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Abstract
Anomaly detection attempts to identify instances that deviate
from expected behavior. Constructing performant anomaly
detectors on real-world problems often requires some la-
beled data, which can be difficult and costly to obtain. How-
ever, often one considers multiple, related anomaly detection
tasks. Therefore, it may be possible to transfer labeled in-
stances from a related anomaly detection task to the problem
at hand. This paper proposes a novel transfer learning algo-
rithm for anomaly detection that selects and transfers rele-
vant labeled instances from a source anomaly detection task
to a target one. Then, it classifies target instances using a
novel semi-supervised nearest-neighbors technique that con-
siders both unlabeled target and transferred, labeled source
instances. The algorithm outperforms a multitude of state-of-
the-art transfer learning methods and unsupervised anomaly
detection methods on a large benchmark. Furthermore, it out-
performs its rivals on a real-world task of detecting anoma-
lous water usage in retail stores.

1 Introduction
Anomaly or outlier detection is a fundamental data analysis
task that involves identifying instances in a dataset that differ
from what was expected (Chandola, Banerjee, and Kumar
2009). Anomaly detection is important in practice as anoma-
lies often correspond to substantial problems that could have
significant costs, such as abnormal web traffic (Robberechts
et al. 2018), or credit card fraud (Chan et al. 1999).

Anomaly detection can naturally be posed as an unsuper-
vised learning task (Ramaswamy, Rastogi, and Shim 2000;
Breunig et al. 2000). Typically, unsupervised approaches ex-
ploit the underlying assumption that anomalies occur infre-
quently, which means they fall in low-density regions of the
instance space, or that anomalies are far away from normal
instances to identity them. However, real-world data regu-
larly violate this assumption, degrading the unsupervised ap-
proaches’ performance (e.g., system maintenance can occur
infrequently and irregularly, but is not anomalous). Labeled
data offers the possibility to correct the mistakes made by
unsupervised detectors. Unfortunately, a fully supervised ap-
proach to anomaly detection is infeasible due to the fact that

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

collecting examples of real-world anomalies is often expen-
sive (e.g., a machine breaking), meaning that is not a viable
strategy to permit anomalous behavior for the sake of data
generation. This has spurred interest in semi-supervised ap-
proaches to anomaly detection, usually in conjunction with
active learning to efficiently collect the labels.

Real-world anomaly detection tasks often involve moni-
toring numerous assets, each of which is only slightly differ-
ent. Such a situation may arise when monitoring machines
in a factory, resource usage in a chain of retail stores, or
windturbine farms. These use cases entail monitoring a large
number of assets as a big retail chain could have 100s if
not 1000s of stores. Therefore, even when using a strategy
like active learning, it may be impossible to collect labels
for each individual asset. Given that these use cases involve
multiple similar anomaly detection tasks, it may be possi-
ble to employ transfer learning to transfer labeled instances
from one task to another. This could then alleviate the need
to collect labels for each task separately.

Motivated by these types of applications, this paper pro-
poses LOCIT, a novel transfer learning algorithm tailored
towards anomaly detection. It works in two steps. First,
given a partially labeled source dataset and an unlabeled tar-
get dataset, LOCIT selects a subset of the labeled source
instances to transfer to the target dataset. It picks those
instances that have similar localized data distributions in
both the source and target dataset. Second, it assigns an
anomaly score using a semi-supervised nearest-neighbor ap-
proach that considers both the transferred, labeled source
instances and the unlabeled target instances. Empirically,
LOCIT outperforms a multitude of existing transfer learning
and anomaly detection methods on a new transfer learning
benchmark for anomaly detection. Moreover, it outperforms
its competitors on a real-world anomaly detection prob-
lem of identifying anomalous water usage in multiple retail
stores. Finally, we provide an implementation of LOCIT.1

2 Preliminaries
Transfer Learning for Anomaly Detection. Transfer
learning aims to learn a model for one dataset (the target do-

1https://github.com/Vincent-Vercruyssen/LocIT



main) given access to data from a related dataset (the source
domain) (Van Haaren, Kolobov, and Davis 2015). As this
paper concerns anomaly detection, the task is to assign a
score to each instance in the target dataset that quantifies
how anomalous it is. We use DS (DT ) to denote the source
(target) dataset. We use xs (xt) to refer to an instance from
the source (target) dataset.

Three common transfer learning assumptions (Kouw and
Loog 2018) apply to the anomaly detection task. First, the
source and target data are from the samem-dimensional fea-
ture space. Second, the source and target marginal distribu-
tions differ (covariate shift assumption). This happens when
distinct behaviors are observed in either domain. Third, the
conditional distributions can differ due to changes in con-
text: the same behavior may have different meanings in the
two domains (concept shift assumption). The last two as-
sumptions complicate the transfer task.

Nearest Neighbors and KNNO. We use several nearest
neighbors concepts. The k-distance of an instance x is the
distance to its kth nearest neighbor in a datasetD, and is de-
noted by k-dist(x,D). The set of x’s k nearest neighbors in
D is denoted byNk(x,D). The standard weighting function
in distance-weighted KNN is w(xi;xj) = 1

δ(xi,xj)2
, where

δ is the Euclidean distance between two instances xi and
xj . Finally, KNNO ranks all instances in a dataset by their k-
distance, with higher distances signifying more anomalous
instances (Ramaswamy, Rastogi, and Shim 2000).

3 The LOCIT Algorithm
The problem we are trying to solve can be defined as:

Given: A (partially) labeled source dataset DS and an un-
labeled target dataset DT from the same feature space;

Do: Assign an anomaly score to each instance in DT using
DT and a subset of DS .

Our novel localized instance-transfer algorithm (LOCIT)
takes a two-step approach for addressing this task. First,
LOCIT decides in a label-agnostic way whether to transfer
each source instance to the target domain by checking if the
instance’s local data distribution is similar in both the source
and target domains. LOCIT takes an unsupervised transfer
approach because the target labels are not available and the
value of the source label should not influence the transfer de-
cision. Second, LOCIT assigns an anomaly score to each tar-
get instance by employing a novel semi-supervised anomaly
detection algorithm. Algorithm 1 details the overall control
flow of LOCIT and the following subsections describe each
step in more detail.

3.1 Localized Instance-Based Transfer
An instance-transfer function f(xs;DS , DT ) 7→ {0, 1} de-
cides whether to transfer each source instance xs ∈ DS to
the target domain (1) or not (0). Ideally, each transferred
source instance has the same meaning (i.e., would be labeled
similarly) in both domains. It only makes sense to transfer a
source anomaly (normal) to the target domain if it is similar
to a target anomaly (normal). However, LOCIT must make

Algorithm 1: LOCIT(DS , DT , ψ, k)
Input: source data DS , target data DT ,

neighborhood sizes ψ and k
Result: Anomaly score for the instances in DT

Phase (i): Localized instance-based transfer.
1 Fpos, Fneg = ∅
2 for xt ∈ DT do
3 xn is the nearest neighbor of xt in DT \ {xt}
4 xf is the farthest neighbor of xt in DT \ {xt}
5 N1 = Nψ(xt, DT ) and N2 = Nψ(xn, DT )
6 Fpos = Fpos ∪ [d1(N1, N2), d2(N1, N2)]
7 N2 = Nψ(xf , DT )
8 Fneg = Fneg ∪ [d1(N1, N2), d2(N1, N2)]

9 svm = fitSVM (Fpos, Fneg)
10 Dtrans = ∅
11 for xs ∈ DS do
12 N1 = Nψ(xs, DS) and N2 = Nψ(xs, DT )
13 fs = [d1(N1, N2), d2(N1, N2)]
14 if svm.predict(fs) = pos then
15 Dtrans = Dtrans ∪ {xs}

Phase (ii): Prediction in the target domain.
16 D∗ = DT ∪Dtrans

17 for xt ∈ DT do
18 Predict xt’s anomaly score using Eq. 4, D∗ and k

this assessment without access to any labels for the target in-
stances. Consequently, LOCIT makes the intuitive assump-
tion that an instance has a similar meaning in both the source
and target domain if the local structure of the source and
target marginal distributions around the instance are similar,
where the structure of the distributions is characterized by
first and second order statistics.

Characterizing an Instance’s Local Structure. For a given
source instance xs, LOCIT defines the localized source dis-
tribution using the set Nψ(xs, DS) of xs’s ψ nearest neigh-
bors in the source data. Similarly, the localized target dis-
tribution is based on the set Nψ(xs, DT ) of xs’s ψ nearest
neighbors in the target data. The assumption is that if the
distribution over Nψ(xs, DS) is sufficiently similar to the
distribution over Nψ(xs, DT ), xs can be transferred, where
the similarity is measured by comparing the following first
and second order statistics ofNψ(xs, DS) andNψ(xs, DT ):

Location distance: This is the l2-norm of the difference
between the centroids (i.e., arithmetic mean) of two
neighborhood sets N1 and N2:

d1(N1, N2) =

∥∥∥∥∥∥1k
 ∑
xi∈N1

xi −
∑
xj∈N2

xj

∥∥∥∥∥∥
2

. (1)

Here, LOCIT computes d1(Nψ(xs, DS), Nψ(xs, DT )).
Intuitively, large values of d1 indicate less overlap be-
tween the regions covered by the two sets, which corre-
spondingly decreases the chance of meaningful transfer.
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Figure 1: Both the source and target domain (panel A) contain a small (infrequent) cluster of normal instances, which many
unsupervised algorithms would incorrectly flag as anomalous. Hence, transferring labeled instances from the source to the
target could help. CORAL (panel B) transforms the source data to align the global statistics between the domains. However,
outliers skew the correction, resulting in a suboptimal mapping. Here, source normals are mapped to target anomalies and the
clusters of infrequent normal instances do not match. LOCIT (panel C), on the other hand, only transfers the subset of source
instances for which the localized source and target distributions match. Hence, it correctly transfers labeled source instances to
the small cluster of infrequent normals, while avoiding incorrect transfer on the lower right.

Correlation distance: This is the relative distance between
the covariance matrices of two neighborhood sets:

d2(N1, N2) =
‖CN1 − CN2‖F
‖CN1‖F

(2)

where ‖·‖F is the Frobenius norm and C is
the covariance matrix. Again, LOCIT computes
d2(Nψ(xs, DS), Nψ(xs, DT )). If d2 is large, this
signals that the underlying localized source and target
distributions are distinct in shape and/or orientation,
which again reduces the chance of meaningful transfer.

The size of the neighborhood set ψ is the only hyperparam-
eter in the transfer step of LOCIT. Intuitively, ψ controls the
strictness of the instance transfer. If ψ is maximal (the mini-
mum of the number of source or target instances) LOCIT ig-
nores local distributional differences and considers the full
global structure of the source and target domains to deter-
mine transfer. If ψ is 1, LOCIT only transfers a source point
when the distance to its nearest neighbor in the source and
target domain is similar to the average distance between any
two neighboring points in the target domain.

Learning the Instance-Transfer Function. The instance
transfer function f needs to decide whether to transfer xs by
combining the information provided by d1 and d2. LOCIT
learns an SVM classifier on the target distribution to serve
as f . The classifier predicts if a source instance xs belongs
to the target domain by looking at the correlation and loca-
tion distance between the neighborhood sets of the instance
in the source and target data.

To train the classifier, LOCIT generates training data
by only considing the target data. It does so by lever-
aging the smoothness assumption that neighboring tar-
get instances should have similar localized distributions
while far-away instances should not. Thus, one pos-
itive training example is generated for each instance
xt ∈ DT by finding its nearest neighbor xn ∈
DT \ {xt} and computing d1(Nψ(xt, DT ), Nψ(xn, DT ))
and d2(Nψ(xt, DT ), Nψ(xn, DT )). Similarly, the negative
training examples are generated by computing for each in-
stance xt ∈ DT a feature vector consisting of the distances

k-distk-dist

k = 4k = 4
Normal ∈ Dtrans

Anomaly ∈ Dtrans

Unlabeled ∈ DT

xt ∈ DT

Figure 2: After transfer, SSKNNO computes an anomaly
score for each target instance as a weighted combination of
an unsupervised score and a supervised score. In this exam-
ple using k = 4, xt’s nearest neighbors are two source nor-
mals, a source anomaly, and an unlabeled target instance.
Because xt does not belong to the neighborhood sets of the
two source normals (green circles) in its neigbhorhood set,
they are excluded when computing the weight for the su-
pervised component of the score. Thus, the weights of the
unsupervised and supervised components are respectively 3

4

and 1
4 .

between the neighborhood sets of xt and its farthest neigh-
bor xf ∈ DT \ {xt}.

LOCIT tunes the SVMs hyperparameters using three-
fold cross-validation on the generated training data. It
selects either a linear or Gaussian kernel and sets
C ∈ [0.01, 0.1, 0.5, 1, 10, 100] for both kernels and σ ∈
[0.01, 0.1, 0.5, 1, 10, 100] for the Gaussian kernel.

Figure 1 compares LOCIT with a popular global domain
alignment strategy, CORAL (Sun, Feng, and Saenko 2016),
on a small source and target dataset.

3.2 Prediction in the Target Domain
After transfer, there are two challenges with making predic-
tions for the target instances. First, the target domain now
contains a mix of labeled and unlabeled instances. Second,
because this is an anomaly detection problem, the known la-
bels in a target instance’s neighborhood are not necessarily



informative of its label.
The second contribution of LOCIT is a semi-supervised

anomaly detection method, SSKNNO, that combines the un-
labeled and (transferred) labeled instances to compute an
anomaly score for each target instance. On the one hand, it
considers the local distribution of the unlabeled target in-
stances when computing the score. On the other hand, it
weighs this score by comparing the neighborhoods of the
(transferred) labeled instances and the unlabeled instances
in the target data.

Let D∗ = DT ∪ Dtrans be the set of instances that in-
cludes both the target instances and the transferred source
instances. For a given target instance xt, we find the set of
all neighbors Nk(xt, D∗) and denote its subset of labeled
neighbors as Lk(xt, D∗). The weight Wl of the labeled in-
stances in the neighborhood of xt is now:

Wl(xt) =
|xi : xi ∈ Lk(xt, D∗) ∧ xt ∈ Nk(xi, D∗)|

k
. (3)

Intuitively, when assigning an anomaly score to xt, we only
want to consider the label of a transferred source instance if
the source instance is similar to xt. For example, if xt is an
isolated instance, its k-nearest neighbors will be far-away.
Even if labeled, such instances will not be very predictive of
xt’s label. This is reflected in Wl(xt), which only considers
instances in xt’s neighborhood that also include xt in their
neighborhood.

This weight can now be used to compute the anomaly
score a(xt) for instance xt as a weighted combination be-
tween an unsupervised component, au, that considers the
local data distribution and a supervised component, al, that
considers nearby labeled instances:

a(xt) = (1−Wl(xt)) au(xt) +Wl(xt) al(xt). (4)
The supervised component of the score al is the distance-

weighted average of the labels of the instances in the neigh-
borhood of xt:

al(xt) =

∑
xi∈Lk

1xi=anomaly(xi) w(xi;xt)∑
xi∈Lk

w(xi;xt)
(5)

where w is defined as in Section 2 and 1yi=1(xi) is 1 if the
expert labeled instance xi as anomalous. The unsupervised
component of the score au uses k-dist based on the KNNO
algorithm but bounds the distance to [0, 1] using a squashing
function from the exponential family:

au(xt) = 1− exp

(
−k-dist(xt, D∗)2

2γ2

)
(6)

where γ is the assumed percentage of anomalies and is set
to be the proportion of known anomalies in the source do-
main. This exponential quashing is a monotone function and
higher values still represent more anomalous instances. See
Figure 2 for a graphical explanation of SSKNNO.

In extreme cases the weight Wl(xt) can be zero or one. If
none of xt’s neighbors are labeled, Lk is empty and Wl(xt)
becomes zero, reducing Eq. 4 to the scaled KNNO score. This
can happen if LOCIT’s transfer function selects no instances
to be transferred. Conversely, if all of xt’s neighbors are la-
beled and xt belongs to the neighborhood set of each of
its neighbors, the final anomaly score is then the standard,
weighted KNN classifier.

4 Related Work
We discuss the most closely related work in transfer learn-
ing, domain adaptation and anomaly detection.
Instance-Based Transfer. Many different types of trans-
fer learning exist (Weiss, Khoshgoftaar, and Wang 2016;
Pan and Yang 2010). We focus on instance transfer where
weighted source domain instances are used to construct a de-
cision function in the target domain (Mignone et al. 2019).
Chattopadhyay et al. (2012) proposed 2SW-MDA and CP-
MDA. However, unlike our problem setting CP-MDA re-
quires labeled target data to work, while 2SW-MDA does
not work when only instances of one class are labeled in
the source domain.
Domain Adaptation. Domain adaptation techniques trans-
form both the source and target data into a new, latent feature
space that minimizes the distributional differences while
preserving the intrinsic structure in the data. Then, they ap-
ply standard classifiers in the newly-found space. To find
the latent space, one class of methods, such as TCA (Pan
et al. 2011), TJM (Long et al. 2014), and GFK (Gong et
al. 2012), corrects only the differences in marginal distribu-
tions. A second class of methods, such as JDA (Long et al.
2013) and JGSA (Zhang, Li, and Ogunbona 2017), attempts
to correct both the marginal and conditional distributions by
computing pseudo-labels for the unlabeled source and tar-
get data. Finally, methods such as CORAL (Sun, Feng, and
Saenko 2016) align the source and target domains in the
original feature space. All these methods use the 1-nearest
neighbor classifier for the target data, with the transformed
source data as the training set.

LOCIT differs from these approaches in three key ways.
First, it implicitly corrects for conditional distribution differ-
ences between the source and target domains by observing
the densities of the data distributions. Second, it uses a semi-
supervised nearest-neighbors style classifier in the target do-
main, which we will show empirically leads to better per-
formance. Third, LOCIT’s target domain nearest-neighbors
classifier works even if instances from only one class are
transferred because it interpolates between a supervised and
unsupervised score. In contrast, the other approaches require
that labeled instances from all classes are transferred.
Transfer Learning for Anomaly Detection. Only a handful
of papers explore the use of transfer learning for anomaly de-
tection. CBIT (Vercruyssen, Meert, and Davis 2017) selects
labeled source instances to transfer using a density-based ap-
proach and a cluster-based approach and constructs a 1NN
classifier in the target domain based on these instances. Un-
like LOCIT, CBIT fails if the source domain contains labels
from only one class or if all transferred source instances
come from the same class. Andrews et al. (2016) tries to
reuse learned image representations across different image
datasets. Finally, Xiao et al. (2015) designed a robust one-
class transfer learning method. Unlike LOCIT, the latter two
approaches require labeled target instances to construct the
classifier. The lack of labels in anomaly detection task that
motivated our approach prohibits using these approaches.
Unsupervised Anomaly Detection. Unsupervised anomaly
detection assumes that anomalies are infrequent and differ-



ent than the normal instances. The three most popular and
successful classes of methods in this area are local density-
based methods (Papadimitriou et al. 2003; Breunig et al.
2000), k-nearest neighbor detectors (Ramaswamy, Rastogi,
and Shim 2000), and isolation methods (Liu, Ting, and Zhou
2008). Extensive empirical evaluations have found that both
KNNO (Campos et al. 2016; Goldstein and Uchida 2016)
and IFOREST perform very well compared to a number
of competitors (Domingues et al. 2018). Interestingly, the
aforementioned studies do not directly compare IFOREST
with KNNO. In contrast, we propose a new, semi-supervised
anomaly detection technique that forms a weighted combi-
nation of standard KNN and KNNO. The technique also dif-
fers from IFOREST, which cannot handle labeled instances.

5 Benchmark Experimental Evaluation
We address the following four empirical questions:
Q1: How does LOCIT perform compared to state-of-the-art

transfer learning and anomaly detection algorithms?
Q2: How does the percentage of labeled source instances

affect the transfer learning algorithms’ performance?
Q3: How does our nearest-neighbor’s approach for classi-

fying target instances affect performance?
Q4: How do the values of hyperparameters ψ and k affect

the performance of LOCIT?
The code, elaborated explanations, full parameter settings,
and further experiments are available in an online appendix.2

5.1 Benchmark and Experimental Setup

Compared Approaches. We compare 12 approaches,
which can be divided into three categories:
Baseline anomaly detection algorithms. We consider four

standard unsupervised anomaly detection techniques that
only consider the target domain data: KNNO (a distance-
based outlier detection technique (Ramaswamy, Rastogi,
and Shim 2000)), LOF (a density-based outlier detection
technique (Breunig et al. 2000)), IFOREST (an ensemble-
based outlier detection technique (Liu, Ting, and Zhou
2008)), and HBOS (a histogram-based outlier detection
technique (Goldstein and Dengel 2012)).

Baseline transfer learning approaches. We consider eight
transfer learning approaches: TRANSFERALL (a naive
baseline that transfers all source instances as is to the
target domain), CORAL (Sun, Feng, and Saenko 2016),
TCA (Pan et al. 2011), GFK (Gong et al. 2012), JDA (Long
et al. 2013), TJM (Long et al. 2014), JGSA (Zhang, Li,
and Ogunbona 2017), and CBIT (Vercruyssen, Meert, and
Davis 2017). After transfer, these methods use a KNN
classifier to classify the target instances.

LOCIT. This is our proposed transfer learning approach.

Benchmark Construction. We construct our own bench-
mark because the current transfer learning benchmarks
(e.g., (Long et al. 2013; Sun, Feng, and Saenko 2016;

2https://github.com/Vincent-Vercruyssen/LocIT

Pan et al. 2011)) do not contain anomalies, while the cur-
rent anomaly detection benchmarks (Campos et al. 2016;
Goldstein and Uchida 2016) do not contain source-target
pairs for each problem. Our benchmark should display three
characteristics. First, for empirical evaluation purposes, the
benchmark should contain a large number of source-target
domain pairs that have varying degrees of differences be-
tween their joint data distributions. Second, each source-
target domain pair should live in the same feature space.
We start from one of 12 publicly available, multi-class mas-
ter datasets. To generate a target domain, we sample nor-
mal (anomalous) target instances from the largest (second
largest) class in the master dataset. To ensure distributional
differences between the source and the target, we construct
source domains by sampling source anomalies and normals
from either the same classes or different classes than used in
the target domain. We generate 56 unique source-target pairs
in this manner. Third, the source and target domains should
contain normal and anomalous instances that are nontrivial
to classify. We follow Emmott et al.’s procedure (2013) to
satisfy this condition.

Experimental Setup. We employ the standard transfer
learning experimental setup used in previous work (Long
et al. 2013; Zhang, Li, and Ogunbona 2017). For each of
the 56 source-target pairs in the benchmark, the following
two steps are performed. First, each method transforms the
source data and/or selects the source instances to transfer to
the target domain. Second, a final classifier is learned using
the transferred, labeled source data (and the unlabeled target
data) and a prediction is made for each target instance. The
anomaly detection algorithms are simply run on the target
data (i.e., they do not use any source data). The final classi-
fier’s performance is evaluated using the area under the ROC
curve (AUROC), as is standard in anomaly detection (Em-
mott et al. 2013).

Hyperparameter tuning using cross-validation is impossi-
ble because there are no labels in the target domain and the
distribution of the source data is different (Pan et al. 2011).
We simply use the baselines with the hyperparameters rec-
ommended in the original papers or in comparative studies.
LOCIT has two hyperparameters. We set the neighborhood
size ψ = 20 and k = 10 in SSKNNO. Q4 analyzes the im-
pact of ψ and k on LOCIT’s performance. Further details on
the hyperparameters can be found in the online Appendix.

5.2 Experimental Results and Discussion
Q1: LOCIT vs. State-of-the-art. Table 1 compares LOCIT
to all baselines when the source domain is fully labeled.
LOCIT outperforms all baselines on the full benchmark,
having the lowest average AUROC rank (lower is better) and
achieving the highest average AUROC.

Furthermore, LOCIT yields an average increase in AU-
ROC of at least >9% compared to performing unsupervised
anomaly detection. This provides evidence that LOCIT’s ap-
proach to transfer can help in anomaly detection tasks. Fi-
nally, LOCIT achieves average AUROC gains of>18% over
all the transfer learning baselines, indicating it that substan-
tially outperforms the state-of-the-art transfer approaches.



Table 1: Comparison of LOCIT to the state-of-the-art baselines when the source domains are fully labeled. The table shows
over the full benchmark: the average AUROC rank ± standard deviation (SD) of each method; the average AUROC ± SD of
each method; the number of times LOCIT wins (higher AUROC), draws (absolute difference in AUROC < 0.005), and loses
(lower AUROC) vs. each method; and the average percentage change in AUROC ± SD of using LOCIT over each method.

Transfer method Final classifier Average AUROC rank
± SD of each method

Average AUROC ± SD
of each method

# times LOCIT Average % change in AUROC
using LOCIT over all datasetswins draws loses

LOCIT SSKNNO 3.741± 3.318 0.762± 0.182 - - - -
- KNNO 5.321± 3.663 0.705± 0.177 44 4 8 +9.63%± 18.31%
CORAL KNN 5.848± 3.311 0.666± 0.188 36 1 19 +20.65%± 40.60%
- LOF 6.018± 4.413 0.677± 0.113 37 0 19 +14.53%± 31.53%
TRANSFERALL KNN 6.732± 3.646 0.649± 0.185 37 0 19 +27.34%± 62.98%
- IFOREST 6.795± 3.898 0.690± 0.169 50 1 5 +11.32%± 13.53%
GFK KNN 7.125± 3.312 0.642± 0.186 38 1 17 +29.10%± 67.03%
TCA KNN 7.348± 2.356 0.656± 0.154 44 1 11 +18.20%± 27.64%
- HBOS 7.920± 4.015 0.646± 0.216 48 2 6 +29.16%± 53.65%
TJM KNN 8.000± 2.793 0.627± 0.175 44 2 10 +27.22%± 39.12%
CBIT KNN 8.223± 2.345 0.623± 0.150 46 0 10 +24.57%± 28.54%
JDA KNN 8.509± 2.910 0.617± 0.170 44 0 12 +30.51%± 48.76%
JGSA KNN 9.420± 3.845 0.576± 0.096 46 0 10 +33.99%± 33.27%
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Figure 3: The AUROC averaged over all source-target pairs on four representative master datasets, as a function of the percent-
age of labeled source data for LOCIT, KNNO, and CORAL. LOCIT’s and CORAL’s performance improves as labels are added
to the source domain. With 50% of the source labels, LOCIT always performs better or equivalently to KNNO.

Q2: Effect of Varying the Percentage of Source Labels.
To explore how the amount of labeled source data affects
performance in the target domain, we vary the proportion of
labeled sources instances. This is relevant because often it
is difficult to obtain fully labeled data for anomaly detection
problems. We randomly sampled 10%−100% with incre-
ments of 10% of the source instances and only considered
the labels of these instances when performing transfer. We
repeated this procedure five times and averaged results.

Figure 3 shows how the average AUROC varies as a
function of the proportion of labeled source instances on
four representative master datasets. For readability, the plots
show the results for LOCIT as well as CORAL and KNNO,
which are the best transfer and anomaly detection base-
lines respectively as determined by Table 1. KNNO’s curves
are straight lines because it only considers the target data.
CORAL improves as more source labels become available.
Regardless of the proportion of source labels, LOCIT out-
performs CORAL on nine of the 12 master datasets. Further-
more, with only 10% of the source labels, LOCIT performs
better than or similar to KNNO on eight of the 12 master
datasets. As more source labels become available, LOCIT’s
performance improves and with 50% of the source labels,

Table 2: LOCIT vs. the best transfer baselines from Table 1
coupled to use SSKNNO as the target domain classifier. The
table shows the average AUROC ± SD and the average per-
centage change in AUROC± SD of using LOCIT over each
competitor for fully labeled source domains.

Transfer method
+ SSKNNO

Average AUROC ± SD
of each method

Average % change in AUROC
using LOCIT over all datasets

LOCIT 0.762± 0.182 -
CORAL 0.735± 0.171 +3.88%± 9.54%
TRANSFERALL 0.727± 0.173 +5.17%± 10.29%
GFK 0.705± 0.172 +8.95%± 13.28%
CBIT 0.713± 0.171 +7.28%± 10.64%
TCA 0.533± 0.177 +74.81%± 116.18%

LOCIT always performs better or equivalently to KNNO. As
source labels continue to be added, the performance gap
with KNNO widens.

Q3: Impact of the SSKNNO Approach. To assess how
much of LOCIT’s gains come from using our novel
SSKNNO approach, we use SSKNNO instead of KNN as
the target domain classifier for the best competing transfer
methods from Table 1. Table 2 shows the results for this



Table 3: The average AUROC± SD on the real-world water
usage data by LOCIT, the best non-transfer baseline (KNNO)
and the two best transfer baselines (CORAL and TRANSFER-
ALL) on the benchmark. Best results are in bold. LOCIT
consistently outperforms its competitors.

source target KNNO TRANSFERALL CORAL LOCIT

store 1 store 2 0.779± 0.126 0.611± 0.154 0.646± 0.133 0.800± 0.112
store 1 store 3 0.943± 0.063 0.758± 0.192 0.776± 0.182 0.969± 0.049
store 2 store 1 0.754± 0.227 0.771± 0.207 0.771± 0.219 0.779± 0.227
store 2 store 3 0.943± 0.063 0.790± 0.232 0.794± 0.232 0.969± 0.050
store 3 store 1 0.754± 0.227 0.704± 0.159 0.702± 0.159 0.779± 0.227
store 3 store 2 0.779± 0.126 0.592± 0.164 0.638± 0.135 0.800± 0.112

experiment. For CORAL, GFK, TRANSFERALL, and CBIT,
using SSKNNO as the classification approach results in im-
proved performance versus the KNN classifier. The excep-
tion is TCA. Even when they are coupled with the SSKNNO
classifier, LOCIT outperforms all the baselines. It performs
better or similar (difference in AUROC < 0.005) than all
competitors on at least 37 out of 56 benchmark datasets, and
achieves a higher average AUROC than all other methods.
This indicates that both LOCIT’s novel instance selection
procedure and its approach to classification in the target do-
main contribute to its superior performance.

Q4: Impact of LOCIT’s Hyperparameters. LOCIT has
two hyperparameters. First, the hyperparameter ψ con-
trols the strictness of the instance-selection step. Choosing
ψ ≥ 20 generally yields good performance. Lower val-
ues degrade performance. Second, hyperparameter k in the
SSKNNO step of LOCIT controls the number of neighbors
considered when deriving an anomaly score for an instance.
A good value of k depends on the type of dataset. Lower
values of k < 20 are an overall good choice across a range
of datasets. See Figure 6 in the online Appendix.

6 Real-world Experimental Evaluation
We evaluate LOCIT’s effectiveness on a real-world transfer
task of detecting anomalous water usage in a chain of retail
stores. The retail company operates hundreds of stores and
wants to avoid excess usage due its harmful environment im-
pact and to minimize costs. Detecting anomalous usage is
challenging because the data contains infrequent, but nor-
mal irregularities such as maintenance patterns, after-hour
events, and temporary alterations in opening hours. Simi-
larly, certain abnormal behaviors such as leaks occur rel-
atively frequently. Hence, the data violate the standard as-
sumptions made in unsupervised anomaly detectors.

Having access to some labeled examples could help im-
prove detection performance and correct the mistakes made
by unsupervised detectors. Unfortunately, it is not feasible
to label even a small subset of the data for every store due to
the time costs associated with labeling. This raises the fol-
lowing the question:

Can labeled instances be transferred between different
scores to improve anomaly detection performance?

However, transfer in this setting is not straightforward be-
cause the observed usage, and consequently what constitutes

(ab)normal behavior, varies substantial due to contextual dif-
ferences among stores (e.g., location, size, clientele, opening
hours, services offered, etc.).

6.1 Data and Methodology
We have three full years of historical water usage time series
data for three stores. The data consists of a univariate mea-
surement that is recorded every five minutes. In each store,
company experts labeled about ten percent of the data, each
of the provided labels indicating whether a block of one hour
(e.g., 01:00-02:00) shows normal behavior or not. The rest
of the data is unlabeled.

In each store, the time series data is first divided into non-
overlapping one-hour windows (i.e., 00:00-01:00, 01:00-
02:00, etc.). Then, each window is transformed into a length
31 feature vector describing the signal’s characteristics dur-
ing that window (Vercruyssen et al. 2018). Because of a
store’s opening hours, the time of day has a significant ef-
fect on water usage. Therefore, all windows for the same
hour interval (e.g., 11:00-12:00) are grouped, resulting in 24
groups per store. A separate anomaly detector is trained for
each group.

In the transfer learning experiment, each window group
for one store is treated as the unlabeled target domain, while
each of the 24 window groups from a different store serves
as the partially labeled source domain (about ten percent of
the instances is labeled). Having three stores, we construct
six unique source-target store combinations, each of which
has 576 source-target pairs.

6.2 Experimental Results and Discussion
Table 3 reports the AUROCs of this experiment, averaged
per source-target store combination. In aggregate, LOCIT is
always better than both KNNO and CORAL on all six store-
store combinations. On all 3456 transfer tasks (576 tasks per
store-store pair× six pairs), LOCIT wins (difference in AU-
ROC > 0.01) 2427 and ties (difference in AUROC < 0.01)
280 times with CORAL. It wins 2512 and ties 272 times with
TRANSFERALL. Finally, it wins 1868 and ties 1441 times
with KNNO. LOCIT outperforms or ties with KNNO on 95%
of the real-world transfer tasks, which provides evidence of
the effectiveness of label transfer to improve anomaly detec-
tion in a real-world setting.

7 Conclusions
While anomaly detection would benefit from labeled data, it
is often done in an unsupervised manner because acquiring
labels in practice, particularly for anomalies, can be diffi-
cult and costly. We considered using transfer learning to ac-
quire labeled instances from a different, but related anomaly
detection task. We proposed a novel instance-based trans-
fer method for anomaly detection. Empirically, we have
shown that it outperforms numerous unsupervised and trans-
fer learning approaches on a large benchmark. Morever, we
showcased its ability to outperform its competitors on real-
world anomaly detection task of monitoring water usage in
multiple retail stores of a large retail company.
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Table 4: Characteristics of the 12 master datasets used to
construct the transfer learning for anomaly detection bench-
mark. The datasets are obtained from the UCI machine
learning repository3. For each dataset, only the numeric fea-
tures are used. Age(1) is divided into three classes. The
three(2) smallest classes are removed.

Dataset # Features # Instances # Classes

Abalone 8 4177 3(1)

Covertypes 54 581012 7
Gas sensor array drift 128 13910 6
Gesture phase segmentation 32 9900 5
Recognition of handwritten digits 64 5620 9
Statlog landsat satellite 36 6435 6
Letter recognition 16 20000 26
Pen-based recognition of digits 16 10992 10
Image segmentation 19 2310 7
Shuttle 9 58000 7
Waveform 21 5000 3
Poker 11 1025010 7(2)

8 Appendix
8.1 Benchmark Construction
An appropriate benchmark for transfer learning for anomaly
detection should exhibit three characteristics. First, it should
contain a sufficient number of datasets, each dataset con-
sisting of a source-target domain pair. The source and target
domains contain instances that are sampled from the same
m-dimensional instance space (see the first transfer learn-
ing assumption in Section 2). Second, each source and tar-
get domain should contain normal and anomalous instances,
a number of which are nontrivial to classify. The impor-
tance of this condition in general anomaly detection bench-
marks is stated in (Emmott et al. 2013). Third, the bench-
mark datasets should portray varying degrees of differences
between the joint data distributions of the source and target
domain (see the second and third transfer learning assump-
tions in Section 2).

Our benchmark is constructed to reflect these three char-
acteristics. We start with 12 publicly available, multi-class
master datasets that are listed in Table 4. Each master
dataset is converted into three (or five) unique source-target
domain pairs, depending on wether the master dataset con-
tains three (or more) classes. Because each source-target do-
main pair is constructed from the same master dataset, the
source and target instances live in the same m-dimensional
instance space. This results in a total of 56 unique bench-
mark datasets.

For any source-target domain pair, the target domain is
constructed by sampling the normal (anomalous) instances
from the largest (second largest) class in the master dataset.
We ensure that the target domain contains instances that are
nontrivial to classify by varying the point difficulty of the
sampled instances, as outlined in (Emmott et al. 2013). The
point difficulty simply quantifies how difficult it is to sepa-
rate the instances of the two classes in a binary classification
problem with full access to the label information. Meaning-
ful source normals and anomalies are sampled from the cho-
sen classes using the same procedure as in the target domain.

Table 5: The average AUROC for each master dataset as a
function of the difficulty of the transfer task. The table shows
results for LOCIT as well as KNNO and CORAL, which are
the best anomaly detection and transfer learning baselines
from Table 1. The table is complementary to the transfer
difficulty plots in Figure 5. The results show that when the
source and target domains are more similar (lower trans-
fer difficulty), transfer yields larger gains. As the source
and target domains become more dissimilar, the usefulness
of transfer decreases. This decrease, however, is less pro-
nounced for LOCIT than for CORAL.

Dataset Method Transfer difficulty level

1 2 3 4 5
Abalone LOCIT 0.752 - 0.584 0.404 -

CORAL 0.853 - 0.578 0.316 -
KNNO 0.579 - 0.579 0.579 -

Covertypes LOCIT 0.695 0.688 0.704 0.667 0.667
CORAL 0.735 0.639 0.724 0.583 0.554
KNNO 0.636 0.636 0.636 0.636 0.636

Gas sensor LOCIT 0.837 0.621 0.72 0.622 0.382
array drift CORAL 0.974 0.674 0.887 0.495 0.429

KNNO 0.434 0.434 0.434 0.434 0.434
Gesture phase LOCIT 0.484 0.405 0.428 0.432 0.382
segmentation CORAL 0.74 0.452 0.517 0.538 0.403

KNNO 0.392 0.392 0.392 0.392 0.392

Recognition of LOCIT 0.996 0.996 0.995 0.989 0.981
handwritten digits CORAL 0.975 0.824 0.95 0.953 0.751

KNNO 0.978 0.978 0.978 0.978 0.978

Statlog LOCIT 0.934 0.873 0.903 0.901 0.813
landsat sattelite CORAL 0.957 0.869 0.669 0.507 0.651

KNNO 0.792 0.792 0.792 0.792 0.792

Letter recognition LOCIT 0.926 0.915 0.91 0.887 0.796
CORAL 0.947 0.59 0.845 0.652 0.477
KNNO 0.825 0.825 0.825 0.825 0.825

Pen-based LOCIT 0.969 0.969 0.957 0.954 0.93
recognition of digits CORAL 0.918 0.689 0.837 0.7 0.609

KNNO 0.932 0.932 0.932 0.932 0.932
Poker LOCIT 0.696 0.696 0.615 0.506 0.51

CORAL 0.605 0.611 0.589 0.559 0.554
KNNO 0.612 0.612 0.612 0.612 0.612

Image LOCIT 0.808 0.772 0.781 0.698 0.627
segmentation CORAL 0.876 0.478 0.431 0.517 0.469

KNNO 0.703 0.703 0.703 0.703 0.703
Shuttle LOCIT 0.933 0.917 0.895 0.818 0.787

CORAL 0.891 0.699 0.302 0.427 0.303
KNNO 0.765 0.765 0.765 0.765 0.765

Waveform LOCIT 0.852 - 0.846 0.865 -
CORAL 0.881 - 0.893 0.766 -
KNNO 0.795 - 0.795 0.795 -
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Figure 4: The AUROC averaged over all source-target pairs of each master dataset as a function of the percentage of labels in
the source domain. The plot shows results for LOCIT (red line) as well as KNNO (blue line), and CORAL (green line) which
are the best anomaly detection and transfer learning baselines from Table 1. LOCIT’s and CORAL’s performance improves as
labels are added to the source domain. When 10% of the source labels are availabe, LOCIT performs better than or similar
to KNNO on eight of the 12 master datasets. With 50% of the source labels LOCIT always performs better or equivalently to
KNNO. Compared to CORAL, LOCIT always beats it on 10 of the 12 master datasets.

Table 6: Comparison of LOCIT to the best transfer baselines of Table 1 coupled with LOCIT’s nearest neighbor approach for
making predictions in the target domain. The source domains are fully labeled. The table shows over the full benchmark: the
average AUROC rank ± SD of each method; the average AUROC ± SD of each method; the number of times LOCIT wins
(higher AUROC), draws (absolute difference in AUROC< 0.005), and loses (lower AUROC) vs. each method; and the average
percentage change in AUROC ± SD of using LOCIT over each method.

Transfer method Final classifier Average AUROC rank
± SD of each method

Average AUROC ± SD
of each method

# times LOCIT Average % change in AUROC
using LOCIT over all datasetswins draws loses

LOCIT SSKNNO 2.071± 1.431 0.762± 0.182 - - - -
CORAL SSKNNO 2.741± 0.973 0.735± 0.171 37 5 14 +3.88%± 9.54%
TRANSFERALL SSKNNO 3.420± 1.047 0.727± 0.173 41 4 11 +5.17%± 10.29%
GFK SSKNNO 3.848± 1.526 0.705± 0.172 44 5 7 +8.95%± 13.28%
CBIT SSKNNO 4.214± 1.021 0.713± 0.171 50 1 5 +7.28%± 10.64%
TCA SSKNNO 4.705± 2.063 0.533± 0.177 42 0 14 +74.81%± 116.18%

By varying the master dataset classes from which the source
normals and anomalies are sampled, we can introduce mean-
ingful distributional differences between the source and tar-
get domain. If the source normals (anomalies) are sampled

from a different class than the target normals (anomalies),
the marginal distributions of both domains will differ. If the
source anomalies (normals) and the target normals (anoma-
lies) are drawn from the same class, conditional distribution
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Figure 5: The average AUROC for each master dataset as a function of the difficulty of the transfer task. The plot shows results
for LOCIT (red line) as well as KNNO (blue line), and CORAL (green line) which are the best anomaly detection and transfer
learning baselines from Table 1. The plots show that when the source and target domains are more similar (lower transfer
difficulty), transfer yields larger gains. As the source and target domains become more dissimilar, the usefulness of transfer
decreases.

5 20 40 60 80 100

Parameter ψ (with k = 10)

−5

0

5

10

15

%
ch

an
ge

in
A

U
R

O
C

vs
ψ

=
5

Datasets

5 20 40 60 80 100

Parameter k (with ψ = 20)

−30

−25

−20

−15

−10

−5

0

5

%
ch

an
ge

in
A

U
R

O
C

vs
k

=
5

Datasets

Figure 6: The impact of the hyperparameter ψ in the
instance-selection step and the hyperparameter k in the pre-
diction step on LOCIT’s performance. For each of the 12
master datasets: (LEFT) the % change in AUROC for in-
creasing values for ψ versus using ψ = 5, and (RIGHT)
the % change in AUROC for increasing values for k versus
using k = 5.

differences arise. Both actions decrease the similarity be-
tween the source and target domains and make transfer more
difficult.

Finally, each source or target domain has 500 normal in-
stances and 50 anomalies. Because the sampling is non-
deterministic, we repeat it 10 times for source-target domain
pair, and report the averaged results.

8.2 Benchmark Experimental Evaluation
This section contains additional information on the exper-
iments section. First, the hyperparameter settings for the
compared approaches are discussed. Then, we go on to dis-
cuss the impact of the transfer difficulty on the LOCIT’s per-
formance. In addition, the appendix contains the full experi-
mental results for experiment Q2. Figure 4 extends Figure 3
to the full benchmark, while Table 7 contains the results of
Figure 4 in tabular format.

Baseline Parameter Settings. Because there are no labels
in the target domain and the distribution of the source data



is different, hyperparameter tuning using cross-validation
is impossible (Long et al. 2013; Gong et al. 2012; Pan et
al. 2011). Hence, we resort to setting the hyperparameters
of the baselines in accordance with the recommendations
made in the original papers or subsequent comparison stud-
ies. TRANSFERALL and CORAL have no parameters to set.
For TCA, JDA, GFK, TJM, CBIT, and JGSA, we use the pa-
rameter settings from the original papers. After transfer, the
above methods use the KNN classifier with k = 10 to make
predictions in the target domain. IFOREST is trained with
100 members in the ensemble. KNNO and LOF both have a
single parameter k, the number of neighbors. We set k = 10
for KNNO based a recent study that tested KNNO on approx-
imately 1000 datasets with different values for k (Campos et
al. 2016). Similarly, we set k = 10 for LOF. For HBOS, we
set the number of bins to 10.

Impact of Transfer Difficulty on LOCIT. Figure 5 shows
the average AUROC values for LOCIT, CORAL (the best
transfer method from Table 1) and KNNO (the best anomaly
detection method from Table 1) as a function of the trans-
fer difficulty for the 12 master datasets. Table 5 contains
the same results but in tabular format. The transfer diffi-
culty is reflective of the similarity between the source and
target domains: the more similar the domains, the lower the
transfer difficulty. Because KNNO does not use source ex-
amples, the difficulty of the transfer task does not affect its
performance. However, it is useful to show its performance
to assess under what condition transfer is helpful. For each
dataset, LOCIT’s AUROC is higher than that of kNNO when
the difficulty of the transfer task is low. This illustrates an
important empirical insight: the gains from transfer increase
when the source and target domain are more similar. As the
domains become less similar, the performance of the two
transfer methods degrades. Still, on nine of the 12 datasets
LOCIT performs similarly or beter than KNNO on the most
difficult transfer setting. Additionally, on nine of the 12 mas-
ter datasets, LOCIT consistenly achieves higher AUROCs
than CORAL when the transfer difficulty is high. LOCIT’s
localized instance-selection step helps deal with dissimilar-
ities between the source and target domains, sometimes at
the cost of slightly worse performance when domains are
similar.

8.3 Real-world Experimental Evaluation
Water Usage Data and Feature Construction. The real-
world dataset consists of water usage time series data for
three retail stores of a large retail company. The goal of the
company is to detect anomalous water usage. An effective
detection system will both reduce water consumption and
reduce the costs for the company. In each store, water usage
was continuously monitored during a full three year period.
The time series data consist of a univariate measurement (cu-
bic meters of water consumption) that is recorded every five
minutes using a water meter. The data do not contain miss-
ing values nor erroneous measurements.

In each store, the time series data are segmented into non-
overlapping one-hour windows (i.e., 00:00-01:00, 02:00-
03:00, . . . , 23:00-00:00). Then, each window is transformed

into a feature vector of length 31, containing the following
features:
Summary statistics: mean, maximum, minimum, standard

deviation, median, sum, entropy, skewness, and curtosis
of the observed water usage during the one-hour window.

Binary features: whether the one-hour window occurs on
a Friday or not, and whether the one-hour window occurs
on a Sunday or not. These two features reflect the domain
knowledge about the opening hours of a store, i.e., the
store has different opening hours on a Friday than the rest
of the week and is closed on Sunday.

Distance to distinct consumption patterns: the Eu-
clidean distances between the observed consumption
pattern during the window and each of 20 distinct one-
hour long consumption patterns. The latter are obtained
running k-means clustering (with k = 20) on the union
of all segmented, one-hour windows in the three stores
and retrieving the cluster centroids.

Note that by using the same set of consumption patterns to
construct the features for each store, the feature space is ex-
actly the same for each window in each store. This satifies
the critical transfer learning assumption that the source and
target domain instances live in the same feature space (see
Section 2), and enables transfer learning between any com-
bination of two stores.



Table 7: The AUROC averaged over all source-target pairs of each master dataset as a function of the percentage of labels in the
source domain. The table contains the results for LOCIT as well as KNNO and CORAL which are respectively the best anomaly
detection and transfer learning baselines from Table 1. LOCIT’s and CORAL’s performance improves as labels are added to the
source domain. When 10% of the source labels are available, LOCIT outperforms KNNO and CORAL on 7 of the 12 master
datasets. With 50% of the source labels LOCIT always performs better or equivalently to KNNO. Compared to CORAL, LOCIT
always beats it on 10 of the 12 master datasets. This table is displays the same information as in Figure 4.

Dataset Method Percentage of the source data that is labeled

10 20 30 40 50 60 70 80 90 100
Abalone LOCIT 0.578 0.575 0.576 0.576 0.577 0.576 0.577 0.578 0.579 0.58

CORAL 0.498 0.519 0.538 0.546 0.559 0.567 0.571 0.574 0.578 0.582
KNNO 0.542 0.542 0.542 0.542 0.542 0.542 0.542 0.542 0.542 0.542

Covertypes LOCIT 0.632 0.642 0.649 0.656 0.662 0.667 0.672 0.676 0.68 0.684
CORAL 0.567 0.588 0.606 0.616 0.624 0.63 0.635 0.639 0.644 0.647
KNNO 0.663 0.663 0.663 0.663 0.663 0.663 0.663 0.663 0.663 0.663

Gas sensor LOCIT 0.442 0.482 0.515 0.542 0.565 0.585 0.601 0.615 0.626 0.636
array drift CORAL 0.628 0.656 0.665 0.67 0.676 0.679 0.684 0.686 0.689 0.692

KNNO 0.565 0.565 0.565 0.565 0.565 0.565 0.565 0.565 0.565 0.565

Gesture phase LOCIT 0.393 0.399 0.404 0.408 0.412 0.416 0.419 0.421 0.424 0.426
segmentation CORAL 0.491 0.497 0.505 0.51 0.516 0.52 0.524 0.527 0.528 0.53

KNNO 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372 0.372

Recognition of LOCIT 0.985 0.987 0.989 0.99 0.99 0.991 0.991 0.991 0.991 0.991
handwritten digits CORAL 0.824 0.865 0.876 0.882 0.885 0.886 0.887 0.888 0.89 0.891

KNNO 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Statlog LOCIT 0.83 0.845 0.855 0.863 0.869 0.874 0.877 0.88 0.883 0.885
landsat sattelite CORAL 0.711 0.713 0.721 0.724 0.727 0.727 0.729 0.73 0.731 0.731

KNNO 0.799 0.799 0.799 0.799 0.799 0.799 0.799 0.799 0.799 0.799

Letter recognition LOCIT 0.806 0.822 0.835 0.846 0.856 0.863 0.871 0.877 0.882 0.887
CORAL 0.586 0.628 0.649 0.664 0.672 0.682 0.688 0.695 0.7 0.702
KNNO 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

Pen-based LOCIT 0.935 0.939 0.943 0.945 0.947 0.949 0.951 0.953 0.954 0.956
recognition of digits CORAL 0.701 0.716 0.728 0.732 0.737 0.74 0.744 0.746 0.749 0.751

KNNO 0.904 0.904 0.904 0.904 0.904 0.904 0.904 0.904 0.904 0.904

Poker LOCIT 0.591 0.59 0.591 0.59 0.593 0.595 0.597 0.6 0.602 0.604
CORAL 0.523 0.539 0.551 0.559 0.564 0.568 0.573 0.577 0.58 0.584
KNNO 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54

Image LOCIT 0.667 0.677 0.689 0.699 0.707 0.714 0.721 0.727 0.732 0.736
segmentation CORAL 0.493 0.505 0.513 0.524 0.53 0.537 0.542 0.547 0.550 0.554

KNNO 0.706 0.706 0.706 0.706 0.706 0.706 0.706 0.706 0.706 0.706

Shuttle LOCIT 0.803 0.816 0.827 0.836 0.844 0.851 0.857 0.862 0.867 0.871
CORAL 0.507 0.509 0.507 0.51 0.514 0.516 0.52 0.521 0.522 0.524
KNNO 0.689 0.689 0.689 0.689 0.689 0.689 0.689 0.689 0.689 0.689

Waveform LOCIT 0.816 0.825 0.831 0.836 0.84 0.844 0.847 0.85 0.852 0.854
CORAL 0.805 0.823 0.832 0.839 0.841 0.844 0.844 0.845 0.848 0.847
KNNO 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8


