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Abstract

In modern nuclear physics, a special group of nuclei located close to the drip line
named halo nuclei has received tremendous attention due to their unique cluster
structure. These nuclei exhibit large matter radii and are qualitatively described
as a compact core surrounded by a diffuse halo which is formed by the loosely-
bound valence nucleon(s). Their existence breaks down the consistent predictions
by the classical shell model and challenges nuclear-structure calculations. To
understand this exotic feature from first principles, lots of efforts have been
undertaken by nuclear physicists during the past decades. One of the most
successful probes to look into these questions is the (d,p) transfer which has
been proved to be a very powerful tool to extract single-particle properties of
nuclei and hence is ideal to study one-neutron halo nuclei.

The major objective of the present work is to extract more reliable structural
information about a halo nucleus using the (d,p) reaction. For that purpose,
the experiment done by Schmitt et al. on the 10Be(d,p)11Be transfer reaction
at four beam energies [Phys. Rev. Lett. 108, 192701 (2012)] is reanalyzed
to determine the beam-energy and angular ranges at which such reaction is
strictly peripheral. These peripheral conditions are systematically identified by
coupling a Halo EFT description of the 11Be nucleus at leading order (LO) with
the adiabatic distorted wave approximation (ADWA) to model the reaction.
The results suggest that focussing on the transfer data collected with low beam
energies and at forward scattering angles ensures us to probe only the halo of
the nucleus and hence reliably extract the asymptotic normalization coefficient
(ANC). The resulting values of ANC are C1s1/2 = (0.785 ± 0.030) fm−1/2 for
the ground state and C0p1/2 = (0.135 ± 0.005) fm−1/2 for the excited state of
11Be. These values are in excellent agreement with the ab initio calculations of
Calci et al., who have obtained the ANC values of 0.786 fm−1/2 for the ground
state and 0.129 fm−1/2 for the first excited state [Phys. Rev. Lett. 117, 242501
(2016)].

An alternative way to explore the sensitivity of transfer calculations to the
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vi ABSTRACT

short-range physics of the 10Be-n wave function using Halo EFT is offered
by the supersymmetry (SuSy) method, which also serves as a cross-check to
test the peripheral conditions. The idea here is to use the phase-equivalent
transformations to generate bound-state wave functions that have an identical
ANC but exhibit very different behavior in the internal part.

As an application of the aforementioned method, the ANC of another halo
nucleus 15C is extracted from the cross sections of the 14C(d,p) transfer
measured by Mukhamedzhanov et al. [Phys. Rev. C, 84, 024616 (2011)].
The ANC value obtained for the ground state and first excited state of 15C are
(1.26 ± 0.02) fm−1/2 and (0.056 ± 0.001) fm−1/2, respectively. Especially for
the ground state case, again, a perfect agreement is reached between our result
and the one predicted by Navrátil et al. (C1/2+ = 1.282 fm−1/2) in an ab initio
calculation.

We have also looked at the extension of this idea to resonant states. After an
analogous analysis using a bin description, it is figured out that the resonant
width plays a key role in determining the magnitude of the cross sections for
such transfers. Its effect on resonance can be comparable to that of the ANC
on bound states. But the associated uncertainty is larger than that in the case
of bound state.

In collaboration with Prof. Obertelli, we have studied the use of sub-Coulomb
(d,p) transfer to investigate the possible presence of a halo structure in the
excited nuclear states of some nuclei in medium to heavy mass region. Based
on the promising test case 95Sr, the dependencies of the transfer calculation
on several crucial parameters including Q-value, nuclear spin and beam energy
have been tested to understand better how the halo feature could be revealed
by measuring transfer cross sections. The feasibility of this idea requires an
accurate theoretical prediction and sensitive detection systems.

On the experimental side, efforts have been made to progress in the data
analysis of the IS561A experiment on 9Li(d,p) transfer performed at HIE-
ISOLDE, CERN. Thanks to the preprocessing of the acquired data done by
Jesper Halkjær Jensen (Aarhus), the necessary information on the elastic-
scattering channel has been successfully collected and matches well with our
theoretical calculation. Due to some practical problems happening during the
measurement which would propagate to the analysis and result in a low statistics,
the extraction of the (d,p) channel will require further detailed analyses. To
make up for this, the available data measured by Jeppesen et al. [Phys. Lett.
B, 642(5): 449 – 454, 2006] and Cavallaro et al. [Phys. Rev. Lett. 118, 012701
(2017)] are taken into account to check in those cases the validity of the chosen
model which has been used to study the resonance of 11Be. The outcome is
rather promising when confronting the theory to the data points.
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Chapter 1

Physics Motivation

When people refer to the word “halo”, it will always bring a feeling of elusiveness
or bizarreness. Being observed in several disciplines [WH68, Tho02, BGC+08],
the halo phenomenon in nuclear physics is understood to be a larger spatial
extension arising from a threshold effect. Since its discovery by Tanihata and
his collaborators in 1985 [THH+85], this exotic structure has triggered many
studies with lots of exciting achievements reached during the past decades.
As the motivation for the study presented here, this chapter aims to give an
introduction of this topic and outline some of the theoretical and experimental
techniques developed to understand the properties of halo nuclei. The first
section introduces some of the key features of halo nuclei followed by the
motivation and methods to study it. As one of the main experimental methods
to study halo nuclei, transfer reaction is another focus of this study and will be
reviewed in the second section.

1.1 Halo nuclei

Halo nuclei usually lie, as shown in Fig. 1.1, near the drip lines which are far
away from the “valley of stability”. This exotic structure is the result of a
threshold effect. In these exotic systems, the last nucleon(s) can be so weakly
bound that, due to its quantum wave nature, it can easily tunnel out and
spend most of its time outside the classically allowed region [HJ87, Rii13]. Such
tunnelling effect implies a dilute probability of presence of the valence nucleon(s)
which thus can be seen visually as wandering in a misty cloud. That is why the

1
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Figure 1.1: The lowest part of the Segrè chart showing the known halo nuclei
based on Ref. [AK04]. Stable nuclei are represented by grey blocks.

term “halo” was assigned to this kind of nuclei by Hansen and Jonson in their
seminal work [HJ87].

Even though the understanding of halo has continuously evolved and deepened,
it is still hard nowadays to draw a clear boundary to define a halo nucleus. The
well accepted definition of a halo nucleus is that in some states (typically the
ground state) of a nucleus, one or two nucleons (mostly neutrons) decouple
from the core and exhibit a large probability of presence away from the other
nucleons, i.e., have more than 50% probability of its density being outside the
range of the core potential [Rii94, HJJ95, AK04] (note the value chosen here
is arbitrary and not met within most of the known halo nuclei). Besides this
crude definition, there are several key features of the halo structure that have
to be taken into account in order to use the concept consistently according to
Ref. [Rii13]. A halo system should be well-clustered for distinguishing between
an inert core and valence part. It can be approximately described by few-body
models to reproduce its characteristics [HJP17]. Halo nuclei are weakly bound.
Compared with the common binding energy per nucleon of 6 to 8 MeV in
stable nuclei, a typical one or two-nucleon separation energy in a halo nucleus
is around or less than 1 MeV. It is much easier to separate the halo nucleons
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interaction cross sections [TKY+88, OKS+94, Tan96] as a function of the mass
number A. Compared to the usual A1/3 dependence of the nuclear size shown
as the dashed line, sudden increase of the radius is observed for some of the
nuclei close to the neutron dripline.

than to excite the core. Therefore, they are rather fragile and easy to break
up. The interaction between the core and valence part is of nuclear origin and
hence should be described by a short-range potential which drops with the
distance r much faster than r−2. In other words, the potential multiplied by
the square of the distance is approaching 0 when the distance goes to infinity
[JRFG04]. As a counterexample, a long-range attractive potential deriving
from the Coulomb force in Rydberg atoms [Gal88] will not give halos in general.
Relative to the core, the halo nucleon prefers to be located in a state with a
relatively low orbital angular momentum (expressed as l) such as an s wave.
This is due to the fact that larger values of l lead to a confining centrifugal
barrier. The combination of weak binding and short-range potential suggests
that the quantum tunneling effect must be a remarkable property in the halo
system. All the above points result in a larger matter radius of the halo nucleus,
viewed as a dilute and large peripheral distribution surrounding the central core,
which breaks the normal relationship of r0A

(1/3) learned from the stable nuclei
as shown in Fig. 1.2. Inspired by Ref. [Tan96], in the figure the interaction
radii RI are defined with a relationship to the interaction cross section σI as
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σI = π[RI(P ) +RI(T )]2 using a simple geometrical model where P is set for
projectile and T for target. Although not strictly equivalent, the interaction
radius is a good measure of the size of the nucleus.

After introducing a basic and general picture of halo nuclei in the last paragraph,
a few more technical derivations in terms of the potential model would be useful
to help understand the formation of halos. Since this study is mainly focussed
on one-neutron halo nuclei, let us consider for instance an ideal two-body
model with a pointlike neutron loosely bound to a structureless core in a simple
spherical finite square well potential, the size R of which is that of the core
itself. Quantum mechanically, the wave function ψ(r, θ, φ) describing the relative
motion between the neutron and the core in the spherical coordinates can be
obtained by solving the following Schrödinger equation [GS18]

− ~2

2µr2 [ ∂
∂r

(r2 ∂

∂r
)− l̂2]ψ(r, θ, φ) + V (r)ψ(r, θ, φ) = −Snψ(r, θ, φ) (1.1)

where µ is the reduced mass of the core-neutron system, V (r) stands for the
spherically symmetric potential such that V (r) = V0 (some certain depth of the
potential well, smaller than 0) for |r| < R and V (r) = 0 elsewhere, l̂ represents
the angular momentum operator, and Sn is the one-neutron separation energy
(here Sn > 0 for bound states). By introducing a further simplification that the
excess neutron is bound in an s wave, i.e., l = 0, the only degree of freedom for
the wave function in Eq. (1.1) comes from the relative core-valence distance r.
The wave function outside the potential well can be expressed by the formula
[HJ87]

ψ(r, θ, φ) = ( κ2π )1/2 eκR

(1 + κR)1/2 [e
−κr

r
] (1.2)

which gives a clear asymptotic behavior (note in fact the angular dependence of
this wave function is nil). The parameter κ that determines the slope of the
decaying exponential tail is related only to the separation energy Sn and the
reduced mass µ via κ =

√
2µSn/~2. As can be seen clearly here, the smaller

Sn becomes, the slower the tail of the wave function decays. This means that
the state with an eigen-energy just below the separation threshold could have a
well extended surface in contrary to the deeply-bound states which are mostly
restricted within the potential radius R. The mean-square radius to quantify
the extension of the valence neutron in an s wave can be written as

〈r2〉 = 4π
∫ ∞

0
r4|ψ(r)|2dr R→0−−−→ 1

2κ2 (1.3)

This indicates that, with a δ potential, the root-mean-square (rms) radius
〈r2〉1/2 diverges when the separation energy Sn of the s-wave state goes to 0.
Though this is a rather simple approach, it reveals that for halo nuclei (especially
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Figure 1.3: Neutron-rich beryllium nucleus 11Be can be modeled as a neutron
halo that extends beyond a compact core of 10Be.

for neutron halo) the dominant characteristic comes from the tail of the wave
function, which is closely related to the associated separation energy. This is the
key and starting point of the theoretical study in the present work. Furthermore,
one obtains a less diverging radius with a higher orbital angular momentum
or a confining Coulomb barrier. The existence of the Coulomb force which
acts as the centrifugal barrier is the reason why proton halos are less frequent
than the neutron halos. In addition to that, with a simple semi-classical model
[Ser47], the wave function expressed in Eq. (1.2) can be turned by the Fourier
transform into a longitudinal momentum distribution f(pi) of the neutron in
the Breit-Wigner form [Tan96, AK04]

f(pi) ∝
1

p2
i + κ2 (1.4)

in which pi is the Cartesian component of the momentum. Obviously, the width
of the momentum distribution gets smaller when Sn decreases. This implies
that such system follows exactly the Heisenberg’s uncertainty principle [Hei27],
i.e., when a quantum system is widely distributed in the coordinate space, it
exhibits a narrow distribution in momentum space.

A few halo nuclei have been confirmed so far as shown in Fig. 1.1. Among
them, the most carefully studied nuclei are 11Be with a one-neutron halo and,
6He and 11Li as two-neutron halo nuclei. Some of their properties are listed
in Table 1.1 along with the other well established halo states. Being close to
the limits of particle stability, few halo nuclei have more than one bound state.
Therefore, most halos tend to be manifest in the ground state of the nuclei.
However, it is notable that both the ground state (g.s.) and the first excited
state (ex.s.) of 11Be exhibit halos. Another peculiar feature brought with 11Be
is the g.s. parity inversion noticed by Talmi and Unna [TU60] in the early
1960s. Regarding the n+10Be configuration, the measured g.s. parity of 11Be
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Table 1.1: Properties of some typical halo nuclei. Ex represents the excitation
energy of the halo state. Sh is the separation energy for the halo part. Jπ
gives the spin and parity of the state. l is given as either the orbital angular
momentum of the valence nucleon or the admixture of the states for the last
two neutrons in the 2-n halo case.

Type Nucleus Config Ex
(keV)

Sh
(keV) Jπ l rrmsh (fm) Half-life

1-n halo 11Be n+10Be g.s. 501.6(3) 1/2+ 0 5.77(16)a 13.76(7)s
11Be n+10Be 320.04(10) 181.6∗ 1/2− 1 4.65(20)b 115(10)fs
15C n+14C g.s. 1218.1(8) 1/2+ 0 †c 2.449(5)s

2-n halo 6He n+n+4He g.s. 975.45(5) 0+ 1 2.97(26)d 806.7(15)ms
11Li n+n+9Li g.s. 378(5)e 3/2− 0,1f 5.98(32)g 8.75(14)ms

1-p halo 8B p+7Be g.s. 137(1)h 2+ 1 4.24(25) 770(3)ms
17F p+16O 495.33(10) 104.9∗ 1/2+ 0 64.49(16)s

Data is mostly collected from the NNDC compilations [ENS18] besides some updates
as follows
a Extracted from Coulomb dissociation data [FNA+04].
b Derived from the (d,p) transfer reaction [BPTO+14].
c Disagreement found between the studies of Refs. [KHH+16] (rrmsh = 4.2(5) fm) and
[OST01] (2.50(8) fm).
d Obtained from the analysis of proton elastic scattering at an intermediate energy
[ADE+02].
e Measured using the radio-frequency spectrometer MISTRAL at ISOLDE [BAG+08].
f Strong mixing of s and p neutrons claimed in [TAB+08].
g From the analysis of [DAA+06].
h From the Atomic Mass Evaluation in [AW95].
∗ Calculated using the Ex and g.s. separation energy.

is positive, whereas the valence neutron should lie in the 0p1/2 shell in the
standard shell model [MJ55]. The 1/2+ g.s. is separated by 320 keV from its
parity-inverted 1/2− partner [KKP+12]. This also serves as a great example of
the disappearance of the N = 8 magic number with an increasing neutron to
proton ratio. An artist’s view of the 11Be nucleus is displayed in Fig. 1.3 which
shows the orbits of the loosely-bound neutron at a mean distance of 7 fm from
the center-of-mass [NTicv+09]. With the binding energy just above 1 MeV, 15C
is another good testing ground for understanding the halo phenomenon due to
its clear single-particle feature [OST01, KHH+16].

The two-neutron halo nuclei also known as Borromean nuclei [ZDF+93], 6He and
11Li, present a three-body dynamics that involves two loosely-bound neutrons
and a core. The internal mechanism of this system is thus more complex
compared to that of one-neutron halos. Similar to the concept of the Borromean
rings, there are no bound states in any binary subsystems. This point causes
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special interests to understand the nature of the interaction and correlation
between the two halo neutrons. Several theoretical predictions, such as di-
neutron assumption [ZDF+93, OZV99] and Efimov effect [Rii13], have been
developed for this purpose. The structure of 6He is well understood as the two
neutrons in p-orbits outside the alpha core [ZDF+93]. For 11Li, the analysis
from Refs. [ZHN+97, TAB+08] suggests the necessity of considerable mixing of
s and p waves in its ground state.

On the proton-rich side, as quickly discussed before, the formation of proton
halos is much less probable than that of neutron halos due to the existence of a
repulsive Coulomb barrier. Nevertheless, examples include 8B, 17Ne and the
first excited state of 17F. The spatial extension of the p-wave proton in the g.s.
of 8B was recognized early in the studies of proton radiative capture [CD61].
Considering 17F, the first excited state is modeled as the valence neutron
occupying an s wave. A proton halo can therefore form since no centrifugal
term is added to the potential in this case compared to the g.s. viewed as a d
wave [MKM+97].

1.1.1 Why is it interesting?

In the past 35 years, the halo field has generated a lot of exciting findings
together with even more questions. A growing interest deals with the challenges
posed by studying and describing this system. This section aims to quickly go
over some of the hot topics regarding halo nuclei.

Halo nuclei are challenging research objects to provide a fresh viewpoint on the
mysteries of the nuclear binding and pairing. For a long time, the nucleus has
been pictured as a liquid drop composed of protons and neutrons that has a
sharp surface, which works well for the stable cases. However, the halo concept
emerges with a entirely novel structure in which some loosely-bound nucleons
venture far beyond such surface, resulting in a diffuse and extended distribution
in space. Under the stress of extreme neutron-proton ratio, they also experience
smaller obstacles than the stable nuclei to get excited or broken apart. Studying
halo nuclei could help reveal the subtle balance inside the many-body nuclear
system, and hence gives hints to the puzzles physicists have on the possible
combinations of neutrons and protons to stay together as a nucleus.

A better understanding of the halo phenomenon is needed to improve the
present theoretical models of nuclear structure. Facing this open structure,
the conventional shell-model and mean-field (Hartree-Fock) approaches have
to be questioned and reconsidered [AB95]. The main requirements here are
to describe the relative behavior between the core and the valence nucleon(s)
at large distance accurately. To account for these effects, the no-core shell
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model with continuum (NCSMC) [NQH+16], which solves exactly a many-body
problem from first principles using chiral interactions, has been adopted in
studying the cases of 11Be [CNR+16] and 15C [Nav18] by Navrátil et al. In
addition, the effective field theory (EFT) has been developed to exploit the
separation of scales in halo nuclei [BHvK02, HJP17]. Generally speaking, an
EFT offers a framework to include the appropriate degrees of freedom to treat
physical phenomena occurring at long distances explicitly without resolving
the short-distance physics (which might be reflected by some constants in the
calculation) of the substructure. As a branch of this theory, the EFT for halo
nuclei, called Halo EFT , permits the theoretical fitting of several observables,
such as the halo binding energy, the radius, etc, with respect to different types
of halos (mostly at s wave and p wave). In the present study, the Halo EFT
is used within reaction models to help devise a way to extract the structural
information of halo nuclei from transfer reactions. A comparison between our
results and the predictions of other advanced structure model like ab initio
calculations which model explicitly the dynamics of the nuclear system could
reveal the degrees of freedom that actually matter in the reaction modelling.

Another related open question is where nuclear halo states exist. There have
been considerable efforts made on the theoretical sides to predict the occurence
of halos [Ham17, CLG19]. One of the widely-used models is the convariant
density functional theory, for instance, the Hartree-Fock-Bogoliubov (HFB)
theory. The interested reader is referred to the review paper [MZ15] for more
information. Due to the fact that most confirmed halo nuclei nowadays are found
in the light mass range, the existing tools and definitions might be incomplete
and too qualitative for heavier ones. As already pointed out in Ref. [RBD09],
it is necessary to have different criteria for defining halos in heavier nuclei.
Instead of applying the previous concept in Sec. 1.1, the halo part is identified
for heavy nuclei as the region beyond a certain radius r0 where the core density
is one order of magnitude smaller than the halo one [RBD09]. Under this new
standard, halos, at least for even-even heavy nuclei which are tremendously
influenced by the pairing effect, are estimated to be less abundant than those
in the light-mass region. In addition, it is also reasonable to expect that halos
could exist in the excited states since many highly excited nuclei will be rather
weakly bound. However, when considering this, one has to be really careful
since a small breakup threshold is not the only criterion to judge a halo as listed
before. Different from the g.s., an additional restriction here is the inevitable
mixing with other nuclear states if the corresponding local density is high.
According to the estimation proposed by Ref. [JR00], for an excitation energy
E∗ with the level distance following the relationship of 7e−2

√
aE∗ MeV (with

a = A/7.5 MeV−1), the s-wave neutron halo would appear with the condition of
the binding energy being smaller than 0.27(A/Z)2e−4

√
aE∗ MeV. But this has
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not yet been explored experimentally. A more general and realistic formulation
awaits to be figured out to suggest necessary and sufficient conditions for
predicting halos. In the present thesis, some efforts are made to contribute to
this topic, taking into account the very basic single-particle characteristics of
halo nuclei. In particular, transfer reaction is suggested as a tool to search for
the halos in excited states of nuclei.

Studying halos would also yield unique insights into some other fields. With
two-neutron halo nuclei, it offers a new type of systems where the Efimov
effect [Efi70] could possibly occur besides the molecular and atomic ones. The
large size of halo nuclei leads to threshold phenomena having important general
consequences for low-energy reaction rates in nuclear astrophysics. Such extreme
systems are supposed to be found in extreme environments, for example, the
crust of neutron stars. Hypernuclear halos have also been speculated to exist in
several cases [CJF97] by theoretical calculations and wait for more experimental
data to support this claim. In line with Ref. [PR18], a careful investigation of
the neutron behavior in halo nuclei helps distinguish if neutrons can undergo a
dark-matter decay mode or not. Of course, it is not possible to cover all the
aspects within this short section. But at least from this glimpse of the field,
the reader can see how many challenges and opportunities remain.

1.1.2 How to study halo nuclei?

To verify the assumption and enrich the knowledge physicists have about halo
nuclei, experimental observables are definitely required to describe their behavior
quantitatively. Rather than making a general coverage of the whole field, the
goal in this section is to present some of the typical methods and probes to learn
and characterize the nuclear halo states. Combining the information extracted
from different experiments can ensure the accuracy of the hypothesis and help
reach a more convincing conclusion about the halo states. For more information,
the reader is referred to Refs. [TB05, Bla06, KAKR09, CF10, PKGR12] for
reviews from different aspects regarding this topic.

As the consequence of the mass–energy equivalence, measurements of nuclear
masses can determine the binding energy of the nucleus which is one of the
most crucial driving forces to produce a halo phenomenon. The mass of a
nucleus can be derived indirectly from the energy balance in nuclear reactions
and decay processes [YBF+93]. Furthermore, thanks to the development of
the experimental techniques, ion traps at low energy (such as Penning trap)
and time-of-flight (TOF) methods enable the direct measurement of the masses
far from stability and provide an alternative solution with sufficient accuracy
as well as precision [MLSO97]. The main challenge associated with the direct
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methods lies in the difficulty of producing the exotic nuclei along the dripline
in large amount.

Laser spectroscopy on radioactive beams offers a model-independent way of
collecting the nuclear properties, including the nuclear spin, mean-square
charge radius, magnetic dipole moment and spectroscopic electric quadrupole
moment [CF10, CMP16]. Historically, a series of optical measurements has
been prompted by the halo phenomenon. It began with laser-induced nuclear
orientation to study the moments of 11Li [NBB+08] and 11Be [GKK+99], which
is helpful to understand the behavior of their wavefunctions. The recent
isotope shift (i.e., the frequency intervals between isotopes) measurements of
He [WMB+04, MSV+07], Li [SNE+06] and Be isotopes [NTicv+09] take a step
forward to learn the core polarization caused by the diffuse neutron structure.
This suggests that the charge radii are very valuable not only for a direct
determination of the proton halos’ sizes, such as 17Ne [Jon04], but also for
giving information on the core modification with respect to the neutron halo
case.

Beta decay can carry signals of a halo structure in some specific cases [Rii13].
On the one hand, the decay probability heavily relies on the overlap of the
wavefunctions between the initial and final states, which could be slightly reduced
by the spatial extension of the halo. On the other hand, due to the decoupling
form embedded in the halo nuclei, they might experience a decoupled decay.
This is to say that the core and valence clusters might decay independently
from each other. Such process is of special interest to the two-neutron halo
systems, which is known as beta-delayed deuteron emission [RAB+08].

Electromagnetic processes such as electromagnetic dissociation and radiative
capture have also been used as a probe to study the halo formation. The
electromagnetic matrix elements of type E(λ) or M(λ + 1) depend on the
dimension of the nucleus by a factor of rλ and therefore are very sensitive to
the halo formation. In particular, the E1-strength will be affected by the extra
degree of freedom of neutron halos. Higher multipoles such as E2 will contain
the contribution from proton halos while the E1-strength is reduced in these
cases.

The most classical and widely-used method to study halo nuclei is nuclear reac-
tion including elastic and inelastic scattering, transfer reaction, electromagnetic
dissociation and so on. It is often the only means to get nuclear information
because the lifetime of these nuclei are usually short. To assert the type of the
reactions, it is accustomed to refer to the beam energy. The high to intermediate
energy reactions usually take place around and above the Fermi energy while
the low energy reactions happen well below that (around the Coulomb barrier).
A rough demarcation energy point for these two kinds of reactions is some tens
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of MeV per nucleon. Reactions at different energies have their own advantages
on investigating the halo nuclei since the reaction mechanisms do develop
differently as the energy changes. For the high to intermediate energy nuclear
reactions, the short interaction time and the small nucleon-nucleon cross sections
reduce the complexity to describe the reaction mechanism. When bombarding
the target with different isotopes as in the pioneering experiment of this field
[THH+85], the extended size of a halo system gives an increased total reaction
cross section (see Fig. 1.2). The corresponding theoretical explanation can
rest on a coupled-channel calculation of breakup at an intermediate energy or
the sudden (Glauber-type) geometrical approximation [Kar75] at a high beam
energy. It shows that for the halo case the major contribution for the dissociation
reactions comes from the region at large internuclear distances. As discussed
before with Eq. (1.4), another valuable probe to learn the halo property is the
measurement of the momentum distribution of either the core or the valence part
from breakup reactions. Simultaneous detection of all the fragments at distinct
states emerging from the reactions is possible with the current experimental
set-ups at most nuclear facilities, allowing the reconstruction of the complete
kinematics and hence a better understanding of the process.

Considering low energy reactions, they include elastic scattering, breakup
reaction, transfer reaction and other channels. They are useful in studying halo
nuclei as:

• Elastic scattering: a process where the total kinetic energy of the system is
conserved. The diffuse halo modifies the elastic scattering cross section due
to the strong coupling to the transfer and/or breakup channel [DPRS+10];

• Breakup reaction: dissociation of the projectile through the interaction with
a target. The process reveals the underlying cluster structure of the nuclei
[FNA+04];

• Transfer reaction: one or more nucleons are transferred between the projectile
and target. This method provides a probe to study the single-particle
structure of the interesting nuclei, and hence are particularly well suited to
study halo nuclei [SJB+12].

During the past decade, this field has evolved and achieved milestones from
identification of halo nuclei to extraction of the halo property. Among those
methods, transfer reaction is employed as a powerful tool to study the nuclear
structure. It is also one of the main topics in this work. More details will be
shown and discussed in the next section.



12 PHYSICS MOTIVATION

a=b+x

x

b A

R

R
C

r
b

A

R’

r’

B=A+x

x

Figure 1.4: Stripping reaction with associated coordinates for the reaction A+a
→ b + B with x being the transferred cluster. Experimentally, A and a are
usually in their ground states while B and b can be excited to higher states.

1.2 Transfer reaction

The history of transfer reaction can be traced back to the 1950s for extracting the
spins and parities of nuclear energy levels [But50] when most of the information
in nuclear structure (like collective modes including rotational, vibrational and
so on) has come from beta and gamma spectroscopy [ES08]. Later developments
involving accelerator technology, spectrographs and theoretical models boosted
the research with transfer reactions in the 60s and 70s. In the 1990s, (d,p)
transfer reaction was applied using a short-lived beam in inverse kinematics
for the first time [KEF+94]. As a kind of direct nuclear reactions, transfer
reaction is a general designation of transferring up to several nucleons between
the projectile and target nuclei that can be denoted as A+ a→ b+B where
a = b+ x and B = A+ x. Fig. 1.4 gives an intuitive description of this reaction.
Its interaction time is rather short ( 10−22 s) compared to the lifetime of most
exotic nuclei, making a clean cut between the formation and the decay of the
produced nuclei. Historically, it is also named stripping reaction when the
target gains nucleon(s) from the projectile. And pickup reaction represents
the opposite way. Depending on how many nucleons get exchanged during
the process, transfer reaction can be subdivided into multi-nucleon transfer
and single-nucleon one. Multi-nucleon transfer is widely used with heavy ions
[CPS09, ZZK+14], providing a method to learn the component responsible for
particle correlations such as the pairing interaction. The corresponding process
can be single-step (such as α-transfer where the α cluster is preformed and



TRANSFER REACTION 13

Neutron

potential

Proton

potential

E

Energy 

Level

Figure 1.5: Schematic single-nucleon model description with one neutron added
to a core filling the lower energy levels. The shape difference of the potential
well between the proton and neutron side is caused by the Coulomb repulsion
and the symmetry correction which takes into account the fact that the most
stable arrangement has equal numbers of protons and neutrons.

transferred) or multiple-step which conceivably would lead to a complex analysis
and interpretation of these reactions. In the present work, the emphasis is on
single-nucleon transfer, primarily (d,p) reactions, aiming at the understanding
of single-particle structure in the halo nuclei.

The selectivity of a single-nucleon transfer makes it an excellent tool for mapping
out the single-particle structure of nuclei and hence studying the migration of
shell gaps and magic numbers [Ots13, SP13] while venturing away from the
stability. The so-called single-particle structure can be treated in a simplified
picture shown in Fig. 1.5 as a core (namely the original nucleus) filling the
lower energy levels with the transferred nucleon added to it, which shares
many similarities with the halo phenomenon. However, this simple picture
can be complicated in the real case by several detailed issues, for example the
coexistence of the single-particle structure and other configurations giving the
same spin and parity. To solve the problem of mixing, one main branch of the
transfer study is to extract the intensity of the single-particle component as
the quantity called spectroscopic factor [End77]. Experimentally, it is the ratio
between the theoretical calculation under the assumption of a pure single-particle
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Figure 1.6: Different transfer momenta can lead to different angular distribution
of the transfer probability due to the momentum matching effect [Cat14].

state and the corresponding measured cross section. A different approach
focuses on the concept of the asymptotic normalization coefficient (ANC)
[BDB77, TN09] which corresponds to the normalization of the tail of the
overlap wave functions of the nuclei (see Sec. 2.4 for more details). Determined
by measuring peripheral reactions, the ANCs have often been used to indirectly
obtain the reaction rate for the synthesis of nuclei in astrophysical sites and
to characterize the halo structure of loosely-bound nuclei [KAB+03, BSM+16].
In this work, one of our main contributions is to propose a new, systematic
and reliable way to extract the ANC of loosely-bound nuclei from transfer
measurements. More details regarding this will be explained in Chapter 2 and
3.

In addition to being a powerful probe of the single-particle state which is learned
from the magnitude of the transfer cross sections, another striking initial feature
of the transfer reaction is the direct determination of the transferred orbit
angular momentum when the beam energy is above its Coulomb barrier. This
comes from the shape of the angular distribution of the reaction products and
could help indicate into which orbit the single nucleon has been added [Coh71].
Considering the transfer in a semi-classical picture, the main maximum of the
transfer probability occurs around the angle where the momentum matches. As
shown in the inset of Fig. 1.6, the projectile with a momentum magnitude p
impinges on the target. The momentum transferred to the target nucleus has
magnitude pt while the remaining momentum magnitude is expressed as (p− δ).
Applying the conservation of linear momentum there implies a relationship of
the transferred momentum to the laboratory scattering angle θ, which can be
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written as
2(1− cos θ) = (pt/p)2 − (δ/p)2

1− δ/p (1.5)

For a small scattering angle θ, the reduction δ in the incoming momentum
magnitude p can be regarded as perturbation and thus dropped. And taking use
of the Taylor expansion to the second order for cosine, Eq. (1.5) has a simplified
form as θ2 ≈ (pt/p)2. If the transfer takes place peripherally at the surface
of the target nucleus which has a radius R, the transferred orbital angular
momentum l can be estimated by√

l(l + 1)~ ≈ θpR, (1.6)

where θ is in radians. Based on this, one can immediately learn about the l
value from the location of the primary maximum in the angular distribution,
which is also drawn schematically in Fig. 1.6.

1.2.1 Theoretical reaction model

More accurate theoretical interpretations of transfer reactions originate from
the scattering theory treated in an optical model. Twenty years after probably
the first (d,p) transfer measurement by Lawrence and his colleagues in 1933
[LLL33], Horowitz and Messiah tried to explain the transfer phenomenon in
terms of plane wave approximation [HM53]. In 1961, a more complex model
using the distorted wave solutions due to the presence of the scattering potential
was developed for experimental data explanation [BH61], which became later
the well known distorted wave Born approximation (DWBA). Then Satchler
got this method improved by taking into account the spin-orbit effects in
the distortion [Sat64]. This theory is still popular nowadays in interpreting
reaction data [JA14, TBC+14, BT18] whilst challenges remain in its fundamental
framework, such as a proper consideration of the spatial localisation of the
transferred nucleon in the initial and final nucleus. Regarding in particular
the (d,p) transfer, another important factor is the coupling to the continuum
states. Such coupling is not necessarily one-way from bound state to continuum
and could take place in more than one step. Furthermore, the continuum of
both the deuteron and the final nucleus can contribute significantly in the
coupling. In order to include this effect, one solution is to perform the coupled
reaction channels (CRC) calculations [Sat83, KKT86, Gle04] which incorporates
explicitly contributions from the several mass partitions during the reaction. A
specific way is via the continuum-discretized coupled channels (CDCC) technique
[AIK+87, YMM+12]. It allows the treatment of couplings to unbound states
by dividing the continuum into a finite number of bin states and inserting
those states in the coupled-channel calculation as several contributing reaction
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pathways. As an approximate version of CDCC in some ways, the zero-range
adiabatic distorted wave approximation (ZR-ADWA) initially introduced by
Johnson and Soper [JS70] offers an ingenious shortcut to effectively include
the deuteron breakup effect. The formalism for a finite-range version of the
adiabatic wave method (FR-ADWA) was given by Johnson and Tandy [JT74]
afterwards. In practice, the ADWA method maintains the relative simplicity of
DWBA by having a large overlap with the DWBA framework and is thus not
as computationally expensive as the CDCC method. The applicable situation
and accuracy of ADWA have been studied by direct comparison with other
methods in Refs. [ND11, UDN12]. It is concluded that when the transfer angular
momentum is small and the neutron-nucleus system is loosely bound, ADWA
presents an adequate way to predict the transfer cross sections at 5 to 10 MeV/A
of the incident energy. Therefore, the ADWA has significant advantages in
investigating halo structure using the (d,p) reactions and is preferred in the
present work. Computer codes available for performing the ADWA calculations
are TWOFNR [TTIK12] and FRESCO [Tho06, TN09]. Technical derivations
and comparisons with respect to these models will be given in the next chapter.

1.2.2 Experimental techniques

With the advent of the radioactive beams, transfer reactions in inverse kinematics
have been employed in many experiments to study the property of exotic nuclei.
Descriptions of the inverse kinematics can be found in most introductory nuclear
reaction textbooks [Sat90, Cat02]. Due to the experimental features brought
with the radioactive beams, special care has to been taken on two aspects of the
experimental setups: i) eventual dumping of the beam is necessary; ii) beam
intensity is usually weak in contrast with that of stable beams which requires a
careful design of the target. Connected with the case of single-nucleon transfer,
the minimum demand for the beam intensity should go beyond the order of
104 pps. A measurable magnitude of the reaction cross section is typically
higher than 1 mb. Facilities available to carry out the single-nucleon transfer in
different energy regimes include, but are not limited to HIE-ISOLDE at CERN
for up to 10 MeV/A and SPIRAL at GANIL for 10 to 50 MeV/A. Depending
on the techniques used experimentally, four basic categories arise following the
idea in Ref. [Cat14].

• Magnetic spectrometer. The basic principle is to separate the reaction
products from the projectile via a magnetic field and analyze the beam-
like ejectile with high accuracy. The forward focussing of the reaction is
always favoured in the measurements, resulting in a limited resolution in the
angle for heavier beams. Existing equipments include SPEG [BFG+89] and
VAMOS [PRN+08] at GANIL.



TRANSFER REACTION 17

• Silicon array. In order to cover a large part of the angular range and obtain
useful information in both energy and position of the target-like ejectile,
an array of silicon detectors is by far the most versatile choice, such as
the TIARA array [LCL+10], T-REX [BGK+12] and SHARC [DFS+11]. A
normal resolution of silicon detectors is around 100 to 200 keV [Cat14]. And
a high degree of segmentation in the detectors is also required to achieve
a better determination of the position where the particle hits. At present,
the double-sided silicon strip detector (DSSD) with an arrangement of strip-
like shaped implants on the front and rear of the silicon wafer [DSM+90] is
commonly used to conduct a two-dimensional position measurement. Besides,
silicon detectors can be coupled in a telescope configuration called ∆E-E
detector for particle identification. Although the silicon arrays offer a rather
flexible and economical solution for detection, the constraints caused by the
choice of the target still exist. If a solid target is adopted, its thickness will
bring a certain ambiguity when reconstructing the kinematics.

• Gamma-ray detection. Gamma detection is popular because of its high energy
resolution for excited states in heavy nuclei. In addition, the measurement of
the gamma-ray decay branches could point out the coupling between the spin
and l-value, and hence help identify the state more precisely. The challenges
of this technique in practice are to achieve a high efficiency of the detection
(an array of gamma detectors always preferred) and make a sufficiently good
correction for the substantial Doppler shift effect.

• Active target. By filling the time projection chambers (TPCs) with a gas that
serves as both the target and tracking medium (active target), this approach
largely removes the uncertainty by the energy loss effects in thick targets
[ABBN+18]. In this condition, it is possible to rebuild the trajectories of the
charged particles in three dimensions and extrapolate the reaction energy
precisely. By construction, an active target has a solid angle coverage of 4π
and thus can reach a high detection efficiency. This novel method has been
realized in many setups, e.g., MAYA [DMS+07] and ACTAR TPC [Raa09].

Note that the above classification does not mean that only one choice has to be
made for particle detection. The combination between those methods can make
up for the shortcomings and provide from different aspects a better recovery
of the transfer picture. One very classical way is to combine a compact silicon
array together with the gamma-ray detection (like T-REX with MINIBALL
[REF+02]). Another intelligent approach utilized by the HELIOS project
[WSB+07] is to place the position-sensitive silicon array along the axis of a
solenoid so that the emerging particles are going to be focused and brought back
to the array in the magnetic field. Successful measurements [SFB+16, KH16]
regarding this concept have been performed at the recently commissioned
ISOLDE solenoidal spectrometer (ISS) at CERN [FAB+10]. It is also appealing



18 PHYSICS MOTIVATION

to couple the active target with a silicon array or the gamma-ray detection. In
Leuven, a more complete and ambitious approach named SPECMAT is under
construction. The final aim is to mount the active targets coupled with the
scintillator array inside the ISOLDE solenoid.

In summary, all the experimental methods and devices mentioned here could
deliver rich information from transfer reactions. Continuous efforts are made to
improve the current possibilities and exploit the potential of the upgraded and
upcoming facilities.



Chapter 2

Few-body Description of
Transfer Reactions

This chapter starts by introducing the basic framework of scattering theory used
in the description of nuclear reactions. Such a formalism offers a framework
within which several physical models can be embedded. In particular, the optical
model is briefly discussed in Sec. 2.2 to provide a way to simulate the interaction
between two nuclei in terms of a complex potential. Having a significance
similar to the concept of optical model, the wave function of the single-particle
bound state in a nucleus and its asymptotic behavior are discussed afterwards.
Based on the above content, several models (DWBA, ADWA and so on) for the
specific case of (d, p) transfer reaction are presented in Sec. 2.4. The elementary
knowledge about quantum mechanics and nuclear-reaction theory is assumed,
which one can find in most of the available textbooks such as Refs. [Aus70, Sat83,
Sat90, Gle04, TN09]. Thus, instead of a profound mathematical derivation,
the most important formulas will be given and annotated. The following
developments are restricted to the non-relativistic Schrödinger equation since
the practical cases, which will be studied in this work, are measured at low
beam energies.

19
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2.1 Scattering theory

2.1.1 Scattering wave function and notion of cross section

Let us first consider a two-body system composed of the projectile a with mass
ma and the target nuclei A with mass mA. The interaction between them can
be described by the potential V (ra − rA) in which ra and rA represent the
coordinates of a and A, respectively. Omitting the internal structure of the
particles, the Schrödinger equation that describes the a-A relative motion reads

i~
∂

∂t
Ψ(ra, rA, t) =

[
− ~2

2ma
∇2

ra
− ~2

2mA
∇2

rA
+ V (ra − rA)

]
Ψ(ra, rA, t). (2.1)

Making the coordinate transformations towards the center-of-mass (c.m.) to
generate the relative coordinates S = (mara+mArA)/(ma+mA) and r = ra−rA
[TN09], Eq. (2.1) can be rewritten to

i~
∂

∂t
Ψ(S, r, t) =

[
− ~2

2(ma +mA)∇
2
S −

~2

2µ∇
2
r + V (r)

]
Ψ(S, r, t), (2.2)

in which µ = mamA/(ma + mA) is the a-A reduced mass. Substituting the
separable solution of the form Ψ(S, r, t) = χ(t)Φ(S)ψ(r) in Eq. (2.2), one can
solve the equation by separating it into

χ(t) = Ce−iEtott/~, (2.3)

− ~2

2(ma +mA)∇
2
SΦ(S) = (Etot − E)Φ(S), (2.4)[

− ~2

2µ∇
2
r + V (r)

]
ψ(r) = Eψ(r), (2.5)

where Etot gives the total energy of the system while E represents only the
energy for the relative motion between a and A. C is a normalisation constant.
From Eq. (2.3), it is learned that |Ψ(S, r, t)|2 experiences a time-independent
form as |Φ(S)ψ(r)|2 which indicates that the probability density in the space
for this system does not change with time. Eq. (2.4) treats the center-of-mass of
the two-body system as a free particle and has plane wave solutions to describe
its motion. The information about the relative motion between the projectile
and the target is fully contained in Eq. (2.5). The motion such equation
simulates can also be seen as a single particle with mass µ moving in a potential
field created by V (r). In the case of scattering (or unbound states), there is
always a solution for any positive eigenvalue E in Eq. (2.5), meaning that the
scattering-state spectrum is continuous. The scattered particles can travel far
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Figure 2.1: Schematic description of the reaction mechanism when a plane
wave travels towards a spherical field and gets scattered. The direction of
the incoming wave is chosen as z axis. The generated scattering waves are
represented by the spherical wave fronts.

away to infinity. Whereas for the bound states, the wave function ψ(r) tends
to 0 at infinity with the eigenenergy E being discrete and negative. Indeed,
this is the basic difference between the description of nuclear reaction and that
of nuclear structure. Additionally, the wave function ψ(r) should always be
normalized to 1 to be physically meaningful. This section will be focussed on
the scattering problem. Concerning nuclear structure, a typical example is
presented in Sec. 2.3 which is of special interests to this work. Henceforth, the
theoretical derivations and methods will be built around the formula Eq. (2.5)
in the c.m. rest frame unless stated otherwise. Solving this equation is not
always trivial since the potential V (r) can exhibit quite complicated forms.

Before diving into finding the solutions for the equation, it is worth to point out
which value can be extracted to quantify the reaction rates. The differential
cross section is accepted as an excellent meeting point between theory and
experiment. On the experimental point of view, it is a measure of the number of
the particles dN coming out in a unit time dt after reactions within an element
of solid angle dΩ and divided by the target density n and the beam intensity I,
which has the form

dσ

dΩ = 1
I n dt

dN

dΩ . (2.6)

On the theoretical aspect, this observable can be derived from the wave functions
and the notion of probability. Let us assume a schematic picture as shown
in Fig. 2.1 that the projectile hits the target along the z axis, giving rise to
radiating scattered waves for the outgoing particles. The incoming beam can be
described as a plane wave ψbeam = eikiz with the wave number ki =

√
2µiEi/~2.

The Ei cited here is to replace the E in Eq. (2.5) for the incident channel.
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Since the detection usually takes place outside the range of the interaction, at
such distances the outgoing spherical wave ψscat has a radial dependence as
exp(ikfr)/r with an amplitude f(θ, φ) which depends on the scattering angle
arising from the a-A interaction. Similarly, kf is the wave number for the exit
channel. The asymptotic form of the complete waves ψ is thus

ψ(r) r→∞−−−→ ψbeam + ψscat = eikiz + f(θ, φ)e
ikfr

r
. (2.7)

According to the formula of the probability current

J = ~
2iµ (ψ∗∇ψ − ψ∇ψ∗), (2.8)

the cross sections then can be calculated as the ratio of the scattered angular
flux per steradian r2Jscat to the beam flux Jbeam, yielding to

dσ

dΩ = r2Jscat
Jbeam

= µi
µf

kf
ki
|f(θ, φ)|2. (2.9)

Therefore, it is the goal of reaction theories to determine the scattering amplitude
f(θ, φ) by solving Eq. (2.5). The following content starts with deriving the
formalism of the elastic scattering case (k = ki = kf and µ = µi = µf ) in
spherically symmetric nuclear potentials.

2.1.2 Case with a spherically symmetric nuclear potential

A spherical short-range nuclear potential V (r) is considered here, which only
depends on the relative distance between the colliding nuclei. And since the
beam comes along the z axis, the scattered waves are always cylindrically
symmetrical. It means that the wave function ψ in Eq. (2.5) and the amplitude
f in Eq. (2.7) do not depend on φ. Applying the method called the partial wave
expansion, the wave function can be expanded in angular orbital momentum l 1

as

ψ(r) =
∞∑
l=0

√
2l + 1

4π Rl(r)Pl(cos θ), (2.10)

in which Pl are the Legendre polynomials. Now the key to solve the scattering
problem is to find out the expression for the radial wave function Rl(r). Making
use of the reduced radial wave function ul(r) = rRl(r), the corresponding
Schrödinger equation (see Eq. (2.5)) can be simplified to

d2ul(r)
dr2 +

[
k2 − 2µ

~2 V (r)− l(l + 1)
r2

]
ul(r) = 0. (2.11)

1l = 0, 1, 2, 3 ... corresponds to s, p, d, f ... wave, respectively.
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The solution in the external region, i.e., outside the potential range, is expressed
as

ul(r)
r→∞−−−→

√
4π(2l + 1) i

l

2 r
[
h

(2)
l (kr) + Slh(1)

l (kr)
]
. (2.12)

where h(1)(kr) and h(2)(kr) are the spherical Hankel functions of the first and
second kind [AS64], representing the outgoing and incoming waves respectively.
The introduction of the partial-wave S-matrix element Sl is due to the existence
of the potential V . For each partial wave in the outgoing channel, it brings
a phase shift δl by Sl = e2iδl . The phase shift δl is determined by matching
the asymptotic expression of Eq. (2.12) with the exact (usually numerical)
solution in the internal part of the potential. The value of δl is positive for
attractive potentials and negative for repulsive ones. When the potential V
is nil, namely δl = 0 (Sl = 1), the radial wave function Rl(r) derived from
Eq. (2.12) degenerates to a plane wave.

Combining Eqs. (2.12) and (2.10), and comparing the asymptotic solution of
the wave function to Eq. (2.7), the scattering amplitude can be obtained as
[TN09]

f(θ) = 1
2ik

∞∑
l=0

(2l + 1)(Sl − 1)Pl(cos θ), (2.13)

which can also be written in terms of the partial-wave T-matrix element Tl

defined as Tl = (Sl − 1)/2i = eiδl sin δl. Thus the outgoing waves are basically
represented by Tl.

2.1.3 Case with a Coulomb interaction

What has been discussed in the last section is valid for a short-range potential.
When both the projectile and the target are charged, it is necessary to take into
account the long-range Coulomb force. Considering first a pure point-Coulomb
potential Uc(r) as ZaZAe2/r between two interacting particles of charge Zae
and ZAe, Eq. (2.5) gets modified. To characterize the Coulomb interaction, let
us define the Sommerfeld parameter η,

η = µZaZAe
2

~2k
. (2.14)

The corresponding wave function ψc(r) can be expanded in partial-wave form
as

ψc(r) =
∞∑
l=0

(2l + 1)eiσl(η)ilPl(cos θ)Fl(η, kr)
kr

, (2.15)

with the regular Coulomb function Fl(η, kr) for η 6= 0 [AS64], and the Coulomb
phase shift σl(η) = arg Γ(l+ 1 + iη). From the analysis of the asympototic form
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of Fl(η, kr), the wave function can also be decomposed at large values of (r− z)
into the Coulomb-modified incident wave plus the outgoing scattered wave

ψc(r) (r−z)→∞−−−−−−→ ei[kz+η ln k(r−z)] + fc(θ)
ei(kr−η ln 2kr)

r
, (2.16)

where the Coulomb scattering amplitude fc(θ) shares the same form with
Eq. (2.13) but replacing the phase shift by σl(η). The asymptotic amplitude of
fc(θ) is found to be [TN09]

fc(θ) = − η

2k sin2(θ/2)
e−iη ln(sin2(θ/2))+2iσ0(η). (2.17)

This leads directly to the Rutherford cross section for the scattering of two
pointlike particles [Rut11](

dσ

dΩ

)
Ruth

= |fc(θ)|2 = η2

4k2 sin4(θ/2)
. (2.18)

Note here that since fc diverges at forward angles, it is not possible to compute
a total elastic-scattering cross section for the Coulomb interaction.

Then including the nuclear potential in the presence of Coulomb potential
brings an additional nuclear phase shift δl to the Coulomb phase shift σl(η).
Repeating the partial-wave analysis, the wave function is found asymptotically
to be [Sat83]

ψ(r) r→∞−−−→ ψc(r) + fn(θ)e
i(kr−η ln 2kr)

r
, (2.19)

where fn(θ), arising from the extra nuclear potential, is the Coulomb-distorted
nuclear scattering amplitude and reads

fn(θ) = 1
2ik

∞∑
l=0

(2l + 1)Pl(cos θ)e2iσl(η)(e2iδl − 1). (2.20)

This is analogous to Eq. (2.13) when only a short-range nuclear potential is
involved. The total scattering amplitude f becomes the combination of this
nuclear amplitude fn and the point-Coulomb scattering amplitude fc, which is

f(θ) = fc(θ) + fn(θ). (2.21)

Then the differential cross section can be obtained from Eq. (2.9). In practice,
to show the influence of the nuclear force and avoid the divergence of the cross
section in the forward direction, it is useful to present the ratio of the elastic
scattering cross section to the Rutherford one. This ratio is close to unity at
small scattering angle.
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2.1.4 Case of particles with spins

If the projectile a arrives with a non-zero spin Ia (the spin of the target IA
remains zero), the interaction potential may depend on that spin. In particular,
usually there is a spin-orbit term which can be expressed in J basis2 as

(Ia · l)Uso(r) = ~2

2 [Jt(Jt + 1)− Ia(Ia + 1)− l(l + 1)]Uso(r), (2.22)

in addition to the previous central-force potentials. Considering the possible
values of Ja resulting from l and Ia, the complete phase shifts (or S-matrix
elements) and therefore the scattering amplitude in each case can be solved
numerically with the partial-wave expansion method [Sat90, TN09].

A more general case is given when IA does not equal zero. Furthermore, the
possible exit channel which is still within the two-body model might differ
from the entrance one and contain a variety of mass rearrangements. For the
convenience of notation, the set of quantum numbers for the entrance channel
(a+A), abbreviated as α, is {α: lIaIA}. The corresponding magnetic quantum
numbers are Mi (i = a,A). The total angular momentum Jt and its projection
Mt can then be generated in J basis. Similar strategy can also be exploited
to the exit channel β, giving {β: l′IbIB} with the magnetic quantum numbers
Mb and MB . In terms of S-matrix elements, the full scattering amplitude with
Coulomb and nuclear potentials can be found to be [Sat83]

fβMbMB ,αMaMA
(θ, φ) = fc(θ)δβ,αδMbMB ,MaMA

+ i
√
π

k

∑
lJal′JbJt

√
2l + 1

· ei(σl(ηα)+σl′ (ηβ))(δβl′Jb,αlJa − SJtβl′Jb,αlJa)

· CJaMa

l0IaMa
CJtMt

JaMaIAMA
CJbMt−MB

l′Mt−MB−MbIbMb

· CJtMt

JbMt−MBIBMB
YMt−MB−Mb

l′ (θ, φ),

(2.23)

where the Clebsch-Gordon (CG) coefficient, for instance CJtMt

JaMaIAMA
, is used

for coupling two angular momentum states JaMa and IAMA to a total of JtMt.
The symbol Y represents the spherical harmonics. The excitation information
of the nuclear states for both channels is embedded in the channel notations α
and β. Of course, when ignoring all the spins, Eq. (2.23) reduces to Eq. (2.21)
for the elastic scattering case.

2In J basis [TN09], first l + Ia = Ja, then the total angular momentum Jt = Ja + IA.
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2.1.5 Born approximation

As one can find out now from the previous derivation, the most important
scattering information is included in the S- or T-matrix elements. Given a
channel potential V that can be decomposed into two parts: the distorting
potential U1 and the remaining interaction U2, in an inhomogeneous format the
Schrödinger equation (2.5) becomes[

E − T̂ − U1

]
ψ = U2ψ, (2.24)

with T̂ being the kinetic energy operator. Using the Green’s function method
[TN09], the exact wave function ψ is the solution of the Lippmann-Schwinger
equation

ψ = χ+ Ĝ+
1 U2ψ

= χ+ Ĝ+
1 U2

[
χ+ Ĝ+

1 U2

[
χ+ Ĝ+

1 U2 [· · ·]
]]
,

(2.25)

in which the distorted wave χ is obtained by the equation of
[
E − T̂ − U1

]
χ = 0

and represents the exact solution when U2 = 0. The Green’s integral operator
Ĝ+

1 equals to
[
E − T̂ − U1

]−1
with outgoing-wave boundary conditions marked

as + sign. The expansion shown in Eq. (2.25) is also called the Born series. The
Born approximation is a way to treat the perturbation in such series, namely
making a truncation at a certain order. The scattering from the initial channel
α to the final channel β by the potential V can be written in the integral
expression of vector-form T-matrix3 as

Tpost
βα = 〈φ(−)

β |U1|χ(+)
α 〉δβα + 〈χ(−)

β |U2|ψ(+)
α 〉, (2.26)

where the φβ is defined as the solution for the free field in a certain channel β
and therefore is the plane wave in this two-body case. The definitions of other
symbols used in this equation remain the same as before. For instance, ψα
means the exact wave function for the channel α. The (−) and (+) superscripts
are employed to indicate complex conjugation in the bra-ket notation, satisfying
the asymptotic unusual incoming boundary condition and the normal outgoing
one respectively. When U1 becomes a central potential that cannot by itself
cause transition between different channels, the division of the potential V is
particularly useful since the first term in Eq. (2.26) representing the elastic
scattering case equals 0 when α 6= β. Then the transition between the two
channels is basically described by the second term. This point is closely related
to the modeling of transfer reactions in Sec. 2.4.

3The so-called T matrix here is distinct from the previous partial-wave form Tl and
depends on the initial and final k values [TN09]
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2.2 Optical model

In real life, multiple channels are open during nuclear reaction. To account for
that, a phenomenological way is to describe all other channels as “absorption
from the elastic channel”, which is analogous to optics where a complex refraction
index is used to simulate the propagation of light through a cloudy refractive
medium. This concept leads to one of the most successful nuclear models which
is known as the optical model. In the optical model, the usually complicated
many-body problem brought by the collision of two nuclei is approached by
a two-body interaction via a complex potential. In a sense, such potential is
presumed to provide an effective version of the actual interaction. The model
itself is particularly useful in emphasizing elastic scattering besides few other
channels. The occurrence of the non-elastic reaction is considered as a loss of
the flux from the elastic channel. This removal is accomplished by making the
potentials complex. Applying the concept in Eq. (2.11), an imaginary term
iW (r) is introduced in addition to the real component V (r). In this case the
scattering theory described above remains valid. Then it can be demonstrated
that the corresponding phase shift δl will also become complex. Since the optical
potential is absorptive, the imaginary part W is expected to be negative. Hence
the modulus |Sl| for the outgoing wave (see Eq. (2.12)) is smaller than one.
Indeed, the difference given by 1− |Sl|2 contributes to the reaction cross section
after summing over all the partial waves.

In order to adapt to general circumstances, a realistic and quantitative
representation of the potential is necessary. For this purpose, a widely-used
procedure is to adequately parameterize a particular functional form of the
optical potential. The parameters of the function are fitted to reproduce the
scattering data for either one specific projectile-target couple at one energy, or
a given type of projectile on a wide range of target nuclei at many bombarding
energies. One main criteria here is that the generated potential parameters
should vary smoothly and slowly with the incident energy and the target mass
number. This phenomenological global optical potential has been proven to be
successful especially for interpreting the scattering of protons and neutrons on
various nuclei. Two of the available and well-known optical potentials for the
nucleon-nucleus case are

• CH89 (Chapel Hill 1989) by Varner et al. [VTM+91] (Z = 20−83,
A = 40−209, E = 10−65 MeV),

• Koning and Delaroche [KD03] (Z = 12−83, A = 27−209, E = 0.001−200 MeV),

which will also be the main ingredients of the calculations in this work. The
range of the target type and incident energy within which the potentials have
been fitted is provided between parentheses. A common form for the optical
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model potentials (OMP) shared by both parameterizations can be written as

U(r, E) = −Vv(E)fws(r,Rv, av)− iWv(E)fws(r,Rw, aw)

− iWs(E)(−4as)
d

dr
fws(r,Rs, as) + Vc(r)

+
(

~
mπc

)2
(Vso(E) + iWso(E))

[
1
r

d

dr
fws(r,Rso, aso)

]
l · I

(2.27)

in which Vv,so andWv,s,so being the energy-dependent well depth of the real and
imaginary potentials with respect to the volume (v), surface (s) and spin-orbit
(so) terms [KD03]. mπ is the pion rest mass. The form factor fws(r,Ri, ai) has
a Woods-Saxon shape

fws(r,Ri, ai) = 1

1 + e

(
r−Ri
ai

) , (2.28)

with Ri being the target radius which is approximately proportional to A1/3 by
a constant ri, and ai giving the diffuseness while i = v, w, s, so corresponds to
each term of the potential. The Coulomb potential Vc is a bit different from the
previous point-Coulomb potential at small radii when the projectile penetrates
the nucleus, which is given by

Vc(r) = ZaZAe
2 ×

{ (
3
2 −

r2

2R2
c

)
1
Rc

(r ≤ Rc)
1
r (r ≥ Rc)

(2.29)

considering a uniformly charged sphere of radius Rc = rcA
1/3. The detailed

parameters and way of construction for these two potentials can be found in
Refs. [VTM+91, KD03]. Besides, one can also find other older global OMP
as alternative choice for incident neutrons and protons, such as Becchetti and
Greenlees [BG69], Walter and Guss [WG86], and so on.

As for the scattering of deuterons, there are also global OMPs, e.g., from
Daehnick et al. [DCV80] or Perey and Perey [PP74], to generate the associated
wave function for the relative motion of a deuteron on a target. In practice,
these potentials can be used as a rough estimation or an outset for further
refitting with one particular set of experimental data from elastic scattering on
deuteron. The aim is to reproduce an accurate effective interaction in that case
for the colliding pair.

Up to now, the mentioned phenomenological potentials are taken to be local and
energy-dependent. But it is worth to point out that those spherically-symmetric
potentials might imply a compromise of simplicity over precision [DC19] since
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nonlocality would arise significantly due to the influence of nuclear structure
(shell closure and deformation) [Hod84] and the coupling to the non-elastic
channels [Sat83]. In order to minimize the ambiguities brought by the global
fits, an advocated way is to do the fits for a single target nucleus or at least in a
designated region of the nuclear chart. Regarding the inclusion of nonlocalities,
a pioneering work has been done by Perey and Buck in the early 60s [PB62].
More recent efforts have been carried out in Refs. [TPM15, LBC+17].

Even though there is a belief by a significant fraction of the nuclear-reaction
community that the energy dependence could be removed from the optical
potentials after a proper introduction of the nonlocality, it is still early to
draw the final conclusion since more formalism of the nonlocality must still
be figured out and tested. Due to the numerical complexity when solving
the integro-differential equations with a non-local potential and the reason of
effectiveness, this work will not go in this direction. But this definitely would
be an interesting aspect to investigate more in the future.

2.3 Single-particle properties

2.3.1 Single-nucleon states

Since this study focuses mostly on one-neutron halo nuclei which have strong
single-particle properties (see Sec. 1.1), the following discussion in this part
will be unfolded around this aspect. With a mean-field approximation, the
valence particle is assumed to be bound by the average attraction of the other
nucleons inside the nucleus. The potential form (without imaginary components)
shown in the last section is often used here. To simulate the single-nucleon
structure as a two-body problem, typically, a combination of nuclear, Coulomb
and spin-orbit potentials is considered in Eq. (2.5) where the motion of the
center of mass of this system has already been removed. The corresponding
eigenvalue E should be consistent with the measured single-nucleon binding
energy of the state. The associated normalized wave function of the individual
nucleon for a specific bound state reads [TN09]

ψmlsj(r) = [Yl(r̂)⊗ χs]jm
ulsj(r)
r

(2.30)

with angular momentum l, intrinsic nucleon spin s, magnetic quantum number
m, total spin j and the spinor χs. Actually at small distances, usually deep
potentials are considered, which would bring “unphysical” bound states. These
states simulate the presence of other nucleons within the core of the nucleus
and therefore are forbidden for the valence nucleon due to the Pauli principle.
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In the wave function, such forbidden states are reflected as nodes whose number
is denoted as nr. At large distances, it can be proved that the reduced radial
wave function ulsj exhibits the following asymptotic behavior [TN09]

ulsj(r)
r→∞−−−→ bljW−η,l+ 1

2
(2κr), (2.31)

where W−η,l+ 1
2
is the Whittaker function [AS64], κ =

√
2µSsp/~2 gives the

actual wave number, and blj is defined as the single-particle asymptotic
normalization coefficient (SPANC), being a quantity characterizing the
magnitude of the decay of the wave function at large distances. The value of
the SPANC is sensitive to the choice of the nuclear potential.

A specific case comes up when the single nucleon is set to be neutron. There
the Sommerfeld parameter η becomes 0 and hence the Whittaker function
in Eq. (2.31) gets simplified to iκrh(1)

l (iκr) in terms of the spherical Hankel
function h(1)

l [AS64]. Another unique configuration is that of the deuteron which
binds a neutron together with a proton and acts as a crucial component in the
(d,p) transfer. Its property is believed to be well understood through numerous
studies in the past [MF77, GVO01]. To reproduce the interaction between the
proton and the neutron inside the deuteron, two ways are commonly used. One
is with the Reid soft-core potential [Rei68]. The soft core is an intuitive concept
to describe the strong but finite short-range repulsion, indicating that the wave
function does not vanish in the repulsive force region. The other is to adopt
the Gaussian form with V0 = 72.15 MeV, r0 = 1.05 fm in Eq. (2.32) [AIK+87].

In practice, to solve the Schrödinger equation with these different kinds of
potentials, numerical methods with the boundary condition are highly favored
since it is not always feasible to find the overall analytical solution. One of the
most widely used algorithms for this purpose is the Numerov method [Nou24].

2.3.2 Halo EFT

Being an extension of the Pionless EFT [vK14] for light nuclei, Halo EFT emerges
to offer a systematic treatment of the halo phenomenon. For a comprehensive
and systematic review of this field, the interested readers are recommended to
check Refs. [vK14, HJP17]. Based on the halo concept as introduced in Sec. 1.1,
this framework considers the valence nucleon(s) and the core of a halo nucleus
as the effective degrees of freedom. Thus, the core is always structureless.
The associated quantum mechanical amplitudes can then be expanded on the
basis of the hierarchy between the size of the core (Rcore) and the halo (Rhalo)
as Rcore/Rhalo to the power of n + 1 (n = 0 at leading order, abbreviated
as LO). Depending on the separation of scales present in the nuclear system,
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this effective theory will become questionable when the reaction resolves the
structure of the core or leads to its excitation. Indeed, the influence of the core
excitation effect can be further implemented in this theory via adding extra
parameters [ZNP14, RFHP14]. However, for the 11Be case, it is not necessary
to worry about the breaking down of the structureless assumption of the 10Be
core. Giving its first core excitation at 2+ state with the energy E(2+) of
3.4 MeV, a good separation of scales is achieved with the expansion parameters√
S1n/E(2+) (equivalent to the parameter Rcore/Rhalo) being around 0.4 for

the ground state and 0.2 for the excited state of 11Be [CPH18].

To formulate the Halo EFT, the Lagrangian (elsewhere in this thesis only
Hamiltonians are used) is organized in a controlled expansion with the operators
up to a given order. Combined with the focus of this work (one-neutron
halo systems), for the loosely-bound case at the limit (Rcore/Rhalo → 0), the
many-body interactions in the Lagrangian are reduced to the two-body contact
interaction at LO described by the zero-range potential. Following the idea
developed in Ref. [CPH18], this interaction can be regulated with the Gaussian
shape

V (r) = −V0e
− r2

2r2
0 , (2.32)

where r0 is the Gaussian width that can be varied (the coefficient 2 used here is
due to historical reasons). The only free parameter V0 of this potential is simply
tuned to reproduce the one-neutron separation energy S1n of the bound state.
This quick but rough assumption runs through the development presented in
this work. It is made based on the idea that the essential physics of halo nuclei
lies with the long-distance effects without explicit contributions from the core
structure. In other words, the low-energy observables of such weakly-bound
systems are expected to be independent of the interaction at short distances and
can be approached by few-body approximation. Up to this point, the philosophy
basically overlaps with the previous single-particle description which aims at
calculating the related wave function.

2.3.3 Supersymmetry (SuSy) method

It is of particular interest in the present work to check how different regions
of the wave function contribute to the reaction calculation so that we can
better understand which part of the nucleus is probed by the reaction process.
One strategy considered here is to apply the supersymmetry (SuSy) method
[GL71, Ram71, NS71] to build phase-equivalent potentials which can be used
to produce single-particle wave functions with the same asymptotics, viz. the
same ANC, but very different internal parts after removing deeply bound states.
The SuSy method was first introduced to unify bosonic and fermionic sectors in
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string theory [CKS95]. Later the ideas and mathematical tools brought with
SuSy have stimulated new approaches to other branches of physics [Gie97],
such as the field of theoretical nuclear physics [Iac85]. The application of SuSy
to Schrödinger quantum mechanics [Wit81] in our case allows removing the
nodes in a wave function without changing its phase shift. The principle of the
supersymmetry method to produce the phase-equivalent potentials is presented
according to Refs. [AB92, SB97]. Let us start with the basic factorization of
the 1-D Hamiltonian in quantum mechanics. The eigenvalue of a Hamiltonian
H0 acting on a known ground-state wave function ψ0(r) for partial wave l
is the factorization energy E0 (The lower index 0 is to help distinguish the
supersymmetry partners). The Schrödinger equation can be written as

H0ψ0(r) = − ~2

2µ
d2

dr2ψ0(r) + V0(r)ψ0(r) = E0ψ0(r). (2.33)

The Hamiltonian H0 can be factorized into two operators

H0 = A†0A0 + E0 (2.34)

with

A†0 = − ~√
2µ

(
d

dr
+ d(lnψ0(r))

dr

)
, A0 = ~√

2µ

(
d

dr
− d(lnψ0(r))

dr

)
. (2.35)

If E0 does not exceed the ground-state energy E
(0)
0 (The superscript (0) is

to indicate the ground state), the solution ψ0 in Eq. (2.33) is nodeless. By
exchanging the order of the two operators A†0 and A0, the supersymmetric
partner of H0 is defined as

H1 = − ~2

2µ
d2

dr2 + V1(r) = A0A
†
0 + E0 = H0 −

2~√
2µ

d2

dr2 ln (ψ0(r)) (2.36)

Within this step, the ground state is removed from the original Hamiltonian
[BSPMS14] and the phase shift is modified according to the Darboux
transformations [BS95]. To compensate the change in the phase shift
and generate phase-equivalent potentials with the initial one, further SuSy
transformations are needed provided that the factorization energies are chosen
to be equal and thus no longer required to be smaller than E(0)

0 [LBS97]. The
resulting potential as given in Ref. [AB92] is written as

V2(r) = V0(r)− 2~√
2µ

d2

dr2 ln
∫ r

0

[
ψ

(0)
0 (x)

]2
dx (2.37)

The change in the generated wave function using this superpotential is limited
to the short range of ψ(0)

0 . Thus, the long-range part of the wave functions for
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the rest of the spectrum, i.e., the ANCs of other bound states and the phase
shift in the continuum, is conserved. To compute this superpotential, basically
one has to follow Eq. (2.37) by replacing the ground-state wave function ψ0
with the ulsj in Eq. (2.30).

2.3.4 Resonances

Besides bound cases, we are also interested in studying the resonant states that
can be produced with transfer reactions. A resonance usually describes a nuclear
state with a short lifetime, reflected by a peak located around some certain
energy in the excitation function of a scattering experiment. The energy width
of the resonance Γ is connected to the mean lifetime τ of the state by an inverse
relationship Γ ∼ ~/τ . The typical sign of a resonance in theory is a rapid change
in the scattering phase shift δl within a small energy range. The phase shift can
be split into one background phase shift δbg and another resonance phase shift
δres. In the present study, mainly single-particle resonances will be discussed.
To be more specific, the sensitivity of the transfer calculation to the energy
width in the description of the resonance is of special interest. For this purpose,
the following derivation is carried out according to Refs. [TN09, MT99]. In
a single-particle configuration, considering a Breit-Wigner resonance [TN09]
located at Eγ = E0 − iΓsp/2 with an energy width Γsp, the S-matrix element
is found to be [MT99]

S(k) = e2iδbg (k + kr)(k − k∗r )
(k − kr)(k + k∗r ) (2.38)

in which the δbg varies smoothly and slowly near the resonance energy, the real
k and kr (≈ k0− iµΓsp/(2k0~2)) are the wave numbers of the energy E and the
resonance energy Er, respectively. At the limit of k → kr, the S-matrix element
can be rewritten as a leading term Alj/(k−kr) plus some regular function. The
coefficient Alj gives the residue of the S-matrix in the resonance pole, being

Alj ≈ −ie2iδbg µ

k0~2 Γsp (2.39)

up to the order of Γsp/2E0. This would indicate that the resonance width could
be revealed in a relevant reaction. Indeed, it has already been pointed out in
Ref. [MT99] that transfers to resonant states can be used to extract the widths
of the resonances. In a sense, the role of the resonance width in transfers to
resonant states would be comparable to that of ANC in transfers to bound states
since both can be linked to the residue of the corresponding S-matrix. This
point has direct implications in our work for the analysis regarding resonances.
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Figure 2.2: Illustration of the three-body system for the A(d,p) transfer reaction
with associated coordinates.

2.4 Modeling (d, p) transfer reaction

2.4.1 Theoretical formalism

In this section, the theoretical notions presented above will be applied to model
explicitly the (d,p) transfer which is widely used as a powerful tool to probe
the single-neutron property of nuclei. In a simple physical picture, a stripping
reaction with the form A(d,p)B can be viewed as a process in which the neutron
n from the incident deuteron d populates an unoccupied state in the target
nucleus A, producing a composite nucleus B = n+A. An illustration for this
one-neutron transfer process is shown in Fig. 2.2 with the associated coordinates.
In this study, the nucleon is considered as the basic constituent of nuclei and
hence its internal structure is ignored in the following derivation. The complete
Hamiltonian for the three bodies [TN09] can be written as

H = Tr + TR + Vpn(r) + VAn(r′) + UpA(Rc), (2.40)

in which the sum of the first two kinetic energy terms equal to Tr′ + TR′ ,
UpA(Rc) is called the core-core optical potential, and Vpn and VAn represent
the two-body interaction inside the deuteron d and the produced nucleus B,
respectively. The coupling of the transfer reaction arises from the remaining
interaction in the mean field. To expand the Hamiltonian when including the
remaining potential, there are two ways: post or prior form, corresponding
to the choice of the channel: final or initial. And the results obtained with
these two forms should not differ from each other, particularly being identical
in the case of first-order DWBA [TN09]. Using either post or prior form, the
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Hamiltonian can be expressed as [TN09]

H = Hpost = Tr′ + TR′ + VAn(r′) + UpB(R′) + Vf (R′, r′)

= Hprior = Tr + TR + Vpn(r) + UdA(R) + Vi(R, r)
(2.41)

with the UpB(R′) and UdA(R) being the exit and entrance diagonal potentials
respectively. The interaction terms Vf (R′, r′) and Vi(R, r) are

Vf (R′, r′) = Vpn(r) + UpA(Rc)− UpB(R′)

Vi(R, r) = VAn(r′) + UpA(Rc)− UdA(R)
(2.42)

to cause the transition. The first part in Vf,i is the binding potential for the
corresponding nucleus while the combination of the other two is called the
remnant term.

Let us first focus on the post form. Besides the interacting potential, to build
the T-matrix shown in Eq. (2.26), effective descriptions for the final and initial
channels are also required. The final channel of p+B after the transfer can be
expressed by ψpB = χpBΦB in which χpB describes the relative motion between
the proton and the product B while ΦB represents the quantum mechanical
state of the nucleus B. Regarding the state ΦB , it can be further decomposed
by

ΦB = φAI
B
An + ΦBC , (2.43)

into a single-particle component φAIBAn and the rest part ΦBC with more complex
configurations. In this notation, φA is taken as the internal wave function of
the core A, and IBAn as the overlap wave function between states of nuclei
B = A + n and A. Assuming that during the transfer the contribution from
the term ΦBC becomes negligible and no internal state of the core A is altered
(refer to the Halo EFT in Sec. 2.3.2), the description of the final state can be
simplified to χpBIBAn in a three-body model. Therefore, the overlap function is
always the central element of the analysis of the transfer reaction, reflecting
the single-particle strength of A+ n in the produced nucleus B. In the nuclear
exterior, the radial overlap function IBAn(lj)(r′) extracted from the partial wave
expansion of the overlap function [MMT+14] is connected to the radial wave
function from Eq. (2.30) by a constant KAn(lj), yielding

IBAn(lj)(r′)
r′→∞−−−−→ KAn(lj)

ulj(r′)

r′
, (2.44)

where K2
An(lj) (= SAn(lj)) is the single-particle spectroscopic factor of the

configuration A-n with quantum numbers l, j in nucleus B. It is valuable to
bear in mind that for a pure single-particle configuration this single-particle
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spectroscopic factor (SF) will coincide with the spectroscopic factor obtained
from the square of the norm of the radial overlap function. However, this
condition does not always hold due to the fact that the overlap function is
actually a many-body object. Especially in the nuclear interior where the overlap
function has most of its probability and hence contributes significantly to the
SF, the single-particle model is no longer a valid approximation. Nonetheless,
at large distances the radial dependence of the radial overlap function remains
similar to that of the radial wave function [OMNP12]. Introducing the ANC
Clj to quantitatively define its asymptotic behavior, the radial overlap function
has the format of

IBAn(lj)(r′)
r′→∞−−−−→ Clj

W−η,l+ 1
2
(2κr′)

r′
. (2.45)

Combining Eq. (2.45) and (2.44) and compared with Eq. (2.31), the ANC and
SPANC are related by

C2
lj = SAn(lj)b

2
lj . (2.46)

Here the ANC is well accepted as an experimentally measurable quantity
while the SPANC and single-particle spectroscopic factor are model dependent.
Moreover, the ANC is a key part of the halo structure, which gives the strength
in the halo. Roughly speaking, if the ANC is small, there cannot be a true
halo even if the valence particle is loosely bound. If the ANC is large, the halo
will be clear. One important point in this work is to extract the ANC value
precisely, which relies heavily on the aforementioned framework.

Similar derivation as above can also be done for the initial channel d+A which
reveals the interaction associated with the three-body problem of the proton
p, the neutron n and the core A. A series of methods like DWBA [BH61] and
ADWA [JS70, JT74] is generated based on the approximation to this three-body
wave function and will be discussed in the coming sections. At this step, the
corresponding description is denoted as ψdA.

With all these ingredients, the three-body transition matrix element of the (d,p)
stripping reaction can be built in the post form as [GCM14]

Tpost(pB, dA) = 〈χ(−)
pB I

B
An|Vpn + UpA − UpB |ψ(+)

dA 〉. (2.47)

Repeating the above analysis in the prior form, an equivalent expression for the
transition matrix element is

Tprior(pB, dA) = 〈ψ(−)
pB |VAn + UpA − UdA|χ(+)

dA ϕpn〉 (2.48)

in which ϕpn is the bound wave function of deuteron, ψ(−)
pB represents the exact

three-body (p, n, A) solution subject to the boundary conditions consisting
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of a plane wave (on the p-B coordinate R′) with the final momentum in the
detector direction, times the wave function of the system B, plus ingoing waves
in all other open channels [GCM14].

Note here that in order to retain consistency through this study the calculations
are always performed in the post form unless otherwise specified. Once the
transfer amplitude Tpost(pB, dA) is obtained, the differential cross section can
be calculated since it is proportional to the square of that transition matrix
element. Now the primary concern is the solution ψ

(+)
dA with respect to the

three-body problem. The way to deal with it gives rise to the following models.

2.4.2 Distorted wave Born approximation (DWBA)

In the DWBA model, the exact solution ψ
(+)
dA of the three-body system is

replaced by its asymptotic condition which can be expressed as a distorted wave
χ

(+)
dA (R) multiplied by the deuteron bound-state wave function ϕpn(r). The

transition matrix for the (d,p) transfer thus becomes4

Tpost(pB, dA) ' 〈χ(−)
pB (R′)IBAn|Vf |χ

(+)
dA (R)ϕpn(r)〉. (2.49)

This approximation is in fact the leading term with respect to the Born series
of the transition amplitude (see Sec. 2.1.5). For the sake of probing the nuclear
structure with the transfer, namely IBAn in our case, the accuracy of the other
terms in Eq. (2.49) should be well determined. As for the interaction term
Vf , the magnitudes of two complex potentials UpA and UpB are often similar,
producing a cancellation of the remnant term. The remaining part Vpn and also
the bound-state wave function ϕpn depend strongly on a good understanding
of the deuteron for which the related interaction mechanism is believed to be
well established nowadays. The distorted wave functions χ(−)

pB and χ
(+)
dA are

generated by the auxiliary potentials UpB and UdA with the corresponding
boundary conditions. To make an appropriate choice of the potentials, the
phenomenological approach discussed in Sec. 2.2 is used. UpB and UdA then
become the optical potentials which are responsible for reproducing the elastic
scattering on both channels. Such approach takes into account the effect of
other complex reaction processes like fusion and breakup which can remove flux
from the elastic channels. In practice, the elastic scattering for the incident
channel (d+A) and sometimes even the exit one (p+B) needs to be performed

4Similarly, assume that in Eq. (2.48) the three-body solution ψ(−)
pB can be approximated

by χ(−)
pB (R′)IBAn, the transition matrix element becomes in the prior representation,

Tprior(pB, dA) ' 〈χ(−)
pB (R′)IBAn|Vi|χ

(+)
dA

(R)ϕpn(r)〉

which should give identical results as the post form in Eq. (2.49).
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and analyzed as a priority in the study of transfer reaction. Generally speaking,
when the elastic scattering is dominant in both the incident and outgoing
channels, the DWBA is used as a fast and key method to evaluate the (d,p)
transfer data and extract the spectroscopic information on nuclear structure
[GCM14].

Note that the elastic scattering amplitude is typically related to the asymptotic
region of the distorted wave functions, which indicates that the internal part of
those wave functions might not be exactly reproduced by these optical potentials.
Moreover, even though the breakup effect of deuteron is implicitly considered in
the optical potentials, its role during the transfer might still not be sufficiently
taken into account. The improvement on this aspect will be introduced within
the ADWA.

2.4.3 Adiabatic distorted wave approximation (ADWA)

As mentioned before, the DWBA approach might encounter some difficulties in
explaining the (d,p) transfer with its inadequate treatment of the three-body
effects, in particular the breakup of the deuteron. In order to include explicitly
the contribution from the breakup, an interesting prescription called adiabatic
distorted wave approximation (ADWA) was initially proposed by Johnson and
Soper [JS70], which is supposed to contain most of the dominant effects in the
three-body system while only involving a minor modification of the DWBA
framework. This method is based on an adiabatic approximation. By the word
’adiabatic’, it means that with a relatively high incident energy the proton-
neutron coordinate is seen as fixed during the collision process [GCM14]. As a
consequence, the deuteron-target potential UdA(R, r) that generates the wave
function χ(+)

dA (R, r) can be built from the sum of each fragment in deuteron
interacting with the target as

UdA(R, r) = UpA(Rc) + VAn(r′). (2.50)

The relevant three-body wave function has a format of ψ(+)
dA ' χ

(+)
dA (R, r)ϕpn(r).

Via this step, the breakup channels are merged with the ground state of the
deuteron. Fig. 2.3 schematically illustrates the scheme of coupling behind the
ADWA method together with its comparison to the other methods (DWBA,
and CDCC-BA which will be introduced in Sec. 2.4.4). Furthermore, assuming
that the proton-neutron distance r is negligible compared to the deuteron-target
one R thanks to the short-range feature of the binding potential Vpn(r), one
arrives at the zero-range (ZR) version of the ADWA method with the value of
r set to 0. In this situation, the deuteron-target potential is given by

UZRdA (R) = UpA(R) + UAn(R), (2.51)
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Figure 2.3: Depiction of the coupling schemes assumed in several reaction
models to interpret the (d,p) transfer: (a) DWBA, (b) ADWA, (c) CDCC-BA.
Figure adapted from [GCM14].

which relies only on the relative radial distance R between the deuteron and
the target A. Under this zero-range limit, the transfer and the scattering are
conceived to occur at the same place. Replacing the binding potential VAn with
the complex optical potential UAn here is justified by the adiabatic approach
[GCM14]. Later, a finite-range (FR) adiabatic potential as a refinement to the
ZR-ADWA formalism has been derived by Johnson and Tandy [JT74]:

UFRdA = 〈ϕpn|Vpn(UpA + UAn)|ϕpn〉
〈ϕpn|Vpn|ϕpn〉

. (2.52)

This gives an averaged value of the potential by folding over the p-n wave
function in the incoming channel. The distorted wave function χ

(+)
dA can be

completely generated by the less ambiguous nucleon-target optical potentials
which have a conventional form for parameterization and get evaluated normally
at half of the deuteron incident energy. One factor that could be missing in
the adiabatic model is the connection between different final channels. For an
enhanced transfer case, the associated elastic scattering might be overestimated
by the adiabatic potentials. However, with deuteron, this impact should be
quite limited. And due to the outstanding advantages mentioned before, most
transfer calculations in the present study will be carried out with either ZR-
or FR-ADWA model in the post form using FRESCO (check Appendix A for
more details). It is worth mentioning here that it is not legitimate to use the
adiabatic deuteron potential in the prior form since such application is justified
only when the transition potential contains the vertex function Vpnϕpn, which
is the case of the post form.
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Dependencies

Moving further, it would be useful to assess the sensitivity of the transfer
cross section to several variables so that their influence can be noticed or even
controlled during this study. Within the ADWA model, the transfer calculations
depend strongly at least on four factors which are the choice of the optical
potentials, the incident energy, the Q-value of the reaction and the transferred
angular momentum. The following discussion revolves around these points when
more concrete results will be presented in the Chapter 3.

• Optical potentials
Due to the difference in the experimental objects being fitted (energy range,
target type) and the selected analysis method, several sets of global optical
model potential compilations for the nucleon-target case are available in the
literature [VTM+91, KD03]. Directly linked to the generation of the distorted
wave functions, the choice of these potential affects both the magnitude and
the shape of the calculated cross sections. A recent study has been carried
out by Lovell and Nunes [LN18] using the Bayes’ theorem to investigate
the uncertainties in the transfer predictions originating from the optical
potentials as well as from the reaction models.

• Angular momentum transferred
The influence of transferred angular momentum is deduced from the
combination of two distorted wave functions χ(−)

pB and χ(+)
dA in the transition

matrix. Considering a (d,p) transfer to a certain bound state of B in which
usually low angular momentum transfer is favored, the related matrix element
is selectively evaluated with the l value equaling the total angular momentum
transferred [Bou13]. Thus, the angular distribution of the transfer probability
will experience a shape which is determined by that l value. This feature has
been illustrated using momentum matching in Sec. 1.2 in a semi-classical
picture.

• Q-value matching
The reaction Q-value has a strong impact on the magnitude of the differential
cross sections. The Q-value matching results in an enhancement of the
transfer probability towards a certain nuclear state. It is characterized
sometimes as the optimum Q-value when the transfer reaction has the largest
cross section. In first approximation for l = 0 (i.e., head-on) collisions, the
optimum Q-value Qopt is expressed as [HEK+78]

Qopt ≈ Ei(
ZBzb
ZAza

− 1) (2.53)

with the beam energy Ei while Z and z denote the charges of target and
projectile in the initial or final state. In our case of a (d,p) transfer, the Q-
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value can be calculated by the difference between the one-neutron separation
energy in the deuteron and that in the produced nucleus B as Q = SB1n−Sd1n.
For this kind of transfer of a neutral particle, the maximum cross section will
be reached at Q ≈ 0 MeV according to Eq. (2.53). With the aim of studying
purely the influence of binding energy in the calculation, it is necessary to
exclude the strong interference caused by the factor of Q-value. Due to
its intrinsic connection with the binding energy, it is not always feasible to
perform such analysis, but possible with FRESCO. More details will come
in Sec. 3.3.

• Beam energy
Different beam energies lead to diverse combinations of several reaction
channels. Thus, as the incident energy changes, we should be aware that
the energy-dependent optical potentials which are related to the reaction
mechanism also needs to be adjusted. Correspondingly, the magnitude and
the shape of the angular distribution of the cross section will also evolve.
When the beam energy is decreasing towards the Coulomb barrier, no close
approach between the projectile and the target simplifies the theoretical
interpretation of the undergoing reaction. Within this condition, an argument
that can be drawn is that the observed transfer reaction would most likely
be a direct and peripheral one.

2.4.4 Other options

Despite being widely used, the previous transfer models (DWBA and ADWA) are
still often questioned and challenged due to the simple approximation made there.
A more convincing approach is offered by the continuum-discretized coupled-
channel Born approximation (CDCC-BA also called CDCC for simplicity)
[GCM14]. The framework of the CDCC method was first introduced by
Rawitscher [Raw74] to describe reactions involving the deuteron by taking
into account the deuteron breakup effect to all orders. The three-body wave
function ψ(+)

dA is expanded over the eigenstates of the deuteron Hamiltonian.
Since calculating the continuum would imply an integral over the p-n relative
linear momentum and hence is not tractable, the idea of Rawitscher was to
discretize the continuum into several bin states. The related expression for the
three-body wave function is obtained by

ψ
(+)
dA ≈ χ

(+)
dA,0ϕpn,0 +

∑
i=1(bin)

χ
(+)
dA,iϕpn,i, (2.54)

where 0 indicates the solution corresponding to the deuteron bound state. The
index i includes the p-n angular momentum l and its projection m, representing
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Table 2.1: Characteristics of the ADWA method compared to the other methods:
DWBA, CDCC and Faddeev-AGS.

Compared to Property of ADWA

DWBA • Includes the deuteron breakup
• Constructed solely on nucleon-target optical potentials

• A simplified CDCC method [ND11]
CDCC • Good agreement around 10 MeV/A, not for higher beam energiesa

• Less suitable when angular momentum transfer is not zero
• Compares very well at around 10 MeV/A [UDN12]
• Suits the transfer to the loosely-bound nucleus

Faddeev-AGS • Agreement deteriorates with increasing beam energy
• Not ideal for large angular momentum transfer

• Energy dependent with respect to the global OMP

a Performed neglecting the spin of the nucleons.

a set of discretized bin states for the deuteron continuum. This model of wave
function gives rise to a set of coupled differential equations to solve. With the
results being inserted into the transition matrix, the transfer process can no
longer be viewed as a direct one like in the DWBA, whereas proceeding via
multiple steps from the continuum state of the deuteron as shown in Fig. 2.3.
Because of this, this model is more robust than DWBA and ADWA.

As a generalization of the CDCC method, not only the bound states and
continuum of the incident channel, but also those of the rearrangement channel
can be incorporated within the framework of the coupled reaction channels
(CRC). The three-body wave function ψ(+) becomes a superposition of the wave
functions which shares a similar format to Eq. (2.54) but corresponds to all the
possible mass partitions during the reaction (such as including the bound and
unbound states of the pB partition in the transfer). Solving the CRC equations
has to deal with the non-local potentials and non-orthogonality terms [GCM14].
This method is especially useful to describe the reaction in which the elastic
scattering is not the dominant channel.

The most accurate solution of this three-body problem was formulated by
Faddeev [Fad61], which gives a rigorous treatment of the equation expressed
as a sum of three components. Each of the components containing a two-body
interaction for a given pair of particles are derived in terms of its definite set of
Jacobi coordinates. Note the interaction should be the same in all three sets
of coordinate systems. The methods discussed in the preceding part can be
viewed as an approximate version of the Faddeev formalism [GCM14]. This
Faddeev-type method, later formulated as the Alt-Grassberger-Sandhas (AGS,
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also known as FAGS) equations [AGS67] to include the Coulomb interaction
in few-nucleon reactions, has recently been applied to study (d,p) transfer
[Del09]. It also provides a very useful assessment for those approximate methods
[ND11, UDN12]. In Ref. [ND11], the adiabatic approximation is compared to
the exact Faddeev method for (d,p) reaction, drawing a conclusion that the
approximation made in ADWA is more suitable when a small angular momentum
is transferred and a loosely-bound nucleus gets produced. A more complete
and systematic comparison among ADWA, CDCC and FAGS is performed in
Ref. [UDN12].

Compared to the DWBA and ADWA method, the cost of less approximation
made in these more complex models (CDCC, CRC and FAGS) is the rapid
growth of the computational demands. For a quick estimation without missing
the key feature in the transfer, simple reaction models are still sometimes
preferred to reveal the nuclear structural information. In this study, we are
interested in the transfers that are peripheral, and for which ADWA seems to
be an effective approach according to Refs. [ND11, UDN12]. To show more
confidence on the choice of the simple method ADWA, its validity is specified
in Table 2.1 by the comparison to the other methods. In addition, it would also
be interesting in future work to confirm the present results of our study with a
more detailed description of the reactions.





Chapter 3

Halo Study with Transfer
Calculations

This chapter consists of three sections to introduce the theoretical results with
the aim to better understand what kind of information can be extracted from
the analysis of transfer data to study halo systems.

The first part reports briefly the framework of the study published in our paper
[YC18] attached in Appendix B with some extension. In Sec. 3.1.1, the analysis
of the peripherality of the 10Be(d,p) stripping reaction carried out by Schmitt
et al. [SJB+12, SJA+13] is systematically reviewed at the deuteron energies
(Ed) of 21.4, 18, 15, and 12 MeV. This enables us to extract the asymptotic
normalization coefficient (ANC) for both bound states in the nucleus 11Be. The
discussion afterwards highlights the importance of this analysis method. As a
cross check here, the supersymmetry (SuSy) method is used to take another
insight into the same topic (see Sec. 3.1.2). Then, the sensitivity of those
calculations to the optical potential choice is investigated by comparing the
results obtained with two optical potentials (CH89 [VTM+91] and Koning and
Delaroche (KD) [KD03]). Furthermore, our developed method is also extended
to study the influence of the resonance width for transfers to the first 5/2+

resonance of 11Be nucleus.

In Sec. 3.2, the ANC for 15C, which is of astrophysical interest [TBD+06], is
extracted using our method from the transfer data of 14C(d,p) at Ed = 17.06 MeV
provided in Ref. [MBG+11]. It is used as an optimal value to which the additional
parameter appearing in the Halo-EFT description of 15C at next-to-leading order
(NLO) can be tuned. The related paper [MYC19] is attached in Appendix C.

45
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Eventually, inspired by Prof. Alexandre Obertelli who is an experimentalist
within the nuclear-physics group at the TU Darmstadt, the original intention of
the third section is to use transfer below the Coulomb barrier to detect possible
halos in nuclear excited states. Tentative efforts have been made in this work on
the theoretical side to search for a candidate to study the presence of a neutron
halo in an excited nuclear state using sub-Coulomb (d,p) transfer in inverse
kinematics. With the testing case of 95Sr, the dependencies of the transfer
calculations are explored on several aspects, for instance, Q-value, beam energy,
one-neutron binding energy and so on.

3.1 10Be(d,p)11Be transfer reaction

As said before in Sec. 1.1, 11Be is well known for its distinct n+10Be halo
structure. The next (n+n+9Be) breakup threshold appears at 7.31 MeV
[CNR+16], also making sure that the rich resonance structure at low
energies is dominated by the n+10Be single-particle structure. Already many
different experimental methods (e.g., β decay [MBA+09], elastic scattering
[DPRS+10, DPSM+12], breakup [FNA+04], neutron knockout [ANB+00] and
transfer reactions [SJB+12, BPTO+14]) have been carried out with the aim
to understand the halo nature of 11Be. Meanwhile, there have also been
considerable efforts put forward on the theoretical side to describe the structure
and help explain the reactions involving 11Be. Recently, ab initio calculations
[CNR+16] got improved by including explicitly the description of 11Be as 10Be
+n and its continuum effects in the model space.

The main purpose of the work in this section is to test the sensitivity of transfer
reaction to the projectile structure using the best simple model of reaction,
and look for the best experimental conditions to extract the halo-structure
observables, such as ANC. Part of the results has been published in the paper
[YC18] attached in Appendix B. As a review and sometimes a supplement to
that work, the first part of this section is mainly used to highlight the basic
idea and framework of the method. For a short and concise overview, I refer
the reader in a hurry to that article.

Experimental details

The experimental data are taken from the paper by Schmitt et al. [SJB+12,
SJA+13]. The measurement of the 10Be(d,p)11Be transfer reaction was
performed in inverse kinematics at the Holifield Radioactive Ion Beam Facility
of the Oak Ridge National Laboratory [BBU+11]. The experiment is realized
with a 10Be beam at four different lab energies of 107, 90, 75 and 60 MeV
impinging on a deuterated polyethylene (CD2). Thanks to the long half-life
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of 10Be (T1/2 = (1.387 ± 0.012) Ma [KBF+10]), the source was prepared
from a solution of 10Be in hydrochloric acid. The quality of the beam during
the runs is significantly improved by the acceleration techniques used to
reduce the contamination (< 1%). A relatively high incident intensity of
the beam was achieved, being approximately 5× 106 particles per second. The
reaction products are detected by the silicon detector array (SIDAR) [BBB+99]
mounted in a lampshade configuration covering the backward laboratory angles
(138◦ 6 θ 6 165◦) together with the full implementation of the Oak Ridge
Rutgers barrel array (ORRUBA) [PCH+07] placed at the forward angular range
from 45◦ to 135◦. Due to the fact that the peak of the angular distribution of the
protons from the (d,p) reactions is typically located at forward center-of-mass
(c.m.) angles when small angular momentum is transferred, most of the data for
the transfer channel is collected in the SIDAR array with an energy resolution
of ≈ 70 keV.

Numerical inputs

For the 10Be(d, p)11Be transfer reaction, the equivalent deuteron incident energy
Ed is taken to be 21.4, 18, 15, and 12 MeV [SJA+13]. In our calculations, the
finite-range version of the adiabatic potential developed by Johnson and Tandy
[JT74] is used to compute the reaction. The nucleon-nucleus optical potentials
are obtained from the global parametrization CH89 [VTM+91] without including
the spin-orbit terms. Using the FR-ADWA approach, Up−10Be and Un−10Be
are calculated at half the incident energy Ed/2, while the auxiliary potential
Up−11Be is obtained at the proton energy corresponding to the exit channel.
For the p-n interaction, the Reid soft-core interaction [Rei68] is chosen to get
the appropriate wave function of the deuteron (see Sec. 2.3.1). The transfer
calculations are performed with FRESCO [Tho06], and the adiabatic potentials
are calculated using the front-end code of TWOFNR [TTIK12].

3.1.1 ANC extraction

Description of 11Be bound states
11Be, as the archetype of a single-neutron halo nucleus, can be modeled as a
neutron loosely bound to a 10Be core. Its energy level diagram is shown in
Fig. 3.1. With the assumption that the 10Be core is in its ground state (0+),
the 1/2+ ground state (g.s.) of 11Be can be described by a 10Be(0+)⊗1s1/2
configuration, and the 1/2− excited state (ex.s.) by a 10Be(0+)⊗0p1/2
configuration. No core excitation is considered since its effect in this case
is generally small. Indeed, there are several sources of core excitation in this
reaction. One is arising from the UpA interaction appearing in the transition
potential as expressed in Eq. (2.42), whose influence has been investigated to be
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Figure 3.1: Low-energy level diagram for 11Be [NuD19].

Table 3.1: Gaussian parameters of the 10Be-n potentials. The potential depths,
SPANCs and root-mean-square radii of the 1s1/2 ground state and the 0p1/2
first excited state are shown as well.

Potential r0 V0(g.s.) b1s1/2 〈r2〉1/2 V0(ex.s.) b0p1/2 〈r2〉1/2

(fm) (MeV) (fm−1/2) (fm) (MeV) (fm−1/2) (fm)

V1 0.4 1314.6 0.601 5.29 869.4 0.068 2.82
V2 0.6 592.3 0.632 5.55 387.3 0.085 3.48
V3 0.8 337.8 0.664 5.81 218.4 0.100 4.05
V4 1.0 219.2 0.697 6.08 140.2 0.114 4.55
V5 1.2 154.4 0.732 6.34 97.7 0.127 5.02
V6 1.4 115.1 0.769 6.61 72.1 0.140 5.45
V7 1.6 89.3 0.807 6.88 55.4 0.152 5.86
V8 1.8 71.6 0.846 7.15 44.0 0.165 6.25
V9 2.0 58.8 0.888 7.41 35.8 0.177 6.62

negligible (< 3%) according to the study by Gómez-Ramos et al. [GRMGCT15].
Another source can occur in the entrance channel (d+10Be), which could be taken
into account using a CDCC-BA approach. The corresponding effects have been
examined in a couple of works such as Refs. [DRNcvN16] and [GRM17] with
its magnitude found to depend mostly on the incident energy. In particular,
they are of the order of 10% or less at the energies explored in this work
(Ed < ∼20 MeV). Following the spirit of Halo EFT, the Gaussian potentials in
Eq. (2.32) are adopted to describe the interaction between 10Be and the valence
neutron. Nine sets of Gaussian potentials are generated with different widths r0
starting from 0.4 fm to 2.0 fm. These values are chosen in order to generate a
significant change in both the SPANC and the internal part of the wave function.
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Figure 3.2: Reduced radial wave functions obtained with the nine different
Gaussian potentials listed in Table 3.1 for the 1/2+ g.s. of 11Be (left) and for
the 1/2− ex.s. (right).

Furthermore, we keep the widths to be realistic in a nuclear-physics context:
neither ridiculously small (a FWHM of about 1 fm regarding r0 = 0.4 fm) nor
too large (r0 = 2.0 fm leads to a FWHM of about the size of the core). The
depth V0 is adjusted to reproduce the neutron binding energy (0.502 MeV for
the g.s.; 0.182 MeV for the ex.s.). The relevant parameters are all listed in
Table 3.1 alongside the corresponding SPANCs (b1s1/2, b0p1/2).

Using such potentials, the wave function of the 10Be-n bound states can be
calculated. The resulting g.s. and the ex.s. reduced radial wave functions are
shown in Fig. 3.2 where the smaller r0 always leads to the wave function that
reaches earlier its asymptotic. To maintain the consistency of the representation,
the coordinates of the three-body system in Fig. 2.2 are considered by simply
replacing the core A with the nucleus 10Be. Therefore, the symbol of the x-axis
in Fig. 3.2 becomes r′. According to the definition in Eq. (2.31), all the wave
functions shown here will exhibit a same tail after being scaled by their SPANCs.
Via this step, the set of the wave functions can be seen as two parts: one sharing
the same asymptotic behavior at large distance and the other being completely
different in the internal part. The tail of the wave function is closely linked to
the peripherality of the transfer process, i.e., when the reaction is completely
peripheral, the transfer differential cross sections should be sensitive only to
the value of the ANC without retaining information on the internal region of
the wave function. Thus, studying the dependency of the transfer calculations
on these different descriptions of 11Be will help safely extract its ANC in a
well-defined experimental conditions where peripheral transfer dominates.

In addition to the Gaussian type, in principle this study can be performed with
whichever potential one wants. An example with more usual Woods-Saxon
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potentials will be shown in Sec. 3.1.3. The use of Gaussian potentials is due
to the simplicity (one single variable r0) and its relation to Halo EFT (see
Sec. 2.3.2).

Transfer calculations and analysis

With all those necessary ingredients combined, a series of transfer calculations
is carried out for the 10Be(d,p)11Be reaction at Ed = 21.4, 18, 15, and 12 MeV
[SJB+12]. Let’s start with the plot on the top left corner of Fig. 3.3 to clarify
the analysis and the findings. There the first plot (a1) shows the original
angular distribution of the cross sections calculated at 21.4 MeV. With narrower
Gaussian potentials (smaller r0 value), the cross section of the reaction gradually
decreases. At forward angles, there exist big variations among the calculated
cross sections with different potentials. Dividing the cross sections by the square
of the SPANCs generates the plot (b1). From (a1) to (b1), the discrepancies
are very much suppressed. Most curves begin to get on top of each other
in the forward region except those of r0 = 0.4 fm, and 0.6 fm. In order to
gain quantitative insight into the variation between different distributions after
scaling, they are compared to the result at r0 = 1.4 fm which is at the center of
the interval:

Rr0/1.4fm =
( dσdΩ )th

r0
/(bnrlj)2

r0

( dσdΩ )th
1.4fm/(bnrlj)2

1.4fm
− 1 (3.1)

in which the superscript th is short for theoretical results. The index r0
corresponds to the set of Gaussian potential used for the calculation. The
relevant results are presented in the plot (c1). This plot confirms what has been
shown in plots (a1) and (b1): at forward angles most of the dependence of the
cross section on the description of 11Be is in its SPANC, hence this could be a
peripheral region. Then an arbitrary value ±5% (horizontal red dashed lines in
Fig. 3.3 (c1)) is set as the tolerance band to define the peripheral area of the
transfer. One sees from this plot that only a small angular region meets this
peripheral definition except the cases corresponding to 0.4 fm and 0.6 fm which
do not fall in the band at all. For the 10Be(d, p)11Be(g.s.) reaction at 21.4 MeV,
an angular range of θc.m. = 0◦-7◦ is extracted as the peripheral region where
the scaling of b2nrlj works.

A similar analysis is made for the other three energies to check the evolutionary
trend of such angular distribution with the deuteron energy. The plot at each
energy is organized following the same logical structure as that at 21.4 MeV.
Compared to the previous case, discrepancies among the different curves at
18 MeV start to shrink after scaling by b2nlj . The peripheral part increases to
10◦ without taking into account the results of r0 = 0.4 fm, and 0.6 fm. The
region of peripherality is enlarged and improved at 15 MeV since more curves
fall within the tolerance band now with a range of θc.m. = 0◦-20◦ excluding
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Figure 3.3: Analysis of the differential cross sections of 10Be(d, p)11Be to the
g.s. of 11Be with incoming deuteron energy of 21.4 MeV (top left), 18 MeV (top
right), 15 MeV (bottom left) and 12 MeV (bottom right).
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again the calculations performed with r0 = 0.4 fm, and 0.6 fm. Finally, it turns
out that the scaling by the square of the SPANC works best at 12 MeV, leading
to the most consistent peripheral region. The related angular range there is
θc.m. = 0◦-17◦, which encompasses all the values of r0 this time.

In summary, two basic conclusions can be drawn at this stage: a) the peripheral
region of this transfer reaction is always found at forward angles; b) when the
incident energy decreases, the reaction is more peripheral. In addition, as the
incident energy decreases, it seems that the average transfer cross section keeps
rising. However, this is not always the case. Especially when the incident energy
gets close to the Coulomb barrier, the transfer cross section becomes much
smaller (see the discussion in Sec. 3.3.3).

Applying the same method to analyze the first excited state of 11Be, I obtain
Fig. 3.4. Checking the evolution of the cross sections basically leads to a similar
picture, i.e., after scaling by b2nlj , the differences among the curves at forward
angles are well reduced from 21.4 MeV to 12 MeV. But compared to those with
the ground state, the results of the excited state always vary in a bigger scope
possibly due to its p-wave nature and the relatively larger span of the SPANCs
assigned for this state (see Table 3.1). We have to exclude some values of r0,
otherwise no peripheral region can be defined. If only the curves within the
±5% limit are considered, the peripheral region for transfers to the excited
state of 11Be is θc.m. = 0◦-27◦ at Ed = 21.4 MeV, 0◦-30◦ at 18 MeV, 0◦-34◦ at
15 MeV, and 0◦-40◦ at 12 MeV.

Results and discussion

Taking use of these obtained peripheral information, the value of the ANC for
each bound state can be extracted by performing the χ2 analysis:

χ2 =
∑
i′

[C2
lj · ( dσdΩ )th

i′ /b
2
nlj − ( dσdΩ )exp

i′ ]2

δ2
i′

, (3.2)

where Clj is the ANC obtained for each r0 by minimizing the χ2 in the angular
range where the reaction is peripheral. Here i′ represents all the experimental
data points measured in Ref. [SJB+12] within the peripheral region. And the
square of experimental error δ′i determines the weight. The resulting ANCs
are shown in Fig. 3.5 as a function of r0. It can be seen that the extraction of
the ANC is more reliable at lower energy for both cases. For 21.4 MeV, the
ANC obtained varies with r0 since at this energy the reaction is less peripheral
and the transfer calculation is sensitive to the interior part of the bound-state
wave function. There is a problem with the results at 18 MeV which are always
smaller than the others. It has been seen in the analysis of Schmitt et al.
[SJA+13] as well. The reason for that remains unclear. Nevertheless, the most
reliable sets of data at 15 MeV, and 12 MeV lead to consistent results, clearly
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Figure 3.4: Analysis of the differential cross sections of 10Be(d,p)11Be to the
ex.s. of 11Be with incoming deuteron energy of 21.4 MeV (top left), 18 MeV
(top right), 15 MeV (bottom left) and 12 MeV (bottom right).
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Figure 3.5: ANC extracted for the g.s. (left side) and ex.s. (right side) of 11Be.
The ab initio result (Clj = 0.786 fm−1/2 for g.s. or 0.129 fm−1/2 for ex.s.)
for comparison is presented by a red dashed line. From left to right in each
grid of the horizontal axis, the data points start with the ANC extracted for
r0 = 0.4 fm and end with that for r0 = 2.0 fm.

reaching a plateau. The only points that are not within the plateau at 15 MeV
are the ones falling out of the 5% in the definition of the peripheral region.
Based on this analysis, the final value of the ANC is (0.785 ± 0.030) fm−1/2

for the g.s. and (0.135 ± 0.005) fm−1/2 for the ex.s. In general, the present
results are in agreement with the ANCs predicted by the ab initio calculation
(0.786 fm−1/2 for g.s. and 0.129 fm−1/2 for ex.s.) [CNR+16]. The associated
uncertainty σ is calculated using the formula

σ =

√√√√ 1
N

N∑
i=1

σ2
i + σ2

0 , (3.3)

which includes the variation represented as σ0 between the centroids of the
estimates obtained with different potential widths and also the uncertainty
σi of the ANC value extracted by minimization of χ2 in Eq. (3.2) for each
Gaussian potential Vi. N is the total number of the ANC values being
considered. Our results are also very close to those found by Belyaeva et
al. ((0.723± 0.016) fm−1/2 for the g.s. and (0.133± 0.004) fm−1/2 for the ex.s.
at Ed = 12 MeV) [BPTD+14] using the CRC model. The slight disagreement is
mostly due to the fact that in their analysis, they considered the data collected
at all angles which are not always within the peripheral region.

In Fig. 3.6, I compare the adjusted theoretical results with the experimental
ones. The angular distributions of the cross sections are obtained through
multiplying the original results by C2

lj/(bnlj)2
r0

(specifically Clj = 0.785 fm−1/2
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Figure 3.6: The angular distribution of the cross sections for 10Be(d,p)11Be to
different states of 11Be at four energies after multiplying by C2

lj/(bnlj)2
r0
, here

Clj = 0.785 fm−1/2 for the g.s. (left side) or 0.135 fm−1/2 for the ex.s. (right
side).
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for the g.s. and 0.135 fm−1/2 for the ex.s.). In general, the extracted ANC
reproduces a good agreement at a low energy between the theoretical results
and the experimental data. It gives us confidence on the method developed.
Furthermore, if the experimental uncertainty was reduced at Ed = 12 MeV,
the extracted ANC would be more accurate. Due to the fact that this analysis
relies heavily on the accuracy of the experimental data, for obtaining a precise
ANC, it would be helpful to do the experimental measurements focusing on the
low energies and forward angles.

3.1.2 SuSy test

Similar to the idea developed in Ref. [CN06], an alternative way to check which
region of the 10Be-n wave function the transfer reaction probes is to apply the
supersymmetry method. As introduced in Sec. 2.3.3, it provides a solution to
remove deeply bound state(s) in a partial wave without changing the asymptotics
(i.e., ANC of the other bound states and phase shift in the continuum). Via
this method, a goal similar as the one presented in the last section is achieved,
namely producing a series of wave functions which exhibit the same tail but
differ in the internal region. Unlike the previous work, no modification of scaling
is needed here. While being normalized, the primary wave function and its
SuSy partner(s) naturally share the same identical ANC. If one or more SuSy
partners exist, feeding them into the transfer calculations and comparing the
obtained cross sections to those calculated with the original wave function could
basically tell how the interior of the wave function contributes to the cross
sections, and hence reveal the peripherality of the transfer reaction.

Such analysis can be performed with respect to the ground state of 11Be since in
the single-particle description of 11Be there is a deeply bound state which can be
removed. With the phase-equivalent potential in Eq. (2.37), the SuSy partner
corresponding to the wave function of the 1s1/2 state can be obtained. Both
wave functions are displayed in Fig. 3.7. The initial wave function of 1s1/2 state
is constructed using the Gaussian potential with r0 = 1.4 fm set as its width.
Compared to that, one node is removed in its 0s1/2 SuSy partner while the same
behavior is kept beyond the distance r′ of 4 fm. Considering the subsequent
transfer calculations with FRESCO, the numerical settings remain the same
as those given at the beginning of Sec. 3.1. The calculated cross sections at
two deuteron energies of 21.4 and 12 MeV are plotted in Fig. 3.8. It can be
learned from the figure that at Ed = 21.4 MeV this transfer is never purely
peripheral. As the incident energy decreases to 12 MeV, at forward angles the
transfer process depends only on the tail of the wave function which suggests
that such process is peripheral in this angular range. These results confirm
our previous statement about the conditions when the peripheral transfer is
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Figure 3.8: 10Be(d,p)11Be reaction calculated at two different deuteron energies
using the original wave function and its SuSy partner. Left side: Ed = 21.4 MeV;
right side: Ed = 12 MeV.

favoured, pointing to the same direction (namely at forward angles in the
center-of-mass system with a low beam energy) for extracting a reliable ANC
value. Besides, the cross sections at large angles are significantly affected by
the change in the internal part of the wave functions.

3.1.3 Dependencies

As indicated in Sec. 2.4.3, the accuracy of the transfer calculation depends on
several factors. For a specific transfer reaction, usually the Q-value and the
transferred angular momentum are fixed. Therefore, mainly the choices of the
optical potential and the description of the 11Be ground state are going to be
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analyzed here.

Sensitivity to the choice of the optical potentials

The angular distributions of cross sections calculated with ADWA model can
depend strongly on the chosen optical potential parameters. In this part,
we fix the 10Be-n potential to the Gaussian one with a width r0 = 1.4 fm.
By doing that, our interest is to check the influence of the nucleon-nucleus
optical potentials on the calculations. In particular, the Koning-Delaroche (KD)
potential [KD03] is selected instead of CH89 [VTM+91] to perform this series
of analysis. Both are the mostly used potentials in the analysis of transfer
reactions [NU12]. In the left panel of Fig. 3.9, a comparison is made between
the results obtained using these two parameterizations at Ed = 12 MeV. Since
the KD potential leads systematically to larger cross sections than the CH89
does, a smaller ANC is expected using the same method (see the right panel of
Fig. 3.9). The value of the extracted ANC is (0.755± 0.030) fm−1/2, not far
from the ab initio result.
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Figure 3.9: Left side: Comparison of the calculated cross sections between using
CH89 and KD for 10Be(d,p)11Be at 12 MeV. The Gaussian potential is the set
of 1.4 fm for both cases; Right side: ANC extracted for the g.s. of 11Be with
KD potentials.

Besides, there are other available options to build such potentials. In order to
learn more about the dependence on the potential parameters, the calculations
are performed with multiple combinations:
a. Finite-range (FR) adiabatic potential [JT74] built with the CH89 potential

and Reid Soft-core [Rei68], abbreviated as FR-CH89, which has been done
in Sec. 3.1.1;

b. FR adiabatic potential built with the KD potential and Reid Soft-core,
abbreviated as FR-KD;
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c. Zero-range (ZR) adiabatic potential [JS70] built with the CH89 potential,
abbreviated as ZR-CH89;

d. ZR adiabatic potential built with the KD potential, abbreviated as ZR-KD;
e. ZR adiabatic potential built with the nucleon-nucleus potential proposed by

Becchetti and Greenlees [BG69], abbreviated as ZR-BG;
f. Global deuteron optical model potential (OMP) of Daehnick et al. [DCV80],

abbreviated as DCV;
g. Global deuteron OMP of An and Cai [AC06], abbreviated as An & Cai.

The difference in the global parameterizations regarding the incident channel is
tested by keeping the CH89 potentials for the exit channel and the core-core
interaction since there might be some cancellation of the effect of the potentials
if the same parameterization is chosen in all the relevant interactions (not
possible for the deuteron OMPs). All the resulting cross sections for transfer to
the ground state of 11Be at Ed = 12 MeV are shown in Fig. 3.10. Obviously,
variations in cross sections are present when using different optical potential
parameters. In general, due to the finite-range effect of the deuteron, applying
the same nucleon-nucleus parameterization the ZR version of the adiabatic
potential gives a larger transfer cross section at forward angles than the FR
one does. The smallest cross sections are obtained with ZR-BG in which the
nucleon-nucleus potential is less reliable in this case since it has been fitted
to a smaller number of cases (mostly heavy targets). Compared to the other
results except the one given by the ZR-BG potential, two global deuteron OMPs
generate smaller cross sections at forward angles since they effectively take into
account more complex reaction processes. In particular, the deuteron OMPs
include the deuteron breakup channel in their absorption, whereas the ADWA
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Table 3.2: Woods-Saxon parameters of the 10Be-n potentials. The potential
depths and SPANCs of the 1s1/2 ground state are also provided [CN06].

Potential V0(g.s.) r0 a b1s1/2
(MeV) (fm) (fm) (fm−1/2)

V1 62.96 1.2 0.6 0.829
V2 66.80 1.2 0.5 0.797
V3 59.32 1.2 0.7 0.863
V4 71.81 1.1 0.6 0.818
V5 55.63 1.3 0.6 0.842
V6 57.47 1.25 0.65 0.852

models it adiabatically. Since part of the transfer would come from the breakup
of the deuteron with the produced neutron being captured by the target, using a
deuteron OMP that treats the breakup as absorption would reduce the transfer
cross sections as seen here. Based on this discussion, the major sensitivity of
the ANC value is the one shown in Fig. 3.9 since the other choices of optical
potentials listed above can be discarded.

Influence of the 10Be-n description

In Sec. 3.1.1, the interaction between 10Be and the neutron in the bound states
of 11Be has been simulated by the Gaussian potentials. A general approach to
reproduce the effective interaction between these two bodies in the 11Be nucleus
is to adopt a Woods-Saxon potential. To study the sensitivity of the transfer
calculations to this potential choice, six sets of potential parameters are used.
The geometry of the Woods-Saxon potential (r0, a) is taken from Ref. [CN06].
And the potential depths are adjusted to match the single-neutron separation
energy (0.502 MeV) of the 11Be ground state. They are listed in Table 3.2. The
calculated wave functions together with the corresponding transfer cross sections
are displayed in Fig. 3.11. In order to remain comparable with the previous
work, here the transfer calculations are carried out using the FR-ADWA model
while the numerical inputs are maintained as those described at the beginning
of Sec. 3.1 and only the 10Be-n description gets modified.

There is no doubt that scaling each wave function by its ANC value will generate
same tail behavior, resulting in a reduction of the discrepancies existing in the
differential cross sections at forward angles. However, using these sets of
potential parameters, the values of the SPANCs given in Table 3.2 are very
similar to one another, changing by ∼8% at the maximum, whereas much larger
changes are obtained in the Gaussian case. This lack of significant difference
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Figure 3.11: Left side: the 10Be-n wave functions obtained with six sets of
Woods-Saxon potential parameters; Right side: cross sections calculated for the
10Be(d,p) transfer using those Woods-Saxon potentials.

would make the identification of the peripheral conditions difficult. Note that
it is still possible to get a large range of SPANCs using the Woods-Saxon
potentials with more extreme parameters. But since a potential is a priori, there
is no actual constraint in choosing its type. With two parameters to fix the
potential geometry, this certainly brings more work to figure out their influence
on the transfer results when without changing the final conclusion the Gaussian
potential takes a shortcut on this problem thanks to its simpler expression.

3.1.4 Resonance state

So far in this work, the transfer reaction has only been employed to investigate
the bound states of the 11Be nucleus. However, there still exists a possibility
that the transferred neutron can populate unbound states of the final nucleus.
In particular for the halo nucleus 11Be, such system could easily get into the
resonance states. In Schmitt et al.’s work [SJA+13], the experimental data
for transfer to the first resonance in 11Be is also obtained at several energies.
Looking into this part could provide information about the nuclear structure
of the resonance and help improve the theoretical model for describing the
nuclear many-body systems. Furthermore, the properties of the resonances
are of special interest to nuclear astrophysics since many nuclear reactions
happening in stellar environments take place through this state.

According to the derivation in Sec. 2.3.4 combined with the previous idea
regarding the ANC extraction, the aim in this section is to establish a similar
connection between the transfer observables and the energy width of the 10Be-n
resonance. The FR-ADWA model is kept for the following transfer calculations
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Figure 3.12: Illustration of the coupling scheme used in the ADWA model for
transfer to the resonance state.

due to its good capability in calculating the case of (d,p) reactions [GCM14,
Cat14] and low computational cost. Considering the transfer to the resonances,
the coupling scheme in the ADWA method is shown in the schematic diagram
of Fig. 3.12, which basically can be viewed as a one-step transition from the
initial state d+10Be to the final state p+11Be.

Within the model presented in Chapter 2, the wave function of this 11Be
resonance state is described as an eigenstate of its Hamiltonian. But from the
experimental point of view, one has to keep in mind that there is no access to a
definite final energy in a practical transfer reaction leading to positive energy
states. This means that the measured cross sections are actually integrated over
some energy range which is up to at least the resolution of the detection system.
In practice, a bin description for the wave function is chosen. A typical form of
the bin function is averaged over the momentum k to be square integrable as
[TN09]

ψ(r) =
√

2
πN

∫ k2

k1

g(k)ψk(r)dk, (3.4)

with N =
∫ k2
k1
|g(k)|2dk, the upper limit of the momentum k2 and the lower one

k1 for the bin. The weight function g(k) is set to be e−iδk sin(δk) for a narrow
resonance [Tho06] in our case, where δk is the scattering phase shift.

Apart from this description of the resonance, the same settings as those
introduced for the potentials at the beginning of Sec. 3.1 are used. Without
considering the core excitation, the first resonance of 11Be can be simulated
by a 0d5/2 ⊗ 10Be(0+) configuration. Again the Gaussian potential is used in
this case to model the interaction between 10Be and the neutron. Six potentials
are obtained with different widths r0 starting from 1.0 fm to 2.0 fm while the
depth V0 is modified to reproduce the resonance energy (Eres = 1.28 MeV). The
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Table 3.3: Gaussian parameters of the 10Be-n resonance (Eres = 1.28 MeV).
The Γ widths given by FRESCO are shown as well.

Potential r0/fm V /MeV Γ/MeV

V1 1.0 303.814 0.0361
V2 1.2 209.241 0.0601
V3 1.4 152.172 0.0917
V4 1.6 115.088 0.1316
V5 1.8 89.622 0.1801
V6 2.0 71.363 0.2381
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Figure 3.13: Left side: the phase shifts obtained with six different sets of
Gaussian potentials for the first resonance of 11Be; Right side: wave functions
at Eres.

potentials with narrower widths are discarded here since they are not really
physical and would bring numerical problem when resolving the resonance width
in our calculations. The related parameters are all listed in Table 3.3 with the
Γ widths. The size of the bin considered in the calculation is matched to its
own Γ width. The phase shifts and wave functions for the resonances obtained
with these potentials are displayed in Fig. 3.13. We observe the clear signature
of a single-particle resonance with a sudden and sharp increase in the phase
shift around the resonance energy. The wave function exhibits a significant
maximum at small distances of r′ and has the usual oscillatory behavior of
continuum states at large distances.

Feeding those wave functions into the associated ADWA calculations at different
deuteron energies could reveal how the influence of the Γ width on the calculated
cross sections evolves with the incident energy. Two cases at Ed = 21.4 MeV and
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Figure 3.14: Analysis of the differential cross sections of 10Be(d,p) to the first
resonance of 11Be with incoming deuteron energy of 21.4 MeV (left side) and
12 MeV (right side).

12 MeV are presented in Fig. 3.14 to illustrate the findings. Referring to what has
been carried out with the ANC for bound states, a similar analysis is performed
here on the resonance width. In the figures, plot (an) (n = 1 for Ed = 21.4 MeV
and n = 2 for Ed = 12 MeV) shows the angular distribution of the transfer cross
sections obtained with different Gaussian potentials; plot (bn) represents the
cross section after being scaled by the corresponding Γ width; plot (cn) gives
the variation of the cross sections relative to those calculated using the potential
of r0 = 1.4 fm which leads to an energy width of the resonance that is close to
the experimental value (0.1(0.01) MeV) obtained in Refs. [HFA+09, KKP+12].
It is clear that in plot (an), the narrower the resonance, the smaller reaction
rate. The order of the curves follows the magnitude of the wave functions at
about r′ = 10 fm. Getting the cross sections scaled by the Γ width in plot
(bn) reduces significantly the differences among the curves shown in plot (an).
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This is not as effective as what was observed for the bound states. But still the
effect is similar. After scaling the previous order is inverted, suggesting that
the reaction seems to be also sensitive to the internal part of the wave function.
Surprisingly, this might indicate that the reaction is less peripheral.

Through the comparison between these two results, one conclusion that can be
drawn from the above investigation is that similar to what ANC means to the
bound state, the resonance width serves as a signature of the resonance. This
is not surprising because both the ANC and the resonance width are related to
the residue of the S-matrix as discussed in Ref. [MT99]. However, in general,
the calculations at both energies seem to provide the same uncertainty. The
peripherality at the low energy is no longer that clear as what has been observed
with the ANC. There are several potential factors that could contribute to
this situation: the peripherality of the transfer is questionable due to its large
angular momentum transferred; the description of the resonance state is a simple
approach in a single-particle picture; the ADWA model itself does not include
all the necessary coupling forms. It would be dangerous to directly extract the
resonance width without studying the above issues. Thus, one of our outlook
for the future work is to get more experimental data at low beam energies and
test the reliability of the theoretical method for this kind of transfer.

3.2 14C(d,p)15C transfer reaction

As a one-neutron halo nucleus, 15C is particularly interesting for physicists since
it is involved in reactions that drive the nucleosynthesis such as neutron induced
CNO cycles [HWG+02] and inhomogeneous big bang models [AH85, MBG+11].
In this section, the ANCs of the ground state and the first excited state in 15C
are extracted via 14C(d,p) transfer using the method introduced in Sec. 3.1.
Such value for 15C is very useful to constrain the relevant potential parameters
when applying the Halo-EFT description of this nucleus at the next to leading
order (NLO) [CPH18]. With this description, it is expected to offer reasonable
predictions for various reactions involving the 15C nucleus, such as transfer,
breakup at high beam energies and radiative capture [MYC19].

Regarding the 14C(d,p)15C transfer reaction, there have been two experiments
performed at relatively low incident energies where we have the best chance
to find a peripheral process. One was performed at the University of Notre
Dame with the deuteron bombarding energy of 14 MeV [GJB+75]. The other
was measured using a momentum-analyzed 17.06 MeV deuteron beam at the
Nuclear Physics Institute of the Czech Academy of Sciences [MBG+11]. Due
to the fact that the former experiment does not provide enough data points at
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forward angles for the analysis, only the data from the latter one are taken into
account to extract the ANC value even though being measured at higher beam
energy.

The theoretical model chosen for the transfer calculation is again the FR-ADWA.
The nucleon-nucleus optical potentials are built with the CH89 global potentials
[VTM+91]. The Reid soft core potential [Rei68] is employed for the deuteron
bound state. The finite-range version of the deuteron adiabatic potential is
obtained with the front-end code of TWOFNR [TTIK12] and the full transfer
calculations are carried out using FRESCO [Tho06].

3.2.1 ANC extraction

The introduction of ANC in Eq. (2.45) is to quantitatively define the exponential
tail of the bound state wave function. In a purely peripheral transfer, its value
determines the overall normalization of its cross sections. In order to extract the
ANC as precise as possible, the main task is to find the experimental conditions
where the transfer is peripheral and probe only the tail of the wave function. As
illustrated in the previous work in Sec. 3.1.1, this can be achieved by studying
the sensitivity of the transfer cross sections on different wave functions for
the state of the nucleus of interest. From the low-energy level diagram of 15C

Figure 3.15: Low-energy level diagram for 15C [NuD19].

shown in Fig. 3.15, with the assumption that the 14C core is in its ground state
(0+), the 1/2+ g.s. of 15C can be described by a 14C(0+)⊗1s1/2 configuration,
and the 5/2+ ex.s. by a 14C(0+)⊗0d5/2 configuration. To simulate the 14C-n
interaction at LO of Halo-EFT, several Gaussian potentials are generated to
reproduce the measured single-neutron binding energy (1.218 MeV for the g.s.
and 0.478 MeV for the first ex.s.) while giving significant changes in the radial
wave functions. The detailed parameters of the Gaussian potentials are listed in
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Table 3.4: Gaussian parameters of the 14C-n interaction in the s1/2 and d5/2
waves within 15C. The single-particle ANC (SPANC) and root-mean-square
radius for each case are provided as well.

r0 for g.s. b1s1/2 〈r2〉1/2 r0 for ex.s. b0d5/2 〈r2〉1/2

(fm) (fm−1/2) (fm) (fm) (fm−1/2) (fm)

0.6 0.8646 3.81 1.3 0.0355 2.89
0.8 0.9340 4.07 1.4 0.0399 3.09
1.0 1.0083 4.34 1.5 0.0444 3.28
1.2 1.0878 4.61 1.6 0.0492 3.47
1.4 1.1728 4.87 1.7 0.0541 3.66
1.6 1.2636 5.13 1.8 0.0592 3.85
1.8 1.3606 5.39 1.9 0.0646 4.03
2.0 1.4640 5.64 2.0 0.0701 4.21
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Figure 3.16: Wave functions obtained with eight different sets of Gaussian
potentials listed in Table 3.4 for the 1/2+ g.s. of 15C (left) and for the 5/2+

ex.s. (right).

Table 3.4. The reason to develop the Gaussian potentials for the excited state
with a different set of widths is to obtain roughly the same magnitude of change
for the single particle ANC compared with that of ground state. The wave
functions for the g.s. and ex.s. of 15C obtained using the Gaussian potentials
are displayed in Fig. 3.16.

Entering these wave functions into the transfer calculations, the angular
distributions are shown in Fig. 3.17 (an) (here n = 1 for the ground state
of 15C and n = 2 for its first excited state). After scaling by the square of bnlj ,
the spread in the cross sections is significantly reduced as shown in Fig. 3.17 (bn).
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Figure 3.17: Analysis of the differential cross sections of 14C(d,p) transfer to
two bound states of 15C with incoming deuteron energy of 17.06 MeV. Left:
transfer to the g.s. of 15C. Right: transfer to the first ex.s. of 15C.
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Table 3.5: Comparison of the ANC2 values of the 15C states from the other
analysis.

Ref C2
1s1/2 (fm−1) C2

0d5/2 (×10−3 fm−1)

[TAC+02]a 1.48±0.18
[TBD+06]b 1.89±0.11
[SN08]c 1.74±0.11

[MBG+11]d 1.64±0.26 3.55±0.43
[MMT+14]e 1.88±0.18 4.25±0.38
[Nav18]f 1.64 2.30
this work 1.59±0.06 3.14±0.11

a Knockout data from Refs. [MAB+01] and [SCO+04] were jointly used to extract the
ANC [PNM07]. This value should be accurate since the knockout process is mostly
peripheral [HC19]. Our result falls exactly within its uncertainty band.
b The charge symmetry between 15C and its isobar analog 15F was applied as a
model-independent tool to constrain the ANC value. This is strongly dependent on
the choice of the width of the 15F resonance considered in the method, which might
explain the discrepancy with our value.
c This analysis found the related ANC from the Coulomb dissociation data. Our result
is compatible with this value. This is not surprising since the Coulomb breakup is
peripheral.
d The ANCs for both bound states of 15C have been extracted using the (d,p) transfer
at Ed = 17.06 MeV of which the data is reanalyzed in our work. In their analysis,
they considered the data from the entire measured angular range which is not fully
peripheral. This could explain the small difference between their results and ours.
e The ANCs were determined using the (d,p) reaction as well as a heavy-ion neutron
transfer reaction. The experiments were performed at a higher energy (Ed ≈ 24 MeV)
where the transfer is less peripheral. The slight disagreement with our ANC is most
likely due to that issue.
f These results are obtained in an ab initio calculation of 15C performed within the
no-core shell model with continuum (NCSMC) by Navrátil et al. [Nav18]. For the
ground state of 15C, our result is in excellent agreement with their value. The values
for the excited state do not match that well possibly due to the d-wave nature. This is
consistent with what has been observed in our previous analysis of the 10Be(d,p)11Be
transfer in Sec. 3.1.1.

To quantitatively determine within which angular range the process should be
strictly peripheral, the major angular dependence is removed by considering
the ratio formula of Eq. (3.1). In the case of transfer to the 15C first excited
state, the comparative standard is replaced by the set of 1.7 fm rather than
that of 1.4 fm. It turns out that most of the curves in Fig. 3.17 (cn) fall into the
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confident peripheral band of 5% at forward angles. For transfer to the 15C g.s.,
this happens when θc.m. < 10◦. With respect to the excited state, as expected
our method works less well since l = 2 here. Excluding the most extreme
calculations, viz. the ones corresponding to the largest and smallest values of
SPANCs, would lead the maximum peripheral angle extend to 44◦. Taking
use of the χ2 method based on Eq. (3.2), the ANCs can be extracted from the
experimental data [MBG+11] within the peripheral range. The results shown in
Fig. 3.18 are quite independent of the value of r0. Calculating their mean value
and standard deviation, the final ANC value inferred is (1.26 ± 0.02) fm−1/2

for the 15C ground state and (0.056 ± 0.001) fm−1/2 for the first excited state
of 15C.

For comparison with previous work on 15C, in Table 3.5 part of the ANC results
reported before is presented together with the values extracted in this work.
Our analysis is within the error band but on the lower end of most results,
and especially shows a good agreement with those provided in Refs. [SN08]
and [MBG+11]. Nevertheless, it is still controversial that the error we get is
in general small. This could be due to several aspects. One of them is that
the systematic uncertainty on the data has not been taken into account in the
analysis. And in our case the ANC is always obtained from the experimental
data at forward c.m. angles in which a better statistics is presented than at
larger angles.

3.3 Searching for halos in nuclear excited states

The results presented in this section have been obtained in collaboration with
Prof. Alexandre Obertelli, an experimentalist at the TU Darmstadt. The
original idea is to use transfer with small beam energies to detect halo states
in the nuclear excited spectrum where the ground state is not a halo state
in contrast to the previous case. Up to now, this topic of the halo excited
states introduced in Sec. 1.1.1 remains an open question. Through the work
in this section, we study theoretically the feasibility of our methodology. As
mentioned before, transfer reaction provides an excellent way to investigate the
single-particle structure of the nucleus. When the transfer is performed at low
incident energies, even below the Coulomb barrier, no close approach between
the projectile and the target in this reaction simplifies the interpretation of
the reaction mechanism. One of the decisive factors for the transfer rate is
the overlap between the asymptotic parts of the wave functions in the initial
and final states. Thus in practice, the transfer cross section can be used to
derive the tail behavior of the wave function, thereby further indicating whether
the nuclear state would exhibit a halo. Due to its well-studied feature, (d,p)
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reaction is employed in the following work. The next two questions are to figure
out the suitable energy range for conducting the transfer and find a good halo
candidate to test the validity and limitations of the method. These questions
will be addressed explicitly in the next two sections. Based on that, a systematic
study of the interesting transfer will be carried out in Sec. 3.3.3.

3.3.1 Sub-Coulomb transfer

Regarding the incident energy, there are several factors that prompt us to
consider sub-Coulomb transfer. Even though the corresponding cross sections
would be reduced due to the Coulomb repulsion, the advantage there is that
any observed transfer event would most likely be a direct and peripheral one,
making a few other channels negligible, such as the compound-nucleus formation.
Meanwhile, the distortion of the elastic Coulomb waves by the nuclear potential
would be very small. An early review on this method dates back to 1966 by
Goldfarb [Gol66]. Fig. 3.19 shows an example of 90Zr(d,p) which is recalculated
based on Goldfarb’s work [Gol66] to reveal the evolution of transfer angular
distribution in a wide range of incident energies. What we have obtained
here is basically consistent with Goldfarb’s results [Gol66]. All the transitions
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Figure 3.19: Evolution of the angular distributions for the 90Zr(d,p) transfer
from sub-Coulomb energies to those well above the Coulomb barrier (≈ 8 MeV).
The incident energy of deuteron is marked next to the corresponding line.

are calculated for l = 0 using ZR-ADWA model which offers a close result
and is easier to manipulate compared to the finite-range version according to
our pre-tests (not shown here). For the results obtained at Ed = 3, 4 and
5 MeV, the dashed curves correspond to the Coulomb-dominated transfer and
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neglect of nuclear absorption and refraction while the solid curves include the
full interaction. In a classical physics picture, the Coulomb barrier for the
entrance channel is around 8 MeV around which one can easily find a distinct
change of the curve shape. Especially below 6 MeV, all the cross sections start
to increase monotonically and exhibit a maximum at 180 degrees. At larger
incident energies, the familiar diffraction-like peaks appear at forward angles.
Another work done by Erskine and his colleagues [EBE62] suggests that the
angular distributions for sub-Coulomb stripping probability would be featureless
and almost independent of the l-transfer. But this does not mean that the
information of the transferred orbital angular momenta will be lost using this
method. It has been demonstrated by Hering and Dost [HD68] that applying
the sub-Coulomb stripping to assign l-values from the slope of (d,p) excitation
functions is adequate. Another interesting finding from the Fig. 5 in Erskine
et al.’s work [EBE62] is that the less bound the final nucleus is, the higher the
transfer cross section becomes. This phenomenon would be a strong asset for
us.

3.3.2 Searching for a candidate nucleus

A quick search on a candidate that could host a 1-n halo in one of its excited
states is presented in this section. In our case, the ideal candidate should have
an excited state with a rather small one-neutron separation energy at medium
to heavy mass region with the s orbital occupied. Note that there are two
main reasons to concentrate on such mass region. One is that medium to heavy
nuclei would have abundant excited states. The other is that compared to
the light nuclei the higher charge of these nuclei provides a wider range of
beam energy choice in order to perform the transfer below the Coulomb barrier.
Considering the above constraints within a simple single-particle structure, the
most possible state for the valence neutron in the final product is 2s1/2 which
indicates that the neutron number would be around 50 ± 20 using the prediction
of the classical shell model.

A short summary of the searching criteria is: 1) 18 < Z < 60 (with proton
number Z being even); 2) 30 < N < 70 (with neutron number N being odd);
3) Spin and parity: 1/2+; 4) Binding energy (BE) < 1 MeV at most. Using
the experimental data in NNDC [NuD19], the results of this search are listed
in Table 3.6. The best case found is the excited state of 95Sr. In this study, I
will consider two excited states of 95Sr where the last neutron is bound with
either 69.5 keV or 184.4 keV in the associated transfer of 94Sr(d,p) to check its
sensitivity to different experimental conditions, and hence learn the feasibility
of practical measurements.
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Table 3.6: Summary of the possible candidates of the halo excited states. The
values including one-neutron separation energy (Sn) for the g.s. and excitation
energy (Ex) are taken from [NuD19].

A Element N Sn/keV (g.s.) Ex/keV BE/keV (= Sn− Ex) Jπ

63 Ni 35 6837.8 6440.0 397.8 1/2+

95 Sr 57 4348.0 4163.6 184.4 1/2+

95 Sr 57 4348.0 4278.5 69.5 1/2+

95 Sr 57 4348.0 4292.4 55.6 1/2+

3.3.3 Dependencies

In this part, for the aim of understanding better the property of the transfer
calculations involving 95Sr, more efforts have been systematically made regarding
the investigation of the sensitivity of the cross sections on the nuclear structure
and reaction parameters. The crucial factors being tested contain Q-value,
nuclear spin and beam energy. In addition, following the nice results obtained
for 11Be in Sec. 3.1.2, the SuSy method explained in Sec. 2.3.3 is applied to tell
which part of the wave function is probed under certain experimental conditions
during the (d,p) transfer since one of the key features coming with the halo
nucleus is a significant long-range tail in its wave function.

As mentioned before, the theoretical model chosen for the following transfer
calculations is the ZR-ADWA. The settings for the parameters in the calculations
are similar to those used before except that the description of the 94Sr-n
interaction is simulated by a standard Woods-Saxon potential (r0 = 1.25 fm,
a = 0.65 fm). Considering the states involved in the test, to give an idea about
how they differ from each other, several relevant parameters (like SPANC and
rms radius) obtained using the single-particle description of the 95Sr nucleus
are listed in Table 3.7. Note the states considered in this test, such as a p-wave
state, are not always physically correct. The idea here is to start from a realistic
case and then explore the related model space to see what can be inferred from
such calculations.

The global optical potential CH89 is employed for the nucleon-nucleus interaction
without the spin-orbit terms, while the Reid soft-core potential is used to bind
the proton and the neutron in the deuteron. Regarding the incident energy
Ed, our initial intention is to bring out the transfer below the Coulomb barrier
Ecoul which is around 7.8 MeV. The lower limit for this energy is imposed by
the threshold energy Eth (= −Qma+mA

mA
≥ 0 in normal kinematics) to make

the transfer possible. The relationship can be denoted as Eth < Ed < Ecoul.
Combined with two interesting excited states of 95Sr (the corresponding Q-value
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Table 3.7: Single-particle states of 95Sr considered in the tests. The values of
the SPANCs and root-mean-square radii are also offered.

State BE (keV) SPANC (fm−1/2) 〈r2〉1/2 (fm)

2s 69.5 0.460 16.46
184.4 0.713 11.79

3s 69.5 0.476 16.96
184.4 0.751 12.30

2p 69.5 0.175 12.11
184.4 0.335 9.91

1d 69.5 0.024 7.76
184.4 0.068 7.29

is -2.1551 MeV or -2.0402 MeV), the sub-Coulomb incident energy is set to be
4 MeV as the standard in most of the calculations.

Influence of Q-value

It has been learned in Sec. 2.4.3 that the Q-value could have a significant
impact on the magnitude of the cross sections. In FRESCO, this factor can be
treated as an independent value that one can manipulate at will. It offers in
this way a simple and quick way to compare the cross sections before and after
removing the difference in Q-value. In practice, three states (2s1/2, 3s1/2 and
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Figure 3.20: Wave functions of 94Sr-n bound in different partial waves and
binding energies.

2p1/2) bound with two binding energies (69.5 keV and 184.4 keV) are considered
to help illustrate our findings. In Fig. 3.20, the wave functions for different
combinations of 94Sr-n (see Table 3.7) are plotted. At the same nuclear state,
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Figure 3.21: Differential cross sections of 94Sr(d,p)95Sr∗ reaction at Ed = 4 MeV
with the change of Q-value (left side). On the right side, Q-value is kept as
0 MeV.

the less bound case has a more extended tail beyond 13 fm. With the same
binding energy, the tail of s wave function is always higher than that of p wave
function due to the presence of a centrifugal barrier. Based on the choice of
the Q-value, the cross sections of the 94Sr(d,p)95Sr∗ transfer at Ed = 4 MeV
are calculated and organized in two subplots of Fig. 3.21. On the left side of
Fig. 3.21, the Q-value varies according to the binding energy. It is clear that the
results of BE = 184.4 keV (dashed lines) are always larger than those of BE =
69.5 keV (solid lines). This is because although a lower binding energy leads to
an enhanced tail in the reduced radial wave function, a smaller Q-value strongly
hinders the transfer. The oscillations observed in some curves are possibly due
to numerical problems when encountering a poor Q-value matching [HEK+78].
And the slight difference between the curves of 2s and 3s states (with the same
binding energy) is caused by the difference in their ANC values. After removing
the difference in the Q-value as shown on the right side of Fig. 3.21 where
all the Q-values are set to 0 MeV, there is a significant increase of the cross
sections for the less bound cases. Lowering the threshold energy for the reaction
also modifies the shape of the angular distributions. The good news here is
that the order of the tail of the wave function which serves as the signature
of a halo state can almost be judged by the magnitude of the cross sections.
The difference between the results of 2p1/2(69.5 keV) and 2s1/2(184.4 keV) (or
3s1/2(184.4 keV)) would depend on how much range of the tail part gets involved
in the calculations, which can be partially checked using the SuSy method (see
below).

Influence of the nuclear spin

The aim of this test is to see whether the orbital angular momentum can be
distinguished by the transfer cross sections. Here only the spin of the valence
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Figure 3.22: Differential cross sections of 94Sr(d,p)95Sr∗ reaction at Ed = 4 MeV
with different total spins assigned in the final state.

neutron is changed. The Q-value remains as 0 MeV. Four states (2p1/2, 2p3/2,
1d3/2 and 1d5/2) bound with two binding energies (69.5 keV and 184.4 keV)
are selected. The calculated transfer cross sections are plotted in Fig. 3.22.
With the same binding energy, it turns out that the discrepancy between the
cross sections of two states splitting from one orbital angular momentum l can
be explained by the total spin j of 95Sr with a relationship of (2j+1). For
instance, the ratio of the cross section obtained for the 2p3/2 state to that for
the 2p1/2 state is close to (2×3/2+1)/(2×1/2+1) = 2. This is consistent with
the derivation given in Ref. [XTG+13] where these information can be extracted
separately as the coefficient Cα,β = (2jB + 1)/(2jA + 1) for a stripping reaction
(in our case jA and jB are the total spins of the 94Sr and 95Sr∗). The experience
learned from this part is that there is a potential competition between the total
spin of the produced nucleus and the tail of the wave functions in determining
the magnitude of the transfer probability.

Influence of the incident energy

The effect of incident energy on the transfer cross section is examined here. For
the comparison, the transfer calculations are performed at Ed = 5 and 8 MeV.
The results are displayed in Fig. 3.23. Although a higher incident energy might
be able to compensate for the difference in binding energy and hence reduces the
effect of Q-value, to ensure the comparability of the results with previous work,
0 MeV is again used as the Q-value. The final states populated in 95Sr contain
s and p waves bound with two binding energies. Shifting Ed from 5 MeV to
8 MeV, the cross sections of 2p1/2 state move beyond those of s states. And
considering the s states with Ed = 8 MeV, the results obtained using a smaller
BE drop below the others. Both phenomena indicate that at higher energies
the transfer reaction starts to probe the internal part of the wave function. In
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Figure 3.23: 94Sr(d,p) transfer to multiple binding cases of 95Sr∗ at different
deuteron energies with the Q-values set to 0 MeV. Left side: Ed = 5 MeV; Right
side: Ed = 8 MeV.

other words, regarding our case, the cross section is no longer only sensitive
to the tail of the wave function with the deuteron energy being above 8 MeV.
Repeating the above tests with another Q-value, -2 MeV which is close to the
real case, would as expected produce much smaller cross sections (not shown
here). But the distribution of the orders of the curves remains similar, which
would lead to the same conclusion. This confirms the necessity for this test to
be at sub-Coulomb energy in order to study the asymptotic behavior of the
wave function.

SuSy test

To clarify which part of the wave function the transfer actually probes, the
supersymmetry (SuSy) method is employed here. Via this method, a series
of wave functions is generated with the same asymptotic behavior but very
different interiors. Feeding them into the transfer calculations and comparing
the cross sections will basically tell if the internal part of the wave function is
playing a role in determining the results. In this test, the 2s1/2 state bound by
184.4 keV is taken into account. Instead of considering the binding energy of
69.5 keV which would cause numerical instabilities in the calculations, a higher
BE (184.4 keV) is chosen here. Its wave function is plotted together with the
associated SuSy partners in Fig. 3.24. In the figure, 2s1/2 state stands for the
original wave function of the 2s1/2 state having two nodes; removing either the
first node corresponding to the deepest Pauli forbidden state or the second one
would generate two different 1s1/2 states indicated by the blue dashed line and
the black solid line respectively; 0s1/2 state is a state in which both nodes are
removed.

Fig. 3.25 shows the calculation results of the 94Sr(d,p)95Sr transfer reaction.
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Figure 3.25: 94Sr(d,p) transfer at different deuteron energies using the SuSy
partners. Left side: Ed = 4 MeV; right side: Ed = 22 MeV.

Since just one binding energy is considered in the final state, the same
experimental Q-value (-2.0402 MeV) is applied here to approach the real case
and will not have any impact on the comparison. Only the influence brought
by the internal part of those wave functions is studied. At Ed = 4 MeV, all the
cross sections are identical to one another in the whole angular range. This
confirms the previous idea about the peripherality of the transfer at this energy
that only the tail of the wave function is involved in the calculations. When
the beam energy moves up to 22 MeV, there exist differences among the curves
while the highest peak of cross sections appears at forward angles. It suggests
that the internal part of the wave function (r′ < 5 fm) starts to contribute
when the incident energy becomes higher. Similar tests (not shown here) have
also been performed starting from the 2p1/2 wave state, which lead to the same
conclusion.



SEARCHING FOR HALOS IN NUCLEAR EXCITED STATES 79

Based on the above tests, it can be figured out that in a peripheral transfer
with a low incident energy, viz. sub-Coulomb, the cross sections are sensitive
to the tail of the reduced radial wave function (as the simultaneous effect of
binding energy and orbital angular momentum in the occupied state). However,
other features of the system also play a significant role, which should not be
ignored in analyzing the results of actual experiments: the total spin of the
final state and the Q-value can reduce the effect of the long-range tail observed
in the wave function of a halo state. In our case, the (d,p) transfer taking place
at a small incident energy, such as sub-Coulomb transfer, is rather peripheral
and therefore will be a clean measure to fetch the probability of the presence of
the valence neutron at large distances from the core, i.e., the tail of the wave
function. Such extracted information would help identify halo excited states in
medium to heavy nuclei. However, some problems remain. The conclusions up
to now rely heavily on the prediction power of the adiabatic model being used,
which might be questioned at sub-Coulomb beam energy. And the price to pay
for carrying out sub-Coulomb transfer is a much smaller cross section. Such
low cross sections are rather difficult to measure experimentally and thus would
limit the type of nuclei to which this method can be applied. It is not clear
that such measurement could be done for the low-intensity beams of radioactive
nuclei. On the aspect of the halo candidate, a single-particle description might
be too simple an approximation. Thus, there is still room for improvement in
our method to test the presence of halos in excited states.





Chapter 4

Investigation of 9Li(d,p)
transfer

This chapter focuses on the recent experimental effort regarding the (d,p) transfer
to the 9Li+n resonance followed by my theoretical interpretation.

It starts with the motivation of studying the 10Li structure via the 9Li(d,p)
transfer in Sec. 4.1. The experimental campaign IS561 was carried out by
the joint force of Aarhus and Madrid nuclear physics group [BFF+12] at
HIE-ISOLDE, CERN (European Organization for Nuclear Research). A
brief overview of the HIE-ISOLDE facility and the detectors used during the
measurement is given in Sec. 4.2. Once the recorded data gets sorted, based on
Ref. [Jen17], most of the necessary analysis steps including energy calibration,
particle identification, simulation, etc. are reproduced and shown. In this work,
two main reaction channels (9Li(d,d) elastic scattering and 9Li(d,p) one-neutron
transfer) are of special interests. The relevant results will be extracted and
discussed in Sec. 4.4.

In Sec. 4.5, the theoretical framework developed in Sec. 3.1.4 for the transfers
to the resonance state is employed to illustrate what structural information can
be learned from the experimental data. Due to the unsatisfactory statistics
obtained during the aforementioned run, other existing data from Refs. [JMB+06,
CDNC+17] are reanalyzed to draw our preliminary conclusion.

81
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4.1 Motivation

The main objective of the experimental program IS561 proposed in Ref. [BFF+12]
is to apply the 9Li(t,p) transfer in inverse kinematics to measure the Borromean
halo nucleus 11Li which brings, as already introduced in Sec. 1.1, abundant and
interesting physics on the aspects of magic number, three-body interaction and
shell structure far from stability. A proper understanding of the Borromean
halo nucleus 11Li requires sufficient knowledge of the interaction between the
9Li core and neutron since it is one of the important interactions involved
within the 9Li+2n model. Besides being a crucial ingredient in the description
of the 11Li nucleus, investigating the 10Li system itself can shine light on the
puzzle about the nuclear continuum dynamics and help reveal whether the
shell inversion between the 1s1/2 and the 0p1/2 orbitals in the N = 7 isotones
(which has been confirmed for the 11Be nucleus) also prevails here [CDNC+17].
Due to these peculiar features, 10Li has already received much attention on
both the experimental and theoretical sides. Various techniques have been
utilized in past experiments to study the 10Li system, such as fragmentation
of 18O [KAG+93, TYA+99] and 11Li [BBBM07], stopped pion absorption
reactions [CGK+13], one- and multi-nucleon transfer [WWW+75, YBK+94,
ZHN+95, BBG+99, JMB+06, CDNC+17] etc. Tremendous theoretical studies
[KI93, TZ94, GFJ02, BPVB18, MCGR19] have been made to address the
corresponding structural information hidden in the data.

As the first stage (referred to as IS561A for convenience) of the experiment
IS561, 9Li(d,p) transfer was performed in the fall of 2016 at HIE-ISOLDE
aiming at providing more data on the 10Li unbound system. With a
different incident energy (6.72 MeV/A) compared to the previous similar
experiments [SKGa+03, JMB+06, CDNC+17], these data could hopefully
provide information on the debatable existence of the s-wave virtual state
for the 10Li ground state. Moreover, this run offers an excellent test bed to learn
the strengths and weaknesses of the detection system and adjust the associated
analysis method, which is essential for the success of the more challenging 11Li
case.

4.2 Experimental setup

The production of 10Li in the IS561A is realized in inverse kinematics, namely
by bombarding a deuterium target with the 9Li beam. Here it is not feasible
to utilize the 9Li nucleus as the target since it is unstable with a half-life
T1/2= 178.3(4) ms [NuD19]. Thanks to the great development made in the
technique of Radioactive Ion Beams (RIBs), the Isotope Separation On-Line



EXPERIMENTAL SETUP 83

Figure 4.1: Overview of the ISOLDE facility. The components marked with
number in the figure are: 1) Injection of the proton beam, 2) GPS, 3) HRS, 4)
REX-TRAP and REX-EBIS. The picture is from [Iso19].

(ISOL) method [VD06] is employed at the ISOLDE facility at CERN in order
to generate and transport such short-lived radioactive beams. Its principle is to
take use of fission, fragmentation and spallation reactions after shooting light
particles with high energies on a heavy and thick target, so as to extract the
isotope of interest from the target afterwards. In practice at ISOLDE, a proton
beam with an energy of 1.4GeV and an average intensity of 2.0 µA delivered
by the Proton Synchrotron Booster (PSB) in pulses every 1.2 seconds is used
to induce reactions on some hot target, such as a uranium-carbide 238UCx.
The produced fragments then diffuse through the target material and drift into
an ion source where they are ionized by lasers of different wavelengths and
transported at an energy of 60 keV to the High Resolution Separator (HRS)
or the General Purpose Separator (GPS) for mass separation based on their
mass-to-charge ratio A/q as shown in Fig. 4.1. In this experiment, the GPS
which has a mass resolving power m/∆m of 2400 [Els13] was used. Then
this low-energy ion beam is transferred to the post-accelerator REX-ISOLDE
(Radioactive beam Experiment at ISOLDE which was installed between 2001
and 2005 [HKB+97]) to get bunched in a Penning trap (REX-TRAP) [SAB+02],
charge bred using the REX Electron Beam Ion Source [Wen10] (REX-EBIS)
and further accelerated up to 3 MeV/A. With the HIE-ISOLDE (High-Intensity
and Energy upgrade of ISOLDE) project, several superconducting modules
(three of the five planned ones) were mounted in 2016 [Jen17], which increases
the upper limit of the beam energy at ISOLDE up to 7 MeV/A. This energy
region meets the desired experimental condition. In our case, the 9Li beam was
accelerated to an energy of 6.72 MeV/A. The chosen beam line for carrying out
this transfer experiment is the second one called XT02 as shown in Fig. 4.1. At
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Figure 4.2: Types of DSSDs used in the IS561A experiment. W1 and BB7 have
a rectangular shape (as shown on the left side) while S3 is round (right side).
Images taken from Ref. [Jen17].

the end of this beam line is the Scattering Experiments Chamber (SEC) [HIE19]
inside which the related detection system is installed. For more technical details
with respect to different stages of ISOLDE, I refer the interested reader to
Refs. [HKS+98, OT99, Bor16, KFPK18].

Detection system

For the detection system in the SEC, its building blocks are two types of
silicon detectors: double-sided silicon strip detectors (DSSD) and single-sided
unsegmented silicon detectors (also called pad detectors). Whenever a charged
particle enters a silicon detector, its energy is gradually transformed into electron-
hole pairs. If a bias voltage is applied there, those pairs will start to drift and
then be collected with metal contacts to give an output signal. Such signal
will then be sampled and stored in a data acquisition system (DAQ), waiting
for subsequent analysis. Besides the energy information, the DSSDs can also
provide positional information while the unsegmented silicon detectors cannot.
This is because of the unique structure that the DSSDs have. In the DSSDs,
each side is divided into a number of strips (or rings and spokes for the round
case) as shown in Fig. 4.2. The strips on different sides are orthogonal to each
other. By recording the same event passing through the strips on both sides,
the position where the particle hits the detector can be limited within the range
of a certain pixel delimited by the two strips. Further combined with the spatial
location of the DSSDs, the kinetic information (direction and energy) of the
recorded particle can be measured.

For the IS561A experiment, three basic types of DSSDs are employed to build
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Figure 4.3: CAD drawing (left) using AUSAdraw [AUS19] and actual installation
photo (right) of the applied detection array. In the right figure, a target wheel is
added at the position (b) while the pentagon array and the backward telescope
are placed at (a) and (c), respectively.

the detection array. They are W1 (60 µm thick square detector with 16×16
strips each of width 3 mm), BB7 (60 µm thick square detector with 32×32
strips each of width 1.9 mm) and S3 (1000 µm thick round detector with 24
rings each of width 0.89 mm and 32 spokes) [Jen17]. By putting a thin DSSD
in front of a thick silicon pad, a telescope configuration is constructed. This
assembly of the detectors is extremely useful for light particle identification
since the correlation between the deposited energy in both detectors is rather
unique for a certain type of particles. Such technique is also named ∆E-E
method which will be discussed more in the next section.

The complete detection setup used in IS561A is shown in Fig. 4.3. Five telescopes
(each composed of a DSSD W1 and a pad detector) are placed in a pentagon
shape with the S3 attached at the end of the structure. In this measurement,
the telescopes are mainly responsible for identifying light ejectiles while the
main role of the S3 is to detect the heavy beam-like fragments. Based on
the hit pattern of the particles on this symmetric detector, the quality of the
beam alignment can be learned. It is also possible to get the beam intensity by
collecting the particles from the Rutherford scattering. In addition, combined
with the other detectors, one could perform a coincidence analysis to extract
reliable reaction events. On the other side of the pentagon structure, another
telescope is placed with a BB7 being the front part. The main reason for
such placement is in fact that the laboratory backward angles correspond to
small c.m. ones where the transfer of interest in this study is favored. Another
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Table 4.1: Targets used in the IS561A experiment.

Target Thickness Usage
197Au 0.1 µm Backed by 3.5 µm Mylar to estimate the beam yield
CD2 8 µm Main target used for the 9Li+d reaction
CH2 6 µm Background measurement for 9Li+p reaction
12C 8.8 µm Background measurement for 9Li+C reaction

advantage to have detectors within this angular region is to get rid of the
interference from the other reaction channels and thus capture a clean transfer
spectrum since according to the kinematics only the protons produced by the
transfer reaction can reach the laboratory backward angles. A target wheel,
which contains several targets as listed in Table 4.1, is mounted in the middle.
The support frame for this setup is 3D-printed so that the spatial orientation
and relative positions of the detectors are reproduced with good precision.

4.3 Data analysis

The actual duration of the measurement in the IS561A run is about 22.6 hours.
After that, a huge amount of raw data was obtained from the detection system.
To translate those data into the language of physics, several pre-analysis stages,
such as the detector mapping, unpacking, calibration and sorting, are required.
Most of these complex and lengthy steps have been done by Jesper Halkjær
Jensen, a Ph.D student from the Aarhus university (Denmark). My contribution
to this analysis is mainly after the calibration of the acquired spectrum. In

Figure 4.4: Typical routine for the present data analysis based on the AUSAlib
pipeline.

order to gain a better understanding of the whole process and make the story
complete, the main points of each stage are going to be quickly reviewed based
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on Ref. [Jen17]. Fig. 4.4 shows a typical pipeline for this kind of data analysis.
The idea behind is to transform the data and its structure to a higher level of
abstraction when moving to the next stage.

There is a variety of information written in the raw data, such as the pulse
amplitude, timing and so on, regarding the readout signal. At first these stored
data have to be unpacked using the program ucesb (unpack & check every single
bit) which provides easy access to the various data members and produces
ROOT files afterwards. As the name suggests, the ROOT files are dealt with
by the ROOT framework which is developed at CERN with rich functionalities
for big data processing [ABB+09]. This framework is mainly written in C++
programming language and excels at processing histograms.

Energy calibration

As an intermediate step from the unpacking to the data sorting, energy
calibration of the detectors is essential to bridge the gap between digital signal
to real energy. To do that, an α source with a well known spectrum is used,
typically the 148Gd source and a combined one of 239Pu, 241Am and 244Cm.
By placing the source in the target position, a spectrum similar to the one on
the left side of Fig. 4.5 is acquired with its x-axis being the number of the raw
channels. The channel of the peak position representing the deposited particle
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Figure 4.5: An example of the α energy spectra (left side) as measured in one
DSSD with the peak position pointed by red triangles and the linear fit (right
side) performed using the α source data.

energy is determined by fitting each peak with Gaussian functions. Some of
the α sources could deliver more than one energy. Such sub-component might
not always be directly visible in the spectrum due to the limited resolution of
each strip in the detectors (typically in the order of 15-30 keV for the FWHM).
Nevertheless, these unresolved peaks are also taken into account when doing the
fitting. Before depositing its energy in the active region of the silicon detector,
the α particles have to go through a dead layer on the surface of the detector
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Figure 4.6: Illustration of the situation when the charged particle hits the
detector with a certain angle θ and passes through an effective length d.

(about 50 nm thick for the W1 type, 900 nm thick for the BB7 type and 507 nm
thick for the S3 one). The actual distance that the particle has penetrated
through the dead layer depends on the incoming angle. The correction is made
by d = s/ cos θ as described in Fig. 4.6 where d represents the effective length,
s gives the nominal thickness of the dead layer and θ is the angle between the
incident particle and the normal to the detector. Since this kind of layer is
usually rather thin, the energy loss can be approximated as being proportional
to the travelling distance with a coefficient dE/dx giving the energy lost per
unit distance. The relationship can be denoted as

Eloss = dE

dx
d = dE

dx

s

cos θ , (4.1)

in which dE/dx depends on the kinetic energy and type of the incident particle
and the material of the dead layer. The value of dE/dx can be obtained from the
SRIM program [ZZB10] which offers tabulated ranges of ions carrying different
energies in various matters. Likewise, this principle is applicable for particles
passing through active area in silicon detector. To implement this correction in
the calibration, an average energy loss for each strip is extracted by summing
its value in each pixel weighted by the corresponding solid angle Ωpixel relative
to that of the strip Ωstrip. The formula to calculate the corrected energy Ec
from the reference energy of an α particle Eα has the format of [Jen17]

Ec = Eα −
∑

pixels
Eloss

Ωpixel

Ωstrip
. (4.2)

As for the case of the pad detector, such weighting method does not work since
the pad is not segmented. Instead the energy loss is included considering the α
particles hitting the center position on the pad. There the nominal thickness is
about 2000nm. With these pieces of information, the next step is to perform
the conversion between the corrected energy (Ec)i from a specific α energy and
the mean value of the corresponding peak in channel chi through a linear fit

(Ec)i = a · chi + b, (4.3)
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where the index i means the different energies brought by the α particles.
In practice, the whole process was accomplished with the calibration tool in
AUSAlib (Aarhus subatomic library) [AUS19] which is built on top of ROOT and
aims at offering a common functionality to ease the sophisticated analysis of the
reaction data. However, a problem encountered in this stage is the incomplete
mapping between the detector segments and analog-to-digital converter (ADC)
channels due to the fact that the connectors for the chamber were newly
designed. This issue has been later solved by Jensen using the α distribution in
the calibration files and the coincidence events from the reactions [Jen17]. An
example of the linear fit for one strip in one DSSD detector is displayed on the
right side of Fig. 4.5.

Data sorting

After that, the calibrated data has to be sorted to select the physical events
in the DSSDs. A particle will deposit roughly the same amount of energy
in both sides of a DSSD when passing through the detector. Based on this
simple principle, several cases are abandoned as non-physical events: a) a hit is
observed only in one side of the DSSD; b) there exists a significant difference
between the energy deposited in the front side of the detector and that in the
back side. A particular example for the second situation is the charge sharing
effect between strips [MPS+02]. Once a charged particle hits a strip, the strips
next to it could possibly be activated to start counting. To get rid of all these
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Figure 4.7: Sorting procedure based on the energy deposited in the front and
back sides of a DSSD. The data points represented by black cross are excluded
due to the matching gate. And only the red dots are left as physical events.

interfering events, the data from both sides of the DSSD have to be matched
within a threshold ∆, namely |Efront −Eback| < ∆. The size of the threshold is
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up to the resolution of the setup. In this case, 100 keV was chosen to perform
the matching. Fig. 4.7 explains how the data sorting looks like in a 2D spectrum.
In addition, it is worth mentioning that the main data structure chosen for the
further analysis is the TTree-class from ROOT which presents event by event
the experimental data via branches. The associated branches can be built for
different physical quantities, like particle energy, time stamp, hit position, etc.
Thanks to this clear classification and the member functions offered by TTree,
the subsequent analysis becomes straightforward and convenient.

Particle identification

On the basis of the energy calibration and the layout of the detectors, it is
now possible to distinguish between different kinds of particles using the ∆E-E
method. As introduced before, this method requires a thin transmission detector
placed in front of a relatively thick stopping one. Thus, the particle is able
to penetrate the front detector, depositing a fraction of its energy (∆E) there
by ionization and then be completely stopped in the back detector with an
energy E detected. The correlation between those two energies recorded by
the front and back detectors can be estimated by the Bethe formula [Bic88].
It has a simplified approximate form of E∆E ∝ MZ2 (mass number M and
charge number Z) for a certain combination of detectors when ∆E � E, and
hence is unique for a specific particle type. An intuitive way to discriminate
the particle type is to draw a 2D plot of ∆E versus E. Again the angular
dependence of the energy loss described by Eq. (4.1) needs to be taken into
account here. This is because the collected energy by the front detector would
vary a lot if the particle arrives with different angles, resulting in a wider band
in the 2D plot (see Fig. 4.8(a)) and a worse resolution for identification. To
correct for this effect, the original energies ∆E = (Efront+Eback)/2 from DSSDs
are transformed by

∆E′ = dE

dx
s = ∆E · cos θ (4.4)

to values ∆E′ which are independent of the incident directions by restoring
the situation that all the particles enter the detector orthogonally. To ensure
that the total energy is conserved within this correction, the remaining energy
is assumed to be absorbed in the back detector, adding an extra term to its
measured energy E as

E′ = E + ∆E (1− cos θ). (4.5)

As shown in Fig. 4.8(b) a much tighter ∆E-E spectrum is obtained so that
different types of the particles can be better resolved. One can now clearly
see the banana-shaped bands for several kinds of particles. The three lower
components correspond to three hydrogen isotopes: protons, deuterons and
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Figure 4.8: ∆E-E plot from one of the telescopes in the forward direction. The
subplot (a) does not take into account the angular correction while the subplot
(b) does.

tritons while the band of α particles lies well above them. All these residues
are produced by the reaction between the 9Li beam and the CD2 target.

Beam properties

Another important factor to analyze is the quality of the beam. Besides the
reported beam energy of 6.72 MeV/A, there are basically two more aspects that
need to be determined.

At the first place, it is the geometrical information of the beam, such as its
direction, size, etc. In an ideal physics picture, the section of the beam employed
in an experiment would be point-like and impinge at the center of the target.
Instead, in the real life the structure of the actual beam can be rather complex.
It can be broad, angled, shifted or sometimes diffused. Even after a cautious
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Figure 4.9: Hit pattern of the forward S3 detector during the run with the 9Li
beam impinging on the gold target.

collimation and adjustment of the steup, some of those effects still cannot be
entirely avoided, which will propagate to the data analysis and introduce some
bias later when reconstructing the particle energies and momenta. During the
run, due to the difficulties encountered with respect to the beam alignment, the
beam was slightly steered to find the optimal position. There have been two
periods with two different beam settings. The considered Rutherford scattering
between 9Li beam and 197Au target is performed after the first beam tuning.
The hit pattern of the forward S3 detector is shown in Fig. 4.9. It can be
found that the beam was pointing a bit to the bottom left. One of the common
methods to deduce the beam direction [JFB+13] is to use coincident events
collected during the measurement. Unfortunately, due to the lack of adequate
statistics here, it remains hard to derive the exact beam position by fitting
simulations to the data. Furthermore, to make a quick estimation in this case,
it is not unrealistic to make use of the simple model considering the fact that
the distance from the target to the detector is much larger than the size of the
detection area.

The second major feature is the beam intensity which can be estimated using
the Rutherford scattering. Having the 9Li beam on a gold target, the angular
distribution of the scattered 9Li particles collected in the S3 detector follows
the well known Rutherford cross section (see Eq. (2.18)). Its formula can be
rewritten in the laboratory system as

dσ (θ,E1)
dΩ =

(
Z1Z2e

2

4πε0E1

)2 (cos θ + a)2

4a sin4 θ
(4.6)
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with the parameter a equals to
√

1−
(
M1
M2

sin θ
)2

. The subscripts 1 and 2
are to indicate incident particle and target, respectively. And E1 thus is the
kinetic energy of the beam in the laboratory. Starting from Eq. (2.6), the beam
intensity can be deduced from

I = dN

n dt
∫

Ωsetup

dσ(θ,E1)
dΩ dΩ

(4.7)

where the Ωsetup represents the solid angle covered by the present detector over
which the differential Rutherford cross section has to be integrated. Blocked by
part of the support structure, the detectable area in the S3 detector is up to
the 24th ring if one starts counting from the inner region. Note there is a hole
in the center with a radius of 11.0mm. And a gap of 0.1mm exists between two
neighbouring rings. The overall integration interval for the lab θ in Ωsetup is
from 8.15◦ to 24.28◦. The corresponding integrated Rutherford cross section is
then 39.9b. In this measurement lasting for 33 minutes, a total count of 298 is
recorded after the sorting work. In this energy range, the intrinsic efficiency
of the detector is almost 100%. Applying the Laser-on and -off technique on
the beam line, it is learned that the contamination in the beam (mainly from
12C4+) is negligible during this experimental run. Due to the low counting
rate, the dead time of the electronics can also be neglected here. Taking into
account the omitted area as displayed in Fig. 4.9, finally the beam intensity
is estimated to be 7.29(42)×103 pps, which is consistent with the order of
magnitude (∼ 104 pps) compared to the value received at REX-EBIS. This
result could be rather close to the final setting of the beam but will never be
the same due to the second beam tuning. For sure a higher statistics could
guarantee a better determination of the beam direction. Even with this small
amount of data, a heuristic method to resolve the beam position is to rely on the
kinematics between the coincidence events from for instance an elastic channel
[Jen17], which requires precise knowledge on geometry and energy calibrations
of the setup.

Kinematics

The kinematics can be used not only to derive the beam property, but also
to reconstruct the excitation energies of the interesting particle and serve as
a cross-check for the correction made through the analysis. Considering a
two-particle reaction as A(a,b)B∗, B represents the product of interest while b
is the other ejectile after the interaction between the beam a and the stationary
target A. By controlling the experimental conditions, none of the beam, target
and ejectile is supposed to be excited but the particle B. The corresponding
excitation energy E∗ can be derived from the conservation of energy and linear
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Figure 4.10: Kinetic energy vs. lab scattering angle for two identified particles,
deuterons (left side) and protons (right side). The theoretical curves are drawn
for reference.

momentum,

E∗ = TA − Tb −
(pA − pb)2

2mB
+Q, (4.8)

where Q is the ground-state Q-value, Ti, pi and mi are the kinetic energy,
momentum and mass of particle i, respectively. With a solid target in our case,
the kinetic energy of the 9Li beam has to be corrected with an average value
approach to account for the energy loss within the target [KGOY07]. Thus, the
effective beam energy is obtained at the half thickness of the target. Regarding
the kinetic energy of the light ejectile, it consists of two parts: one measured by
a DSSD and the other by the coupled pad detector. Three dead layers (two from
both surfaces of the DSSD and one on the front side of the pad detector) are
present on the way until the particle gets finally stopped. Let us first derive the
energy of the ejectile before entering the pad detector. Since the length of the
actual traversed dead layer d can be obtained after the angular correction and
the deposited energy Epad is known from the calibration, the particle energy
E′pad before hitting the pad detector can be determined using the program
SRIM. Using an interpolation method, the range R(E) can be expressed as a
continuous function of energy. Based on this, the formula to find the energy
E′pad is written as

E′pad = R−1(R(E′pad)) = R−1(R(Epad) + d), (4.9)

in which R−1 is the inverted range function [Ref16]. Repeating the similar step
twice and adding the energy detected within the DSSD in between, the initial
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energy of the ejectile right before entering the detector is obtained. The average
beam direction has been deduced by Jensen from the counts in the pentagon
array. By fitting the kinematic curves to the data points in the pentagon using
the χ2 method, a reasonable direction under which the beam enters can be
extracted. A consistency check has been performed on this point using the
Monte Carlo simulation within the toolkit simX [Sim19]. The resolved beam
direction (θ, φ) is (7.3◦, 73.1◦) in the spherical coordinate system when the
beam line is aligned along the z-axis. Including all the above corrections in
the analysis, the plots of kinetic energy E versus the laboratory angle θ for
two main ejectiles (deuterons and protons selected from the ∆E-E plot) are
displayed in Fig. 4.10 together with several calculated curves. No coincidence
measurement between the reaction products is performed in this work for either
the (d,d) or the (d,p) channel due to the very limited angular coverage of the
detector S3. The interesting events are derived from the light ejectile (deuteron
or proton) identified in the pentagon array. In the figure, the elastic component
dominates and can be guessed. However, regarding the other channels, we have
the feeling that the statistics is not impressive. In particular, no recognizable
structure is found for the (d,p) channel of interest. This issue will propagate to
the subsequently extracted excitation spectrum.

Excitation spectrum

The excitation energies of the interesting nuclei can be reconstructed using
Eq. (4.8) after subtracting the background. Having a 9Li beam impinging on a
CD2 target, the background comes mostly from its interactions with protons
(due to the mixing of CHx) and carbon nuclei. This motivates multiple runs
with the targets outlined in Table 4.1. Unfortunately, these measurements
have not been successful, giving very few counts that can be used for the
background subtraction. In Fig. 4.11, the excitation spectrum of 9Li and the
one extracted from the identified protons are presented. In the channel of 9Li,
the major peak around 0 MeV belongs to the elastic scattering while the other
excitations remain indistinct. By fitting a Gaussian function to the elastic peak,
the resolution of the setup in the experiment IS561A can be estimated. The
full width at half maximum (FWHM) is measured to be 1108(39) keV, which is
almost twice the value (551(4) keV) that was obtained by Jensen in another 9Li
experiment [Jen17] with a simpler silicon array. On the one hand, this could
be caused by the complexity of the setup, which introduces more uncertainties
during the correction. On the other hand, the possible energy and spatial
distribution of the beam could also affect significantly the extracted resolution
if the related information was not correctly reconstructed. For the 10Li case,
according to previous experiments done in Refs. [JMB+06, CDNC+17], a broad
peak is expected around the excitation energy of 0.4 MeV where the p-wave
component should be dominant. However in our analysis, no clear peak was
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Figure 4.11: Excitation energy spectrum for 9Li in subplot (a). The subplot (b)
shows the total excitation spectrum of 10Li and the background. The red zone
inside is obtained by projecting the data on the kinematic curve. In this way, it
is supposed to contain most of the 10Li events.

observed around that energy region probably due to the low counting rates.
Moreover, due to the lack of background measurements, it is not possible for
a further analysis of the 10Li channel unless more troubleshooting tests were
performed.

4.4 Results and discussion

With the excitation spectrum, it is possible to evaluate the differential cross
sections for different channels. Then as already mentioned in Sec. 1.2, the angular
distribution of the cross sections can be compared to theoretical predictions in
order to extract the transferred angular momentum of the residues and hence
infer the populated states in the nucleus of interest.

Most of the ingredients needed as described in Eq. (2.6) are now available.
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The purity of the CD2 target is estimated from Jensen’s analysis of another
experiment [Jen17]. In addition to that, one more improvement regarding
the efficiency of the detector array is employed to calculate the final results
since its structure is neither trivial nor symmetric to be calculated by hand.
Monte Carlo simulation is applied using simX to account for the problem. The
principle behind is to generate N sim

r (= 106 in practice) events distributed in
4π sr under the same reaction mechanism and a similar resolution and count
then the numbers N sim

det being registered in the detectors. In this way, Eq. (2.6)
is transformed to

dσ

dΩ = N exp
det

I n t

N sim
r

N sim
det

, (4.10)

where N exp
det is the real recorded counts in the experiment which can be derived

from the excitation spectrum. And t is the actual duration of the measurement.
Another thing we have to be aware of is that most of the previous work is done
in the laboratory framework. Considering the convenience for later comparison
between experimental and theoretical values, it is necessary to transform the
information of angles and energies event by event from the laboratory system to
the center-of-mass system. This operation also eliminates the confusion caused
by the inverse kinematics. The general method to realize this process is to
use the Lorentz transformation within the TLorentzVector class provided by
ROOT.

By gating on the ground state of 9Li in the excitation spectrum, the differential
cross section for the 9Li(d,d) elastic scattering can be obtained. For theoretical
interests, it is helpful to calculate the ratio between the cross sections of
the elastic channel and those from the corresponding Rutherford scattering,
through which the Coulomb interaction is offset and the nuclear interaction gets
highlighted. Thus, in Fig. 4.12, the results of the elastic scattering cross sections
relative to the Rutherford ones for 9Li are shown. A theoretical interpretation
of these experimental data is performed based on minor modifications to the
Daehnick global optical model potential [DCV80] to achieve the best fit using
sfresco [Tho06]. The adjusted parameters of the optical model potential are
listed in Table 4.2. In general the position of the peak is well fitted with some
deviation when reproducing its exact width. In a classical method, the elastic
scattering channel always has to be studied at the first stage to account for the
effective contribution from different channels. This step is expected to give a
better interpretation of, for instance, the transfer data.

In principle, a similar analysis procedure as above can be applied to the 10Li
excitation spectrum to extract the (d,p) transfer cross sections. However,
there are several problems that have to be solved first. Since the background
measurement does not provide enough information to exclude the unrelated
events, one way to compensate for that is to rely heavily on the simulation which
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Table 4.2: Optical model potential parameters for the 9Li(d,d) elastic scattering
at a beam energy of 6.72 MeV/A. The symbols used here are based on Eq. (2.27).

Parameter Vv (MeV) rv (fm) av (fm) Wv (MeV) rw (fm) aw (fm)

92.74 1.15 0.80 0.1 1.33 0.66

Parameter Ws (MeV) rs (fm) as (fm) Vso (MeV) rso (fm) aso (fm)

9.18 1.33 0.66 3.79 1.40 0.59
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Figure 4.12: Elastic scattering cross section of 9Li(d,d) relative to the
corresponding Rutherford cross section at an incident energy of 6.72 MeV
per nucleon.

requires a precise knowledge of all the ingredients involved in the experiment,
such as beam, target, detector, etc. Even though such simulation is carefully
performed, the inevitable fact is the low counting rate according to the rough
estimation in Fig. 4.11(b) where no clear peak is observed around the energy
region of interest. This directly affects how the energy cut will be made in the
excitation spectrum. Usually an alternative option is to focus on the events
only detected at backward angles since in this region such transfer is favored
and the interference from other channels (like elastic scattering between 9Li
and proton) is naturally ruled out due to the kinematics. However the data at
backward angles is not really used in our analysis. This is because of the small
spatial coverage and insufficient statistics for particle identification. Based on
the lessons learned from this experiment, the second and third parts of the
experiment IS561 were carried out in 2017 and 2018, in which better results
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were expected with an improved setup and a better beam situation [Elo19].

4.5 Theoretical approach

Unfortunately at this stage, no convincing data has been extracted from the
IS561A experiment for the 9Li(d,p) channel. However it is still possible to
contribute on the theoretical side since several other sets of data are available
[SKGa+03, JMB+06, CDNC+17]. In Sec. 3.1.4, I have extended the ADWA
framework to apply it in the case of transfer to a resonance state. The wave
function of the final resonance state is obtained by a bin discretization of the
continuum. To check the universal applicability of this model, the 9Li(d,p)
transfer would be a good testing bed since the produced 10Li is an unbound
system. I consider the data from two experiments. One was performed at REX-
ISOLDE with the 9Li beam energy of 2.4 MeV/A [JMB+06]. The excitation
energy spectrum of 10Li is measured up to about 1 MeV in the c.m. angles
between 100◦ and 140◦. Being similar to the problem in our measurement, the
crucial detection region at backward laboratory angles is excluded in the analysis
of these data, because the proton energy in this area is too small to be detectable.
Despite this, the experimental results, obtained from the excitation spectrum
with an observed resolution (FWHM) of ∼ 300 keV, are still reliable to help draw
useful conclusion with respect to the role of s-wave and p-wave structures in the
10Li system as in Refs. [JMB+06, MCGR19]. The other was performed with
an incident energy of 11.15 MeV/A at TRIUMF [CDNC+17]. In this campaign,
Cavallaro et al. managed to perform the coincidence measurement between the
recoiling protons detected by the LEDA (Louvain-Edinburgh detector array) at
backward lab angles from 127◦ to 152◦ and the 9Li fragments produced from
the breakup of 10Li. This achievement offers the possibility to explore both the
transfer reaction and the 10Li system in different experimental conditions.

To perform the associated transfer calculation, several ingredients are needed in
the reaction formalism. One of the key inputs is the 10Li structure model. Since
in all the cases studied so far in this work the spin of the core is nil and the
emphasis of the present study is to test the validity of the method rather than
studying the structural information, the potential of Woods-Saxon nature noted
as P3 developed in Refs. [CGRM17, GRCM17] is considered. Such potential
does not depend explicitly on the spin of the core and only contains the central
and spin-orbit terms. The detailed information is clearly explained by Eq. (5) in
Ref. [MCGR19]. Centering the p1/2 resonance at Ex = 0.45 MeV and the virtual
s1/2 state at Ex = 0.05 MeV with an energy width of 1 MeV for both cases,
the wave function of this 10Li resonance state can be generated using Eq. (3.4)
with a lower bound of 0 MeV and an upper bound of 1 MeV. In addition, the
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Figure 4.13: Angular distribution of the cross sections for the 9Li(d,p) transfer
calculated at Ed = 4.75 MeV (left side) and 22.3 MeV (right side) both within
the integral region of Ex < 1 MeV. The corresponding experimental results are
also listed for comparison.

deuteron potential from Johnson and Tandy [JT74] is adopted while the Reid
soft-core potential [Rei68] is used to compute the deuteron bound state, and
the nucleon-nucleus optical potential is constructed based on the CH89 global
potential. Feeding those parameters into the full transfer calculations, the
results for two cases at Ed = 4.75 MeV and 22.3 MeV are presented in Fig. 4.13.

As a simple model to simulate these transfer cases, the chosen method proves to
be rather effective. A similar conclusion as already illustrated in Ref. [MCGR19]
where a CDCC-BA model (see Sec. 2.4.4) has been considered can be drawn,
i.e., the s-wave state of 10Li has an important role for the transfer at lower
energy while its influence becomes negligible for the higher energy experiment.
This could be due to two factors according to our previous study. One is the
incident energy since a more peripheral transfer is expected when the incident
energy decreases resulting in an enhanced contribution of the s wave. The other
is the different angular range covered during the two measurements. Usually
at very forward c.m. angles a peripheral transfer would exist. However, from
the tests performed for the 10Be(d,p) case in Sec. 3.1.2, at the incident energy
of ∼11 MeV/A (the TRIUMF experiment) a peripheral transfer considering
the 9Li(d,p) reaction should be rarely observed. To verify these two points, it
is worth to have a transfer at an incident energy (like 6.72 MeV/A) between
the two experiments and focus either on the forward angular range or the
backward part, such as IS561A which would in principle give an idea whether
the contribution from s wave at backward angles is decreasing or not when the
beam energy increases. Moreover, we should admit that the theoretical model
used here is far from optimal, in which the spin of 9Li is neglected so that no
splitting in the final state of 10Li is considered. In addition, it only simulates a
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Figure 4.14: Excitation energy spectrum for the 9Li(d,p) transfer reaction at
Ed = 22.3 MeV leading to the 10Li system. The theoretical calculations in
the post (ADWA using two different binnings) and prior (DWBA) forms are
compared to the TRIUMF data.

single-step process and does not include any coupling within the continuum.

The ADWA method is further applied to describe the excitation spectrum as
shown in Fig. 4.14. The cross section is integrated over the c.m. angular range
from 5.5◦ to 16.5◦ covered in the TRIUMF experiment. Similar to the work
done in Ref. [MCGR19], the results are convoluted with a Gaussian of FWHM
of 0.2 MeV which corresponds to the experimental resolution. With the ADWA
model which reduces the couplings in the continuum, it is found that the results
of two different binnings (with bin widths of 0.1 and 0.2 MeV) agree with each
other. The resonance peak is well reproduced with the sole p wave state, which
confirms the previous conclusion obtained from the angular distribution. In the
CDCC-BA calculations of Moro et al. on these observables [MCGR19], they
have obtained a better agreement in the non-resonant region, but a similar
agreement in the resonance energy range as ours. This indicates that the ADWA
can still be valid and used in the resonance region.

It has been pointed out by Moro that the second bump observed in the non-
resonant region is a by-product of the inadequacy of the post form described by
Eq. (2.47) for transfers to unbound states since there is no natural cut-off in
the transition operator for the final unbound wave function (9Li-n system). In
our case, the unbound wave function is represented by a bin function, which
would indicate that the transfer calculation can be sensitive to the bin function
at large distances. Consequently, the integral involved in the evaluation of
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the transition amplitude may not converge or converge slowly with the radial
extension of the bin. A convenient way to cure the aforementioned problems is
to use the prior form in Eq. (2.48) where the transition operator containing the
short-range interaction Vn9Li will cut the contribution from asymptotic part of
the bin function. However, as claimed before in Sec. 2.4.3, adiabatic deuteron
potential can no longer be used in this form. Instead, a DWBA calculation in
the prior form for such transfer is performed with its results displayed by purple
dashed line in Fig. 4.14. The corresponding choice of the parametrization for the
potential is mostly the same as in the previous ADWA calculation, apart from
the potential of the entrance channel which has been replaced by the Daehnick
global potential [DCV80]. As expected, the second bump is eliminated using
the prior form.



Chapter 5

Conclusion and outlook

The core topic of this work is to improve the reliability of the nuclear-structure
observables inferred from transfer reactions. Through a theoretical analysis
of the (d,p) transfer with the produced one-neutron halo nucleus described at
leading order of Halo EFT, it has been demonstrated that measuring transfer
reactions at low beam energies and forward angles for transfer reaction can
ensure the peripherality of the reaction and thus is the best way to obtain a
reliable ANC of the interesting nucleus from experimental data. In particular,
a systematic re-analysis of the experimental data from Schmitt et al.’s work
[SJB+12] regarding the 10Be(d,p)11Be transfer reaction at Ed = 21.4, 18, 15
and 12 MeV was performed to extract information on the halo structure of
11Be. Following the concept of Halo EFT, the 10Be-n interaction inside the 11Be
nucleus is simulated by Gaussian potentials of different widths to reproduce
the single neutron separation energy. These descriptions enable us to obtain
very different 10Be-n wave functions but which all exhibit the same asymptotic
decay. Based on that, the sensitivity of the transfer cross sections to the short-
range physics of the 10Be-n wave function for both bound states in 11Be can
be carefully studied. The specific experimental conditions determined for a
peripheral (d,p) transfer to the 1s1/2 ground state of 11Be are Ed 6 15 MeV
and θ < 20◦. Considering the transfer to the first excited state of 11Be, it
requires more stringent experimental conditions (Ed < 10 MeV) to become
peripheral probably because of the centrifugal barrier arising in a p-wave
state. By comparison between our theoretical calculations and the experimental
data selected in those peripheral regions, the ANC values we obtained are
(0.785± 0.030) fm−1/2 for the ground state and (0.135± 0.005) fm−1/2 for the
first excited state. Incidentally, both results are in excellent agreement with the
values predicted by ab initio calculations (0.786 fm−1/2 for the ground state
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and 0.129 fm−1/2 for the excited state) [CNR+16].

As a cross check to the peripheral condition, the supersymmetry (SuSy) method
is employed to check how different regions of the wave function contribute to
the reaction calculations. With this method, the SuSy partner of the original
wave function can be generated, which shares the same asymptotic behavior
but exhibits a very different internal part. Feeding those wave functions into
the transfer calculations, the results confirm the above findings with respect to
the peripherality of the 10Be(d,p) transfer.

This method has then been extended to study another one-neutron halo nucleus:
15C involved in the 14C(d,p) transfer. Fortunately, for this system precise data
exist at a low beam energy with enough data points at forward angles to apply
our new method. The ANC value obtained in this way are (1.26± 0.02) fm−1/2

for the ground state and (0.056 ± 0.001) fm−1/2 for the excited state of 15C.
The results are in good agreement with most of the values cited in other studies
[TAC+02, TBD+06, SN08, MBG+11, MMT+14], and the slight differences with
them can be understood by systematic biases of these methods. Again, the
ANC we estimate for the 15C ground state matches perfectly the one predicted
in the ab initio calculation by Navrátil et al. (C1/2+ = 1.282 fm−1/2) [Nav18].
Therefore, the present work provides an independent way to test the value
obtained in the NCSMC calculation. Relying on the inferred ANC value, it
enables us to fit an effective 14C-n interaction at NLO in Halo EFT, which
has been used in other reaction calculations, such as Coulomb breakup and
radiative capture [MYC19].

These very encouraging outcomes achieved with the adiabatic model led us to
perform a similar analysis of transfers to resonant states. The 11Be halo nucleus
indeed exhibits a rather narrow resonance above the 10Be-n threshold, which
is often described by a neutron resonance in the d5/2 partial wave. The goal
here is to clarify if the role of the width of the resonance is similar to what has
been observed for the ANC in bound states. For this, a series of wave functions
has been built from simple Gaussian potentials, which reproduce the resonance
at the correct resonant energy (1.28 MeV) but with different energy widths.
Difficulties have been encountered when confronting our calculation results to
the existing data. On the one hand, the peripheral conditions become less
clear due to the increased transfer angular momentum. On the other hand, the
reaction model might be too simple to include all the necessary mechanism. A
proper simulation of the transfer to the continuum may need a better description
of the deuteron breakup. This remains an open question and requires further
efforts on both experimental and theoretical aspects.

Another ambitious object we have pursued in collaboration with Prof. Obertelli
is the potential use of transfer reactions to study halo structures in the
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excitation spectrum of medium to heavy nuclei. Our systematic tests with the
hypothetical case of 95Sr show that applying low-energy reactions, i.e., below the
Coulomb barrier, gives access to the tail of the wave function. If the associated
experimental conditions, such as Q-value, nuclear spin and incident energy, are
well controlled, this kind of transfer would serve as a good tool to probe the
possible existence of a halo in excited states close to the one-neutron separation
threshold. Unfortunately, an inevitable problem of considering the sub-Coulomb
transfer in actual application is the relatively small cross section caused by the
incident energy and Q-value, which poses a challenge for existing experimental
techniques.

In addition to the theoretical work, part of the data analysis has been performed
regarding the IS561A experiment to study the 9Li-n resonance via the (d,p)
transfer. With the help of Jensen, the elastic-scattering channel of 9Li(d,d) at
Ed = 13.44 MeV has been obtained and agrees well with theoretical calculations.
However, because of low statistics and insufficient background measurements,
the extraction of the (d,p) channel remains difficult. Nevertheless, efforts have
been made to build the bridge between the capability of the theoretical model
and available data of the 9Li(d,p) transfer [JMB+06, CDNC+17]. The outcome
suggests that the method we use is a fast and efficient option to simulate the
resonance during the transfer. For the non-resonant part, choosing the prior
form of the transition matrix instead of the post one would eliminate the weird
bump observed there. Besides, in this case couplings within the continuum also
need to be properly accounted for, and hence a more complete model of the
reaction is required, such as CDCC-BA [Raw74] or Faddeev method [Fad61].

Outlook

As for the test of determining the peripheral conditions, so far we have used only
a single Gaussian potential to simulate the final state of the produced nucleus.
To make it more realistic, a more complex interaction model, like adding a
repulsive core in addition to a mean field or coupling with the core excitation
as done in Ref. [GRMGCT15], could be interesting to consider. Instead of a
data-based analysis, as already introduced in Ref. [CPH18], the input from
an ab initio calculation can also be taken to build an effective description of
the interesting nucleus under the Halo EFT framework. Furthermore, going
beyond NLO in the Halo EFT would provide a way to explore the role of the
short-range physics in the internal part of the related wave function.

Regarding the reaction model, the ADWA model has important advantages in
calculating the (d,p) transfer. But what remains unclear is the uncertainty in the
reaction model related to the inputs (optical potential, etc.). A systematic study
on this topic using Bayes’ theorem combined with a Markov chain Monte Carlo
has been performed in Ref. [LN18]. To better constrain transfer cross sections in
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our case, more experimental data and comparison with other advanced models
in similar mass and energy regions are definitely needed. For a specific transfer,
it could be also useful to carry out a series of similar tests as what we have
done in this study to quantify exactly the connection between the experimental
conditions and the part of the wave function probed. As mentioned in Sec. 2.2,
another interesting topic here is to study the nonlocality effect of the optical
potential on the transfer calculations. In the case of transfer to the continuum,
there remain multiple tests that can be done to study the effect of the potentials
and numerical parameters in calculating the continuum bin state with a certain
width. Besides, including the coupling mechanism in the non-resonant region
would lead the model to this promising application.

On the experimental side, more precise data is eagerly needed which asks
for more advanced detection technique and setup. Especially for the 9Li(d,p)
transfer in our case, it can be very useful to detect protons in coincidence with
the 9Li fragments produced from the breakup of the corresponding 10Li using an
upgraded device which provides a high spatial and energy resolution and a large
angular coverage. This is not only about physics but a combined efforts from
the aspects of materials science, computer science, engineering, etc. Among the
emerging technologies, an active target like the ACTAR TPC has already been
a path to follow, which has the power to reconstruct the reaction kinematics in
three dimensions with a weak beam intensity (down to 103 pps).



Appendix A

FRESCO Input

The computational program FRESCO [Tho88] is a general-purpose reaction
code developed by Ian Thompson since 1983. A typical input file of FRESCO
is handled in a fortran namelist style, containing five portions,

• & fresco: introducing the parameters in the numerical calculations;
• & partition: inputting all the mass partitions and the channel information;
• & pot: containing all the necessary potentials;
• & overlap: showing the configuration for the composite nucleus;
• & coupling: providing the coupling scheme among different states.

When performing the transfer calculations, some new important parameters
need to be added besides the basic information of the reaction. In particular,
a non-local kernel, transfer couplings and the amplitudes of all the overlap
should be included by introducing rintp, hnl and others. A specific example
of the input for the 10Be(d,p)11Be transfer taking place at Ed = 21.4 MeV is
given here. Note since the calculation is performed with FR-ADWA model, the
deuteron potential for the incident channel is read from outside. The interaction
between the valence neutron and the 10Be core in the 11Be nucleus is simulated
by a Gaussian potential.
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Be10(d,p)Be11 @ 21.4 MeV;
NAMELIST
&FRESCO hcm=0.1 rmatch=60 rintp=0.10 hnl=0.05 rnl=10.00 centre=0.0

jtmin=0.00 jtmax=120 absend=-1.00
thmin=0.10 thmax=90.00 thinc=0.10
cutl= 0.00 cutr= 0.00 cutc= 0.00
it0=1 iter=1 iblock=0
nnu=36
xstabl=1
elab=21.4 /

&PARTITION namep=’d’ massp=2.0 zp=1
namet=’Be10’ masst=10.0 zt=4 nex=-1 /

&STATES jp=1.0 bandp=1 ep=0.0 cpot=1 jt=0.0 bandt=1 et=0.00 /

&PARTITION namep=’p’ massp=1.0 zp=1
namet=’Be11’ masst=11.0 zt=4 qval=-1.7229 nex=1 /

&STATES jp=0.5 bandp=1 ep=0.0 cpot=2 jt=0.5 bandt=1 et=0.00 /
&partition /

&POT kp=1 type=0 shape=0 p(1:3)= 10.00 0.00 1.29 /
&POT kp=1 type=1 shape=9 p(1:2)= 1.0 1.0 /

&POT kp=2 type=0 p(1:3)= 0.00 11.00 1.29 /
&POT kp=2 type=1 p(1:6)= 51.939 1.149 0.690 1.751 1.141 0.690 /
&POT kp=2 type=2 p(1:6)= 0.0000 1.146 0.690 9.500 1.141 0.690 /

&POT kp= 3 type= 1 itt=F shape= 5 p(1:3)= 1.00 0.00 1.00 /
&POT kp= 3 type= 3 itt=F shape= 5 p(1:3)= 1.00 0.00 1.00 /
&POT kp= 3 type= 4 itt=F shape= 5 p(1:3)= 1.00 0.00 1.00 /
&POT kp= 3 type= 7 itt=F shape= 5 p(1:3)= 1.00 0.00 1.00 /

&POT kp=4 type=0 shape=0 p(1:3)= 10.00 0.00 1.29 /
&POT kp=4 type=1 shape=2 p(1:3)= 115.05 0.00 1.9799 /

&POT kp=5 type=0 p(1:3)= 0.00 10.00 1.29 /
&POT kp=5 type=1 p(1:6)= 53.064 1.146 0.690 1.232 1.135 0.690 /
&POT kp=5 type=2 p(1:6)= 0.000 1.146 0.690 9.239 1.135 0.690 /
&pot /

&Overlap kn1=1 kn2=2 ic1=2 ic2=1 in=1 kind=3 nn=1 l=0 lmax=2 sn=0.5 ia=0
j=0.5 ib=0 kbpot=3 be=2.2246 isc=0 ipc=0 /

&Overlap kn1=3 ic1=1 ic2=2 in=2 kind=0 nn=2 l=0 sn=0.5
j=0.5 kbpot=4 be=0.5016 isc=0 ipc=0 /

&overlap /

&Coupling icto=-2 icfrom=1 kind=7 ip1=0 ip2=-1 ip3=5 /
&CFP in=1 ib=1 ia=1 kn=1 a=1.00 /
&CFP in=2 ib=1 ia=1 kn=3 a=1.00 /
&CFP /
&coupling /



Appendix B

Paper I

This appendix attaches the following published paper, which is part of the work
presented in Sec. 3.1.

J. Yang and P. Capel. Systematic analysis of the peripherality of the
10Be(d, p)11Be transfer reaction and extraction of the asymptotic normalization
coefficient of 11Be bound states. Phys. Rev. C 98, 054602 (2018) [YC18].
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We reanalyze the experiment of Schmitt et al. on the 10Be(d,p)11Be transfer reaction [Phys. Rev. Lett. 108,
192701 (2012)] by exploring the beam-energy and angular ranges at which the reaction is strictly peripheral.
We consider the adiabatic distorted wave approximation (ADWA) to model the reaction and use a Halo-EFT
description of 11Be to systematically explore the sensitivity of our calculations to the short-range physics of
the 10Be-n wave function. We find that by selecting the data at low beam energy and forward scattering angle
the calculated cross sections scale nearly perfectly with the asymptotic normalization coefficient (ANC) of the
11Be bound states. Following these results, a comparison of our calculations with the experimental data gives
a value of C1s1/2 = 0.785 ± 0.03 fm−1/2 for the 1

2

+
ground-state ANC and C0p1/2 = 0.135 ± 0.005 fm−1/2 for

the 1
2

−
excited state, which are in perfect agreement with the ab initio calculations of Calci et al., who obtain

Cab initio
1/2+ = 0.786 fm−1/2 and Cab initio

1/2− = 0.129 fm−1/2 [Phys. Rev. Lett. 117, 242501 (2016)].

DOI: 10.1103/PhysRevC.98.054602

I. INTRODUCTION

Halo nuclei [1] constitute a unique class of exotic systems,
which are mainly found in the neutron-rich region of the
nuclear chart. The halo is a threshold effect observed close to
the neutron dripline, in which one or two neutrons are loosely
bound to the core of the nucleus. Because of this loose
binding, these valence neutrons can tunnel far away into the
classically forbidden region and exhibit a high probability of
presence at a large distance from the other nucleons. They
hence form a sort of diffuse halo around a compact core [2],
which significantly increases the matter radius of these nuclei.

Since their discovery in the mid-1980s, halo nuclei have
been the subject of many studies in both the nuclear-structure
and nuclear-reaction communities. In the former because of
the challenge these diffuse nuclei pose to usual nuclear-
structure models, like the shell model. In the latter because,
due to their short lifetime, they are mostly studied through
reactions.

Experimentally, the upgrade of rare isotope beam facilities
worldwide provides us with many ways to explore these halo
systems. Transfer reaction [3–8] has been an important tool
to infer information about these systems for decades. In this
reaction, one or several nucleons are transferred between the
projectile and target. Because those nucleons populate the va-
lence states of the nucleus, transfer is useful in the analysis of
the single-particle structure of nuclei [3,4,8–11]. It is therefore
particularly well suited to study halo nuclei [6,10–13].

*jiecyang@ulb.ac.be
†pcapel@uni-mainz.de

To extract valuable nuclear-structure information from ex-
perimental data, a precise model of the reaction is required.
Deuteron-induced reactions, like the one on which this work
is focused, are usually described within a three-body model: a
proton p, a neutron n, and the nucleus upon which the transfer
takes place. Many such models have been developed [3–7].
The Distorted Wave Born Approximation (DWBA) [14] is one
of the most used methods to analyze experimental data and
extract spectroscopic information about nuclei. However, this
method does not properly account for dynamical effects, such
as the breakup of the deuteron, therefore alternative formula-
tions have been suggested. Johnson and Soper have introduced
the adiabatic distorted wave approximation (ADWA), which,
without losing the relative simplicity of the DWBA method,
includes a zero-range adiabatic treatment of the deuteron-
breakup channel (ZR-ADWA) [15]. Johnson and Tandy have
then extended this seminal work to a finite-range version of
the ADWA method (FR-ADWA) [16]. For a more accurate
inclusion of the deuteron dynamics in the reaction model,
the solution of the continuum-discretized coupled-channel
approach (CDCC) [17] can be used. In that approach, the
projectile-target wave function is expanded upon all the states
of the deuteron, including its continuum, which leads to
the resolution of a set of coupled equations. More recently,
numerical techniques have become available to solve the
Faddeev-Alt, Grassberger, and Sandhas (FAGS) equations
[18,19], which corresponds to the most accurate framework
to describe transfer reactions induced by deuteron within a
three-body model [20].

At the Oak Ridge National Laboratory a transfer experi-
ment was performed by Schmitt et al. to study the structure
of 11Be [10,11]. This nucleus is the archetypical one-neutron

2469-9985/2018/98(5)/054602(10) 054602-1 ©2018 American Physical Society
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halo nucleus and, as such, exhibits a strong 10Be-n structure.
In this Oak Ridge experiment a neutron is transferred from a
deuteron to 10Be to form 11Be: 10Be(d,p)11Be. The two bound
states of 11Be have been populated: its 1

2
+

ground state and
1
2

−
excited state. Transfer to the 5

2
+

resonance above the one-
neutron threshold has also been measured. The experiment
was performed in inverse kinematics with an ultrapure 10Be
beam impinging on a CD2 target at beam energies 107, 90,
75, and 60 MeV, which correspond, in direct kinematics, to,
respectively, Ed = 21.4, 18, 15, and 12 MeV in the laboratory
restframe [11].

The main goal of the present work is to reanalyze this
Oak Ridge experiment with a special focus on the sensitivity
of the calculations to the 10Be-n wave function in the 11Be
bound states. In particular, we look for the best experimental
conditions in which the reaction is strictly peripheral, i.e., for
which only the tail of the 10Be-n radial wave function affects
the theoretical cross sections. Because this tail has a universal
behavior [21], but for its normalization, the comparison with
the data in these peripheral conditions should enable us to
extract this asymptotic normalization constant (ANC) in a
model-independent way [12,13,22–26].

To reach this goal, we couple a Halo-EFT description
of 11Be [27,28] to the ADWA model of reaction. Thanks
to the natural separation of scales in EFT, this provides us
with a very systematic way of studying the sensitivity of the
cross section to the short-range physics of the overlap wave
function. Albeit similar in spirit with Refs. [12,13,24,25],
this analysis will enable us to determine the exact conditions
of peripherality of the reaction, and hence extract a reliable
estimate of the ANC of the bound states of 11Be.

Recently an ab initio calculation of 11Be has been per-
formed by Calci et al. within the framework of the no-core
shell model with continuum (NCSMC) [29]. These calcula-
tions provide a fully microscopic prediction of its ANC, to
which we will be able to confront our values inferred from the
data of Schmitt et al. [10,11].

This paper is structured as follows: In Sec. II, we briefly
present the three-body model of the reaction and the ADWA,
which we use to compute the transfer cross sections. In
Sec. III, we introduce the numerical inputs and the descrip-
tions of 11Be we consider in this study. Finally we present the
results of our calculations and discuss them in Sec. IV. Our
conclusions are drawn in Sec. V.

II. THEORETICAL FRAMEWORK

We consider the stripping reaction A(d,p)B in which a
neutron is transferred to a nucleus A (10Be) to form nucleus
B (11Be). In a simple physical picture, this transfer reaction
can be viewed as a process in which the neutron n from the
incident deuteron d populates an unoccupied state in the target
nucleus A, producing the composite nucleus described as a
two-cluster structure B = A + n. To model this reaction, we
adopt the three-body model (A + n + p) illustrated in Fig. 1.

In its post form, the transition matrix elements for the
reaction reads [4–6]

Tpost (pB, dA) = 〈χ (−)
pB ϕAn|Vpn + UpA − UpB |ψ (+)

dA 〉, (1)

FIG. 1. Illustration of the three-body system with associated
coordinates.

where Vpn is the potential that simulates the interaction that
binds the proton and the neutron into the deuteron and UpA

and UpB are optical potentials that simulate the interaction
between the proton and the clusters A and B, respectively.
The wave function ψ

(+)
dA describes the three-body system with

the condition that the proton and neutron are initially bound
into a deuteron that is impinging on A. At the ADWA, it is
approximated by

ψ
(+)
dA (r, R) � χ

(+)
dA (R)ϕpn(r ), (2)

where ϕpn is the deuteron bound state computed from Vpn and
χ

(+)
dA is the distorted wave describing the scattering of d by A.

Following the Johnson and Tandy prescription [16], this wave
function is obtained from the optical potential UdA built by
averaging A-p and A-n optical potentials over the finite-range
deuteron bound state,

UdA(R) = 〈ϕpn|Vpn(UpA + UnA)|ϕpn〉
〈ϕpn|Vpn|ϕpn〉 . (3)

The distorted wave χ
(−)
pB appearing in Eq. (1) describes the

scattering of p by the cluster B in the outgoing channel of
the reaction; it is obtained using the optical potential UpB .
The wave function ϕAn describes the state of the nucleus B
formed in the transfer. In this three-body model, it is obtained
at the single-particle approximation, in which B is seen as
a two-cluster structure, in which a neutron is bound to the
core A assumed to be structureless. The A-n interaction is
described by a phenomenological potential VAn. Following
Refs. [30,31], we use a Halo-EFT description of 11Be (see
Sec. III A) [27,28]. Within this description, the B bound state
is characterized by the quantum numbers nr ′ lj , where nr ′ is
the number of nodes in the radial wave function, l is the orbital
angular momentum, and j is obtained from the coupling of l
with the spin of the neutron.

The reduced radial wave function has the following asymp-
totic behavior:

unr′ lj (r ′) −→
r ′→∞

bnr′ lj i κnr′ lj r ′ hl

(
iκnr′ lj r

′), (4)

where hl is a spherical Hankel function and κnr′ lj =√
2μAn|Enr′ lj |/h̄, with |Enr′ lj | the binding energy of the neu-

tron to the core A and μAn their reduced mass. The param-
eter bnr′ lj is the single-particle ANC (SPANC) defining the
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strength of the exponential tail of the A-n bound-state wave
function. This SPANC will vary with the geometry of the
potential used to simulate the A-n interaction [12,13,21,32].
We will use this property in Sec. IV to assess the sensitivity of
the transfer cross section to the ANC.

Being universal, the asymptotic behavior (4) exists also in
the actual structure of the nuclei [21] and hence should be
reproduced in ab initio models, like the NCSMC calculation
of Calci et al. [29]. However, the true ANC will differ from
the SPANC obtained in the phenomenological two-body de-
scription of B because of the coupling with the other possible
configurations [21]. In the present piece of work, we study
how to relate the two and if there are experimental conditions
which enable a safe extraction of the ANC for the 11Be bound
states from the Oak Ridge experiment [10,11].

The theoretical differential cross section expressed as a
function of the relative direction � = (θ, φ) between p and B
in the outgoing channel dσth/d� is obtained from the square
modulus of the transition matrix elements (1). All transfer
calculations are performed with the code FRESCO [33]. In the
next section, we provide all the details about our choices of
the potentials used in this work.

III. TWO-BODY POTENTIALS

A. Description of 11Be

As mentioned in the previous sections, 11Be is the
archetype of a one-neutron halo nucleus. It can thus be
modeled as a neutron loosely bound to a 10Be core. With
the assumption that the 10Be core is in its ground state (0+),
the 1

2
+

ground state (g.s.) of 11Be can be described by a
10Be(0+) ⊗ 1s1/2 configuration, and the 1

2
−

excited state (e.s.)
by a 10Be(0+) ⊗ 0p1/2 configuration. In this study, we use a
Halo-EFT description of this nucleus at the leading order of
the expansion in each of these partial waves [27,28].

Halo EFT provides a systematic treatment of halo nuclei,
which exhibit a clear separation of scales: The core of the
nucleus (10Be in the present case) is tightly bound and hence
compact, whereas the halo neutron is loosely bound and con-
sequently has a very extended wave function. The parameter
Rcore/Rhalo, where Rcore (Rhalo) is the size of the core (halo)
of the nucleus, is thus small (about 0.4 for 11Be). Halo EFT
exploits this separation of scales and considers the core and
halo neutron as its degrees of freedom. Within Halo EFT,
the quantum-mechanical amplitudes are expanded into powers
of that parameter (see Ref. [28] for a recent review). This
effective theory will break down if the process it describes
probes distances smaller than Rcore, or if they lead to the
excitation of the core.

Halo EFT is expressed through a Lagrangian that includes
all operators up to a given order in this expansion. The
interactions that appear in this Lagrangian are thus considered
at the limit Rcore/Rhalo → 0 and are described by zero-range
potentials and their derivatives. The coefficients of these
potentials—the low-energy constants of the theory—are free
parameters, which are adjusted to reproduce experimental
data or outputs of ab initio calculations [30]. In the present
work, we consider the development at the lowest order using

just one contact term, and hence one low-energy constant, per
partial wave to simply reproduce the one-neutron separation
energy of each bound state of 11Be populated through the
transfer reactions measured by Schmitt et al. [10,11]. We
neglect the possible derivatives of the interaction as well as
the higher-order terms [27,28].

To render the interactions numerically tractable, we follow
what is done to describe the nucleon-nucleon interaction in
EFT [34] and regulate them with a Gaussian, whose range can
be varied [30,31],

VAn(r ′) = −V0 e
− r′2

2r2
0 . (5)

This form of the neutron-core potential enables us to easily
evaluate the sensitivity of the reaction to the short-range
physics, which is believed to take place at distances shorter
than the radial range

√
2 r0 of these Gaussians. Our goal

being to find the experimental conditions under which the
reaction is purely peripheral, Halo EFT provides us with a
simple and elegant tool to generate, using different values of
the Gaussian width r0, wave functions for the bound states
of 11Be that exhibit significantly different radial behaviors.
For the reaction to be peripheral, it needs to be sensitive
only to the tail of the radial wave function (4). One simple
way to find that out is to check that its cross section is
proportional to the square of the bound state SPANC |bnr′ lj |2,
using different A-n potentials that generate single-particle
wave functions with different SPANCs, as was already done
in Refs. [12,13,24,25,32]. However, we must also be sure that
the reaction is not sensitive to the internal part of the wave
function. For this, the different wave functions must not only
have different SPANCs, but should also exhibit very different
radial behavior inside the nucleus.

The Gaussian potential (5) enables us to realize that in a
simple way. We consider nine such Gaussian potentials with
different widths r0 ranging from 0.4 to 2.0 fm. The lower
end of that range is unphysically small, but it enables us to
generate both very small SPANCs and significant changes in
the internal part of the wave function. The upper end is chosen
so as to avoid distortion in the long-range physics of 11Be [30].

For each width the depth V0 in the s1/2 partial wave is
adjusted to reproduce the neutron binding energy: |E1s1/2| =
0.502 MeV for the g.s. [35]. We do the same in the p1/2

partial wave to describe the 1
2

−
bound excited state of 11Be,

fitting the depth of the central term V0 to obtain E0p1/2 =
−0.182 MeV [35]. These parameters are listed in Table I with
the corresponding SPANCs b1s1/2 and b0p1/2. This way of
doing enables us to generate a very broad range of SPANCs
for both the ground and excited bound states of 11Be.

The corresponding reduced radial wave functions are dis-
played in Figs. 2 and 3 for the g.s. and the e.s., respectively.
As desired for this study, we observe that the nine Gaussian
potentials provide radial wave functions significantly different
from one another. The very narrow potentials lead to wave
functions that reach their asymptotic behavior (4) at quite a
small radius, viz. r ′ � 1 fm, while the broader ones have their
internal behavior developing at much larger distances. The
wave function corresponding to r0 = 2.0 fm being similar to
what a usual Woods-Saxon potential produces, i.e., with an
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TABLE I. Parameters of the Gaussian 10Be-n potentials [see
Eq. (5)] adjusted to reproduce the g.s. and e.s. of 11Be. The SPANC
bnr′ lj obtained for each case is provided as well.

r0 V0 (g.s.) b1s1/2 V0 (e.s.) b0p1/2

(fm) (MeV) (fm−1/2) (MeV) (fm−1/2)

0.4 1314.6 0.601 869.4 0.068
0.6 592.3 0.632 387.3 0.085
0.8 337.8 0.664 218.4 0.100
1.0 219.2 0.697 140.2 0.114
1.2 154.4 0.732 97.7 0.127
1.4 115.1 0.769 72.1 0.140
1.6 89.3 0.807 55.4 0.152
1.8 71.6 0.846 44.0 0.165
2.0 58.8 0.888 35.8 0.177

asymptotic behavior reached at r ′ � 5 fm (see, e.g., Fig. 7
of Ref. [13] or Fig. 6(a) of Ref. [32]). These significant
changes in both the SPANCs and in the radial behavior in the
interior of the nucleus, will help us assessing the sensitivity
of our 10Be(d,p)11Be transfer calculations to the radial wave
function of the 11Be bound states. In particular, let us note
that these wave functions differ very significantly in the
surface part of the nucleus—viz. at r ′ ∼ 2–3 fm—to which
transfer reactions can be sensitive [21,25]. The study of the
transfer calculations performed with these very different wave
functions will enable us to clearly identify the experimental
conditions under which the reaction is purely peripheral.

B. Other optical potentials

The nucleon-nucleus optical potentials used to compute the
distorted waves used in Eq. (1) and to build the FR-ADWA
d-A potential in Eq. (3) are obtained from the global Chapel
Hill parametrization CH89 [36] without including the spin-
orbit terms. This potential is energy dependent and hence
needs to be adapted as a function of the deuteron energy Ed .

-0.4

-0.2

0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

u
1
s
1
/
2

r (fm)

0.4fm
0.6fm
0.8fm
1.0fm
1.2fm
1.4fm
1.6fm
1.8fm
2.0fm

FIG. 2. Reduced radial wave functions u1s1/2 of the 1
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11Be obtained with the nine Gaussian potentials of Table I.
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11Be obtained with the nine Gaussian potentials of Table I.

The FR-ADWA potential (3) is obtained by computing Up10Be

and Un10Be at half the deuteron energy. For that potential, the
numerical integration is performed with the front-end code
TWOFNR [37].

To test the sensitivity of our calculations to the choice
of these optical potentials, we also consider the Koning-
Delaroche parametrization [38]. The results of these tests are
presented in Sec. IV C.

The Reid soft-core interaction [39] is used as Vpn.

IV. RESULTS AND DISCUSSION

Following the experimental conditions of Refs. [10,11], we
perform ADWA calculations of the reaction 10Be(d,p)11Be at
energies Ed = 21.4, 18, 15, and 12 MeV. We first consider
the transfer towards the g.s. (Sec. IV A) and then towards the
e.s. (Sec. IV B). In both cases, we study the experimental
conditions for which the reaction is peripheral and accord-
ingly extract an ANC for each of these states, which we then
compare to the prediction of the ab initio calculations of Calci
et al. [29].

A. Transfer to 11Be ground state

1. Conditions of peripherality of the reaction

Figure 4(a) displays the differential cross section dσth/d�

for the transfer to the 11Be g.s. computed for the highest
experimental deuteron energy Ed = 21.4 MeV. The calcula-
tions have been performed for the nine 1s1/2 wave functions
shown in Fig. 2 obtained with the potentials of Table I.
As expected, we observe a large variation in the results. At
forward angle, the cross sections seem to scale with the square
of the SPANC b1s1/2 (see Table I), as one would expect if
the process were purely peripheral [see Eq. (1)]. At larger
angle, i.e., in the region of the second peak, the ordering of
the curves is inverted, showing that in this angular range, the
process is more sensitive to the short-range physics of the
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FIG. 4. Analysis of the differential cross sections of
10Be(d,p)11Be(g.s.) for a deuteron energy Ed = 21.4 MeV.
The results of the ADWA calculations are presented for every
potential of Table I.

wave function. Therefore, selecting data at small scattering
angle might enable us to constrain the g.s. ANC.

To better estimate the sensitivity of our calculations to the
SPANC, we have plotted in Fig. 4(b) the transfer cross section
divided by b2

1s1/2. Accordingly, the spread in the results is
significantly reduced at forward angle, confirming our initial
impression of Fig. 4(a). In the region of the second maximum,
however, it remains similar to what was observed before
scaling.

To precisely determine within which angular range the
data should be limited to select a strictly peripheral process,
we remove the major angular dependence by considering the

following ratio:

Rr0/1.4fm(θ ) =
(

b
(1.4fm)
nr′ lj

b
(r0 )
nr′ lj

)2 dσ
(r0 )
th

d�

dσ
(1.4fm)
th
d�

− 1, (6)

where the transfer cross section computed using the 10Be-n
Gaussian potential of width r0 scaled by the square of the
SPANC is divided by the result obtained with r0 = 1.4 fm,
which is at the center of the range in r0. The results are dis-
played in Fig. 4(c). If one excepts the very narrow potentials
(r0 = 0.4 fm and r0 = 0.6 fm), we see that all ratios Rr0/1.4fm

fall very close to one another, confirming the peripherality
of the reaction when the data are selected at forward angles.
To define an angular range in which the reaction can be
considered as peripheral, we consider a maximum of 5%
difference [horizontal dotted lines in Fig. 4(c)]. In this case,
this happens only at very forward angles, viz. when θ < 7◦.

We repeat our calculations and analysis at the other ener-
gies at which data were taken [10,11]. The results obtained
at Ed = 18 MeV are presented in Fig. 5. As at 21.4 MeV,
the reaction is peripheral at forward angles. However, the
region of peripherality is enlarged up to θ < 10◦ and even
though the short-range potentials still lead to significant ratios
Rr0/1.4fm, they move closer to the 5% acceptance band. It
seems therefore that transfer reactions measured at lower
beam energy are more peripheral.

Moving down in energy confirms this trend. At Ed =
15 MeV (Fig. 6), the peripherality angular range goes up
to 20◦ and the results obtained with the narrow potentials
are now within a mere 10% of the more regular widths. At
even lower energy (Ed = 12 MeV, Fig. 7), the peripherality
at forward angle is even clearer. This can already be seen in
Fig. 7(b), and the Fig. 7(c) confirms that all potentials, even
the most narrow ones, fall into the peripherality acceptance
band for θ < 20◦. We therefore conclude that, first, the periph-
eral area of this transfer reaction is always found at forward
angles, and, second, that when the incident energy decreases,
the reaction exhibits a more pronounced peripheral character.

2. Extraction of the ANC of the 11Be g.s.

Now that we know in which conditions the reaction is
peripheral (low Ed and forward angles), we extract an ANC by
scaling our calculations to the data of Schmitt et al. in these
exact conditions. For each beam energy, and each potential
width r0, we thus infer an ANC C

(r0 )
nr′ lj

from a χ2 analysis,

χ2
(r0 ) =

∑
i ′

[(C
(r0 )
nr′ lj

b
(r0 )
nr′ lj

)2 dσ
(r0 )
th

d�

∣∣
i ′ −

dσexp

d�

∣∣
i ′
]2

(δexp|i ′ )2
, (7)

where δexp|i ′ is the experimental uncertainty at angle θi ′ and
the sum is limited to the sole data points i ′ which lie within the
peripheral regions defined in the previous section, viz. within
the 5% acceptance band.

The ANCs C
(r0 )
1s1/2 obtained by minimizing the sum in

Eq. (7) are shown in Fig. 8 as a function of the potential
width r0 (from r0 = 0.4 fm on the left to r0 = 2.0 fm on the
right) and are grouped according to the beam energy: Ed =
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FIG. 5. Same as Fig. 4 for Ed = 18 MeV.

21.4 MeV (squares), 18 MeV (triangles), 15 MeV (diamonds),
and 12 MeV (circles). The error bars correspond to the uncer-
tainty in the χ2 minimization.

The extraction of these ANCs is more reliable at low
energy: The dependence on r0 vanishes for the lowest beam
energies. At Ed = 21.4 MeV, even if one excepts the results
obtained with the shortest widths r0 (first two points), we
observe a significant dependence on the potential geometry.
This confirms that, at this energy, even when selecting the data
at forward angles, the reaction is not completely independent
of the internal part of the radial wave function (see Fig. 4).
There is a problem with the results at Ed = 18 MeV, which
are always smaller than at the other beam energies. This has
already been seen in Schmitt et al.’s analysis [10,11]. The
reason for that remains unclear. However, here, too, the de-
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FIG. 6. Same as Fig. 4 for Ed = 15 MeV.

pendence of the extracted ANC on r0 cannot be neglected, and
hence that reaction cannot be considered as purely peripheral.

As already seen above, the best results are obtained at
Ed = 15 and 12 MeV. Especially in the latter case, the ANC
is nearly independent on the geometry of the potential, which
gives us confidence that the value hence inferred is close to
the real one.

To infer the actual ANC from the Oak Ridge data, we
thus focus on the two lowest beam energies and select only
the calculations that fall within the confidence band of 5%
defined in the previous section, which means that we con-
sider all potentials at Ed = 12 MeV and the potentials with
r0 � 0.8 fm at Ed = 15 MeV. We hence obtain an average
of C1s1/2 = 0.785 ± 0.03 fm−1/2. This value is close to that
found by Belyaeva et al. [13] with a coupled-reaction channel
model of the reaction. More interestingly, it is in excellent
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agreement with the result obtained by Calci et al. within
their NCSMC calculation of 11Be structure [29]: Cab initio

1/2+ =
0.786 fm−1/2 (dashed line in Fig. 8).

To estimate the accuracy of the inferred ANC, we plot in
Fig. 9 the results of our calculations scaled to this value, viz.

( C1s1/2

b
(r0 )
1s1/2

)
2 dσ

(r0 )
th

d�
. The agreement with the data improves at lower

energy, which confirms the method introduced here. Because
this analysis relies a lot on the accuracy of the experimental
data, it would be helpful to conduct such experiments focusing
on the low energies and forward angles to obtain a more
precise ANC.

B. Transfer to the 11Be e.s.

We next apply the same method to the data of Schmitt
et al. on the 11Be 1

2
−

e.s. Our results are summarized in

FIG. 8. ANCs extracted for the ground state of 11Be by minimiz-
ing the χ 2 (7) for each beam energy and each potential of Table I. The
ab initio result (Cab initio

1/2+ = 0.786 fm−1/2) is displayed for comparison
by the dashed line.

Fig. 10. In this case, we observe a much stronger dependence
of the results on the potential geometry, and even if it flattens
at lowest beam energy, it never becomes negligible at Ed =
12 MeV. In our analysis, we have observed a much larger
spread of the theoretical cross sections than for the ground
state. This is most likely due to the p-wave dominant structure
of this state, which, with a nonvanishing centrifugal barrier,
forces a large fraction of the wave function to be in the interior
of the nucleus, hence leading to transfer reactions that are no
longer purely peripheral at these energies.

To infer an ANC from the existing data, we hence focus
solely on the set of data at the lowest energy (Ed = 12 MeV).
As for the g.s. we consider only the calculations which fall
within the 5% acceptance band, which excludes the potentials
with a width r0 � 0.8 fm. From this analysis of the data,
we obtain an averaged C0p1/2 = 0.135 ± 0.005 fm−1/2. This
value is also comparable to that obtained in Ref. [13] and
is close to the ab initio value of Calci et al. Cab initio

1/2− =
0.129 fm−1/2 [29]. To improve the accuracy of the method,
one would need transfer data measured at even lower beam en-
ergy. Extrapolating the tendency observed in Fig. 10, it seems
that at an energy Ed < 10 MeV, the reaction will become
purely peripheral, leading to a dependence on r0 sufficiently
negligible to extract a more reliable ANC.

C. The sensitivity to the optical potential choice

All the calculations presented in this work have been ob-
tained using the Chapel Hill (CH89) global nucleon-nucleus
optical potential [36]. However, other choices are possible.
To estimate the sensitivity of our calculations to this potential
choice, we repeat our calculations with the Koning-Delaroche
potential (KD) [38]. This analysis is illustrated in Fig. 11 for
the transfer reaction 10Be(d,p)11Be(g.s.) at Ed = 12 MeV. In
both cases, we use the Gaussian 10Be-n potential with a width
r0 = 1.4 fm.

As already observed in Refs. [10–12], we observe that
the KD potential leads to a larger cross section compared

054602-7



J. YANG AND P. CAPEL PHYSICAL REVIEW C 98, 054602 (2018)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

d
σ
/
d
Ω

(
m

b
/
s
r
)

d
σ
/
d
Ω

(
m

b
/
s
r
)

d
σ
/
d
Ω

(
m

b
/
s
r
)

d
σ
/
d
Ω

(
m

b
/
s
r
)

θ (deg)

Ed = 21.4 MeV

Ed = 18 MeV

Ed = 15 MeV

Ed = 12 MeV

(a)

(b)

(c)

(d)

10

20

30

40

50

5

10

15

20

25

30

35

5

10

15

20

25

0.4fm
0.6fm
0.8fm
1.0fm
1.2fm
1.4fm
1.6fm
1.8fm
2.0fm

Schmitt et al.

FIG. 9. The angular distribution for 10Be(d,p)11Be(g.s.) at all
experimental energies after scaling to the ANC obtained by the χ2

minimization C1s1/2 = 0.785 fm−1/2.

FIG. 10. ANCs extracted for the 11Be e.s. by minimizing the χ 2

(7) for each beam energy and each potential of Table I. The ab initio
result (Cab initio

1/2− = 0.129 fm−1/2) is displayed for comparison.

to the CH89 one. Besides this change in magnitude of the
cross section, the choice of optical potential does not affect
the method. Because the cross sections calculated with the
KD potential lead systematically to larger cross sections than
those with CH89, we obtain a smaller ANC CKD

1s1/2 = 0.755 ±
0.03 fm−1/2, still in agreement with the ab initio prediction.

V. CONCLUSION

Transfer reactions provide an efficient tool to study the
single-particle structure of nuclei away from stability [3–8].
They are therefore used to study halo structures, like in 11Be.
In a recent experiment, Schmitt et al. have measured the
10Be(d,p)11Be transfer reaction at Ed = 21.4, 18, 15, and
12 MeV [10,11].
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FIG. 11. Influence of the nucleon-nucleus optical potential on the
transfer cross section for 10Be(d,p)11Be(g.s.) at Ed = 12 MeV. The
Gaussian 10Be-n potential is chosen with a width r0 = 1.4 fm in both
cases.
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We have reanalyzed these data within the ADWA model of
transfer [16], using a Halo-EFT description of 11Be at leading
order [27,28]. This enables us to precisely study the sensitivity
of the cross sections to the short-range physics of the 10Be-n
wave function of both the g.s. and e.s. of 11Be. Accordingly,
we have been able to define the experimental conditions under
which the reaction can be considered as peripheral, and hence
from which a reliable ANC can be extracted [12,13,22–26].

For the 1
2

+
g.s. of 11Be, selecting the data at low energy

(Ed � 15 MeV) and forward angles (θ < 20◦) seems enough.
Transfer reactions towards the 1

2
−

e.s. require a much lower
energy to be strictly peripheral, probably because of the
existence of the centrifugal barrier in this p-wave dominated
bound state. The ideal experimental conditions would actually
require Ed < 10 MeV.

From the comparison between our calculations and the
experimental data selected in these conditions of peripheral-
ity, we obtain C1s1/2 = 0.785 ± 0.03 fm−1/2 in the g.s. and
C0p1/2 = 0.135 ± 0.005 fm−1/2 in the e.s. Both are in excel-
lent agreement with the ab initio predictions of Calci et al.
(Cab initio

1/2+ = 0.786 fm−1/2 and Cab initio
1/2− = 0.129 fm−1/2) [29].

This, adding to the fact that the same value of the g.s. ANC
leads to excellent agreements with breakup measurements
of 11Be [30,31,40], confirm the accuracy of Calci et al.’s
predictions.

In conclusion, this work suggests a new, systematic and
reliable way to extract from transfer measurements the ANC

of loosely bound nuclei, e.g., exhibiting a halo. Our study
indicates that investigating transfer reactions at low beam
energies and forward angles ensures the reaction to be periph-
eral, and is hence the best way to obtain a reliable ANC from
experimental data. This strong constraint on the asymptotics
of these nuclei will help investigate the short-range physics of
these nuclei as suggested in Refs. [24,25]. In the near future,
we plan to apply this method to other systems, like 15C, for
which there exist precise data measured at low energy [12,41].
It would also be interesting to see if this idea can be extended
to resonances, like the 5

2
+

state in 11Be.

ACKNOWLEDGMENTS

We thank A. M. Moro and D. Y. Pang for their support
in doing the calculation. This project has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme under Grant Agreement No. 654002, the
PRISMA (Precision Physics, Fundamental Interactions and
Structure of Matter) Cluster of Excellence, and the Deutsche
Forschungsgemeinschaft through the Collaborative Research
Center 1044. J.Y. is supported by the China Scholarship
Council (CSC). P.C. is supported by the Federal State of
Rhineland-Palatinate. This text presents research results of the
Belgian Research Initiative on eXotic nuclei (BriX), Program
No. P7/12 on interuniversity attraction poles of the Belgian
Federal Science Policy Office.

[1] J. Al-Khalili, in The Euroschool Lectures on Physics with Exotic
Beams, Vol. I (Springer, Berlin/Heidelberg, 2004), pp. 77–112.

[2] P. G. Hansen and B. Jonson, Europhys. Lett. 4, 409 (1987).
[3] J. Al-Khalili and F. Nunes, J. Phys. G 29, R89 (2003).
[4] I. J. Thompson and F. M. Nunes, Nuclear Reactions for Astro-

physics (Cambridge University Press, Cambridge, 2009).
[5] R. C. Johnson, J. Phys. G: Nucl. Part. Phys. 41, 094005 (2014).
[6] J. G. Camacho and A. M. Moro, in The Euroschool Lec-

tures on Physics with Exotic Beams, Vol. IV (Springer,
Berlin/Heidelberg, 2014), pp. 39–66.

[7] G. Potel, G. Perdikakis, B. V. Carlson, M. C. Atkinson, W. H.
Dickhoff, J. E. Escher, M. S. Hussein, J. Lei, W. Li, A. O.
Macchiavelli, A. M. Moro, F. M. Nunes, S. D. Pain, and J.
Rotureau, Euro. Phys. J. A 53, 178 (2017).

[8] K. Wimmer, J. Phys. G 45, 033002 (2018).
[9] K. L. Jones, A. S. Adekola, D. W. Bardayan, J. C. Blackmon,

K. Y. Chae, K. A. Chipps, J. A. Cizewski, L. Erikson, C. Harlin,
R. Hatarik, R. Kapler, R. L. Kozub, J. F. Liang, R. Livesay,
Z. Ma, B. H. Moazen, C. D. Nesaraja, F. M. Nunes, S. D. Pain,
N. P. Patterson, D. Shapira, J. F. S. Jr., M. S. Smith, T. P. Swan,
and J. S. Thomas, Nature (London) 465, 454 (2010).

[10] K. T. Schmitt, K. L. Jones, A. Bey, S. H. Ahn, D. W. Bardayan,
J. C. Blackmon, S. M. Brown, K. Y. Chae, K. A. Chipps, J. A.
Cizewski, K. I. Hahn, J. J. Kolata, R. L. Kozub, J. F. Liang, C.
Matei, M. Matoš, D. Matyas, B. Moazen, C. Nesaraja, F. M.
Nunes, P. D. O’Malley, S. D. Pain, W. A. Peters, S. T. Pittman,
A. Roberts, D. Shapira, J. F. Shriner, M. S. Smith, I. Spassova,
D. W. Stracener, A. N. Villano, and G. L. Wilson, Phys. Rev.
Lett. 108, 192701 (2012).

[11] K. T. Schmitt, K. L. Jones, S. Ahn, D. W. Bardayan, A. Bey,
J. C. Blackmon, S. M. Brown, K. Y. Chae, K. A. Chipps, J. A.
Cizewski, K. I. Hahn, J. J. Kolata, R. L. Kozub, J. F. Liang,
C. Matei, M. Matos, D. Matyas, B. Moazen, C. D. Nesaraja,
F. M. Nunes, P. D. O’Malley, S. D. Pain, W. A. Peters, S. T.
Pittman, A. Roberts, D. Shapira, J. F. Shriner, M. S. Smith, I.
Spassova, D. W. Stracener, N. J. Upadhyay, A. N. Villano, and
G. L. Wilson, Phys. Rev. C 88, 064612 (2013).

[12] M. McCleskey, A. M. Mukhamedzhanov, L. Trache, R. E.
Tribble, A. Banu, V. Eremenko, V. Z. Goldberg, Y.-W. Lui,
E. McCleskey, B. T. Roeder, A. Spiridon, F. Carstoiu, V.
Burjan, Z. Hons, and I. J. Thompson, Phys. Rev. C 89, 044605
(2014).

[13] T. L. Belyaeva, R. Perez-Torres, A. A. Ogloblin, A. S. De-
myanova, S. N. Ershov, and S. A. Goncharov, Phys. Rev. C 90,
064610 (2014).

[14] G. Satchler, Nucl. Phys. 55, 1 (1964).
[15] R. C. Johnson and P. J. R. Soper, Phys. Rev. C 1, 976 (1970).
[16] R. Johnson and P. Tandy, Nucl. Phys. A 235, 56 (1974).
[17] N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher,

and M. Yahiro, Phys. Rep. 154, 125 (1987).
[18] L. D. Faddeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960) [Sov. Phys.

JETP 12, 1014 (1961)].
[19] E. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. B 2, 167

(1967).
[20] A. Deltuva, Phys. Rev. C 79, 054603 (2009).
[21] N. K. Timofeyuk, J. Phys. G 41, 094008 (2014).
[22] L. Blokhintsev, E. Dolinskij, and I. Borbej, Fizika Ehlemen-

tarnykh Chastits i Atomnogo Yadra 8, 1189 (1977).

054602-9



J. YANG AND P. CAPEL PHYSICAL REVIEW C 98, 054602 (2018)

[23] C. A. Gagliardi, R. E. Tribble, A. Azhari, H. Clark, Y.-W.
Lui, A. Mukhamedzhanov, A. Sattarov, L. Trache, V. Burjan,
J. Cejpek et al., Phys. Rev. C 59, 1149 (1999).

[24] A. M. Mukhamedzhanov and F. M. Nunes, Phys. Rev. C 72,
017602 (2005).

[25] D. Y. Pang, F. M. Nunes, and A. M. Mukhamedzhanov, Phys.
Rev. C 75, 024601 (2007).

[26] S. Igamov, M. Nadirbekov, and R. Yarmukhamedov, Phys. At.
Nucl. 70, 1694 (2007).

[27] C. Bertulani, H.-W. Hammer, and U. van Kolck, Nucl. Phys. A
712, 37 (2002).

[28] H.-W. Hammer, C. Ji, and D. R. Phillips, J. Phys. G 44, 103002
(2017).

[29] A. Calci, P. Navrátil, R. Roth, J. Dohet-Eraly, S.
Quaglioni, and G. Hupin, Phys. Rev. Lett. 117, 242501
(2016).

[30] P. Capel, D. R. Phillips, and H.-W. Hammer, Phys. Rev. C 98,
034610 (2018).

[31] P. Capel, V. Durant, L. Huth, H.-W. Hammer, D. R. Phillips,
and A. Schwenk, J. Phys. Conf. Ser. 1023, 012010 (2018).

[32] P. Capel and F. M. Nunes, Phys. Rev. C 73, 014615 (2006).
[33] I. J. Thompson, Comput. Phys. Rep. 7, 167 (1988).
[34] A. Kievsky, M. Viviani, M. Gattobigio, and L. Girlanda, Phys.

Rev. C 95, 024001 (2017).
[35] J. Kelley, E. Kwan, J. Purcell, C. Sheu, and H. Weller, Nucl.

Phys. A 880, 88 (2012).
[36] R. Varner, W. Thompson, T. McAbee, E. Ludwig, and T. Clegg,

Phys. Rep. 201, 57 (1991).
[37] J. A. Tostevin, University of Surrey version of computer code

TWOFNR, 2008 (M. Toyama, M. Igarashi, and N. Kishida) and
computer code FRONT (private communication).

[38] A. Koning and J. Delaroche, Nucl. Phys. A 713, 231 (2003).
[39] R. V. Reid, Ann. Phys. 50, 411 (1968).
[40] L. Moschini and P. Capel, arXiv:1807.07537.
[41] J. D. Goss, P. L. Jolivette, C. P. Browne, S. E. Darden, H. R.

Weller, and R. A. Blue, Phys. Rev. C 12, 1730 (1975).

054602-10



Appendix C

Paper II

This appendix attaches the following published paper, which contains the work
presented in Sec. 3.2.
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structure to the study of transfer, breakup, and radiative-capture reactions.
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Background: Aside from being a one-neutron halo nucleus, 15C is interesting because it is involved in reactions
of relevance for several nucleosynthesis scenarios.
Purpose: The aim of this work is to analyze various reactions involving 15C, using a single structure model
based on halo effective field theory (halo EFT) following the excellent results obtained in [P. Capel et al.,
Phys. Rev. C 98, 034610 (2018)].
Method: To develop a halo-EFT model of 15C at next to leading order (NLO), we first extract the asymptotic
normalization coefficient (ANC) of its ground state by analyzing 14C(d, p)15C transfer data at low energy
using the method developed in [J. Yang and P. Capel, Phys. Rev. C 98, 054602 (2018)]. Using the halo-EFT
description of 15C constrained with this ANC, we study the 15C Coulomb breakup at high (605 MeV/nucleon)
and intermediate (68 MeV/nucleon) energies using eikonal-based models with a consistent treatment of nuclear
and Coulomb interactions at all orders, and which take into account proper relativistic corrections. Finally, we
study the 14C(n, γ )15C radiative capture.
Results: Our theoretical cross sections are in good agreement with experimental data for all reactions, thereby
assessing the robustness of the halo-EFT model of this nucleus. Since a simple NLO description is enough to
reproduce all data, the only nuclear-structure observables that matter are the 15C binding energy and its ANC,
showing that all the reactions considered are purely peripheral. In particular, it confirms the value we have
obtained for the ANC of the 15C ground state: C2

1/2+ = 1.59 ± 0.06 fm−1. Our model of 15C provides also a new
estimate of the radiative-capture cross section at astrophysical energy: σn,γ (23.3 keV) = 4.66 ± 0.14 μb.
Conclusions: Including a halo-EFT description of 15C within precise models of reactions is confirmed to be
an excellent way to relate the reaction cross sections and the structure of the nucleus. Its systematic expansion
enables us to establish how the reaction process is affected by that structure and deduce which nuclear-structure
observables are actually probed in the collision. From this, we can infer valuable information on both the
structure of 15C and its synthesis through the 14C(n, γ )15C radiative capture at astrophysical energies.

DOI: 10.1103/PhysRevC.100.044615

I. INTRODUCTION

The nucleus 15C is interesting for various reasons. On a
nuclear-structure viewpoint, 15C is one of the best known
one-neutron halo nuclei [1,2]. Due to its small one-neutron
separation energy [Sn(15C) = 1.218 MeV], the ground state
of 15C is mostly described as a two-body structure, in which
the valence neutron is loosely bound in a 1s1/2 orbital to a 14C
in its 0+ ground state. Thanks to its loose binding and the fact
that it sits in an l = 0 orbital, the valence neutron exhibits a
high probability of presence at a large distance from the other
nucleons. It therefore forms like a diffuse halo surrounding
a compact core [3]. The existence of halos in some nuclei
challenges our view of the nucleus, which is usually seen as

*laura.moschini@ulb.ac.be
†jiecyang@ulb.ac.be
‡pcapel@uni-mainz.de

a compact object with a nucleon density at saturation. Halo
nuclei, including 15C, are thus the focus of many experimental
and theoretical studies [1,2].

The study of 15C has also applications in nuclear astro-
physics. Its synthesis through one-neutron radiative capture
by 14C has been suggested to be part of neutron-induced
CNO cycles, which take place in the helium-burning zone of
asymptotic-giant-branch (AGB) stars [4]. This 14C(n, γ )15C
reaction is also the doorstep to the production of heavy
elements in inhomogeneous big-bang nucleosynthesis [5] and
it has been shown to be part of possible reaction routes in the
nuclear chart during the r process in Type II supernovae [6]. It
is therefore necessary to have a reliable estimate of the cross
section for this radiative capture at astrophysical energy, and
hence to better understand the structure of 15C.

Because 15C exhibits a short lifetime, its structure cannot
be probed with usual spectroscopic techniques. This nucleus
is therefore mostly studied through reactions. Transfer, such

2469-9985/2019/100(4)/044615(13) 044615-1 ©2019 American Physical Society
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as (d, p), measured in both direct and inverse kinematics, has
been used to infer the single-particle structure of 15C [7–10].
In breakup, the lose binding of the valence neutron to the core
is broken up during the collision of the nucleus on a target,
hence revealing its internal core-n structure. Various experi-
mental campaigns have been set up to measure the inclusive
breakup—also known as knockout—of 15C on light targets at
intermediate beam energies [11–13]. In these measurements,
only 14C is detected after the reaction, and information per-
taining to the single-particle structure of 15C is inferred from
the analysis of the parallel-momentum distribution of the core.
In Refs. [14,15], the Coulomb (exclusive) breakup of 15C
has been measured. In that case, both the 14C core and the
halo neutron are detected in coincidence after the dissociation
of the 15C projectile on a Pb target. Being dominated by
the Coulomb interaction, this reaction process is rather clean
as it exhibits little dependence on the choice of the optical
potentials used to describe the nuclear interaction between the
projectile constituents (core and n) with the target.

In addition to its interest in the study of the halo structure of
15C, Coulomb breakup has also been suggested as an indirect
method to deduce the cross section for the 14C(n, γ )15C
radiative capture at low energies [16,17]. The idea behind
the Coulomb-breakup method is that this dissociation, which
is often described as resulting from the exchange of virtual
photons between the projectile and the heavy target [18],
can be seen as the time-reversed reaction of the radiative
capture, where a (real) photon is emitted following the capture
of a neutron by the core. Later analyses have shown that
the breakup process is not that simple and that higher-order
effects spoil this nice picture [19,20]. However, it has been
suggested that the Coulomb-breakup measurements could be
used to infer the asymptotic normalization coefficient (ANC)
of the 15C ground-state wave function [21]. However, due to
the aforementioned higher-order effects, a precise model of
the reaction is needed in the analysis of the reaction [21–23].
Because the radiative capture 14C(n, γ )15C is a purely periph-
eral process [24], a reliable estimate of this ANC can then
be used to compute its cross section. Following Ref. [24], it
has also been suggested to rely on the strong sensitivity of
transfer reaction to the single-particle structure of the nucleus
to measure the ANC of the 15C ground-state wave function
for that purpose [10]. Since the radiative capture 14C(n, γ )15C
has been measured directly by Reifarth et al. [25], the 15C case
provides the opportunity to test the validity of the different
indirect methods listed above.

In the present work, we reanalyze the transfer [7,10],
Coulomb-breakup [14,15], and radiative-capture [25] mea-
surements using one single description of the one-neutron
halo nucleus 15C. For this, we follow the recent idea developed
in Ref. [26] and include, within precise models of reactions, a
description of the nucleus based on halo effective field theory
(halo EFT) [27] (see Ref. [28] for a recent review). Halo EFT
exploits the natural separation of scales that is observed in
halo nuclei—viz. the difference between the small size of the
core Rcore and the large extension of the halo Rhalo—to build an
effective Hamiltonian constructed as an expansion in powers
of the small parameter Rcore/Rhalo. This allows us to introduce,
order by order, the different nuclear-structure parameters in

the description of the nucleus within the reaction models,
and thereby to deduce how each of them affects the reaction
processes. This puts a strong constraint on what can be learned
about the structure of 15C from transfer and breakup experi-
ments and how this nuclear-structure information relates to the
direct radiative-capture capture measurement of Ref. [25].

This paper is structured as follows. In Sec. II we introduce
the halo-EFT description of 15C and explain how it is fitted at
next to leading order (NLO). Using this description, we rean-
alyze transfer measurements at Ed = 14 [7] and 17.06 MeV
[10] in Sec. III. In Sec. IV we use the same 15C structure to
study its breakup at high (605 MeV/nucleon [14]) and inter-
mediate (68 MeV/nucleon [15]) energy. In Sec. V, we study
the 14C(n, γ )15C radiative capture [25]. Finally, in Sec. VI,
we summarize our results and provide the outlook for future
work.

II. HALO-EFT DESCRIPTION OF 15C

A. Single-particle structure of 15C

Being a one-neutron halo nucleus, 15C can be modeled as a
neutron loosely bound to a 14C core. With the assumption that
the 14C core is in its ground state (0+), the 1

2
+

ground state
(g.s.) of 15C can be described by a 14C(0+) ⊗ 1s1/2 configura-

tion and its 5
2

+
excited state (e.s.) by a 14C(0+) ⊗ 0d5/2. These

states have an energy relative to the one-neutron threshold of
Eg.s. = −1.218 MeV and Ee.s. = −0.478 MeV, respectively.

To model this system, the core A of mass mA and charge
ZAe is assumed to be of spin and parity 0+ and we neglect its
internal structure. The halo nucleus B = A + n is thus of mass
mB = mA + mn, with mn the neutron mass, and charge ZBe =
ZAe. Such a two-body structure is described by the internal
Hamiltonian

H0 = − h̄2�

2μAn
+ VAn(r), (1)

where r is the A-n relative coordinate, μAn = mAmn/mB is
their reduced mass, and VAn is the effective potential simu-
lating their interaction. In partial wave l jm, the eigenstates of
H0 read

H0 ϕl jm(El j, r) = El j ϕl jm(El j, r), (2)

where j is the total angular momentum resulting from the
coupling of the orbital angular momentum l with the spin
of the halo neutron and m is its projection. The eigenstates
of H0 of negative energy En′l j are discrete and correspond
to the bound states of the two-body model of the projectile
B. These include physical A-n bound states of the system as
well as Pauli forbidden states, which simulate the presence
of neutrons within the core A. We enumerate them by adding
the number of nodes in the radial wave function n′ to the other
quantum numbers. They are normed to unity and their reduced
radial wave function behaves asymptotically as

un′l j (r) −→
r→∞ bn′l j ikn′l j r h(1)

l (ikn′l j r), (3)

where h̄kn′l j = √
2μAn|En′l j |, with |En′l j | the A-n binding

energy, and h(1)
l is a spherical Bessel function of the third
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kind [29]. The single-particle asymptotic normalization con-
stant (SPANC) bn′l j defines the strength of the exponential
tail of the A-n bound-state wave function [30]. This SPANC
will vary with the geometry of the potential used to simulate
the A-n interaction [31–34]. The asymptotic behavior (3) is
universal, therefore it exists also in the actual structure of the
nucleus, viz. in the overlap wave function obtained within a
microscopic calculation of the nucleus [33,35]. Being affected
by the inherent couplings between the different configurations
in the actual structure of the nucleus, in particular those in-
volving the core in one of its excited states, the true asymptotic
normalization constant (ANC) of the overlap wave function
of the physical state of spin and parity Jπ corresponding to
the configuration in which the core is in its 0+ ground state,
CJπ , differs from the SPANC bn′l j obtained in the effective
single-particle description considered here [33,35].

The positive-energy states describe the A-n continuum,
i.e., the broken-up projectile. Their reduced radial parts are
normalized according to

ukl j −→
r→∞ kr[cos δl j jl (kr) + sin δl j nl (kr)], (4)

where δl j is the phase shift at energy El j and h̄k = √
2μAnEl j ;

jl and nl are spherical Bessel functions of the first and second
kinds, respectively [29].

As mentioned above, the A-n interaction is described by
an effective potential VAn. In this study, following the idea
developed in Ref. [26], this potential is built within a halo-
EFT description of the nucleus [27,28]. At the leading order
(LO), this interaction consists of a simple contact term within
the sole s wave. As usual, this interaction is regularized with
a Gaussian

V LO
An (r) = V s1/2

0 e
− r2

2r2
0 . (5)

The range of the Gaussian r0 corresponds to the scale of the
short-range physics neglected in this halo-EFT description.
Changing its value will enable us to generate different single-
particle wave functions to describe the 14C-n system and
hence test the sensitivity of our reaction calculations to the
internal part of the wave function of the projectile. At LO,
the only free parameter V s1/2

0 is adjusted to reproduce Eg.s. =
−1.218 MeV within a 1s1/2 orbit.

At next-to-leading order (NLO), the interaction is extended
up to the p waves and contains, in addition to the contact
term its second-order derivative. For simplicity, we follow
Ref. [26] and use the equivalent following parametrization of
the interaction:

V NLO
An (r) = V l j

0 e
− r2

2r2
0 + V l j

2 r2e
− r2

2r2
0 . (6)

To constrain the potential parameters V s1/2
0 and V s1/2

2 in
the s wave, we need two structure observables: in addi-
tion to the binding energy of the state, we also use its
ANC. Various groups have estimated this ANC from reaction
data [10,21,24,31,36,37]. In this work, we use the method
presented in Ref. [38] to deduce this ANC from low-energy
transfer data selected at forward angle (see Sec. II B).

Unlike 11Be, 15C does not exhibit any low-lying bound or
resonant 3

2
−

or 1
2

−
states to which we could fit the effective

interaction (6) in the p waves. Therefore, true to the spirit of
halo EFT, we set this interaction to 0 in the p3/2 and p1/2

partial waves. Interestingly, this treatment is in agreement
with preliminary results obtained in an ab initio calculation of
15C performed within the no-core shell model with continuum
(NCSMC), which predicts negligible phase shifts at low 14C-n
energies in both p waves [39].

At NLO, the interaction VAn is nil in higher partial waves.
Since the 5

2
+

excited bound state of 15C plays a role in
the radiative capture (see Sec. V), we follow the idea of
Ref. [26] and go beyond NLO to include a 0d5/2 state at
Ee.s. = −0.478 MeV. The potential in that partial wave is
chosen similar to that of Eq. (6). We fit the depths V d5/2

0 and

V d5/2
2 to reproduce the experimental binding energy of the 5

2
+

state and the ANC deduced from transfer data.

B. Extraction of the ANC of the 15C bound states from the
analysis of low-energy transfer reactions

To obtain a reliable estimate of the ANC of both bound
states of 15C, we follow the idea developed in Ref. [38] and
reanalyze 14C(d, p)15C transfer data. In that reference, it was
found that (d, p) transfer reactions are purely peripheral when
they are performed at low beam energy (viz. Ed � 15 MeV)
and when the data are selected at forward angles. Within
these experimental conditions, the transfer cross section scales
perfectly with the square of the final-state ANC C2

Jπ . That
value can then be reliably extracted from a comparison be-
tween reaction calculations performed using a single-particle
description of the nucleus similar to the one presented in
Sec. II A and experimental data [38].

We therefore need 14C(d, p)15C transfer data measured
at low energies, and which contain enough data points at
forward angles for this extraction of the ANC of 15C to be
statistically meaningful. Two experiments satisfying the low-
energy condition have been performed: one at the University
of Notre Dame at Ed = 14 MeV [7], and another at the
Nuclear Physics Institute of the Czech Academy of Sciences
at Ed = 17.06 MeV [10]. Unfortunately, the former contains
only one point at θ < 15◦, which we deem not enough for
this extraction. Fortunately, although performed at a slightly
higher energy, the latter experiment contains six points at
θ < 12◦, which seems enough to constrain the ANC within
proper peripheral conditions (see below).

Following the method presented in Ref. [38], we couple a
leading-order (LO) halo-EFT description of 15C with a finite-
range adiabatic distorted wave approximation (FR-ADWA)
model [40]. This model provides a reliable description of
transfer reactions at these energies [41,42]. As in Ref. [38],
we consider the CH89 global potential [43] to generate the op-
tical potentials in the incoming (d-14C) and outgoing (p-15C)
channels. The Reid soft-core potential [44] is used to compute
the deuteron bound state. The deuteron adiabatic potentials
are obtained with the front-end code of TWOFNR [45] and the
transfer calculations are performed using FRESCO [46]. We
illustrate here the results for the ground state, the method to
extract the ANC of the excited state is analogous, though less
efficient because it corresponds to a d 14C-n bound state (see
Ref. [38] for the details).
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TABLE I. Potentials describing 14C + n g.s. at LO [see Eq. (5)]
and corresponding single-particle asymptotic normalization constant
(SPANC) b(r0 )

1s1/2. They are adjusted on the one-neutron binding
energy.

r0 (fm) V s1/2
0 (MeV) b(r0 )

1s1/2 (fm−1/2)

0.6 −591.05 0.865
0.8 −339.87 0.934
1.0 −222.43 1.01
1.2 −157.95 1.09
1.4 −118.68 1.17
1.6 −92.933 1.26
1.8 −75.095 1.36
2.0 −62.212 1.46

We first build eight Gaussian potentials at the LO of halo
EFT [see Eq. (5)] considering different ranges r0 between
0.6 fm and 2.0 fm. For each width the depth V s1/2

0 is adjusted
to reproduce the neutron binding energy in the 15C final state
(see Table I). These potentials provide different single-particle
radial wave functions u1s1/2 with very different SPANCs
b(r0 )

1s1/2, but also a significant change in the surface part of the
nucleus, i.e., in the range 2 fm � r � 4 fm, see Fig. 1. This
is the corner stone of the method developed in Ref. [38],
because it is known that transfer reactions can be sensitive
to that region [33,37]. Using single-particle wave functions
that strongly differ, not only in their SPANC, but also in their
shape within that surface region will enable us to accurately
determine the conditions under which the reaction is purely
peripheral, and thus under which a reliable estimate of the
actual ANC of the nucleus can be inferred.

With this input, we compute within the FR-ADWA [40] the
corresponding theoretical differential cross section dσth/d	

for the transfer to the 15C g.s. at Ed = 17.06 MeV [10],
expressed as a function of the relative direction 	 = (θ, φ)
between the proton and the 15C in the outgoing channel.
These results are displayed in Fig. 2(a) for the eight g.s.
wave functions shown in Fig. 1. At forward angles, the cross
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FIG. 1. Reduced radial wave functions of the 15C g.s. obtained
with LO Gaussian potentials of Table I.
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FIG. 2. Analysis of the differential cross section of 14C(d, p)15C
(g.s.) for the deuteron energy Ed = 17.06 MeV. The results of the
FR-ADWA calculations are presented for every wave function of
Fig. 1.

sections exhibit a huge sensitivity to the choice of the 14C-n
wave function. They seem to scale with the square of the
SPANC, as one would expect if the process were purely
peripheral [38]. To confirm this, we have plotted the transfer
cross section scaled by b2

1s1/2 in Fig. 2(b). In this way, the
spread in the results is significantly reduced at forward angles.

To precisely determine within which angular range the data
should be limited to select strictly peripheral conditions, we
remove the major angular dependence by considering the ratio

Rr0/1.4 fm(θ ) =
(

b(1.4 fm)
n′l j

b(r0 )
n′l j

)2
dσ

(r0 )
th

/
d	

dσ
(1.4 fm)
th

/
d	

− 1, (7)

where the transfer cross section computed using the 14C-n
Gaussian potential of range r0, scaled by the square of the
corresponding SPANC b(r0 )

1s1/2, is divided by the result obtained
with r0 = 1.4 fm, which is at the center of the range in
r0. The results are displayed in Fig. 2(c). We see that all
ratios Rr0/1.4 fm fall very close to one another at small an-
gles, confirming the peripherality of the reaction when data
measured at low beam energy are selected in the forward
direction. To define an angular range in which the reaction can
be considered as peripheral, we consider a maximum of 5%
difference [horizontal black dotted lines in Fig. 2(c)]. In this
case, this happens only at very forward angles, viz. when θ <

12◦. There are six data points within this angular region in this
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FIG. 3. ANCs extracted for the 15C g.s. for each wave function
of Fig. 1. Our recommended value is displayed by the horizontal red
dashed line (the gray band represents its uncertainty).

experiment [10]. Note that there is no data available within
this angular range in the case of the experiment performed at
the lower energy Ed = 14 MeV [7].

Having determined the angular region within which the
process is purely peripheral, we extract the value of the ANC
C1/2+ (r0) for each of the single-particle wave functions shown
in Fig. 1. This is done by scaling, through a χ2 minimization,
the corresponding theoretical cross section to the data selected
at θ < 12◦ [38]. The ANCs C1/2+ (r0) obtained in this way
are shown in Fig. 3 as a function of the potential width
r0. The error bars correspond to the uncertainty in the χ2

minimization. Despite the huge changes in the radial wave
functions observed in Fig. 1, the ANCs extracted are nearly
independent of r0; they fall within 4% from each other. This is
similar to what was obtained for 11Be (see Fig. 8 of Ref. [38]),
hence confirming the validity of the method.

To deduce an estimate of the actual ANC C1/2+ , we aver-
age the C1/2+ (r0) results and get C1/2+ = 1.26 ± 0.02 fm−1/2

(C2
1/2+ = 1.59 ± 0.06 fm−1) displayed as the horizontal red

dashed line and gray band in Fig. 3. Following the same
process, we obtain for the e.s. an estimate of the ANC of
C5/2+ = 0.056 ± 0.001 fm−1/2.

We compare our estimate with values extracted from the
analysis of other experiments in Table II. Though on the

TABLE II. Comparison of C2
1/2+ inferred for the 15C g.s. from

various works.

C2
1/2+ (fm−1) Ref. Method

1.48 ± 0.18 [36] Knockout
1.89 ± 0.11 [24] Mirror symmetry
2.14 [37] Transfer
1.74 ± 0.11 [21] Coulomb breakup
1.64 ± 0.26 [10] Transfer
1.88 ± 0.18 [31] Transfer
1.59 ± 0.06 this work Transfer

lower end of the range, the ANC we obtain agrees with
most of the others. Our value is within the uncertainty band
of the ANC extracted from knockout measurements in Ref.
[36], which is not surprising because that reaction is mostly
peripheral [47]. Compared to the value extracted from the
width of the 1

2
+

ground state of the proton-unbound mirror
nucleus 15F, our C1/2+ seems too low. However, as explained
in Ref. [48], that resonant state being quite broad, its width
used in this analysis might be marred with significant uncer-
tainty. In Ref. [37], Pang et al. have used the aforementioned
14C(d, p)15C transfer data measured at Ed = 14 MeV [7],
which have not enough points at forward angles to be purely
peripheral. Its large value is most likely due to that issue.
Note also that the normalization of the Ed = 14 MeV data
has been questioned in Ref. [10]. Interestingly, we are in
excellent agreement with the value obtained by Summers
and Nunes in their analysis [21] of the Coulomb-breakup
cross section of 15C measured at RIKEN [15]. Since this
reaction is very peripheral [23,49], this is not surprising (see
Sec. IV B). Our ANC is also perfectly compatible with the
value extracted from the same data at Ed = 17.06 MeV in
Ref. [10]. The C1/2+ we have obtained is on the lower end
of the uncertainty range of the value extracted from the
13C(14C, 15C)12C and d (14C, p)15C transfer experiments in
Ref. [31]. However, these experiments have been performed at
energies corresponding to Ed ≈ 24 MeV, where the reaction
is not fully peripheral [38], which may explain the slight
disagreement with our ANC.

The value we have obtained from the method developed
in Ref. [38] is therefore in good agreement with most of the
values cited in the literature, and the differences we observe
with previous analyses can be explained from uncertainties in
these analyses. Incidentally, as was observed in our previous
analysis of the 10Be(d, p)11Be transfer [38], this ANC for the
ground state of 15C is in excellent agreement with the C2

1/2+ =
1.644 fm−1 obtained by Navrátil et al. in the aforementioned
ab initio calculation of this one-neutron halo nucleus [39]. The
present work will therefore provide a stringent test of the value
predicted in that NCSMC calculation.

C. Halo-EFT description of 15C at NLO

Having inferred a reliable value of the ANC for the 15C g.s.,
we can now proceed as suggested in Ref. [26] and adjust a
NLO halo-EFT potential (6) to describe this nucleus within
our reaction models. In the s1/2 partial wave, the two depths of
the Gaussian potential are fitted to reproduce the experimental
binding energy of the halo neutron to the core and our ANC.
As in Refs. [26,50], we perform this fit for three different
ranges r0 to test the sensitivity of our reaction calculations
to the short-range physics of the 14C-n overlap wave function.
The depths obtained by these fits are listed in Table III.

As mentioned earlier, the interaction in the p wave is set
to zero, in agreement with preliminary results of the ab initio
calculations [39]. In Table III, we also provide the depths for
14C-n potentials in the d5/2 partial wave, which are fitted to

reproduce the binding energy and ANC of the 5
2

+
excited

bound state of 15C. This goes beyond the NLO of halo EFT,
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TABLE III. Potentials describing 14C + n g.s. and e.s. [see
Eq. (6)]. They are adjusted on the corresponding one-neutron binding
energy and ANC.

r0 V s1/2
0 V s1/2

2 V d5/2
0 V d5/2

2

(fm) (MeV) (MeV fm−2) (MeV) (MeV fm−2)

1.2 −3.1995 −71.3 169.299 −92.368
1.5 −92.814 −2.70 −91.000 −9.000
2.0 −80.827 2.70 −94.916 2.53

but it will enable us to check the influence of the presence of
that state in the 15C spectrum in reaction calculations [26].

Figure 4 displays the 1s1/2 single-particle radial wave
functions generated by the three potentials of Table III. By
construction, they exhibit the identical behavior in the asymp-
totic region, viz. for r � 4 fm. However, as expected, the
three wave functions exhibit significant differences at short
distances, which will enable us to test the sensitivity to the
short-range physics of 15C of the various reactions we con-
sider in the following.

III. TRANSFER REACTION 14C(d, p)15C

We start our analysis of the reactions involving 15C using
the NLO description developed in Sec. II C by looking at
how it behaves in transfer reactions. We consider the low-
energy reactions measured at Ed = 17.06 MeV [10] and
Ed = 14 MeV [7]. We use the same FR-ADWA model [40]
and potentials employed to extract the ANC in the previous
section.

Figure 5 displays the cross sections for the 14C(d, p)15C
transfer reaction obtained at [Fig. 5(a)] Ed = 17.06 MeV
and [Fig. 5(b)] Ed = 14 MeV. The results of the FR-ADWA
calculations for each of the three ranges of the Gaussian NLO
potential (6) are shown in the same colors and line types as
the corresponding radial wave functions in Fig. 4. The green
band shows the uncertainty in the cross sections, obtained with
the Gaussian potential of range r0 = 1.5 fm, related to the
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FIG. 4. Reduced radial wave functions of the 15C g.s. obtained
with the NLO halo EFT potentials of Table III.
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FIG. 5. Cross sections for the 14C(d, p)15C transfer reaction
obtained at (a) Ed = 17.06 MeV and (b) Ed = 14 MeV. FR-ADWA
calculations performed with the NLO descriptions of 15C of Sec. II C
are compared to experimental data from (a) Ref. [10] and (b) Ref. [7].
The green band shows the effect of the uncertainty on the ANC upon
the calculation.

uncertainty in the ANC we have extracted in Sec. II B. For
comparison, we also show the results obtained with the LO
description of 15C using r0 = 1.4 fm (purple dashed line).

At Ed = 17.06 MeV, without much surprise, the agreement
of our NLO calculations with the data is perfect at forward
angle since this is the region within which the fit has been
performed in Sec. II B. The transfer cross section obtained
with the LO description of 15C misses the data by a factor
that corresponds to the value of the ANC, which is not fitted
at this order. This confirms the importance of fitting both the
energy and the ANC of the bound state to correctly reproduce
the data. All three NLO 14C-n potentials provide the same
cross section in the angular range of peripherality of the
reaction, viz. θ < 12◦. The agreement between the different
wave functions actually extends beyond that range. At larger
angles, however, the transfer cross sections obtained with the
three different single-particle 1s1/2 wave functions differ from
one another, confirming that, at large angles, the reaction is
sensitive to the short-range physics in 15C. The uncertainty
band encompasses the error bars of the forward-angle data, but
cannot explain the discrepancy between our calculations and
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the experimental points at large angles. This shows the limit
of the present approach: Halo-EFT provides a proper low-
energy—viz. large distances—description of the projectile,
but, by construction, does not account for the details of the
internal part of the 15C wave function. Hopefully, including
a more precise wave function of the projectile could improve
the description of the data at large angles. This could be done,
e.g., using the overlap wave function provided by the ab initio
calculation of Navrátil et al. [39]. Alternatively, one could use
a more elaborated two-body model of 15C, e.g., including core
excitation [51].

IV. COULOMB BREAKUP OF 15C

We now turn to the Coulomb breakup of 15C. As mentioned
in Sec. I, this reaction has been measured on a lead target twice
at two different energies. First at GSI at 605 MeV/nucleon
by Datta Pramanik et al. [14] and second at RIKEN at 68
MeV/nucleon by Nakamura and his collaborators [15]. These
two experiments are similar to those performed previously on
the one-neutron halo nucleus 11Be [52,53], which were re-
cently successfully analyzed using a halo-EFT description of
11Be [26,50]. We therefore follow these references and apply
the same models of the reaction using the NLO description of
15C detailed in Sec. II C.

A. Breakup of 15C on lead at 605 MeV/nucleon

To analyze the breakup cross section of 15C measured on
Pb at GSI at 605 MeV/nucleon [14], we follow what we
did in Ref. [50] and use an eikonal-based model of the re-
action [54,55], which properly accounts for special relativity.

In that model, the projectile B is described by the two-body
system introduced in Sec. II: a core A, to which a neutron n is
loosely bound, and which interact through the NLO halo-EFT
potential adjusted in Sec. II C. The target T is seen as a
structureless body of mass mT and charge ZT e, which interacts
with the projectile constituents A and n through the potentials
VAT and VnT , respectively. We solve the problem within the
Jacobi set of coordinates composed of the internal coordinate
of the projectile r [see Eq. (1)] and the relative coordinate
of the projectile center of mass to the target R. The latter is
explicitly decomposed into its longitudinal Z and transverse b
components relative to the incoming beam axis.

At this high beam energy, the use of the eikonal approx-
imation is fully justified as well as the usual adiabatic—
or sudden—treatment of the projectile dynamics during the
reaction, i.e., we neglect the change in the projectile inter-
nal energy in comparison with its kinetic energy. To prop-
erly account for special relativity, we follow Satchler [56]
and derive the eikonal wave function, which describes the
projectile-target relative motion, from the Klein-Gordon equa-
tion expressed within the B-T center-of-momentum (CM)
frame [56,57]. Within this description of the reaction, the
three-body wave function exhibits the following asymptotic
behavior

� (m0 )(R, r) −→
Z→+∞

eiK0Zeiχ (b,r)ϕn′
0l0 j0m0 (r), (8)

where h̄K0 is the initial B-T momentum, χ is the eikonal phase
that accounts for the interaction between the target and the
projectile constituents, and ϕn′

0l0 j0m0 is the wave function of the
projectile ground state, in which it is assumed to be initially.
Formally, the eikonal phase χ reads [54,55]

χ (b, r) = − 1

h̄v

∫ ∞

−∞
[VAT (R, r) + VnT (R, r)] dZ, (9)

where v is the B-T relative velocity. This phase can be in-
terpreted semiclassically by seeing the projectile B following
a straight-line trajectory at fixed impact parameter b along
which its wave function accumulates a complex phase due
to its interaction with the target. It is composed of three
terms: χ = χC

BT + χC + χN . The first χC
BT (b) = 2η ln(K0b),

with η = ZBZT e2/4πε0 h̄v, the Sommerfeld parameter of the
reaction, simply describes the Coulomb scattering of the
projectile by the target [58]. It does not depend on r, and hence
does not contribute to the breakup of B. The second

χC (b, r) = η

∫ ∞

−∞

(
1∣∣R − mn

mB
r
∣∣ − 1

R

)
dZ (10)

is the Coulomb term that contributes to the excitation of the
projectile. This phase diverges because the infinite range of
the Coulomb interaction is not compatible with the sudden
approximation, which assumes that the collision takes place in
a short time. To solve this issue, we use the Coulomb correc-
tion to the eikonal model (CCE) detailed in Refs. [59,60]. In
that correction, the diverging eikonal Coulomb phase (10) is
replaced at the first order by the first order of the perturbation
theory [60]

eiχC → eiχC − iχC + iχFO. (11)

For the first-order estimate of the Coulomb phase, we consider
the relativistic expression limited to the E1 term [18]

χFO(b, r) = −η
mn

mB

2ω

γ v

[
K1

(
ωb

γ v

)
b · r

b
+ i

1

γ
K0

(
ωb

γ v

)
Z

]
,

(12)

where γ = 1/
√

1 − v2/c2.1

The third term of the eikonal phase χN corresponds to
the nuclear interaction. At low and intermediate energies,
it is usually described by optical potentials fitted to repro-
duce elastic-scattering cross sections. At high energy, and
especially for exotic nuclei, it is difficult to find appropriate
potentials. Therefore, we rely on the optical limit approxi-
mation (OLA) of the Glauber theory [54,58], which has been
successfully used in previous studies [50,61]. In that approx-
imation, the nuclear eikonal phase is obtained by averaging
a profile function �NN , which simulates the nucleon-nucleon

1Note the difference with Ref. [50], where we had considered for
the calculation of γ the velocity of the projectile in the CM rest
frame. Note also the correct formulation of our equation (12) with
the 1/γ factor (check Eq. (2.15) of Ref. [18]). These corrections have
little effect on our results.
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FIG. 6. Breakup cross section of 15C on Pb at 605 MeV/nucleon
as a function of the relative energy E between the 14C core and
the neutron after dissociation. The results are obtained with the
NLO halo-EFT 14C-n interactions listed in Tab. III. The green band
represents the uncertainty on the 15C g.s. ANC. For comparison
with the GSI data of Ref. [14], the theoretical predictions have been
folded with the experimental energy resolution [52]. The result of
the calculation without relativistic correction is shown as the purple
dashed line.

interaction, over the density of the colliding nuclei

χOLA
xT (bx ) = i

∫∫
ρT (r′)ρx(r′′)�NN (b − s′ + s′′)dr′′dr′,

(13)

where x stands for either A or n, the two constituents of the
projectile, and where s′ and s′′ are the transverse components
of the internal coordinate of the target (r′) and x (r′′), respec-
tively. In our three-body model of the reaction, the nuclear
eikonal phase thus reads

χN (b, r) = χOLA
AT (bA) + χOLA

nT (bn). (14)

We consider the usual form of the profile function

�NN (b) = 1 − iαNN

4πβNN
σ tote− b2

2βNN , (15)

where σ tot is the total cross section for the NN collision, αNN

corresponds to the ratio of the real to the imaginary part of
the NN-scattering amplitude, and βNN is the slope of NN
elastic differential cross section. These parameters are isospin
dependent, which means that, in practice, the OLA phase (13)
splits into four terms. For the parameters of Eq. (15) we use
the values provided in Ref. [62] for an energy of 650 MeV. The
densities used in Eq. (13) for the 14C core and the 208Pb target
are approximated by the two-parameter Fermi distributions
of Ref. [63], in which the authors study a systematization of
nuclear densities based on charge distributions extracted from
electron-scattering experiments as well as on theoretical den-
sities derived from Dirac-Hartree-Bogoliubov calculations.
For ρn, we consider a Dirac δ function.

The breakup cross sections obtained with this model of
reaction are displayed in Fig. 6 as a function of the relative

energy E between the 14C core and the neutron after dissocia-
tion. To enable the comparison with the experimental data of
Ref. [14], all theoretical cross sections have been folded with
the experimental energy resolution, which we have considered
identical to the one provided by Palit et al. in the analysis
of the Coulomb breakup of 11Be measured at GSI [52]. The
calculations performed with all three 14C-n potentials listed
in Table III are shown. The sensitivity of our calculations to
the uncertainty in the 15C g.s. ANC extracted in Sec. II B
is shown by the green band. The result of the calculation
obtained without relativistic corrections is displayed as the
purple dashed line. This clearly demonstrates the significance
of these corrections at this beam energy.

Let us first note that our theoretical predictions are in
excellent agreement with the data at all energies. As expected,
we do not note any appreciable difference between the calcu-
lations performed with the different halo-EFT wave functions
(see Fig. 4). This result confirms that this reaction is purely
peripheral, in the sense that it is sensitive only to the tail
of the projectile wave function and not to its interior. The
excellent agreement with the data observed in this reaction
observable suggests that the ANC we have extracted from the
transfer data, combined with the choice of a nil interaction
in the p 14C-n partial waves, is valid structurewise [23].
Accordingly, the predictions of the ab initio calculations of
Navrátil et al. seem correct [39].

In a subsequent test, we have analyzed how the inclusion
of the 15C e.s.—described here as a 0d5/2 bound state (see
Sec. II A)—affects our breakup calculations. The presence
of that state in the 15C spectrum has no significant effect
upon this reaction process; calculations performed with the
halo-EFT descriptions of 15C beyond NLO, which include
this state, are nearly identical to those shown in Fig. 6. This
is reminiscent of what has been observed in Ref. [26] in
the analysis of the RIKEN Coulomb-breakup experiment of
11Be [53], in which the presence of the 5

2
+

resonance, also
described within the d5/2 partial wave, is barely noticeable in
the cross section. This result is not surprising in a reaction that
is strongly dominated by an E1 transition from the s bound
state towards the p continuum. The existence of a d state in
the low-energy spectrum of the projectile is more clearly seen
in nuclear-dominated reactions, where quadrupole transitions
are more significant [26,47]. Therefore, for this Coulomb-
dominated reaction, a halo-EFT expansion limited to NLO
is sufficient: the d bound state would actually appear only at
the next order (i.e., next-to-next-to-leading order, N2LO), and
it has nearly no influence in our breakup calculations. This
hence suggests that staying at NLO with a potential fitted to
the ANC and binding energy of the g.s. in the s wave and a nil
potential in the p wave, is enough to describe the experimental
energy distributions for the breakup of 15C.

B. Breakup of 15C on lead at 68 MeV/nucleon

The Coulomb breakup of 15C has also been measured on
Pb at RIKEN at 68 MeV/nucleon by Nakamura et al. [15]. To
reanalyze these data using the halo-EFT description of 15C
developed in Sec. II C, we consider the dynamical eikonal
approximation (DEA) [64,65]. This model of reaction is
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FIG. 7. Breakup cross section of 15C on Pb target at
68 MeV/nucleon at two angular cuts plotted as a function of the
relative energy E between the 14C core and the neutron after dissoci-
ation. Results obtained with the different halo-EFT 14C-n interactions
listed in Table III are shown. For comparison with the RIKEN data
of Ref. [15], the theoretical predictions have been folded with the
experimental energy resolution.

also based on the eikonal approximation, however, it does
not include the usual adiabatic approximation, which means
that it properly includes the dynamics of the projectile dur-
ing the collision, which has been shown to matter at this
intermediate beam energy [19–22]. Besides having proved
to be very efficient in the description of various observ-
ables measured in the breakup of one-neutron [65] and one-
proton [66] halo nuclei, the model has been shown to be in
excellent agreement with other breakup models on this very
reaction [67].

Following Ref. [26], we include the 14C-n halo-EFT poten-
tials within the DEA and compute the breakup cross section
at the RIKEN energy. To describe the nuclear interaction
between the projectile constituents and the target, we follow
Ref. [67] and consider optical potentials found in the liter-
ature. The 14C-Pb potential is obtained from the scaling of
an 16O-Pb potential fitted to reproduce the elastic-scattering
cross section of these nuclei at 94 MeV/nucleon [68]. We
simply scale the radius of the potential by 0.987 = (141/3 +
2081/3)/(161/3 + 2081/3) to account for the mass difference
between 16O and 14C and ignore the difference in beam
energy. We use the Bechetti and Greenlees global nucleon-
target optical potential to simulate the n-Pb interaction [69].
Note that the details of these interactions are provided in the
Supplemental Material of Ref. [67].

The results of these calculations are shown in Fig. 7 as a
function of the 14C-n continuum energy E . We consider the
two angular cuts under which the experimental data have been
measured, i.e., θ < 6◦, which includes the entire significant
angular range, and θ < 2.1◦, the forward-angle selection. To
allow for a direct comparison with the data of Ref. [15],
the results of our calculations have been folded with the
experimental energy resolution. The green band shows the
effect of the uncertainty on the ANC.

As in our analysis of the GSI experiment [14], we obtain
an excellent agreement with the data on the whole energy
spectrum. All three NLO 14C-n potentials lead to identical
cross sections showing that, at this energy also, the reaction
is purely peripheral and that the ANC we have extracted from
the low-energy transfer data and the nil phase shift in the
14C-n p waves are consistent with this other set of data. Our
analysis hence independently confirms the value of the ANC
extracted by Summers and Nunes from this same Coulomb-
breakup cross section [21]. The slightly larger ANC they have
obtained (see line 4 of Table II ) is probably due to their use
of a nonzero interaction in the p wave, which tends to reduce
these contributions to the breakup [23,26,34]. Since there is
no experimental observable upon which to constrain the phase
shift in these partial waves, we have to rely on theoretical
hypotheses. We have made a choice consistent with what we
have done in the 11Be case [26] and with preliminary ab initio
predictions [39]. As shown in Ref. [23], for the Coulomb
breakup of loosely bound s wave nuclei, it is the combination
of ANC in the g.s. and phase shift in the p continuum that
matters, especially at low energy E in the 14C-n continuum
and forward scattering angle. The excellent agreement with
the data displayed in Figs. 5, 6, and 7 justifies our choice.
However, the uncertainty in the data is not sufficiently small
to disprove the choice made in Ref. [21]. Using their choice
of 14C-n potentials would most likely provide as good an
agreement with experiment as ours. Incidentally, this also
confirms the ab initio prediction of Navrátil et al. for the ANC
of the 15C g.s.

In addition to these NLO calculations, we have also per-
formed another set of calculations going beyond NLO by
including the e.s. in the 15C spectrum as a 0d5/2 bound state.
The results, not shown here for clarity, are identical to those
displayed in Fig. 7, confirming that in Coulomb-dominated
reactions the details in the description of the d waves are
irrelevant, and that an NLO halo-EFT description of the
projectile is sufficient.

V. RADIATIVE CAPTURE 14C(n, γ )15C

As mentioned in Sec. I, the radiative capture of a neutron
by 14C to form a 15C nucleus [14C(n, γ )15C] plays a significant
role in various astrophysical sites, from the possible inho-
mogeneous big-bang nucleosynthesis [5] to neutron-induced
CNO cycles in AGB stars [4] and possible role in Type II
supernovae [6]. It is therefore useful for models of these
astrophysical phenomena to have a reliable estimate of this
reaction rate. Unfortunately it is difficult to measure directly:
both reactants are radioactive and, although 14C targets can
be provided, obtaining purely monochromatic neutron beams
is not simple. This is why indirect techniques, such as the
Coulomb-breakup method [16,17], have been proposed. Nev-
ertheless, recently, Reifarth et al. have taken up the gauntlet
and performed a direct measure of this radiative capture [25].

In Sec. IV, we have shown that the halo-EFT descrip-
tion of 15C at NLO was sufficient to describe the breakup
cross sections measured at GSI [14] and RIKEN [15]. As
expected from the analyses published in Refs. [21–23], this
model of 15C should also provide a good estimate for the
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FIG. 8. Cross section for the radiative-capture 14C(n, γ )15C. The
green band shows the uncertainty related to the ANC extracted from
transfer data.

radiative-capture cross section at low energy. In this section,
we compare our prediction with the data of Reifarth et al. [25].

The radiative-capture 14C(n, γ )15C is dominated by the E1
transition from the p waves in the 14C-n continuum towards
the 1s1/2 ground state of 15C. A small contribution comes also
from the capture from the p continuum waves to the 0d5/2

excited state of the nucleus. Since these two contributions
cannot be disentangled in the experiment of Reifarth et al. we
use the halo-EFT description of 15C beyond NLO to include
this excited state in our model of the reaction. To perform the
calculations, we proceed as in Ref. [23].

The radiative-capture cross section obtained in this way
is displayed in Fig. 8 as a function of the relative energy
E between the neutron and the 14C nucleus in the entrance
channel. The three 14C-n Gaussian potentials provide identical
cross sections, confirming that this reaction is purely periph-
eral [24]. The effect of the ANC uncertainty is shown by
the green band. The contribution due to the capture towards
the 0d5/2 e.s. is, as observed elsewhere [22,23,25], of the
order of 5%. The details of the description of this state, and
especially the accuracy of its ANC extracted from transfer
data, are thus completely negligible in this analysis. We have
checked that the contribution of the E2 term to the radiative
capture is orders of magnitude lower than the E1. The cross
section displayed in Fig. 8 is in excellent agreement with
prior predictions [21,23,24,70] and the ab initio prediction of
Navrátil et al. [39]. It is however slightly lower than what has
been obtained in the analysis of the direct experiment [25].

To properly confront these results with the data measured
by Reifarth et al. [25], we need to account for the distribution
of the neutron energy in the incoming beam [71]. The values
averaged over the neutron distributions shown in Fig. 3 of
Ref. [25] are provided in Table IV alongside the experimental
data. The experimental values are the ones provided in Table
V of Ref. [25]. The theoretical cross sections are the one
obtained using the 14C-n potentials listed in Table III of the
present article. These values include the small contribution
of the capture to the 0d5/2 bound state that simulates the 5

2
+

e.s. of 15C. The uncertainty provided for the theoretical value

TABLE IV. Radiative-capture cross sections measured by Rei-
farth et al. [25] and the theoretical results obtained with the halo-EFT
description of 15C developed in Sec. II C. Our calculations include
the small contribution of the capture to the excited 5

2

+
of 15C de-

scribed beyond NLO and are obtained after averaging over the energy
distribution of the neutrons within the beams used in the experiment.
The theoretical uncertainty corresponds to the uncertainty on the
ANC we have extracted for the 15C g.s. The sensitivity to the choice
of the range of the Gaussian potential r0 is not seen at the level of
precision displayed here.

E (keV) σ exp
n,γ (μb) [25] σ th

n,γ (μb)

23.3 7.1 ± 0.5 5.8 ± 0.2
150 10.7 ± 1.2 10.6 ± 0.3
500 17.0 ± 1.5 15.4 ± 0.4
800 15.8 ± 1.6 16.7 ± 0.5

corresponds to the uncertainty on the ANC of the g.s. of 15C.
The sensitivity to the range r0 of the Gaussian potential (6) is
smaller than the precision provided here.

Our theoretical predictions are usually in good agreement
with the experimental values of Reifarth et al. [25]. The only
significant difference is observed at the lowest energy point,
where our prediction lies two standard deviations lower than
the measured cross section. This seems to be an issue for
most of the indirect estimates of this cross section [21–24,70].
Therefore, either there is some new physics not considered in
the single-particle descriptions used in these references and
in the present study, or there is some systematic uncertainty,
which has not been well accounted for in the analysis of
the experiment. The cross section we derive from our halo-
EFT description of 15C at the single astrophysical energy
E = 23.3 keV is σn,γ (23.3 keV) = 4.66 ± 0.14 μb, which is
slightly lower than what other groups obtain [21,25,33].

Within our study, this is the only one oddity in the analysis
of various reaction observables, which are all peripheral, and
in particular with Coulomb-breakup cross sections, which
are sensitive to the same nuclear-structure observables as the
radiative capture, viz. the ANC of the g.s. of 15C and the
phase shift in the 14C-n p waves [23]. We therefore believe
that they are well constrained within our model of 15C. The
E1 strength this model predicts, and upon which both the
Coulomb-breakup and the radiative-capture cross sections
depend, should thus be quite reliable. Figure 9 provides this
dB(E1)/dE as a function of the relative energy E between
the 14C and the neutron in the continuum. The value we
obtain from our NLO 14C-n potentials are compared with
the E1 strength inferred from the Coulomb-breakup measure-
ment by Nakamura et al. [15]. We observe that the latter
is systematically lower than the dB(E1)/dE deduced from
our halo-EFT model of 15C, even though we are in perfect
agreement with their Coulomb-breakup cross sections (see
Fig. 7). This difference is due to higher-order effects, which
are neglected in the analysis of the RIKEN data. As already
shown in Refs. [21–23], these effects are significant and can-
not be ignored in the reaction model. This is the reason why
the RIKEN prediction of the cross section for the radiative

044615-10



15C: FROM HALO EFFECTIVE FIELD THEORY … PHYSICAL REVIEW C 100, 044615 (2019)

0 0.5 1.0 1.5 2.0 2.5 3.0
E (MeV)

0

0.1

0.2

0.3

0.4

dB
(E

1)
/d

E
 (

e2 fm
2 M

eV
-1

)

ANC uncertainty band
r0 = 1.2 fm

r0 = 1.5 fm 

r0 = 2.0 fm

Nakamura et al.

FIG. 9. Electric dipole strength deduced from the halo-EFT
structure of 15C at NLO, compared to the E1 strength inferred by
Nakamura et al.[15]. For a better comparison, our calculation has
been folded with the experimental resolution.

capture 14C(n, γ )15C underestimates the direct measurement
or Reifarth et al. (see Fig. 3 of Ref. [15]). A comparison with
that observable within the ab initio model of Navrátil et al.
would be interesting to confirm our prediction.

VI. SUMMARY AND OUTLOOK

The exotic nucleus 15C raises interests in various fields. It
exhibits a one-neutron halo [1,2], and its synthesis through the
radiative capture of a neutron by 14C takes place in various
astrophysical sites [4–6]. It is therefore interesting to better
understand its structure and to provide astrophysicists with
reliable cross sections for the radiative capture 14C(n, γ )15C
at low energies.

In this work, we have reanalyzed various reactions involv-
ing 15C using one single description of that nucleus. Following
the work initiated in Ref. [26], we have considered a halo-EFT
description of that one-neutron halo nucleus. Once coupled to
a precise model of reactions, this very systematic expansion
enables us to accurately determine the observables that affect
the reaction process and hence, which can be probed through
experimental measurements [26,38,50].

Using a LO halo-EFT Hamiltonian (5), we have rean-
alyzed the 14C(d, p)15C transfer data at low energy [10]
within the framework of the FR-ADWA [40]. Following the
results of Ref. [38], focusing on the forward-angle region
enables us to select purely peripheral data, from which a
reliable estimate of the ANC of the g.s. of 15C has been
inferred. The value obtained C1/2+ = 1.26 ± 0.02 fm−1/2

(C2
1/2+ = 1.59 ± 0.06 fm−1) is in good agreement with previ-

ous work [10,21,24,31,36,37] and with preliminary ab initio
predictions [39].

The ANC hence obtained coupled to the binding energy of
the valence neutron to the 14C provides us with two nuclear-
structure observables, upon which we have constrained a
halo-EFT Hamiltonian at NLO. This Hamiltonian has then be
used within precise models of reactions to reanalyze transfer
data [7,10], Coulomb-breakup cross sections measured at
high [14] and intermediate [15] energies, and cross sections
for the radiative capture 14C(n, γ )15C [25]. In all cases, we
observe a very good agreement with experiment without the
need for any additional adjustment.

By showing that all these experiments can be described at
the NLO of the halo-EFT expansion, these analyses indicate
that the core-neutron binding energy and the ground-state
ANC are the sole nuclear-structure observables that need to
be constrained to reproduce these data. These reactions are
therefore purely peripheral, in the sense that they probe only
the tail of the projectile wave function and not its interior.
Especially, no need is found for a renormalization of the
projectile wave function, confirming that no spectroscopic
factor can be extracted from such measurements [26,49].
Going beyond NLO, we have found that the presence of the
bound excited state of 15C in its description has no effect in
Coulomb-breakup calculations.

From this NLO description of 15C we have been able
to infer a reliable estimate of the E1 strength from the 1

2
+

ground state of 15C to its 14C-n continuum. This dB(E1)/dE
leads to excellent agreement with the measurements of both
the 15C Coulomb breakup [14,15] and the radiative capture
14C(n, γ )15C [25]. Accordingly, we suggest as a cross sec-
tion for the latter process at astrophysical energy the value
σn,γ (23.3 keV) = 4.66 ± 0.14 μb.

The excellent results obtained within this framework con-
firms the interest of coupling a halo-EFT description of the
nucleus to existing precise models of reactions [26]. They
also drive us to extend this idea to other reactions, such as
knockout [47]. Hopefully, the model developed herein and in
Ref. [26] will enable us to reproduce existing data on 15C and
11Be [11–13]. We also plan to apply this model to other halo
nuclei, such as 19C and 31Ne.
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Piskoř, S. Romano, M. L. Sergi, C. Spitaleri, and R. E. Tribble,
Phys. Rev. C 84, 024616 (2011).

[11] J. A. Tostevin, D. Bazin, B. A. Brown, T. Glasmacher, P. G.
Hansen, V. Maddalena, A. Navin, and B. M. Sherrill, Phys. Rev.
C 66, 024607 (2002).

[12] E. Sauvan, F. Carstoiu, N. A. Orr, J. S. Winfield, M. Freer, J. C.
Angélique, W. N. Catford, N. M. Clarke, N. Curtis, S. Grévy,
C. Le Brun, M. Lewitowicz, E. Liégard, F. M. Marqués, M.
MacCormick, P. Roussel-Chomaz, M.-G. Saint Laurent, and M.
Shawcross, Phys. Rev. C 69, 044603 (2004).

[13] D. Q. Fang, T. Yamaguchi, T. Zheng, A. Ozawa, M. Chiba,
R. Kanungo, T. Kato, K. Morimoto, T. Ohnishi, T. Suda, Y.
Yamaguchi, A. Yoshida, K. Yoshida, and I. Tanihata, Phys. Rev.
C 69, 034613 (2004).

[14] U. Datta Pramanik, T. Aumann, K. Boretzky, B. Carlson, D.
Cortina, T. Elze, H. Emling, H. Geissel, A. Grünschloß, M.
Hellström, S. Ilievski, J. Kratz, R. Kulessa, Y. Leifels, A.
Leistenschneider, E. Lubkiewicz, G. Münzenberg, P. Reiter, H.
Simon, K. Sümmerer, E. Wajda, and W. Walus, Phys. Lett. B
551, 63 (2003).

[15] T. Nakamura, N. Fukuda, N. Aoi, N. Imai, M. Ishihara, H.
Iwasaki, T. Kobayashi, T. Kubo, A. Mengoni, T. Motobayashi,
M. Notani, H. Otsu, H. Sakurai, S. Shimoura, T. Teranishi, Y. X.
Watanabe, and K. Yoneda, Phys. Rev. C 79, 035805 (2009).

[16] G. Baur, C. Bertulani, and H. Rebel, Nucl. Phys. A 458, 188
(1986).

[17] G. Baur, K. Hencken, and D. Trautmann, Prog. Part. Nucl. Phys.
51, 487 (2003).

[18] A. Winther and K. Alder, Nucl. Phys. A 319, 518 (1979).
[19] H. Esbensen, G. F. Bertsch, and K. A. Snover, Phys. Rev. Lett.

94, 042502 (2005).
[20] P. Capel and D. Baye, Phys. Rev. C 71, 044609 (2005).
[21] N. C. Summers and F. M. Nunes, Phys. Rev. C 78, 011601(R)

(2008); 78, 069908(E) (2008).
[22] H. Esbensen, Phys. Rev. C 80, 024608 (2009).
[23] P. Capel and Y. Nollet, Phys. Rev. C 96, 015801 (2017).
[24] N. K. Timofeyuk, D. Baye, P. Descouvemont, R. Kamouni, and

I. J. Thompson, Phys. Rev. Lett. 96, 162501 (2006).
[25] R. Reifarth, M. Heil, C. Forssén, U. Besserer, A. Couture, S.

Dababneh, L. Dörr, J. Görres, R. C. Haight, F. Käppeler, A.
Mengoni, S. O’Brien, N. Patronis, R. Plag, R. S. Rundberg, M.
Wiescher, and J. B. Wilhelmy, Phys. Rev. C 77, 015804 (2008).

[26] P. Capel, D. R. Phillips, and H.-W. Hammer, Phys. Rev. C 98,
034610 (2018).

[27] C. Bertulani, H.-W. Hammer, and U. van Kolck, Nucl. Phys. A
712, 37 (2002).

[28] H.-W. Hammer, C. Ji, and D. R. Phillips, J. Phys. G 44, 103002
(2017).

[29] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1970).

[30] L. D. Blokhintsev, I. Borbei, and E. Dolinskii, Fizika
Ehlementarnykh Chastits i Atomnogo Yadra 8, 1189 (1977).

[31] M. McCleskey, A. M. Mukhamedzhanov, L. Trache, R. E.
Tribble, A. Banu, V. Eremenko, V. Z. Goldberg, Y.-W. Lui, E.
McCleskey, B. T. Roeder, A. Spiridon, F. Carstoiu, V. Burjan,
Z. Hons, and I. J. Thompson, Phys. Rev. C 89, 044605 (2014).

[32] T. L. Belyaeva, R. Perez-Torres, A. A. Ogloblin, A. S.
Demyanova, S. N. Ershov, and S. A. Goncharov, Phys. Rev.
C 90, 064610 (2014).

[33] N. K. Timofeyuk, J. Phys. G 41, 094008 (2014).
[34] P. Capel and F. M. Nunes, Phys. Rev. C 73, 014615 (2006).
[35] P. Capel, P. Danielewicz, and F. M. Nunes, Phys. Rev. C 82,

054612 (2010).
[36] L. Trache, A. Azhari, F. Carstoiu, C. A. Gagliardi, A. M.

Mukhamedzhanov, X. D. Tang, R. E. Tribble, and S. Zhou, Tex.
A & M Cyclotron Prog. Rep. I, 16 (2002).

[37] D. Y. Pang, F. M. Nunes, and A. M. Mukhamedzhanov, Phys.
Rev. C 75, 024601 (2007).

[38] J. Yang and P. Capel, Phys. Rev. C 98, 054602 (2018).
[39] P. Navrátil (private communication).
[40] R. Johnson and P. Tandy, Nucl. Phys. A 235, 56 (1974).
[41] F. M. Nunes and A. Deltuva, Phys. Rev. C 84, 034607 (2011).
[42] N. J. Upadhyay, A. Deltuva, and F. M. Nunes, Phys. Rev. C 85,

054621 (2012).
[43] P. R. Varner, W. Thompson, T. McAbee, E. Ludwig, and T.

Clegg, Phys. Rep. 201, 57 (1991).
[44] R. V. Reid, Ann. Phys. (NY) 50, 411 (1968).
[45] M. Igarashi and M. Toyama, Computer program TWOFNR,

University of Surrey version, 2008.
[46] I. J. Thompson, Comput. Phys. Rep. 7, 167 (1988).
[47] C. Hebborn and P. Capel, arXiv:1906.07660 [nucl-th].
[48] A. M. Mukhamedzhanov, B. F. Irgaziev, V. Z. Goldberg, Y. V.

Orlov, and I. Qazi, Phys. Rev. C 81, 054314 (2010).
[49] P. Capel and F. M. Nunes, Phys. Rev. C 75, 054609 (2007).
[50] L. Moschini and P. Capel, Phys. Lett. B 790, 367 (2019).
[51] M. Gómez-Ramos, A. M. Moro, J. Gómez-Camacho, and I. J.

Thompson, Phys. Rev. C 92, 014613 (2015).
[52] R. Palit, P. Adrich, T. Aumann, K. Boretzky, B. V. Carlson,

D. Cortina, U. Datta Pramanik, T. W. Elze, H. Emling, H.
Geissel, M. Hellström, K. L. Jones, J. V. Kratz, R. Kulessa,
Y. Leifels, A. Leistenschneider, G. Münzenberg, C. Nociforo,
P. Reiter, H. Simon, K. Sümmerer, and W. Walus (LAND/FRS
Collaboration), Phys. Rev. C 68, 034318 (2003).

[53] N. Fukuda, T. Nakamura, N. Aoi, N. Imai, M. Ishihara, T.
Kobayashi, H. Iwasaki, T. Kubo, A. Mengoni, M. Notani, H.
Otsu, H. Sakurai, S. Shimoura, T. Teranishi, Y. X. Watanabe,
and K. Yoneda, Phys. Rev. C 70, 054606 (2004).

[54] R. Glauber, in Lectures in Theoretical Physics, edited by W.
Brittin and L. Dunham, Vol. 1 (Interscience, New York, 1959),
p. 315.

[55] D. Baye and P. Capel, Breakup reaction models for two- and
three-cluster projectiles, in Clusters in Nuclei, Vol. 2, Lecture
Notes in Physics, Vol. 848, edited by C. Beck (Springer, Hei-
delberg, 2012), pp. 121–163.

[56] G. R. Satchler, Nucl. Phys. A 540, 533 (1992).
[57] D.-Y. Pang, Chin. Phys. C 38, 024104 (2014).
[58] C. Bertulani and P. Danielewicz, Introduction to Nuclear Reac-

tions (Institute of Physics Publishing, Bristol, 2004).
[59] J. Margueron, A. Bonaccorso, and D. Brink, Nucl. Phys. A 720,

337 (2003).

044615-12



15C: FROM HALO EFFECTIVE FIELD THEORY … PHYSICAL REVIEW C 100, 044615 (2019)

[60] P. Capel, D. Baye, and Y. Suzuki, Phys. Rev. C 78, 054602
(2008).

[61] W. Horiuchi, Y. Suzuki, P. Capel, and D. Baye, Phys. Rev. C 81,
024606 (2010).

[62] B. Abu-Ibrahim, W. Horiuchi, A. Kohama, and Y. Suzuki, Phys.
Rev. C 77, 034607 (2008).

[63] L. C. Chamon, B. V. Carlson, L. R. Gasques, D. Pereira, C. De
Conti, M. A. G. Alvarez, M. S. Hussein, M. A. Cândido Ribeiro,
E. S. Rossi, and C. P. Silva, Phys. Rev. C 66, 014610 (2002).

[64] D. Baye, P. Capel, and G. Goldstein, Phys. Rev. Lett. 95, 082502
(2005).

[65] G. Goldstein, D. Baye, and P. Capel, Phys. Rev. C 73, 024602
(2006).

[66] G. Goldstein, P. Capel, and D. Baye, Phys. Rev. C 76, 024608
(2007).

[67] P. Capel, H. Esbensen, and F. M. Nunes, Phys. Rev. C 85,
044604 (2012).

[68] P. Roussel-Chomaz, N. Alamanos, F. Auger, J. Barrette, B.
Berthier, B. Fernandez, L. Papineau, H. Doubre, and W. Mittig,
Nucl. Phys. A 477, 345 (1988).

[69] F. D. Becchetti and G. W. Greenlees, Phys. Rev. 182, 1190
(1969).

[70] G. Rupak, L. Fernando, and A. Vaghani, Phys. Rev. C 86,
044608 (2012).

[71] P. Capel and Y. Nollet, Phys. Rev. C 98, 019906(E)
(2018).

044615-13





Bibliography

[AB92] L. U. Ancarani and D. Baye. Iterative supersymmetric
construction of phase-equivalent potentials. Phys. Rev. A, 46:206–
216, Jul 1992.

[AB95] S. M. Austin and G. F. Bertsch. Halo nuclei. Sci. Am., 272(6):90–
95, 1995.

[ABB+09] I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun,
N. Buncic, Ph. Canal, D. Casadei, O. Couet, V. Fine,
L. Franco, G. Ganis, A. Gheata, D. Gonzalez Maline, M. Goto,
J. Iwaszkiewicz, A. Kreshuk, D. Marcos Segura, R. Maunder,
L. Moneta, A. Naumann, E. Offermann, V. Onuchin, S. Panacek,
F. Rademakers, P. Russo, and M. Tadel. ROOT — A C++
framework for petabyte data storage, statistical analysis and
visualization. Comput. Phys. Commun., 180(12):2499 – 2512,
2009. 40 YEARS OF CPC: A celebratory issue focused on
quality software for high performance, grid and novel computing
architectures.

[ABBN+18] Y. Ayyad, D. Bazin, S. Beceiro-Novo, M. Cortesi, and W. Mittig.
Physics and technology of time projection chambers as active
targets. Eur. Phys. J. A, 54(10):181, Oct 2018.

[AC06] H. An and C. Cai. Global deuteron optical model potential for
the energy range up to 183 MeV. Phys. Rev. C, 73:054605, May
2006.

[ADE+02] G. D. Alkhazov, A. V. Dobrovolsky, P. Egelhof, H. Geissel,
H. Irnich, A. V. Khanzadeev, G. A. Korolev, A. A. Lobodenko,
G. Münzenberg, M. Mutterer, S. R. Neumaier, W. Schwab, D. M.
Seliverstov, T. Suzuki, and A. A. Vorobyov. Nuclear matter
distributions in the 6He and 8He nuclei from differential cross

135



136 BIBLIOGRAPHY

sections for small-angle proton elastic scattering at intermediate
energy. Nucl. Phys. A, 712(3):269 – 299, 2002.

[AGS67] E. O. Alt, P. Grassberger, and W. Sandhas. Reduction of the
three-particle collision problem to multi-channel two-particle
lippmann-schwinger equations. Nucl. Phys. B, 2(2):167 – 180,
1967.

[AH85] J. H. Applegate and C. J. Hogan. Relics of cosmic quark
condensation. Phys. Rev. D, 31:3037–3045, Jun 1985.

[AIK+87] N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher,
and M. Yahiro. Continuum-discretized coupled-channels
calculations for three-body models of deuteron-nucleus reactions.
Phys. Rep., 154(3):125 – 204, 1987.

[AK04] J. Al-Khalili. An introduction to halo nuclei. The Euroschool
Lectures on Physics with Exotic Beams, Vol. I, pages 77–112,
2004.

[ANB+00] T. Aumann, A. Navin, D. P. Balamuth, D. Bazin, B. Blank, B. A.
Brown, J. E. Bush, J. A. Caggiano, B. Davids, T. Glasmacher,
V. Guimarães, P. G. Hansen, R. W. Ibbotson, D. Karnes, J. J.
Kolata, V. Maddalena, B. Pritychenko, H. Scheit, B. M. Sherrill,
and J. A. Tostevin. One-Neutron Knockout from Individual
Single-Particle States of 11Be. Phys. Rev. Lett., 84:35–38, Jan
2000.

[AS64] M. Abramowitz and I. A. Stegun. Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables.
Dover, New York, ninth dover printing, tenth gpo printing
edition, 1964.

[Aus70] N. Austern. Direct nuclear reaction theories. Interscience
monographs and texts in physics and astronomy. Wiley-
Interscience, 1970.

[AUS19] Aarhus Subatomic Library (AUSAlib). https://git.kern.
phys.au.dk/ausa/ausalib/wikis/home, Accessed: Jul 2019.

[AW95] G. Audi and A. H. Wapstra. The 1995 update to the atomic
mass evaluation. Nucl. Phys. A, 595(4):409 – 480, 1995.

[BAG+08] C. Bachelet, G. Audi, C. Gaulard, C. Guénaut, F. Herfurth,
D. Lunney, M. de Saint Simon, and C. Thibault. New binding
energy for the two-neutron halo of 11Li. Phys. Rev. Lett.,
100:182501, May 2008.

https://git.kern.phys.au.dk/ausa/ausalib/wikis/home
https://git.kern.phys.au.dk/ausa/ausalib/wikis/home


BIBLIOGRAPHY 137

[BBB+99] D. W. Bardayan, J. C. Blackmon, C. R. Brune, A. E.
Champagne, A. A. Chen, J. M. Cox, T. Davinson, V. Y. Hansper,
M. A. Hofstee, B. A. Johnson, R. L. Kozub, Z. Ma, P. D.
Parker, D. E. Pierce, M. T. Rabban, A. C. Shotter, M. S. Smith,
K. B. Swartz, D. W. Visser, and P. J. Woods. Observation
of the Astrophysically Important 3+ State in 18Ne via Elastic
Scattering of a Radioactive 17F Beam from 1H. Phys. Rev. Lett.,
83:45–48, Jul 1999.

[BBBM07] G. Blanchon, A. Bonaccorso, D. M. Brink, and N. Vinh
Mau. 10Li spectrum from 11Li fragmentation. Nucl. Phys.
A, 791(3):303 – 312, 2007.

[BBG+99] H. G. Bohlen, A. Blazevic, B. Gebauer, W. Von Oertzen,
S. Thummerer, R. Kalpakchieva, S. M. Grimes, and T. N.
Massey. Spectroscopy of exotic nuclei with multi-nucleon transfer
reactions. Prog. Part. Nucl. Phys., 42:17 – 26, 1999.

[BBU+11] J. R. Beene, D. W. Bardayan, A. Galindo Uribarri, C. J. Gross,
K. L. Jones, J. F. Liang, W. Nazarewicz, D. W. Stracener,
B. A. Tatum, and R. L. Varner. ISOL science at the holifield
radioactive ion beam facility. J. Phys. G, 38(2):024002, Jan
2011.

[BDB77] L. D. Blokhintsev, E. I. Dolinskij, and I. Borbej. Nuclear vertex
functions. Fiz. Elem. Chastits At. Yadra, 8(6):1189–1245, 1977.

[BFF+12] M. J. G. Borge, L. M. Fraile, H. O. U. Fynbo, J. Gomez Camacho,
J. Johansen, H. T. Johansson, B. Jonson, R. Krücken,
J. Kurcewicz, I. Martel, A. Moro, D. Mücher, T. Nilsson,
G. Nyman, R. Raabe, G. Randisi, K. Riisager, S. Sambi, AM.
Sanchez-Benitez, and O. Tengblad. Transfer reactions at the
neutron dripline with triton target. Technical Report CERN-
INTC-2012-060. INTC-P-361, CERN, Geneva, Oct 2012.

[BFG+89] L. Bianchi, B. Fernandez, J. Gastebois, A. Gillibert, W. Mittig,
and J. Barrette. SPEG: An energy loss spectrometer for GANIL.
Nucl. Instrum. Methods Phys. Res. A, 276(3):509 – 520, 1989.

[BG69] F. D. Becchetti and G. W. Greenlees. Nucleon-nucleus optical-
model parameters, A > 40, E < 50 MeV. Phys. Rev., 182:1190–
1209, Jun 1969.

[BGC+08] G. Brunetti, S. Giacintucci, R. Cassano, W. Lane, D. Dallacasa,
T. Venturi, N. E. Kassim, G. Setti, W. D. Cotton, and



138 BIBLIOGRAPHY

M. Markevitch. A low-frequency radio halo associated with
a cluster of galaxies. Nature, 455:944, 2008.

[BGK+12] V. Bildstein, R. Gernhäuser, T. Kröll, R. Krücken, K. Wimmer,
P. Van Duppen, M. Huyse, N. Patronis, R. Raabe, and T-REX
Collaboration. T-REX. Eur. Phys. J. A, 48(6):85, Jun 2012.

[BH61] B. Buck and P. E. Hodgson. The analysis of (d, p) stripping
reactions by the distorted wave born approximation. Philos.
Mag., 6(71):1371–1384, 1961.

[BHvK02] C. A. Bertulani, H.-W. Hammer, and U. van Kolck. Effective
field theory for halo nuclei: shallow p-wave states. Nucl. Phys.
A, 712(1):37 – 58, 2002.

[Bic88] H. Bichsel. Straggling in thin silicon detectors. Rev. Mod. Phys.,
60:663–699, Jul 1988.

[Bla06] K. Blaum. High-accuracy mass spectrometry with stored ions.
Phys. Rep., 425(1):1 – 78, 2006.

[Bor16] M. J. G. Borge. Highlights of the ISOLDE facility and the
HIE-ISOLDE project. Nucl. Instrum. Methods Phys. Res. B,
376:408 – 412, 2016. Proceedings of the XVIIth International
Conference on Electromagnetic Isotope Separators and Related
Topics (EMIS2015), Grand Rapids, MI, U.S.A., 11-15 May 2015.

[Bou13] J. Bouma. Elastic scattering and cluster-transfer reactions of
98Rb on 7Li at REX-ISOLDE. Master’s thesis, KU Leuven,
2013.

[BPTD+14] T. L. Belyaeva, R. Perez-Torres, A. S. Demyanova, S. A.
Goncharov, and A. A. Ogloblin. Neutron asymptotic
normalization coefficients and halo radii of the first excited
states of 13C and 11Be. EPJ Web Conf., 66:03009, 2014.

[BPTO+14] T. L. Belyaeva, R. Perez-Torres, A. A. Ogloblin, A. S.
Demyanova, S. N. Ershov, and S. A. Goncharov. Determination
of neutron halo radii in the first excited states of 13C and 11Be
with the asymptotic normalization coefficients method. Phys.
Rev. C, 90:064610, Dec 2014.

[BPVB18] F. Barranco, G. Potel, E. Vigezzi, and R. A. Broglia. The 9Li(d,p)
reaction, a specific probe of 10Li, paradigm of parity-inverted
nuclei around N = 6 closed shell. 2018.



BIBLIOGRAPHY 139

[BS95] V. G. Bagrov and B. F. Samsonov. Darboux transformation,
factorization, and supersymmetry in one-dimensional quantum
mechanics. Theor. Math. Phys., 104(2):1051–1060, Aug 1995.

[BSM+16] C. A. Bertulani, Shubhchintak, A. Mukhamedzhanov, A. S.
Kadyrov, A. Kruppa, and D. Y. Pang. Indirect methods in
nuclear astrophysics. J. Phys.: Conf. Ser, 703:012007, Apr
2016.

[BSPMS14] D. Baye, J.-M. Sparenberg, A. M. Pupasov-Maksimov, and B. F.
Samsonov. Single- and coupled-channel radial inverse scattering
with supersymmetric transformations. J. Phys. A: Math. Theor.,
47(24):243001, Jun 2014.

[BT18] G. Benedek and J. P. Toennies. Resonances and Critical
Kinematic Effects, pages 305–336. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2018.

[But50] S. T. Butler. On angular distributions from (d, p) and (d, n)
nuclear reactions. Phys. Rev., 80:1095–1096, Dec 1950.

[Cat02] W. N. Catford. Nucleon transfer studies with radioactive beams.
Nucl. Phys. A, 701(1):1 – 6, 2002. 5th International Conference
on Radioactive Nuclear Beams.

[Cat14] W. N. Catford. What Can We Learn from Transfer, and How
Is Best to Do It?, pages 67–122. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014.

[CD61] R. F. Christy and I. Duck. γ rays from an extranuclear direct
capture process. Nucl. Phys., 24(1):89 – 101, 1961.

[CDNC+17] M. Cavallaro, M. De Napoli, F. Cappuzzello, S. E. A. Orrigo,
C. Agodi, M. Bondí, D. Carbone, A. Cunsolo, B. Davids,
T. Davinson, A. Foti, N. Galinski, R. Kanungo, H. Lenske,
C. Ruiz, and A. Sanetullaev. Investigation of the 10Li shell
inversion by neutron continuum transfer reaction. Phys. Rev.
Lett., 118:012701, Jan 2017.

[CF10] B. Cheal and K. T. Flanagan. Progress in laser spectroscopy at
radioactive ion beam facilities. J. Phys. G, 37(11):113101, Sep
2010.

[CGK+13] B. A. Chernyshev, Yu. B. Gurov, V. S. Karpukhin, L. Yu.
Korotkova, S. V. Lapushkin, R. V. Pritula, and V. G.
Sandukovsky. Spectroscopy of the heavy lithium isotopes 10−12Li.
Eur. Phys. J. A, 49(6):68, Jun 2013.



140 BIBLIOGRAPHY

[CGRM17] J. Casal, M. Gómez-Ramos, and A. M. Moro. Description of the
11Li(p, d)10Li transfer reaction using structure overlaps from a
full three-body model. Phys. Lett. B, 767:307 – 313, 2017.

[CJF97] A. Cobis, A. S. Jensen, and D. V. Fedorov. The simplest strange
three-body halo. J. Phys. G, 23(4):401, 1997.

[CKS95] F. Cooper, A. Khare, and U. Sukhatme. Supersymmetry and
quantum mechanics. Phys. Rept., 251:267–385, 1995.

[CLG19] X.-N. Cao, Q. Liu, and J.-Y. Guo. Prediction of halo structure
in nuclei heavier than 37Mg with the complex momentum
representation method. Phys. Rev. C, 99:014309, Jan 2019.

[CMP16] P. Campbell, I. D. Moore, and M. R. Pearson. Laser spectroscopy
for nuclear structure physics. Prog. Part. Nucl. Phys., 86:127 –
180, 2016.

[CN06] P. Capel and F. M. Nunes. Influence of the projectile description
on breakup calculations. Phys. Rev. C, 73:014615, Jan 2006.

[CNR+16] A. Calci, P. Navrátil, R. Roth, J. Dohet-Eraly, S. Quaglioni,
and G. Hupin. Can ab initio theory explain the phenomenon
of parity inversion in 11Be? Phys. Rev. Lett., 117:242501, Dec
2016.

[Coh71] B. L. Cohen. Concepts of Nuclear Physics. McGraw-Hill series
in fundamentals of physics. Tata McGraw-Hill, 1971.

[CPH18] P. Capel, D. R. Phillips, and H. W. Hammer. Dissecting reaction
calculations using halo effective field theory and ab initio input.
Phys. Rev. C, 98(3):034610, 2018.

[CPS09] L. Corradi, G. Pollarolo, and S. Szilner. Multinucleon transfer
processes in heavy-ion reactions. J. Phys. G, 36(11):113101, Sep
2009.

[DAA+06] A. V. Dobrovolsky, G. D. Alkhazov, M. N. Andronenko,
A. Bauchet, P. Egelhof, S. Fritz, H. Geissel, C. Gross, A. V.
Khanzadeev, G. A. Korolev, G. Kraus, A. A. Lobodenko,
G. Münzenberg, M. Mutterer, S. R. Neumaier, T. Schäfer,
C. Scheidenberger, D. M. Seliverstov, N. A. Timofeev, A. A.
Vorobyov, and V. I. Yatsoura. Study of the nuclear matter
distribution in neutron-rich Li isotopes. Nucl. Phys. A, 766:1 –
24, 2006.



BIBLIOGRAPHY 141

[DC19] W. H. Dickhoff and R. J. Charity. Recent developments for the
optical model of nuclei. Prog. Part. Nucl. Phys., 105:252 – 299,
2019.

[DCV80] W. W. Daehnick, J. D. Childs, and Z. Vrcelj. Global optical
model potential for elastic deuteron scattering from 12 to 90
MeV. Phys. Rev. C, 21:2253–2274, Jun 1980.

[Del09] A. Deltuva. Three-body direct nuclear reactions: Nonlocal
optical potential. Phys. Rev. C, 79:021602, Feb 2009.

[DFS+11] C. Aa. Diget, S. P. Fox, A. Smith, S. Williams, M. Porter-Peden,
L. Achouri, P. Adsley, H. Al-Falou, R. A. E. Austin, G. C. Ball,
J. C. Blackmon, S. Brown, W. N. Catford, A. A. Chen, J. Chen,
R. M. Churchman, J. Dech, D. Di. Valentino, M. Djongolov, B. R.
Fulton, A. Garnsworthy, G. Hackman, U. Hager, R. Kshetri,
L. Kurchaninov, A. M. Laird, J. P. Martin, M. Matos, J. N. Orce,
N. A. Orr, C. J. Pearson, C. Ruiz, F. Sarazin, S. Sjue, D. Smalley,
C. E. Svensson, M. Taggart, E. Tardiff, and G. L. Wilson.
SHARC: Silicon highly-segmented array for reactions and coulex
used in conjunction with the TIGRESS γ-ray spectrometer. J.
Instrum, 6(02):P02005–P02005, Feb 2011.

[DMS+07] C. E. Demonchy, W. Mittig, H. Savajols, P. Roussel-Chomaz,
M. Chartier, B. Jurado, L. Giot, D. Cortina-Gil, M. Caamaño,
G. Ter-Arkopian, A. Fomichev, A. Rodin, M. S. Golovkov,
S. Stepantsov, A. Gillibert, E. Pollacco, A. Obertelli, and
H. Wang. MAYA, a gaseous active target. Nucl. Instrum.
Methods Phys. Res. A, 573(1):145 – 148, 2007. Proceedings of
the 7th International Conference on Position-Sensitive Detectors.

[DPRS+10] A. Di Pietro, G. Randisi, V. Scuderi, L. Acosta, F. Amorini,
M. J. G. Borge, P. Figuera, M. Fisichella, L. M. Fraile, J. Gomez-
Camacho, H. Jeppesen, M. Lattuada, I. Martel, M. Milin,
A. Musumarra, M. Papa, M. G. Pellegriti, F. Perez-Bernal,
R. Raabe, F. Rizzo, D. Santonocito, G. Scalia, O. Tengblad,
D. Torresi, A. Maira Vidal, D. Voulot, F. Wenander, and
M. Zadro. Elastic scattering and reaction mechanisms of the
halo nucleus 11Be around the coulomb barrier. Phys. Rev. Lett.,
105:022701, Jul 2010.

[DPSM+12] A. Di Pietro, V. Scuderi, A. M. Moro, L. Acosta, F. Amorini,
M. J. G. Borge, P. Figuera, M. Fisichella, L. M. Fraile, J. Gomez-
Camacho, H. Jeppesen, M. Lattuada, I. Martel, M. Milin,
A. Musumarra, M. Papa, M. G. Pellegriti, F. Perez-Bernal,



142 BIBLIOGRAPHY

R. Raabe, G. Randisi, F. Rizzo, G. Scalia, O. Tengblad,
D. Torresi, A. Maira Vidal, D. Voulot, F. Wenander, and
M. Zadro. Experimental study of the collision 11Be + 64Zn
around the Coulomb barrier. Phys. Rev. C, 85:054607, May
2012.

[DRNcvN16] A. Deltuva, A. Ross, E. Norvaišas, and F. M. Nunes. Role of core
excitation in (d, p) transfer reactions. Phys. Rev. C, 94:044613,
Oct 2016.

[DSM+90] T. Davinson, A. C. Shotter, E. W. Macdonald, S. V. Springham,
P. Jobanputra, A. J. Stephens, and S. L. Thomas. Development
of a silicon strip detector array for nuclear structure physics.
Nucl. Instrum. Methods Phys. Res. A, 288(1):245 – 249,
1990. Proceedings of the Fifth European Symposium on
Semiconductors Detectors.

[EBE62] J. R. Erskine, W. W. Buechner, and H. A. Enge. 209Bi(d, p)210Bi
Reaction at Low Bombarding Energies and with High Resolution.
Phys. Rev., 128:720–728, Oct 1962.

[Efi70] V. Efimov. Energy levels arising from resonant two-body forces
in a three-body system. Phys. Lett. B, 33(8):563 – 564, 1970.

[Elo19] IS561 ELOG. https://elog.kern.phys.au.dk/IS561/220,
Accessed: Jul 2019.

[Els13] J. Elseviers. Probing the semi-magicity of 68Ni via
the 66Ni(t,p)68Ni two-neutron transfer reaction in inverse
kinematics. PhD thesis, KU Leuven, Nov 2013.

[End77] P. M. Endt. Spectroscopic factors for single-nucleon transfer in
the A = 21–44 region. At. Data Nucl. Data Tables, 19(1):23 –
61, 1977.

[ENS18] ENSDF: Evaluated nuclear structure data file. https://www.
nndc.bnl.gov/ensdf/index.jsp, Dec 2018.

[ES08] J. Eberth and J. Simpson. From Ge(Li) detectors to gamma-ray
tracking arrays–50 years of gamma spectroscopy with germanium
detectors. Prog. Part. Nucl. Phys., 60(2):283 – 337, 2008.

[FAB+10] S. J. Freeman, A. Andreyev, B. B. Back, V. Bildstein, P. A.
Butler, W. N. Catford, J. Cederkall, G. Chapman, D. Di Julio,
C. R. Hoffman, M. Huyse, D. Jenkins, B. P. Kay, T. Kröll,
R. Krücken, D. Müncher, N. Nowak, R. Raabe, J. P. Schiffer, J. S.

https://elog.kern.phys.au.dk/IS561/220
https://www.nndc.bnl.gov/ensdf/index.jsp
https://www.nndc.bnl.gov/ensdf/index.jsp


BIBLIOGRAPHY 143

Thomas, P. Van Duppen, R. Wadsworth, N. Warr, K. Wimmer,
and A. H. Wuosmaa. Letter of Intent to the ISOLDE and
Neutron Time-of-Flight Experiments Committee for experiments
with HIE-ISOLDE: A HELIcal Orbit Spectrometer (HELIOS)
for HIE-ISOLDE. Technical Report CERN-INTC-2010-031.
INTC-I-099, CERN, Geneva, May 2010.

[Fad61] L. D. Faddeev. Scattering theory for a three particle system.
Sov. Phys. JETP, 12:1014–1019, 1961. [Zh. Eksp. Teor. Fiz. 39,
1459 (1960)].

[FNA+04] N. Fukuda, T. Nakamura, N. Aoi, N. Imai, M. Ishihara,
T. Kobayashi, H. Iwasaki, T. Kubo, A. Mengoni, M. Notani,
H. Otsu, H. Sakurai, S. Shimoura, T. Teranishi, Y. X. Watanabe,
and K. Yoneda. Coulomb and nuclear breakup of a halo nucleus
11Be. Phys. Rev. C, 70:054606, Nov 2004.

[Gal88] T. F. Gallagher. Rydberg atoms. Rep. Prog. Phys., 51(2):143,
1988.

[GCM14] J. Gómez Camacho and A. M. Moro. A Pedestrian Approach
to the Theory of Transfer Reactions: Application to Weakly-
Bound and Unbound Exotic Nuclei, pages 39–66. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014.

[GFJ02] E. Garrido, D. V. Fedorov, and A. S. Jensen. The 10Li spectrum
and the 11Li properties. Nucl. Phys. A, 700(1):117 – 141, 2002.

[Gie97] F. Gieres. Symmetries in Physics:. Editions Frontières, 1997.

[GJB+75] J. D. Goss, P. L. Jolivette, C. P. Browne, S. E. Darden, H. R.
Weller, and R. A. Blue. Angular distribution measurements
for 14C(d, p)15C and the level structure of 15C. Phys. Rev. C,
12:1730–1738, Dec 1975.

[GKK+99] W. Geithner, S. Kappertz, M. Keim, P. Lievens, R. Neugart,
L. Vermeeren, S. Wilbert, V. N. Fedoseyev, U. Köster, V. I.
Mishin, V. Sebastian, and ISOLDE Collaboration. Measurement
of the magnetic moment of the one-neutron halo nucleus 11Be.
Phys. Rev. Lett., 83:3792–3795, Nov 1999.

[GL71] Yu. A. Golfand and E. P. Likhtman. Extension of the Algebra
of Poincare Group Generators and Violation of p Invariance.
JETP Lett., 13:323–326, 1971. [Pisma Zh. Eksp. Teor. Fiz. 13,
452 (1971)].



144 BIBLIOGRAPHY

[Gle04] N. K. Glendenning. Direct Nuclear Reactions. WORLD
SCIENTIFIC, 2004.

[Gol66] L. J. B. Goldfarb. Lectures in theoretical physics. 1966.

[GRCM17] M. Gómez-Ramos, J. Casal, and A. M. Moro. Linking structure
and dynamics in (p, pn) reactions with Borromean nuclei: The
11Li(p, pn)10Li case. Phys. Lett. B, 772:115 – 120, 2017.

[GRM17] M. Gómez-Ramos and A. M. Moro. Influence of target
deformation and deuteron breakup in (d, p) transfer reactions.
Phys. Rev. C, 95:044612, Apr 2017.

[GRMGCT15] M. Gómez-Ramos, A. M. Moro, J. Gómez-Camacho, and I. J.
Thompson. Transfer induced by core excitation within an
extended distorted-wave born approximation method. Phys.
Rev. C, 92:014613, Jul 2015.

[GS18] D. J. Griffiths and D. F. Schroeter. Introduction to quantum
mechanics. Cambridge University Press, 2018.

[GVO01] M. Garçon and J. W. Van Orden. The Deuteron: Structure and
Form Factors, pages 293–378. Springer US, Boston, MA, 2001.

[Ham17] I. Hamamoto. Examining possible neutron-halo nuclei heavier
than 37Mg. Phys. Rev. C, 95:044325, Apr 2017.

[HC19] Chloë Hebborn and Pierre Capel. Sensitivity of one-neutron
knockout to the nuclear structure of halo nuclei. arXiv e-prints,
page arXiv:1906.07660, Jun 2019.

[HD68] W.R. Hering and M. Dost. On the l-dependence of stripping
excitation functions. Nucl. Phys. A, 111(3):561 – 568, 1968.

[Hei27] W. Heisenberg. Über den anschaulichen inhalt der quantenthe-
oretischen kinematik und mechanik. Z. Phys., 43(3):172–198,
Mar 1927.

[HEK+78] W. Henning, Y. Eisen, H.-J. Körner, D. G. Kovar, J. P. Schiffer,
S. Vigdor, and B. Zeidman. Optimum Q value in heavy-ion-
induced neutron transfer at the Coulomb barrier. Phys. Rev. C,
17:2245–2247, Jun 1978.

[HFA+09] P. J. Haigh, M. Freer, N. I. Ashwood, T. Bloxham, N. Curtis,
P. McEwan, H. G. Bohlen, T. Dorsch, Tz. Kokalova, Ch. Schulz,
and C. Wheldon. Neutron decay widths of excited states of 11Be.
Phys. Rev. C, 79:014302, Jan 2009.



BIBLIOGRAPHY 145

[HIE19] About HIE-ISOLDE. https://hie-isolde-project.web.
cern.ch/about-hie-isolde, Accessed: Jul 2019.

[HJ87] P. G. Hansen and B. Jonson. The neutron halo of extremely
neutron-rich nuclei. Europhys. Lett., 4(4):409, 1987.

[HJJ95] P. G. Hansen, A. S. Jensen, and B. Jonson. Nuclear halos. Annu.
Rev. Nucl. Part. Sci., 45(1):591–634, 1995.

[HJP17] H.-W. Hammer, C. Ji, and D. R. Phillips. Effective field theory
description of halo nuclei. J. Phys. G, 44(10):103002, 2017.

[HKB+97] D. Habs, O. Kester, G. Bollen, L. Liljeby, K. G. Rensfelt,
D. Schwalm, R. von Hahn, G. Walter, and P. Van Duppen.
The REX-ISOLDE project. Nucl. Phys. A, 616:29–38. 9 p, 1997.

[HKS+98] D. Habs, O. Kester, T. Sieber, A. Kolbe, J. Ott, G. Bollen,
F. Ames, D. Schwalm, R. von Hahn, R. Repnow, H. Podlech,
A. Schempp, U. Ratzinger, L. Liljeby, K.-G. Rensfelt,
F. Wenander, B. Jonsson, G. Nyman, P. Van Duppen,
M. Huyse, A. Richter, G. Shrieder, G. Walter, and REX-ISOLDE
collaboration. The REX-ISOLDE project. Nucl. Instrum.
Methods Phys. Res. B, 139(1):128 – 135, 1998.

[HM53] J. Horowitz and A. M. L. Messiah. The mechanism of stripping
reactions. Phys. Rev., 92:1326–1327, Dec 1953.

[Hod84] P. E. Hodgson. The neutron optical potential. Rep. Prog. Phys.,
47(6):613–654, Jun 1984.

[HWG+02] A. Horvath, J. Weiner, A. Galonsky, F. Deak, Y. Higurashi,
K. Ieki, Y. Iwata, A. Kiss, J. J. Kolata, Z. Seres, J. von
Schwarzenberg, H. Schelin, S. Takeuchi, S. Typel, and R. E.
Warner. Cross Section for the Astrophysical 14C(n, γ)15C
Reaction via the Inverse Reaction. Astrophys. J., 570(2):926–933,
May 2002.

[Iac85] F. Iachello. Supersymmetry in nuclear physics. Physica D,
15(1):85 – 98, 1985.

[Iso19] ISOLDE facility. http://isolde.web.cern.ch/facility,
Accessed: Jul 2019.

[JA14] D. H. Jakubassa-Amundsen. DWBA theory for elastic scattering
of polarized electrons from heavy unpolarized nuclei. J. Phys.
G, 41(7):075103, Apr 2014.

https://hie-isolde-project.web.cern.ch/about-hie-isolde
https://hie-isolde-project.web.cern.ch/about-hie-isolde
http://isolde.web.cern.ch/facility


146 BIBLIOGRAPHY

[Jen17] J. H. Jensen. Experimental study of neutron-rich Li isotopes:
Progress report. Private Communication, 2017.

[JFB+13] J. G. Johansen, M. A. Fraser, V. Bildstein, T. Kröll, R. Raabe,
K. Riisager, D. Voulot, and K. Wimmer. Characterization of low
energy radioactive beams using direct reactions. Nucl. Instrum.
Methods Phys. Res. A, 714:176 – 187, 2013.

[JMB+06] H. B. Jeppesen, A. M. Moro, U. C. Bergmann, M. J. G. Borge,
J. Cederkäll, L. M. Fraile, H. O. U. Fynbo, J. Gómez-Camacho,
H. T. Johansson, B. Jonson, M. Meister, T. Nilsson, G. Nyman,
M. Pantea, K. Riisager, A. Richter, G. Schrieder, T. Sieber,
O. Tengblad, E. Tengborn, M. Turrión, and F. Wenander. Study
of 10Li via the 9Li(2H, p) reaction at REX-ISOLDE. Phys. Lett.
B, 642(5):449 – 454, 2006.

[Jon04] B. Jonson. Light dripline nuclei. Phys. Rep., 389(1):1 – 59, 2004.

[JR00] A. S. Jensen and K. Riisager. Towards necessary and sufficient
conditions for halo occurrence. Phys. Lett. B, 480(1):39 – 44,
2000.

[JRFG04] A. S. Jensen, K. Riisager, D. V. Fedorov, and E. Garrido.
Structure and reactions of quantum halos. Rev. Mod. Phys.,
76:215–261, Feb 2004.

[JS70] R. C. Johnson and P. J. R. Soper. Contribution of deuteron
breakup channels to deuteron stripping and elastic scattering.
Phys. Rev. C, 1:976–990, Mar 1970.

[JT74] R. C. Johnson and P. C. Tandy. An approximate three-body
theory of deuteron stripping. Nucl. Phys. A, 235(1):56 – 74,
1974.

[KAB+03] V. Kroha, A. Azhari, P. Bém, V. Burjan, C. A. Gagliardi,
A. M. Mukhamedzhanov, J. Novák, Š. Piskoř, E. Šimečková,
X. Tang, L. Trache, R. E. Tribble, and J. Vincour. Asymptotic
normalization coefficients in nuclear astrophysics. Nucl. Phys.
A, 719:C119 – C122, 2003.

[KAG+93] R. A. Kryger, A. Azhari, A. Galonsky, J. H. Kelley, R. Pfaff,
E. Ramakrishnan, D. Sackett, B. M. Sherrill, M. Thoennessen,
J. A. Winger, and S. Yokoyama. Neutron decay of 10Li produced
by fragmentation. Phys. Rev. C, 47:R2439–R2442, Jun 1993.



BIBLIOGRAPHY 147

[KAKR09] N. Keeley, N. Alamanos, K. W. Kemper, and K. Rusek. Elastic
scattering and reactions of light exotic beams. Prog. Part. Nucl.
Phys., 63(2):396 – 447, 2009.

[Kar75] P. J. Karol. Nucleus-nucleus reaction cross sections at high
energies: Soft-spheres model. Phys. Rev. C, 11:1203–1209, Apr
1975.

[KBF+10] G. Korschinek, A. Bergmaier, T. Faestermann, U.C. Gerstmann,
K. Knie, G. Rugel, A. Wallner, I. Dillmann, G. Dollinger,
Ch. Lierse von Gostomski, K. Kossert, M. Maiti, M. Poutivtsev,
and A. Remmert. A new value for the half-life of 10Be by Heavy-
Ion Elastic Recoil Detection and liquid scintillation counting.
Nucl. Instrum. Methods Phys. Res. B, 268(2):187 – 191, 2010.

[KD03] A. J. Koning and J. P. Delaroche. Local and global nucleon
optical models from 1 keV to 200 MeV. Nucl. Phys. A, 713(3):231
– 310, 2003.

[KEF+94] G. Kraus, P. Egelhof, C. Fischer, H. Geissel, A. Himmler,
F. Nickel, G. Münzenberg, W. Schwab, A. Weiss, J. Friese,
A. Gillitzer, H. J. Körner, M. Peter, W. F. Henning, J. P.
Schiffer, J. V. Kratz, L. Chulkov, M. Golovkov, A. Ogloblin,
and B. A. Brown. Proton inelastic scattering on 56Ni in inverse
kinematics. Phys. Rev. Lett., 73:1773–1776, Sep 1994.

[KFPK18] Y. Kadi, M. A. Fraser, and A. Papageorgiou-Koufidou. HIE-
ISOLDE: technical design report for the energy upgrade. CERN
Yellow Reports: Monographs. CERN, Geneva, May 2018.

[KGOY07] S. Kutlu, R. T. Güray, N. Özkan, and C. Yalçin. Calculation of
Effective Beam Energy Depending on the Target Thickness
in Applications of Nuclear Astrophysics. AIP Conf. Proc.,
899(1):547–547, 2007.

[KH16] B. Kay and C. Hoffman. The (d,p) reaction on 206Hg. Technical
Report CERN-INTC-2016-056. INTC-CLL-026, CERN, Geneva,
Oct 2016.

[KHH+16] R. Kanungo, W. Horiuchi, G. Hagen, G. R. Jansen, P. Navrátil,
F. Ameil, J. Atkinson, Y. Ayyad, D. Cortina-Gil, I. Dillmann,
A. Estradé, A. Evdokimov, F. Farinon, H. Geissel, G. Guastalla,
R. Janik, M. Kimura, R. Knöbel, J. Kurcewicz, Yu. A. Litvinov,
M. Marta, M. Mostazo, I. Mukha, C. Nociforo, H. J. Ong,
S. Pietri, A. Prochazka, C. Scheidenberger, B. Sitar, P. Strmen,



148 BIBLIOGRAPHY

Y. Suzuki, M. Takechi, J. Tanaka, I. Tanihata, S. Terashima,
J. Vargas, H. Weick, and J. S. Winfield. Proton distribution
radii of 12−19C illuminate features of neutron halos. Phys. Rev.
Lett., 117:102501, Sep 2016.
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