ design language and
making explicit the link to privacy patterns used in other PETs. However, as a
prepattern, we acknowledge that CBOR is a preliminary result and it requires
further contributions from Protos’ designers, thereby opening up a promising
avenue for future research.
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Our seventh and last objective was to identify major gaps in our work as well as
future avenues of inquiry. In addition to the shortcomings we have documented
throughout the thesis, below we discuss further implications of our research,
exposing lacunas and promising lines of research.

7.1 Discussion and outlook

In this thesis we have developed a conceptual and an analytical framework to
enable the systematic analysis and design of Protos. Whereas the toolbox of
measures we have proposed assists Protos’ design, we have not delved into the
practical development and implementation, i.e. we have neither proposed a new
Proto nor implemented one. Our main contribution thus involves the critical
examination and systematisation of previous work on Protos, with a special focus
on measurement and analysis. However, Protos’ design and implementation
involves many practical challenges that we have not addressed in this thesis, such
as the generation of plausible dummy activity or the management of trade-offs
in the design of DGSs against adversaries’ profiling practices of which we know
little. These issues remain to be dealt with in future work.

Early on we have recognised obfuscation tools’ potential to modulate users’
consent (q.v. Chapter 1) [224]; however, this is a possibility we have not fully
explored in this thesis. In our study of obfuscation tools we have implicitly
assumed that users refuse any adversarial gain instead of considering that they
may be willing to selectively and purposefully disclose certain bits of information,
e.g. in exchange for service provision. Whereas UDO tools must necessarily
trade privacy protection off for social utility —thereby implicitly modulating
consent by design— we have not considered UPO designs that strategically
give away information. In fact, we have implicitly considered that UPO tools’
information leakage necessarily results from a shortage of resources —i.e. a lack
of dummies— rather than strategic disclosure. Future work must examine
how to strategically craft DGSs to selectively disclose information and thereby
enable a more nuanced approach to user consent —i.e. giving users a more
granular choice than simply refusing secondary processing to the extent that
their dummy budget allows.

We have examined Protos’ ability to protect user privacy in a trade-off with
their potential for expression and subversion, in particular with respect to the
adversarial assumptions that underlie each of those aims. However, we have not
fully questioned the extent to which Protos enable users to contest and resist
the advance and entrenchment of surveillance capitalism [581].
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As privacy protection tools, Protos contribute to the narrative of market freedom
and user choice, i.e. users can use Protos to evade profiling if they choose to do
so, if they value their privacy enough. Coll observes that “privacy [...] has been
assimilated and reshaped by and in favour of capitalist structures, notably by
being over-individualized[;] privacy seems to have become, somehow, a consumer
good” [136]. Moreover, to expect users to adopt Protos or any other tools
to defend themselves against profiling and the negative impact of automated
decision making fuels a culture of responsibilisation which is, as Barnard-Wills
and Ashenden argue, “a key feature of liberal governmentality” [49, 50]. By
expecting users with no previous technical training to identify online profiling as
a problem and be able to select and successfully use the tools that protect them
against it, we are “putting the responsibility back on the private user and side-
stepping the need to create a mature civil society around managing data” [99].

Users require Protos because of the failure to implement systems according
to principles such as privacy by design and privacy by default. And yet, as
Munster argues, “[we] cannot simply champion privacy and the individual
against ubiquitous surveillance and the corporation” [392].

We can better understand PETs’ inadequacy to address the broader economic,
political and social issues at stake when we consider one of the basic tenets
underlying privacy engineering, namely, the provision of a given functionality
under data minimisation constraints [262]. When it is the functionality itself
that undermines users’ and society’s welfare, like in the case of automated
decision making or experimentation that users cannot control [261], little it
matters if the system is privacy preserving or not, i.e. whether it processes a
minimum amount of data or whether users remain in control of their own data.
Online behavioural advertising remains problematic for its ability to manipulate
and discriminate users regardless of whether such functionality runs on the
server or the client side [311, 331, 522]. Similarly, be it through differential
privacy or multiparty computation (MPC), federated learning still enables a
trusted curator to acquire a population’s behavioural model and use it to its own
advantage [236, 548], contributing to the very power and epistemic asymmetries
that privacy invasive systems engender. In short, to the extent that privacy
technologies enable problematic secondary uses of data without exposing or
collecting user data, they remain part of the problem, not the solution. Hence,
marginal, individual Protos’ adoption is indeed unlikely to make a dent to
profiling practices. As long as obfuscated profiles represent nothing but an
outlier, Protos pose no threat to surveillance capitalism.

Brunton and Nissenbaum have likened obfuscation’s role to Scott’s weapons of
the weak, i.e. “acts of petty resistance” that “leave dominant symbolic structures
intact” [99, 478]. As individual privacy protection tools, Protos fit right in with
this description. However, Scott further argues that when “widely practiced by
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members of an entire class against elites or the state, they may have aggregate
consequences all out of proportion to their banality when considered singly”
and that “many regime crises may be precipitated by the cumulative impact of
everyday forms of resistance that reach critical thresholds” [478]. From Scott’s
argument it follows that Protos, if adopted en masse, have the potential to
disrupt the profiling process, as obfuscating users no longer represent outliers
but a significant sample of the target population.

Yet through our examination of the conditions that enable Protos to disrupt
profiling practices (q.v. Sect. 3.4.1), we have argued that privacy protection is
at odds with the subversion component that enables Protos to inject noise in
the profilers’ databases, thereby disrupting profiling practices. It is through
undetectability that Protos can prevent profilers from discarding obfuscated user
data, echoing Scott’s observation that “those who employ everyday forms of
resistance avoid calling attention to themselves” [478]. In this thesis we have
focused on the study of Protos as tools whose main underlying goal is privacy
protection, e.g. the analytical framework we have proposed in Sect. 3.2 entirely
comprises measures of information leakage, as opposed to other properties that
capture or represent obfuscation tools’ subversion potential. Future work must
tend to the design and analysis of obfuscation technology for subversion purposes.

Outside the scope of this thesis, we have carried a first step in this direction
through our formalisation of protective optimisation technologies (POTs) [261].
POTs represent a set of tools that rely on selective, strategic obfuscation to alter
the outcomes of the optimisation processes that profiling informs. Protos contest
profiling by attempting to render collected data meaningless, yet as we argue in
Sect. 3.4.1, they do not have control over the optimisation or decision making
processes that profiling informs. POTs address this gap by strategically altering
user inputs in an attempt to elicit particular responses from the optimisation or
decision making systems that feed on user profiles. POTs goals include, among
others, correcting imbalances and improving outcomes for populations put at
disadvantage or sabotaging and boycotting the system [261]. By breaking free
from the privacy corset, POTs represent a promising framework for the study
of obfuscation as a mechanism to contest the ills of profiling and optimisation
systems as well as surveillance capitalism itself.

Leaving an eminently individualistic notion of privacy behind means that we
envision POTs as a collective solution, rather than a tool that each individual
can resort to of their own accord to protect themselves. POTs open the door
for the development of responses coordinated among several users, the design
of strategies for the benefit of the group —instead of individual users.

Moreover, throughout this thesis we have emphasised the importance of a sound
security analysis that prevents us from overestimating the privacy protection
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Protos afford to their users; we have warned against designs that rely on security
through obscurity as a result of unrealistic assumptions about the adversaries
these tools actually confront. However, we acknowledge that even faulty, flawed
designs that do not provide as much privacy protection as expected still play
a role in subverting the systems they attempt to defend users against. In his
work on the use of deception techniques in computer security, Cohen makes an
excellent case for the use of less-than-optimal chaff, arguing that “[a]s long as
the chaff costs less than the risks it mitigates, it is a good defense, and as long as
simple deceptions reduce risk by more than the cost to deploy and operate them,
they are good defenses as well” [133]. Howe makes a similar point arguing that
“[e]ven in cases where the removal of [...] noise is possible, one must consider
the resources required to do so” [293].

Whether through PETs, Protos or POTs, we acknowledge that either of these
solutions represents a technocentric approach to a complex set of political,
economic and social problems that we cannot expect to address and negotiate
through technology alone [389, 410]. As the regulatory framework that governs
the collection and processing of users’ data evolves, new opportunities and
challenges arise, shaping in turn the design of technology that contests and
protects from these practices.

The European Union’s (EU) recent general data protection regulation (GDPR)
represents a prominent example of how regulation may assist and inform the
design of Protos and POTs [204]. GDPR’s Article 22 prohibits profiling without
the data subject’s explicit consent, while recital 42 specifies that consent “should
not be regarded as freely given if the data subject has no genuine or free choice or
is unable to refuse or withdraw consent without detriment”. Hence, the relevance
and need for Protos depends on the Court of Justice of the European Union’s
(CJEU) interpretation of the conditions that enable users to freely give consent,
i.e. law replacing Protos as an instrument to modulate consent [224, 410].

Similarly, the provisions that the GDPR sets on the accuracy of the profiles
that undergo further processing, e.g. through Article 5.1(d) and recital 71, may
impact Protos’ design [288]. If the CJEU were to interpret obfuscated data as
inaccurate, profilers may see their ability to further processing obfuscated profiles
limited, as profilers cannot ensure that the risks of errors for data subjects is
minimised. This interpretation would positively affect the deployment of Protos,
as they would effectively function as a mechanism to prevent further processing.
If, on the contrary, the CJEU were to interpret obfuscated data as accurate,
purposefully curated user data, e.g. according to the principle of informational
self-determination [224], users could face negative consequences from further
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processing of their obfuscated data.1 At the same time however, by legitimising
the strategic manipulation of users’ inputs, this interpretation would favour the
deployment of POTs.

Brkan further questions whether the GDPR’s provisions on the transparency
of decision making may lead to a right to explanation, as “the GDPR obliges
the controller to provide the data subject with ‘meaningful information about
the logic involved’” [95]. To the extent that it provides designers with a
greater understanding of the profiling and further decision making practices,
transparency can further assist Protos and specially POTs, e.g. facilitating the
reverse-engineering process required to effectively manipulate POTs’ inputs or
design DGSs that target a particular profiling function.

Hence, recent calls for increased algorithmic fairness, accountability and
transparency inform Protos’ and POTs’ design in several ways. On the one
hand, they may simultaneously legitimise the practices that these tools attempt
to prevent and oppose. On the other hand, they may assist tool design by
helping to rebalance the epistemic asymmetries designers face.

Come what may, Protos remain a patch, a temporary solution, a guerrilla tactics.
They do not represent the real fix, a sustainable solution to online profiling.
However, in the meantime, they provide a means for expression and resistance.

1This would effectively force adversaries to stay naive (q.v. 3.4.1), even if ensuring proper
enforcement of the rule would pose additional, non-trivial challenges.
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Appendix A

Scramble! user study
documentation

This appendix includes the following documentation to our Scramble! user study:
an excerpt of the entry questionnaire that we asked user participants to fill in
upon the start of the session, the introduction to Facebook’s privacy settings’
limitations that we asked user participants to read as an introduction to the
guided tour to Scramble! and, lastly, the exit questionnaire that we asked user
participants to fill in at the end of the session.

A.1 Entry questionnaire (excerpt)

We denote single choice questions as [SC], multiple choice questions as [MC]
and open questionas as [OQ].

Q7. Who should make the following decisions?
(You may select multiple choices, including “Others”. For example, you
may check both “You” and “Facebook” and add “My friends” to “Others”)

“Who should decide...

– who is able to see the photos you are tagged in?”
– which data in your account the police can access in case of an
investigation?”
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– who is able to see your personal details (age, phone number,
hometown, etc)?”

– who is able to see what you post on the site?”
– when you can delete your account?”
– what kind of information (i.e., news, links to youtube videos, etc)
you post?”

– who is able to see your list of friends?”
– who is able to know whose profiles’ you have visited?”
– the configuration of your privacy settings?”
– the number of private messages you can keep in your Facebook
mailbox?”

– where your data goes if Facebook stops its service?”
– who is able to read the private messages you send?”
– decide which ads show up on Facebook?”
– who will have access to your data if Facebook stops its service”
– what information is used from your profile to deliver ads to you?”
– who can send you a friend request?”
– who is able to see and access everything you do/see/post on
Facebook?”

– who is able to know which photos (of your friends or other Facebook
users) you have seen?”

– for how long your data is kept available on Facebook?”
– who can send you private messages?”

You / Facebook / Others (who?) / Don’t know

Q8. Who should be responsible for the following? [MC]
(Regardless of whether or not that is the actual situation on Facebook).
“Who should be responsible for...

– posting photos or messages you may later regret your friends had
seen/read?”

– keeping your password confidential?”
– making sure your privacy settings work?”
– making sure that photos you do not like are deleted and not available
on the site anymore?”

– the grammar of your posts and messages?”
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– preventing strangers from logging in to your account?”
– what your friends can see in your profile (this is, which of your photos,
posts, etc., they can see?”

– making sure your friends can see your profile at any time of the day?”
– making sure strangers are not able to see your posts and photos?”
– setting the proper privacy settings on your profile?”
– making sure private companies do not have access to the data you
post to the site without your permission?”

– making sure your friends do not post photos of you that you do not
like?”

– preventing people other than your friends from reading your messages
and seeing your photos?”

– allowing your friends to post comments to your status updates and
photos?”

– friends being upset because of what you post?”

You / Facebook / Others (who?) / Don’t know

Q11. On Facebook, what do you feel responsible for with respect to your own
privacy? [OQ]

Q13. Which privacy problems, if any, do you encounter using Facebook? [OQ]

Q17. What, if anything, would you add to, modify or delete from the Facebook
privacy settings? [OQ]

Q18. What privacy issues you have, if any, that you are not able to solve with
Facebook’s privacy settings?
None / The following: [OQ] / Don’t know

– (If The following:...) Which strategies do you use to solve those
privacy issues?
None (⇒ Why none?)/ The following: [OQ]

Q20. Are you aware of any strategies or mechanisms, currently not provided by
Facebook, that can help you better protect your privacy? [SC]
Yes (⇒Which ones?) / No

Q24. When sharing information online, such as sending a message, posting a
link to a website, etc., the term intended recipients refers all the people
you would like to be able to have access to that message or piece of
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information. When you send a message or post something on Facebook,
do you think anyone other than the intended recipients is able to access
it?
Yes / No / Don’t know

– (If Yes) Who?

Q25. Regardless of whether or not they are able to, who, if anybody, do you
think wants to have access to your data on Facebook?
Nobody / The following: [OQ] / Don’t know.

Q26. Are you interested in tools or technologies that would prevent unintended
recipients from having access to your Facebook data? [SC]
Yes / No / Don’t know

Q27. Which strategies or mechanisms do you know, even if you do not use them,
to prevent unintended recipients from having access to your messages and
information you send or post on Facebook? None / The following: [OQ]

– (If any) Which ones do you use? None / The following:
– (If None) Why would you, or would you not, use such a tool?

[SC] I would install one of those tools because... [OQ] / I would
not install one of those tools because... [OQ]

A.2 Introduction to limitation of privacy settings

Below we reproduce in its entirety the text we asked participants to read as a
preparation to the guided tour to Scramble!.

A brief introduction to the limitations of Facebook’s Privacy Settings.

As a Facebook user, you can use Facebook’s privacy settings to control certain
aspects of how you share your stuff on Facebook. Currently, Facebook’s privacy
settings allow you to control, among other things, who can see your posts. For
instance, you can choose to make your posts public (this is, visible to all Facebook
users), visible only to your Facebook friends or visible only to you. You can also
use Facebook’s friend lists to select a certain group of friends amongst your full
list of friends.

Facebook’s privacy settings have however certain limitations, such as the
following: Facebook’s privacy settings do not prevent Facebook itself from
having access to all the information (private messages, photos, posts, etc).
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Facebook’s privacy settings may afford little protection against anybody breaking
into Facebook. For example, if Facebook suffers from a security breach and an
intruder is able to access all the information of all the users on Facebook, the
posts of the people that carefully set their privacy settings will be as available to
this intruder as the posts of the people that had posted all their information as
“Public”. Facebook’s privacy settings enforcement solely relies on Facebook. Users
may change their privacy settings, but it is Facebook who enforces the settings
and any changes thereafter. This means that users have to rely on Facebook to
properly enforce those settings, and to do no mistakes by revealing information
to people who are not supposed to have access to it. On the other hand, nothing
stops Facebook from changing these settings at any time so that information
becomes more or less available to a wider or smaller audience. Users have
no control over how Facebook manages their information beyond setting their
preferences through the privacy settings. Facebook’s privacy settings do not
protect against Facebook revealing information to third parties. For instance,
it has been revealed that so far in 2013 government agencies have demanded
access to the information of over 38 000 Facebook users. Facebook’s privacy
settings cannot prevent Facebook users against Facebook revealing information
to governments or any other third parties, such as private companies.

All in all, Facebook’s privacy settings suffer from the fact that the user has
no control over them beyond signalling a preference. It is Facebook who has
ultimate control over these settings and has the power to enforce them.

A.3 Exit questionnaire

In addition to the SUS questionnaire (See [96]):

Q36. Can you describe, in a few words, your experience using Scramble!? [OQ]

Q37. What would be the advantages, if any, of using a tool like Scramble! over,
or in combination with, other privacy controls? [OQ]

Q38. Scramble! encrypts messages before you send or post them on Facebook.
Do you think this is a secure way to prevent unintended recipients from
having access to them? [OQ]

Q39. What do you think are the differences, if any, between what Scramble!
does and the privacy settings of Facebook?

Q40. How would you grade the following tools: Facebook’s privacy settings /
Scramble! with respect to
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– safety?
– reliability?
– trustworthiness?

Q41. Overall, explain in a few words why you find a tool like Scramble! to be
useful or not useful. [SC]+ [OQ]
I find tools like Scramble! useful because... / I find tools like Scramble!
not useful because...

Q42. Do you see yourself using a tool such as Scramble!? [SC]
Never / Rarely / Sometimes / Often / All of the Time / Don’t know

Q43. Which cases, purposes or people do you think a tool like Scramble! could
be useful for? [OQ]

Q44. What, if anything, did you like about Scramble!? (You will be asked
about what you did not like in the question below) [OQ]

Q45. What, if anything, did you dislike about Scramble!? [OQ]

Q46. What features did you miss in Scramble! or you think that such a tool
should have? [OQ]
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