LA-UR- 11-0

T

Approved for public release; distribution is unlimited.

Title:	Flux ropes, current sheets, islands and turbulence
Author(s):	T.P. Intrator P24 Z 152598 J.A. Sears P24 Z 236964 T. Weber P24 Z 242859 D.T. Liu P24 Z 253343 D.R. Pulliam P24 Z 253871 P-24 Plasma Physics, LANL
Intended for:	IPELS 11th International Workshop IPELS 11th International Workshop Interrelationship between Plasma Experiments in Laboratory and Space Whistler, British Columbia, Canada 2011 Jul 11-15

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Flux ropes, current sheets, islands and turbulence

T.P. Intrator

In collaboration with J. Sears, T. Weber, D.T. Liu, D.R. Pulliam, P-24 Plasma Physics, LANL A. Lazarian, Univ. Wisconsin - Madison, Dept. Astronomy G. Lapenta, LANL & Univ. Katholique, Leuven Belgium

IPELS 11th International Workshop Interrelationship between Plasma Experiments in Laboratory and Space Whistler, British Columbia, Canada 2011 Jul 11-15

IPELS 2011jul11-15 Intrator - rcxn turbulence

Abstract

We describe earth bound laboratory experiment investigations of patchy, unsteady, bursty, patchy magnetic field structures that are unifying features of magnetic reconnection and turbulence in helio, space and astro physics. Flux ropes are ubiquitous structures on the sun and the rest of the heliosphere. We use experimental probes inside the the flux ropes to macroscopic magnetic field lines, unsteady wandering characteristics, and dynamic objects with structure down to the dissipation scale length. can be traced from data sets in a 3D volume. Computational approaches are finally able to tackle simple 3D systems and we sketch some intriguing simulation results that are consistent with experimental data for magnetic reconnection and turbulence.

*Supported by NASA grant NNH10A0441 & Center for Magnetic Self Organization NSF-OFES

IPELS 2011jul11-15 Intrator - rcxn turbulence

Outline

- MagnetoHydroDynamic (MHD) magnetic fields can have 3D micro structure that is quite different from external macro structure.
- RSX experimental model: 2 flux ropes = macroscopic B lines
 - Implications for turbulence
- FRC data in island-plasmoid-flux rope formation regimes

IPELS 2011jul11-15 Intrator - rcxn turbulence

Los Alamos

RSX experiment: flux ropes in 3D

3D Scuff probe positioner

RSX: island-plasmoid subdivisions

FRC data: island, plasmoid regimes?

Sweet-Parker islands

New FRC equilibrium model + FRXL data

Flux annihilation rate vs anomalous resistivity η^* & Lundquist number S*

Daughton plot of collisionality vs system size

Reconnection rate vs Spitzer resistivity η & Lundquist number S

Implications for turbulence?

Secondary islands = multiple flux ropes

• 3D structure! • Discontinuous X-lines in the out of plane direction • Daughton et al, Nature-Physics 2011 For weaker guide fields, primary flux ropes are kink unstable ! $\frac{B_{yo}}{B_{xo}} = 0.3$ Kink instability may also produce turbulence!

Spacecraft observation of secondary islands

Reconnection current sheet simulations

FIG. 3. (Color online) Slices of J_z in the x-y plane of the 3D domain at t=84. The upper (lower) current sheet is denoted by bright (dark) areas representing positive (negative) currents.

Reconnection current sheet simulations

Schreier et al, PoP2010 (but look at RSX data slides 6,10!?)

FIG. 5. (Color online) Edges of the projection of the strong current density at t=201 on the x-z plane and detected by the Canny method are shown in black. The thicker (red) lines are the result of the Hough transform.

- Projection onto x-z plane shows 3D structure!
- · Discontinuous X-lines in the out of plane direction

Los Alamos IPELS 2011jul11-15 Intrator - rcxn turbulence

Conclusion

- MagnetoHydroDynamic (MHD) magnetic fields can have 3D micro structure down to dissipation scales.
- Different external and internal structure
- RSX experimental data + flux rope shredding
- FRC data
 - Island-plasmoid-flux rope formation regimes
 - Tearing unstable turbulence?

IPELS 2011jul11-15 Intrator - rcxn turbulence