1 2

NIEL VAN BUGGENHOUT† , MARC VAN BAREL† , AND RAF VANDEBRIL†

 Abstract. A general framework for oblique projections of nonhermitian matrices onto rational Krylov subspaces is developed. To obtain this framework we revisit the classical rational Krylov subspace algorithm and prove that the projected matrix can be written efficiently as a structured pencil, where the structure can take several forms, such as Hessenberg or inverse Hessenberg. One specific instance of the structures appearing in this framework for oblique projections is a tridiagonal pencil. This is a direct generalization of the classical biorthogonal Krylov subspace method where the projection becomes a single nonhermitian tridiagonal matrix and of the Hessenberg pencil representation for rational Krylov subspaces. Based on the compact storage of this tridiagonal pencil in the biorthogonal setting, we can develop short recurrences. Numerical experiments confirm the validity of the approach.

¹¹ Key words. Rational Krylov, Biorthogonal, Short Recurrence, Oblique Projection, Matrix Pencil

¹² AMS subject classifications. 15A22, 47A75, 65F99, 65Q30

1. Introduction. Krylov subspace methods, introduced by A. N. Krylov [\[18\]](#page-18-0), are an ¹⁴ indispensable tool in science and engineering for transforming large datasets to manageable sizes. There is an enormous amount of variants of Krylov subspace methods. A good overview can be found in the books of Saad [\[28\]](#page-18-1), van der Vorst [\[33\]](#page-19-0), and Gutknecht [\[15\]](#page-18-2). In this article we focus on a particular type of Krylov subspace methods, namely the rational Krylov subspace methods in a non-orthogonal, but oblique projection process. This allows to save the projected matrix as two tridiagonal matrices, which is a more data-sparse representation compared to the Hessenberg pair arising from orthogonal projection.

21 Rational Krylov subspaces were introduced by Ruhe [\[25\]](#page-18-3) illustrating that faster conver-²² gence could be obtained when, e.g., approximating non-dominating eigenvalues [\[26\]](#page-18-4) and ²³ constructing a reduced-order model for dynamical systems [\[11–](#page-18-5)[13\]](#page-18-6).

²⁴ Arnoldi [\[2\]](#page-18-7) linked Hessenberg matrices to the orthogonal basis stemming from a Krylov subspace and developed an iteration to build up these bases. Iterative construction of matrices $_{26}$ involved in biorthogonal Krylov subspace methods are due to Lanczos [\[19\]](#page-18-8), where an oblique ²⁷ projection results in a tridiagonal matrix. Even though the oblique projection process is less stable than the classical orthogonal projection, there is a significant gain in memory storage and computing time. A nice introduction into biorthogonal Krylov subspace methods is provided by Saad [\[27\]](#page-18-9). The most popular biorthogonal method for solving systems of equations is the BiCGStab method of van der Vorst [\[32\]](#page-19-1).

 Biorthogonal Krylov subspace methods for rational Krylov subspaces have been described only partially in literature $[11-13]$ $[11-13]$. This article will generalize previous results and provide a general framework. We will prove that the oblique projection linked to biorthogonal rational Krylov subspaces results in a matrix pencil, of which both matrices can be chosen to be tridiagonal, possibly nonhermitian. The highly structured pencil allows us to develop a short ³⁷ recursion to compute the biorthogonal bases and the projected pencil. To derive these results we first need to reconsider the structure of the orthogonally projected matrix linked to a classical rational Krylov subspace. We prove that instead of the single rational Hessenberg

[∗]Submitted to the editors ..., 2018

[†]Department of Computer Science, KU Leuven, University of Leuven, 3001 Leuven, Belgium. (raf.vandebril@kuleuven.be, niel.vanbuggenhout@kuleuven.be, marc.vanbarel@kuleuven.be)

The research of the authors was supported by the Research Council KU Leuven, C1-project (Numerical Linear Algebra and Polynomial Computations), by the Fund for Scientific Research–Flanders (Belgium), EOS Project no 30468160, and by the Research Council KU Leuven: C14/16/056 (Inverse-free Rational Krylov Methods: Theory and Applications)

⁴⁰ matrix we can also work with a pair of matrices of particular structure, such as Hessenberg or ⁴¹ inverse Hessenberg.

42 Gutknecht studied short recursions, (k, l) -step methods for fixed point equations [\[14,](#page-18-10) [16\]](#page-18-11), ⁴³ by means of a Hessenberg-triangular pencil. Some classical Krylov subspace methods can 44 be described by (k, l) -step methods, e.g., BiCG is a $(2, 1)$ -step method. The biorthogonal ⁴⁵ rational Lanczos method introduced here does not immediately fit this framework.

⁴⁶ Some notable results are provided below, which are in some sense special cases of the ⁴⁷ general framework provided here. We discuss which spaces are used and what structure the ⁴⁸ projection onto these subspaces exhibits.

 Using orthogonality of Laurent polynomials, Jagels and Reichel [\[17\]](#page-18-12) constructed a 50 recurrence for extended Krylov subspaces with regularity in the poles (a repetition of $i \geq 1$ times A and one time A^{-1}) and a symmetric matrix A. They represented their projected matrix as a single matrix. Schweitzer [\[29\]](#page-18-13) constructed in a similar way a nonsymmetric Lanczos iteration for extended Krylov subspaces, only valid when a negative and positive power is alternated in both spaces. Gallivan, Grimme and Van Dooren derived a nonsymmetric rational Lanczos iteration [\[12\]](#page-18-14). They use the same poles in both subspaces and represent the projection as a pencil, which is a tridiagonal pencil, except for some off-diagonal fill-in when a change of pole occurs. Watkins [\[36\]](#page-19-2) provided the first elegant representation of the AGR/CMV-factorization [\[1,](#page-18-15) [6,](#page-18-16) [9,](#page-18-17) [30,](#page-19-3) [36\]](#page-19-2) as a matrix pencil, for a nice overview of the history we refer to the paper by Simon [\[30\]](#page-19-3). This factorization is in fact also a biorthogonal relation, but for unitary matrices.

61 Some elementary results are provided in Section [2,](#page-1-0) with a focus on sparsity and low-⁶² rank structure. Section [3](#page-3-0) discusses rational Krylov subspace methods and the structure of ⁶³ the projection. Section [4](#page-8-0) deals with biorthogonal rational Krylov subspace methods and ⁶⁴ an overview presenting all possible structures. In Section [5](#page-14-0) a rational Lanczos iteration is ⁶⁵ derived based on the tridiagonal pencil structure, some numerical experiments are performed ⁶⁶ illustrating the validity of the approach.

⁶⁷ 2. Basics. Since this text will rely on matrix computations and the main results involve ⁶⁸ sparsity and low-rank structure, this section is devoted to these types of structure (structure ⁶⁹ will refer from now on to both sparsity and low-rank structure). Useful elementary results ⁷⁰ for standard Krylov subspace methods are repeated in Section [2.1.](#page-1-1) For more details see, e.g., $71 \quad [20, 24, 27]$ $71 \quad [20, 24, 27]$. Using the QR-factorization we introduce inv-Hessenberg, extended Hessenberg ⁷² and rational Hessenberg matrices in Section [2.2.](#page-2-0)

2.1. Standard Krylov subspaces. Standard Krylov subspace methods perform an orthogonal projection of some matrix $A \in \mathbb{C}^{m \times m}$ onto the Krylov subspace

$$
\mathcal{K}_n(A, v) = \text{span}\{v, Av, A^2v, \dots, A^{n-1}v\},\
$$

with a starting vector $v \in \mathbb{C}^m$, $||v||_2 = 1$. Note that these subspaces are nested, i.e., $\mathcal{K}_{n-1} \subseteq$ \mathcal{K}_n . Using the Arnoldi iteration [\[2\]](#page-18-7) a *nested* orthonormal basis V_n for \mathcal{K}_n can be iteratively
constructed together with the projection onto the lower dimensional subspace $\mathcal{K}_{n-1}(A, v)$: ⁷⁵ constructed together with the projection onto the lower dimensional subspace $\mathcal{K}_{n-1}(A, v)$:
⁷⁶ $V_{n-1}^H A V_{n-1} = H_{n-1} \in \mathbb{C}^{(n-1)\times(n-1)}$. 76 $V_{n-1}^H A V_{n-1} = H_{n-1} \in \mathbb{C}^{(n-1)\times (n-1)}$. \overline{Y}_n A basis $V_n \in \mathbb{C}^{m \times n}$ for a subspace \mathcal{S}_n of dimension n is called nested if $\mathcal{S}_1 \subseteq \mathcal{S}_2 \subseteq \mathcal{S}_3 \subseteq \ldots$, ⁷⁸ where S_i is spanned by the first i columns of V_n . The projected matrix H_n has upper-

79 Hessenberg structure, i.e., $h_{i,j} = 0$ for $i > j + 1$, where $h_{i,j}$ denotes the element on the *i*th so row and jth column of H_n . An alternative notation that will be used is $(H_n)_{i,j}$. In general

 H_n exhibits no particular structure above its diagonal.

82 REMARK 2.1. Throughout this text we assume that no breakdowns occur, i.e., no ss subdiagonal element $h_{i+1,i}$ of the projection $H_{i+1} = V_{i+1}^H A V_{i+1}$ is zero. Since, a zero

⁸⁴ would imply that the subspace \mathcal{K}_i is invariant under multiplication with A or in other words ⁸⁵ $A\mathcal{K}_i = \mathcal{K}_i$. Here every occasion where it is impossible to expand the current subspace \mathcal{S}_i , i.e., ⁸⁶ $S_{i+1} = S_i$ will be called a breakdown. Typically a breakdown is a lucky event, i.e., lucky ⁸⁷ termination and we will therefore not focus on it. Serious breakdowns can also occur, see 88 Gutknecht [\[15\]](#page-18-2) and references therein for details.

For a full reduction, i.e., $n = m$ the subscripts are dropped $V^H A V = H, H \in \mathbb{C}^{m \times m}$. 90 The structure of H_n can be represented as shown in Figure [2.1,](#page-2-1) where struct(M) of some

⁹¹ matrix *M* shows generic nonzero elements as \times and omits the zeros. In case of a Hermitian nessenberg matrix $A^H = A$, the orthogonal projection onto $\mathcal{K}_m(A, v)$ results in a Hermitian Hessenberg

92 matrix $A^H = A$, the orthogonal projection onto $\mathcal{K}_n(A, v)$ results in a Hermitian Hessenberg matrix $V_n^H A V_n = T_n$. Or in other words it has Hessenberg structure both above and below ⁹³ matrix $V_n^H A V_n = T_n$. Or in other words it has Hessenberg structure both above and below

94 its diagonal and is therefore tridiagonal, which is shown in Figure [2.1.](#page-2-1) Since we assumed no

⁹⁵ breakdowns, the Hessenberg and tridiagonal matrix are both *proper*, i.e., no zeros appear on the subdiagonal.

Fig. 2.1: Generic nonzero elements of a Hessenberg matrix H_n and tridiagonal matrix T_n are shown as \times .

96

2.2. Sparsity and low-rank structure. The sparsity that a Hessenberg matrix exhibits below its diagonal is also contained in its QR-factorization. The QR-factorization decomposes a matrix into the product of a unitary matrix Q and upper-triangular matrix R .

To discuss the QR-factorization of a Hessenberg matrix we require core transformations. *Core transformations* in this text will refer to unitary matrices C_i that equal the unit matrix with a 2×2 unitary block embedded on the diagonal starting in row and column *i*:

$$
C_i = \begin{bmatrix} I_{i-1} & & & \\ & \times & \times & \\ & & \times & \times & \\ & & & & I_{n-i-1} \end{bmatrix},
$$

⁹⁷ where C_i is of size $n \times n$ and I_k denotes the unit matrix of size $k \times k$. To compactly visualize a SO core transformation C_i , the notation $\vec{\zeta}$ will be used, with the top arrow pointing to row i and 99 the bottom arrow pointing to row $i + 1$. Multiplication from the left with a core transformation 100 C_i : C_iM , only affects the *i*th and $(i + 1)$ th rows of the matrix M.

101

¹⁰² LEMMA 2.2 (QR-factorization of Hessenberg matrices). *Consider a proper upper-Hessenberg matrix* $H \in \mathbb{C}^{n \times n}$, $h_{i,j} = 0$ *for* $i > j + 1$, *the QR-factorization of* H *can be*

*u*⁴ *written as* $H = C_1C_2 \cdots C_{n-1}R$ *, where the* C_i *are nontrivial core transformations.* 105

106 We will refer to $C_1C_2 \cdots C_{n-1}$ as a *descending pattern* of core transformations. In 107 case of an *ascending pattern* $Q = C_{n-1} \cdots C_2 C_1$, QR forms an *inv-Hessenberg matrix*. Inv-Hessenberg matrices have a low-rank structure below their diagonal similar to the structure of inverse Hessenberg matrices. We distinguish them from inverse Hessenberg matrices, since they do not have to be invertible. More details can be found in, e.g., the book by Vandebril et al. [\[35\]](#page-19-4), where they are called Hessenberg-like matrices.

112 Now a logical next step is to look at the structure of $Z = QR$ if the shape (the ordering ¹¹³ of core transformations) contains ascending and descending patterns, i.e., a permutation of $C_1C_2 \cdots C_{n-1}$. To be able to discuss this we note that $C_iC_j = C_jC_i$, for $|i-j| > 1$. 115 Whenever a descending pattern C_iC_{i+1} occurs, a Hessenberg block is formed and whenever 116 an ascending pattern $C_{i+1}C_i$ occurs, an inv-Hessenberg block is formed.

117 EXAMPLE 2.3. Take, for example, $Q = C_1 C_4 C_5 C_6 C_3 C_2$, corresponding to the shape

118 The structure of $Z = QR$ is visualized similarly as by Mertens and Vandebril [\[23\]](#page-18-20) in Figure

119 [2.2.](#page-3-1) The dashed and dotted lines highlight the structure.

$$
struct(Z) = \left[\begin{array}{c} \begin{matrix} \times \cdots \times \cdots \times & \times & \times & \times & \times \\ \vdots & \times & \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times & \times & \times \\ \vdots & \times & \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times & \times & \times \\ \end{matrix} \\ \end{matrix} \right]
$$

Fig. 2.2: Extended Hessenberg matrix Z obtained by a shape of core transformations $Q =$ $C_1C_4C_5C_6C_3C_2$, such that $Z = QR$.

120

 121 From the structure in Figure [2.2](#page-3-1) and the corresponding shape of Q it is clear that $122 \quad C_1C_2$ forms a Hessenberg block $Z_{1:3,1:3}$ (indicated by a dotted line), $C_4C_3C_2$ forms an 123 inv-Hessenberg block $Z_{2:5,2:5}$ (low rank part indicated by a dashed line) and $C_4C_5C_6$ forms 124 again a Hessenberg block $Z_{4:7,4:7}$.

125

¹²⁶ A matrix containing both ascending and descending patterns of core transformations will ¹²⁷ be referred to as an extended Hessenberg matrix and links to the projection onto an extended 128 Krylov subspace $[34]$, which is a special case of a rational Krylov subspace.

¹²⁹ 3. Rational Krylov subspaces. Rational Krylov subspaces [\[25\]](#page-18-3) will be denoted by 130 $\mathcal{K}(A, v; \Xi)$, where A and v are defined as before and poles $\Xi = \{\xi_1, \xi_2, \dots\}$, with $\xi_k \in$

131 $\overline{\mathbb{C}} = \{\mathbb{C} \cup \infty\}$. If the kth pole is finite, a shift-invert operator $(\nu_k A - \mu_k I)^{-1}$ expands the subspace $\mathcal{K}_k(A, v, \{\xi_i\}_{i=1}^{k-1})$. The ratio $\mu_k/\nu_k = \xi_k$, which is the kth pole. We call this a pole since it is the pole of the shift-invert operator $(A - \xi_k I)^{-1}$. If the kth pole is 134 infinite, multiplication with A expands the subspace. First the single-matrix representation ¹³⁵ of the orthogonal projection onto a rational Krylov subspace is considered in Section [3.1](#page-4-0) ¹³⁶ and afterwards the pencil representation of this projection is discussed in Section [3.2](#page-4-1) for a 137 Hessenberg pencil, and in Section [3.3](#page-6-0) for an inv-Hessenberg pencil.

3.1. Single-matrix representation. Consider an orthonormal nested basis $V_n \in \mathbb{C}^{m \times n}$ for $\mathcal{K}_n(A, v; \Xi)$, with $A \in \mathbb{C}^{m \times m}$, $v \in \mathbb{C}^m$ and given poles Ξ . Orthogonally projecting the 140 matrix A onto \mathcal{K}_n and expressing the result using a single matrix Z_n provides the equation

$$
(3.1) \t\t V_n^H A V_n = Z_n.
$$

141 The structure of the *rational Hessenberg matrix* Z_n can be deduced from the choice of poles. ¹⁴² It allows for a factorization as $Z_n = QR + D$, where QR forms an extended Hessenberg 143 matrix and D is a diagonal matrix containing the poles of the corresponding rational Krylov ¹⁴⁴ subspace [\[8\]](#page-18-21). Expansion using a shift-invert operator (finite pole) leads to an inv-Hessenberg ¹⁴⁵ block and expansion using multiplication with A (infinite pole) leads to a Hessenberg block [\[3\]](#page-18-22). ¹⁴⁶ Example [3.1](#page-4-2) illustrates this.

EXAMPLE 3.1. Consider the extended Krylov subspace corresponding to the example from before $Z = C_1C_4C_5C_6C_3C_2R$, shown in Figure [2.2,](#page-3-1)

$$
\mathcal{K}_7 = \text{span}\{v, Av, A^{-1}v, A^{-2}v, A^2v, A^3v, A^4v\}.
$$

The corresponding poles are $\Xi = {\infty, 0, 0, \infty, \infty, \infty}.$ If the poles are chosen as $\Xi = \{\infty, \xi_2 = \frac{\mu_2}{\nu_2}, \xi_3 = \frac{\mu_3}{\nu_3}, \infty, \infty, \infty\}$, the space constructed is

$$
\text{span}\{v, Av, (\nu_2 A - \mu_2 I)^{-1}v, (\nu_2 A - \mu_2 I)^{-1}(\nu_3 A - \mu_3 I)^{-1}v, A^2v, A^3v, A^4v\}
$$

147 and the decomposition becomes $Z = QR + D$ as shown on figure [3.1,](#page-4-3) where ξ_2 and ξ_3 are the poles and the remaining elements of D can be chosen freely.

struct(Z) = × + × × ξ2 ξ3 × × ×

Fig. 3.1: Rational Hessenberg matrix Z corresponding to the projection onto $\mathcal{K}(A, v; \Xi)$ from Example [3.1,](#page-4-2) with $\Xi = {\infty, \xi_2, \xi_3, \infty, \infty, \infty}.$

148

151 3.2. Pencil representation. A pencil representation of the projected matrix onto a ratio-¹⁵² nal Krylov subspace can be constructed via an Arnoldi iteration. Theorem [3.2](#page-5-0) provides the

¹⁴⁹ The structure of the single-matrix representation can be explained through its link with ¹⁵⁰ the Hessenberg pencil representation discussed in Section [3.2,](#page-4-1) see Camps et al. [\[8\]](#page-18-21).

¹⁵³ rational Arnoldi iteration in its most general form, i.e., expansion of the subspace is done with the operator $(\nu_k A - \mu_k I)^{-1} (\rho_k A - \eta_k I)$.

THEOREM 3.2 (Rational Arnoldi iteration [\[25\]](#page-18-3)). *Consider a matrix* $A \in \mathbb{C}^{m \times m}$ and *an orthonormal nested basis* V_n *for a rational Krylov subspace* $\mathcal{K}_n(A, v; \Xi_n)$ *, where* $\Xi_n =$ $\{\xi_1,\xi_2,\ldots,\xi_{n-1}\}\in\bar{\mathbb{C}}$ *. The recurrence relation to obtain a basis* V_{n+1} *for* $\mathcal{K}_{n+1}(A,v;\Xi_{n+1})$ *, with* $\Xi_{n+1} = {\Xi_n, \xi_n}$ *, in matrix form equals*

$$
AV_{n+1} \underline{K}_n = V_{n+1} \underline{H}_n,
$$

¹⁵⁵ with \underline{H}_n and \underline{K}_n *Hessenberg matrices of size* $(n + 1) \times n$. The ratio of their subdiagonal *elements equals the poles of the rational Krylov subspace* $\frac{(\underline{K}_n)_{k+1,k}}{(\underline{H}_n)_{k+1,k}} = \xi_k$, $k = 1, 2, ..., n$.

Proof. Consider the formula for expanding the Krylov subspace $\mathcal{K}_k(A, v; \Xi)$ by multipli-¹⁵⁸ cation with $(\nu_k A - \mu_k I)^{-1} (\rho_k A - \eta_k I)$, the subspace is invariant under the shift operator $(\rho_k A - \eta_k I)$. Afterwards orthogonalization with respect to all vectors in the current basis $V_k = \begin{bmatrix} v_1 & v_2 & \cdots & v_k \end{bmatrix}$ is done using h_{ik} , $i = 1, \ldots, k$ and normalization using h_{k+1} . ¹⁶⁰ $V_k = \begin{bmatrix} v_1 & v_2 & \cdots & v_k \end{bmatrix}$ is done using $h_{ik}, i = 1, \ldots, k$ and normalization using $h_{k+1,k}$. 161 This leads to a Gram-Schmidt orthogonalization procedure

$$
(3.2) \t\t\t h_{k+1,k}v_{k+1}=(\nu_kA-\mu_kI)^{-1}(\rho_kA-\eta_kI)v_k-h_{1k}v_1-\cdots-h_{kk}v_k.
$$

Rewriting [\(3.2\)](#page-5-1) reveals the *k*th column of matrices \underline{H}_k and \underline{K}_k

$$
(\nu_k A - \mu_k I)h_{k+1,k}v_{k+1} = (\rho_k A - \eta_k I)v_k - (\nu_k A - \mu_k I) \sum_{i=1}^k h_{ik}v_i
$$

$$
\nu_k Ah_{k+1,k}v_{k+1} + \nu_k A \sum_{i=1}^k h_{ik}v_i - \rho_k Av_k = -\eta_k v_k + \mu_k \sum_{i=1}^k h_{ik}v_i + \mu_k h_{k+1,k}v_{k+1}
$$

$$
A\left((\nu_k \sum_{i=1}^{k+1} h_{ik}v_i) - \rho_k v_k\right) = \mu_k \left(\sum_{i=1}^{k+1} h_{ik}v_i\right) - \eta_k v_k
$$

$$
A\nu_k \begin{bmatrix} v_1 & \dots & v_k & v_{k+1} \end{bmatrix} \begin{bmatrix} h_{1k} \\ \vdots \\ h_{k+1,k} \end{bmatrix} = \mu_k \begin{bmatrix} v_1 & \dots & v_k & v_{k+1} \end{bmatrix} \begin{bmatrix} h_{1k} \\ \vdots \\ h_{k+1,k} \end{bmatrix}.
$$

¹⁶² The last equation reveals that the subdiagonal element ratio is $\frac{\mu_k h_{k+1,k}}{\nu_k h_{k+1,k}} = \frac{\mu_k}{\nu_k} = \xi_k$. ¹⁶³ From Theorem [3.2](#page-5-0) we obtain a Hessenberg pencil (H_n, K_n) , satisfying $Z_n = H_n K_n^{-1}$ with 164 K_n nonsingular, which represents the projection

$$
(3.3) \t\t V_n^H A V_n K_n = H_n.
$$

¹⁶⁵ Such a Hessenberg pencil will be called proper if it has no subdiagonal elements $h_{i+1,i}$ and ¹⁶⁶ $k_{i+1,i}$ simultaneously zero. Theorem [3.2](#page-5-0) implies that \underline{H}_n and \underline{K}_n are linked, their subdiagonal ¹⁶⁷ ratios reveal the poles of the rational Krylov subspace from which they originate. These ratios ¹⁶⁸ are, however, invariant when \underline{H}_n and \underline{K}_n are both multiplied with an upper-triangular matrix ¹⁶⁹ R from the right, illustrating that the Hessenberg pencil $(\underline{H}_n, \underline{K}_n)$ is not unique.

¹⁷⁰ An implicit Q-theorem for matrix-pencils $(\underline{H}_n, \underline{K}_n)$ exists, if the poles and starting vector are chosen and the structure of the matrices in this pencil is fixed. If the structure of the matrices is chosen to be Hessenberg, then the implicit Q-theorem can be found in the dissertation of Berljafa [\[4\]](#page-18-23), the paper by Berljafa et al. [\[5\]](#page-18-24) and the paper of Camps et al. [\[8\]](#page-18-21).

[ETNA](http://etna.ricam.oeaw.ac.at) [Kent State University and](http://www.kent.edu) [Johann Radon Institute \(RICAM\)](http://www.ricam.oeaw.ac.at)

¹⁷⁴ Theorem [3.3](#page-6-1) states this result and shows a one-to-one relation between Hessenberg pencils

¹⁷⁵ and rational Krylov subspaces, therefore manipulating poles in the pencil corresponds to ¹⁷⁶ manipulating the subspaces.

THEOREM 3.3 (Rational implicit Q-theorem [\[4,](#page-18-23) [5,](#page-18-24) [8\]](#page-18-21)). *Consider a decomposition of the form*

$$
AV_{n+1} \underline{K}_n = V_{n+1} \underline{H}_n
$$

with $(n + 1) \times n$ *Hessenberg matrices* \underline{H}_n *and* \underline{K}_n *, poles* $\xi_i = \frac{h_{i+1,i}}{k_{i+1,i}}$ *in with* $(n + 1) \times n$ Hessenberg matrices \underline{H}_n and \underline{K}_n , poles $\xi_i = \frac{n_{i+1,i}}{k_{i+1,i}}$, for $i = 1, \ldots, n$ and ¹⁷⁸ V_{n+1} *an orthonormal nested basis for the rational Krylov subspace* $\mathcal{K}_{n+1}(A, v; \Xi)$ *, where* ¹⁷⁹ $v = V_{n+1}e_1$ *the first column of* V_{n+1} *and* $\Xi = {\xi_1, \xi_2, \ldots, \xi_n}$ *the set of poles.* ¹⁸⁰ Then the Hessenberg pencil $(\underline{H}_n, \underline{K}_n)$ and the orthonormal matrix V_{n+1} are essentially

¹⁸¹ *uniquely determined by the starting vector* v *and the poles* Ξ*.*

¹⁸² Note that Theorem [3.3](#page-6-1) states the uniqueness of the Hessenberg pencil. The pencil can, however, also be represented using matrices with another structure than Hessenberg. Since ¹⁸⁴ for a nonsingular matrix C the pair (H_nC, K_nC) also satisfies [\(3.3\)](#page-5-2). Besides the Hessenberg pencil, another important representation is an inv-Hessenberg pencil. This representation is discussed in Section [3.3](#page-6-0) and is important for the derivation of the main result of this text provided in Section [4.](#page-8-0)

¹⁸⁸ 3.3. Inv-Hessenberg pencil. An inv-Hessenberg pencil satisfying (3.3) is constructed ¹⁸⁹ in this section.

¹⁹⁰ PROPERTY 3.1 (Transfer through property [\[34\]](#page-19-5)). *A shape of core transformations can be* ¹⁹¹ *transferred through an upper-triangular matrix* R *without altering the shape.*

EXAMPLE 3.4. The equality $C_1C_3C_2C_4R = \overline{RC}_1C_3\overline{C}_2\overline{C}_4$ holds, where \overline{R} is upper-
triangular. The matrices involved will generally change (its elements), but the shape, i.e., the triangular. The matrices involved will generally change (its elements), but the shape, i.e., the mutual ordering of the core transformations (and therefore the structure of the resulting matrix) remains the same.

LEMMA 3.5 (Turnover lemma [\[35\]](#page-19-4), Lemma 9.38). *Consider the product of three core transformations* $G_{i-1}G_i\hat{G}_{i-1}$. Then there exists an equivalent representation $\Gamma_i\Gamma_{i-1}\hat{\Gamma}_i$

$$
\begin{array}{ccccc}\n\uparrow & & \uparrow & & \uparrow \\
\downarrow & & \downarrow & & \downarrow \\
G_{i-1}G_i\hat{G}_{i-1} & = \Gamma_i\Gamma_{i-1}\hat{\Gamma}_i,\n\end{array}
$$

with matrices defined as

$$
G_{i-1} := \begin{bmatrix} c_{i-1} & s_{i-1} \\ -s_{i-1} & c_{i-1} \\ & & 1 \end{bmatrix} \qquad G_i := \begin{bmatrix} 1 & & & \\ & c_i & s_i \\ & -s_i & c_i \\ & & -s_i \\ & & 1 \end{bmatrix} \qquad \hat{G}_{i-1} := \begin{bmatrix} \hat{c}_{i-1} & \hat{s}_{i-1} \\ -\hat{s}_{i-1} & \hat{c}_{i-1} \\ & & 1 \end{bmatrix}
$$

$$
\Gamma_i := \begin{bmatrix} 1 & & & \\ & \gamma_i & \sigma_i \\ & -\sigma_i & \gamma_i \end{bmatrix} \qquad \Gamma_{i-1} := \begin{bmatrix} \gamma_{i-1} & \sigma_{i-1} \\ -\sigma_{i-1} & \gamma_{i-1} \\ & & 1 \end{bmatrix} \qquad \hat{\Gamma}_i := \begin{bmatrix} 1 & & \\ & \hat{\gamma}_i & \hat{\sigma}_i \\ & -\hat{\sigma}_i & \hat{\gamma}_i \end{bmatrix}.
$$

¹⁹⁶ For ease of notation Theorem [3.6](#page-6-2) is stated and proved for a full reduction $(n = m)$ but is ¹⁹⁷ valid for partial reductions as well.

¹⁹⁸ THEOREM 3.6 (Inv-Hessenberg pencil for projection onto rational Krylov subspaces). *Let* $V \in \mathbb{C}^{m \times m}$ *be an orthonormal nested basis for a rational Krylov subspace* $\mathcal{K}_m(A, v; \Xi)$ *,* $A \in \mathbb{C}^{m \times m}$, $v \in \mathbb{C}^m$ and poles Ξ . Then the orthogonal projection onto this subspace *can be represented as two inv-Hessenberg matrices* H*inv*, K*inv* ²⁰¹ *, i.e., they satisfy the equation* $V^HAVK^{inv} = H^{inv}.$

Proof. The existence of a Hessenberg pair (H, K) satisfying

$$
V^HAVK = H
$$

follows immediately from the Arnoldi iteration in Theorem [3.2.](#page-5-0) From Lemma [2.2](#page-2-2) and Property [3.1](#page-6-3) it follows that there exist upper-triangular matrices R_H and R_K and unitary matrices consisting of a descending pattern of core transformations Q_H and Q_K such that

$$
V^HAVR_KQ_K = R_HQ_H.
$$

²⁰³ Let us write it in a manner such that the structures are clear.

204

 205 Multiply from the right with Q_K^H annihilate the descending pattern of core transformations on ²⁰⁶ the left-hand side.

$$
V^{H}AV \qquad R_K \qquad = \qquad R_H \qquad \stackrel{\uparrow}{\downarrow} \qquad \stackrel{\uparrow}{\downarrow} \qquad \stackrel{\uparrow}{\downarrow} \qquad \stackrel{\uparrow}{\downarrow} \qquad \stackrel{\uparrow}{\downarrow} \qquad \stackrel{\uparrow}{\downarrow}
$$

207

- ²⁰⁸ Using the turnover operation repeatedly, see [\[35\]](#page-19-4) for details, it is possible to rearrange the core
- ²⁰⁹ transformations to obtain another shape.

$$
V^{H}AV \qquad R_K \qquad = \qquad R_H \qquad \qquad \downarrow \qquad \down
$$

210

- 211 Multiplying from the right to annihilate the descending pattern of core transformations brings
- ²¹² them back to the left-hand side.
- 213
- ²¹⁴ Using the notation from before, where dashed lines indicate low-rank structure.

[ETNA](http://etna.ricam.oeaw.ac.at)

Hence, we have constructed an inv-Hessenberg pair (H^{inv}, K^{inv}) which satisfies the matrix equality

$$
V^H A V K^{\text{inv}} = H^{\text{inv}}.
$$

215

216 **3.4. Connection to other factorizations.** Theorem [3.6,](#page-6-2) Theorem [3.2](#page-5-0) and the result from Section [3.1](#page-4-0) are summarized in Table [3.1.](#page-8-1) The structure of the single matrix representation also

Table 3.1: Summary of structures following from orthogonal projections onto a rational Krylov subspace with basis V .

217

²¹⁸ appeared in a paper by Mach et al. [\[21\]](#page-18-25) and the Hessenberg pencil representation is a classical ²¹⁹ result by Ruhe [\[25\]](#page-18-3). These results about structure provide the tools for deriving the tridiagonal ²²⁰ pencil representation of oblique projection onto rational Krylov subspaces in Section [4.](#page-8-0)

 221 4. Biorthogonal rational Krylov subspaces. This section provides results concerning ²²² the possible structures of a biorthogonal projection onto rational Krylov subspaces [\[19\]](#page-18-8).

 Section [4.1](#page-8-2) provides results for the single-matrix representation. The main result of that section has been proven for extended Krylov subspaces by Mach, et al. [\[22\]](#page-18-26). Section [4.2](#page-11-0) provides novel results concerning structure of the pencil representation, elegantly generalizing the tridiagonal structure obtained by nonhermitian Lanczos. Section [4.3](#page-13-0) provides an overview of the structures which are generalized by the results in this section. Based on the tridiagonal pencil a Lanczos iteration for rational Krylov subspaces is developed in Section [5.](#page-14-0)

229 4.1. Single-matrix representation. The structure of a biorthogonal projection expressed as a single matrix $Z_n = W_n^H A V_n$ is given in Theorem [4.1.](#page-9-0) Here V_n and W_n are biorthogonal,

231 i.e., $W_n^H V_n = I$, bases for two rational Krylov subspaces $\mathcal{K}(A, v; \Xi)$ and $\mathcal{L}(A^H, w; \Phi)$, re-

spectively, with $A \in \mathbb{C}^{m \times m}$, $v, w \in \mathbb{C}^m$ and Ξ , Φ two (possibly) independent sets of poles.

²³³ For the sake of readability the corresponding proof and all subsequent proofs are provided for 234 a full reduction (i.e., $n = m$).

235 The structure of Z_n can be deduced using matrix factorizations rather than relying on orthogo-²³⁶ nality of the basisvectors for the subspaces, see, e.g., [\[17,](#page-18-12) [29,](#page-18-13) [36\]](#page-19-2).

237

THEOREM 4.1 (Structure of biorthogonal projection in single-matrix representation). *Consider* $A \in \mathbb{C}^{m \times m}$ *and rational Krylov subspaces* $\mathcal{K}(A, v; \Xi)$ *and* $\mathcal{L}(A^H, w; \Phi)$ *with biorthogonal bases* $V, W \in \mathbb{C}^{m \times m}$, respectively. Ξ *and* Φ *are two sets containing poles that are not in the spectrum of* A*. Under the assumption that no breakdowns occur, the biorthogonal projection*

$$
W^HAV = Z,
$$

²³⁸ *where* Z *has the structure below its diagonal determined by the poles of* K *and the structure* ²³⁹ *above its diagonal determined by poles of* L*.*

Proof. A similar proof appears in [\[22\]](#page-18-26). The proof is added for completeness. Consider the matrices Z_V and Z_W

$$
Z_V = \hat{V}^H A \hat{V}, \quad Z_W = \hat{W}^H A^H \hat{W},
$$

where \hat{V} and \hat{W} are orthogonal bases for the rational Krylov subspaces $\mathcal{K}(A, v; \Xi)$ and $\mathcal{L}(A^H, w; \Phi)$, respectively, with $w^H v = 1$. In general for the orthogonal bases $\hat{W}^H \hat{V} \neq I$, taking the non-pivoted LR-decomposition of the matrix product $\hat{W}^H\hat{V}$ will allow us to construct biorthogonal bases V and W . The non-pivoted LR-decomposition, consisting of a lower triangular L and upper triangular R, will retain the nestedness of the bases \hat{V} and \hat{W} and will make the bases orthogonal to each other:

$$
\hat{W}^H \hat{V} = LR
$$

\n
$$
\underbrace{L^{-1} \hat{W}^H}_{=:W^H} \hat{V}^{R^{-1}} = I
$$

\n
$$
W^H V = I.
$$

This decomposition exists if and only if $\hat{W}^H \hat{V}$ is strongly nonsingular, otherwise it will break at the first singular principal minor. This break corresponds to a breakdown and is typical for biorthogonal methods. In this case the structural results hold up to the occurrence of the breakdown. The structure of Z can be derived as follows. First consider

$$
AV = VZ
$$

\n
$$
A \underbrace{VR}_{\hat{V}} = \underbrace{VR}_{\hat{V}} R^{-1} ZR
$$

\n
$$
A\hat{V} = \hat{V} \underbrace{R^{-1} ZR}_{Z_V}
$$

²⁴⁰ which provides the equality

(4.1) $Z = RZ_V R^{-1}$.

Second consider the relations

$$
A^H W = W Z^H
$$

$$
A^H \underbrace{W L^H}_{\hat{W}} = \underbrace{W L^H}_{\hat{W}} L^{-H} Z^H L^H
$$

$$
A^H \hat{W} = \hat{W} \underbrace{L^{-H} Z^H L^H}_{Z_W}
$$

²⁴¹ which provides the equality

$$
(4.2) \t\t Z^H = L^H Z_W L^{-H}.
$$

²⁴² Multiplication with an upper-triangular matrix preserves the structure in the lower triangular 243 part. Hence, the structure of Z is the same as the structure of Z_V for the lower triangular 244 part, following from (4.1) . The structure of the upper triangular part of Z is the same as the

245 structure of the lower triangular part of Z_W , following from [\(4.2\)](#page-10-0). O

246 Theorem [4.1](#page-9-0) is illustrated by Example [4.2](#page-10-1) for extended Krylov subspaces.

EXAMPLE 4.2. Consider $A \in \mathbb{C}^{8 \times 8}$ and extended Krylov subspaces

$$
\mathcal{K}_8 = \text{span}\{v, Av, A^2v, A^3v, A^4v, A^{-1}v, A^5v, A^{-2}v\},
$$

$$
\mathcal{L}_8 = \text{span}\{w, (A^H)^{-1}w, A^Hw, (A^H)^{-2}w, (A^H)^{-3}w, (A^H)^{-4}w, (A^H)^2w, (A^H)^3w\}.
$$

247 Orthogonal projection onto these subspaces results in matrices Z_V for K_8 and Z_W for \mathcal{L}_8 and 248 biorthogonal projection onto K_8 and L_8 results in Z. The structure of these matrices is shown ²⁴⁹ in Figure [4.1.](#page-10-2) In case of rational Krylov subspaces we only have to include a diagonal matrix

²⁵⁰ containing the poles. Note the extended Hessenberg structure for the orthogonal projections ²⁵¹ and the same structure appearing in the biorthogonal projection, but now below as well as ²⁵² above the diagonal. Black lines are added to highlight the structure.

Fig. 4.1: Structure of orthogonal and biorthogonal projection onto the extended Krylov subspaces K_8 and \mathcal{L}_8 in single-matrix representation, see Example [4.2.](#page-10-1)

 The following lemma provides a result for unitary matrices stated by Bunse-Gerstner $_{254}$ and Faßbender. [\[7\]](#page-18-27), Stewart [\[31\]](#page-19-6), and several others. It follows easily from Theorem [4.1](#page-9-0) and illustrates how the theorem can be used as a general framework to derive structures arising from projection onto Krylov subspaces.

LEMMA 4.3. *Consider a unitary matrix* $U \in \mathbb{C}^{m \times m}$ *, some starting vector* $v \in \mathbb{C}^m$ ²⁵⁸ and an orthogonal nested basis V for the standard Krylov subspace $\mathcal{K}_m(U, v)$. Under the

 $_{\rm 259}$ assumption that no breakdown occurs, the projection $Z = V^H U V$ has Hessenberg structure

²⁶⁰ *below and inv-Hessenberg structure above the diagonal.*

Proof. Consider a unitary matrix $U, U^{-1} = U^H$ and rational (more precisely extended) Krylov subspaces

$$
\mathcal{K}(U, v; \Xi = \{\infty, \infty, \dots\}),
$$

$$
\mathcal{K}(U^H, v; \Phi = \{0, 0, \dots\}),
$$

with respective orthogonal bases \hat{V} and \hat{W} . Since $U^{-1} = U^H$, $\mathcal{K}(U, v; \Xi) = \mathcal{K}(U^H, v; \Phi) =$ $\mathcal{K}(U, v)$ and therefore $\hat{V} = \hat{W} =: V$ implying $\hat{V}^H \hat{W} = V^H V = I$. Hence, they are simultaneously orthogonal and biorthogonal bases.

Using the knowledge from Section [3.1](#page-4-0) it is clear that the structure of

$$
Z_V = \hat{V}^H A \hat{V},
$$

$$
Z_W = \hat{W}^H A^H \hat{W},
$$

²⁶¹ is Hessenberg and inv-Hessenberg, respectively. Theorem [4.1](#page-9-0) then states that $Z = \hat{W}^H A \hat{V} =$ $_{262}$ V^HAV has Hessenberg structure in its lower triangular part and inv-Hessenberg structure in ²⁶³ its upper triangular part. \Box

264 Retrieving the poles of both spaces K and L from the single-matrix representation Z is possible but rather technical, especially in the parts where the matrix is not of Hessenberg form. Next section discusses the pencil representation which allows a more elegant retrieval of the poles in case a tridiagonal pencil is used.

268 4.2. Pencil representation. The main contribution of this text is the general pencil ²⁶⁹ structure given in Theorem [4.4.](#page-11-1) A specific instance is a tridiagonal pencil, which is formulated ²⁷⁰ in Lemma [4.5.](#page-12-0) As a consequence of the tridiagonal pencil a six-term recurrence relation can 271 be derived for the biorthogonal bases for rational Krylov subspaces in Section [5.](#page-14-0)

THEOREM 4.4 (Pencil structure of biorthogonal projection onto rational Krylov subspaces). *Consider* $A \in \mathbb{C}^{m \times m}$, two vectors $v, w \in \mathbb{C}^m$ and two rational Krylov subspaces $\mathcal{K}(A, v; \Xi)$ *and* $\mathcal{L}(A^H, w; \Psi)$ *, where* Ξ *and* Ψ *are two sets of poles (not in the spectrum of* A). Let $\hat{V}, \hat{W} \in \mathbb{C}^{m \times m}$ be orthogonal nested bases and $V, W \in \mathbb{C}^{m \times m}$ biorthogonal nested *bases for* K *and* L , *respectively. Then there exist* H, K, H_V, K_V, H_W, K_W *such that*

$$
\hat{V}^H A \hat{V} K_V = H_V
$$

$$
\hat{W}^H A^H \hat{W} K_W = H_W
$$

$$
W^H A V K = H
$$

²⁷² and the structure of the pencil (H, K) is related to the structure of the pencils (H_V, K_V) $_{273}$ and (H_W , K_W). Inverted structure is short for writing that a Hessenberg block becomes an ²⁷⁴ *inv-hessenberg block and vice versa, then the structure can be related as*

- \bullet *H* has the same structure below its diagonal as H_V and above its diagonal the 276 *inverted structure of* K_W
-
- \bullet \bullet K has the same structure below its diagonal as K_V and above its diagonal the 278 *inverted structure of H_W.*

Proof. From the orthogonal bases \hat{V} and \hat{W} , the biorthogonal bases V and W can be constructed as in Theorem [4.1,](#page-9-0) i.e., $V := \hat{V}R^{-1}$ and $W^H := L^{-1}\hat{W}^H$. Substituting the expressions for the biorthogonal bases in the equation of the orthogonal projection (3.3)

provides

$$
\begin{cases}\nA\hat{V}K_V = \hat{V}H_V \\
A^H\hat{W}K_W = \hat{W}H_W\n\end{cases}
$$
\n
$$
\Leftrightarrow \begin{cases}\nA\hat{V}R^{-1}RK_V = \hat{V}R^{-1}RH_V \\
A^H\hat{W}L^{-H}L^HK_W = \hat{W}L^{-H}L^HH_W\n\end{cases}
$$
\n
$$
\Leftrightarrow \begin{cases}\nAVRK_V = VRH_V \\
A^HWL^HK_W = WL^HH_W\n\end{cases}
$$
\n
$$
\Leftrightarrow \begin{cases}\nW^HAVRK_V = RH_V \\
V^H A^HWL^HK_W = L^HH_W\n\end{cases}
$$

Taking the Hermitian conjugate of the second equation and rewriting it reveals the connection between the matrices at play

$$
\begin{cases} W^HAVRK_V = RH_V \\ W^HAVL^{-1}H_W^{-H} = L^{-1}K_W^{-H} \end{cases}
$$

.

.

Since these expressions are only unique up to right multiplication with a nonsingular matrix B , we get

$$
RK_VB = L^{-1}H_W^{-H}
$$

$$
RH_VB = L^{-1}K_W^{-H}.
$$

To obtain a particular choice for the structure of H and K it suffices to represent B in its RL -decomposition (assuming it exists), where R is an upper-triangular matrix and L a lower-triangular matrix

$$
\begin{cases}\nRK_V B = L^{-1} H_W^{-H} \\
RH_V B = L^{-1} K_W^{-H} \\
\Leftrightarrow \begin{cases}\nRK_V R_B L_B = L^{-1} H_W^{-H} \\
RH_V R_B L_B = L^{-1} K_W^{-H} \\
\Leftrightarrow \begin{cases}\nRK_V R_B = L^{-1} H_W^{-H} L_B^{-1} =: K \\
RH_V R_B = L^{-1} K_W^{-H} L_B^{-1} =: H\n\end{cases}\n\end{cases}
$$

 279 For the remainder of this proof H and K are defined as in the last equation. Other choices are 280 possible because of the non-uniqueness of the pencil representation. Since R and R_B are upper- $_{281}$ triangular matrices, they preserve the structure in the lower triangular part. This means that K 282 and K_V have the same lower triangular structure and so do H and H_V . On the other hand K shares its upper triangular structure with H_W^{-H} and H with K_W^{-H} , since L and L_B are lower-²⁸⁴ triangular matrices.

²⁸⁵ Starting from Theorem [4.4](#page-11-1) it is straightforward to prove the following lemma.

²⁸⁶ LEMMA 4.5 (Tridiagonal pencil for biorthogonal rational Krylov subspaces). *Consider some matrix* $A \in \mathbb{C}^{m \times m}$ *and vectors* $v, w \in \mathbb{C}^m$. Let $V, W \in \mathbb{C}^{m \times m}$ be biorthogonal bases *zas* for rational Krylov subspaces $\mathcal{K}(A, v; \Xi)$ and $\mathcal{L}(A^H, w; \Psi)$, where the poles are not in the ²⁸⁹ *spectrum of* A*. The equation*

$$
(4.3) \t\t W^H A V S = T
$$

²⁹⁰ *representing the projection onto* K *and orthogonal to* L *is satisfied for a tridiagonal pencil* $_{291}$ (T, S) .

Proof. If (H_V, K_V) is chosen to be a Hessenberg pair (Theorem [3.2\)](#page-5-0) and (H_W, K_W) 293 to be an inv-Hessenberg pair (Theorem [3.6\)](#page-6-2), then Theorem [4.4](#page-11-1) guarantees that (T, S) has ²⁹⁴ tridiagonal structure. О

²⁹⁵ The pencil analogue to Lemma [4.3](#page-10-3) can be derived from Theorem [4.4.](#page-11-1) This illustrates the ²⁹⁶ ease with which structures in pencil form can be derived using this theorem. We stress that ²⁹⁷ this result is only of theoretical use, not practical.

LEMMA 4.6. *Consider a unitary matrix* $U \in \mathbb{C}^{m \times m}$ *, some starting vector* $v \in \mathbb{C}^m$ 299 *and an orthogonal nested basis* V for the standard Krylov subspace $\mathcal{K}(U, v)$ *. Under the* $_{\tiny 300}$ assumption that no breakdown occurs, the equation $V^HUVK=H$ is satisfied for a proper ³⁰¹ *lower-bidiagonal and upper-bidiagonal pencil* (H, K)*.*

Proof. Consider a unitary matrix $U, U^{-1} = U^H$ and the same subspaces $\mathcal{K}(U, v; \Xi)$ and $\mathcal{K}(U^H_\lambda, v; \Phi)$ as in the proof of Lemma [4.3,](#page-10-3) with respective orthogonal bases \hat{V} and \hat{W} , note that $\hat{V} = \hat{W} =: V$.

The pencil representation of orthogonal projections onto these subspaces are the following

$$
\hat{V}^H U \hat{V} K_V = H_V,
$$

$$
\hat{W}^H U^H \hat{W} K_W = H_W.
$$

302 For (H_V, K_V) , consider the standard case: K_V is upper-triangular and H_V is of Hessenberg 303 form. For (H_W, K_W) , choose H_W to be of inv-Hessenberg form and K_W to be upper- 304 triangular. Then following from Theorem [4.4](#page-11-1) the structure of (H, K) is a lower-bidiagonal ³⁰⁵ and upper-bidiagonal pencil. □

 $\frac{306}{206}$ Lemma [4.6](#page-13-1) together with Lemma [4.3](#page-10-3) shows that a unitary Hessenberg matrix Z can be 307 factorized as the product of a lower-bidiagonal matrix H and the inverse of an upper-bidiagonal 308 matrix K [\[35\]](#page-19-4), using the notation from the lemmas.

309 4.3. Connection to other factorizations. The results from this section generalize many 310 well-known results such as the nonhermitian Lanczos iteration [\[19\]](#page-18-8), the Hermitian rational $_{311}$ Lanczos iteration [\[10\]](#page-18-28), AGR-or CMV-factorization [\[36\]](#page-19-2) and more recent results by Jagels and 312 Reichel [\[17\]](#page-18-12), Schweitzer [\[29\]](#page-18-13), and others. Table [4.1](#page-13-2) visualizes the structures of biorthogonal 313 projection onto rational Krylov subspaces. The main contribution of this paper are the entries ³¹⁴ on the right, biorthogonal projection onto rational Krylov subspaces for pencil representation. 315 Through Theorem [4.4](#page-11-1) it is possible to relate the structures appearing in Table [3.1](#page-8-1) to those in Table [4.1.](#page-13-2)

$W^HAV = Z$	$W^HAVK = H$
$W^HAV = H$	$W^HAVK = H$
$W^HAVK = H$	$W^HAVK = H$
$W^HAVK = H$	$W^HAVK = H$
$W^HAVK = H$	$W^HAVK = H$
$W^HAVK = H$	$W^HAVK = H$

Table 4.1: Summary of pencil structures occurring for biorthogonal projections onto rational Krylov subspaces with bases V and W .

317 5. Rational Lanczos iteration. A Lanczos-type iteration which constructs biorthogonal 318 bases for rational Krylov subspaces is tested in this section. Section [5.1](#page-14-1) states results con- cerning the appearance of the poles of rational Krylov subspaces as ratios in the tridiagonal pencil [\(4.3\)](#page-12-1). These results allow for the development of the Lanczos-type iteration, code implementing this iteration is included as an attachment. Some numerical results for this iteration are given in Section [5.2,](#page-15-0) these serve as a proof of concept, we have not yet focused on numerical stability.

 324 5.1. Lanczos-type iteration. For the construction of a Lanczos-type iteration we must 325 know how the poles appear in the tridiagonal pencil [\(4.3\)](#page-12-1), Lemma [5.1](#page-14-2) and Lemma [5.2](#page-14-3) state ³²⁶ this.

 327 LEMMA 5.1. Assume we have $W^HAVS = T$ as in Theorem [4.4.](#page-11-1) The ratio of the 328 *subdiagonal elements of* (T, S) *reveals the poles* $\Xi = {\xi_1, \xi_2, \ldots, \xi_{m-1}}$ *of* $\mathcal{K}(A, v; \Xi)$

(5.1)
$$
\frac{T_{i+1,i}}{S_{i+1,i}} = \xi_i, \qquad i = 1, 2, \dots, m-1.
$$

Proof. From Theorem [3.2](#page-5-0) it follows that the ratio of the subdiagonal elements of (H_V, K_V) equals the poles

$$
\frac{(H_V)_{i+1,i}}{(K_V)_{i+1,i}} = \xi_i, \quad i = 1, 2, \dots, m-1,
$$

and since

$$
\frac{T_{i+1,i}}{S_{i+1,i}} = \frac{R_{i+1,i+1}(H_V)_{i+1,i}(R_B)_{ii}}{R_{i+1,i+1}(K_V)_{i+1,i}(R_B)_{ii}} = \frac{(H_V)_{i+1,i}}{(K_V)_{i+1,i}}, \quad i = 1, 2, \dots, m-1,
$$

329 where in the first equality we used a result stated in the proof of Theorem [4.4](#page-11-1) with R and R_B ³³⁰ upper-triangular matrices. \Box

331

³³² LEMMA 5.2. *Let* (T, S) *be the tridiagonal pencil satisfying* [\(4.3\)](#page-12-1)*. The ratio of the super-*333 *diagonal elements of* (T, S) *reveals the (complex conjugate of the) poles* $\Psi = {\psi_1, \psi_2, \dots, \psi_{m-2}}$
334 of $\mathcal{L}(A^H, w; \Psi)$ *of* $\mathcal{L}(A^H, w; \Psi)$

(5.2)
$$
\frac{T_{i,i+1}}{S_{i,i+1}} = \bar{\psi}_{i-1}, \qquad i = 2, 3, \dots, m-1.
$$

³³⁵ *Proof.* Assume we have $W^H AVS = T$ as in Theorem [4.4.](#page-11-1) Note that another tridiagonal 336 pencil $(\widetilde{S}, \widetilde{T})$ exists for which

$$
(5.3) \t VH AH W\widetilde{T} = \widetilde{S}.
$$

Equation [\(4.3\)](#page-12-1) represents projection onto K and orthogonal to L and Equation [\(5.3\)](#page-14-4) represents projection onto $\mathcal L$ and orthogonal to $\mathcal K$. Hence, from Lemma [5.1](#page-14-2) we know that the ratios of the subdiagonals of (T, S) and (S, T) reveal the poles of K and L, respectively. Starting from Equation (4.3) and (5.3) we can relate the matrix pencils as follows

$$
\begin{cases} W^H A V = T S^{-1} \\ V^H A^H W = \widetilde{S} \widetilde{T}^{-1} \end{cases} \Rightarrow \begin{cases} W^H A V = T S^{-1} \\ W^H A V = \widetilde{T}^{-H} \widetilde{S}^H \end{cases}
$$

concluding that $TS^{-1} = \widetilde{T}^{-H}\widetilde{S}^{H}$. Rewriting this equation as $\widetilde{T}^{H}T = \widetilde{S}^{H}S$ leads to two pentadiagonal matrices. Let us assign a variable to each off-diagonal element, diagonal

elements are marked as an x, because these are not relevant for the proof

$$
\begin{bmatrix}\nx & \tilde{\tau}_1 \\
\tilde{t}_1 & x & \tilde{\tau}_2 \\
 & \tilde{t}_2 & x & \cdot \\
 & & \cdot & \cdot & \tilde{\tau}_{n-1} \\
 & & & \tilde{t}_{n-1} & x\n\end{bmatrix}^H \begin{bmatrix}\nx & \tau_1 \\
t_1 & x & \tau_2 \\
 & & \cdot & \cdot & \cdot \\
 & & & \cdot & \cdot & \tau_{n-1} \\
 & & & & \cdot & \cdot & \tau_{n-1} \\
 & & & & & \cdot & \cdot \\
 & & & & & & \tau_{n-1}\n\end{bmatrix} = \begin{bmatrix}\nx & \tilde{\sigma}_1 & & & & \\
\tilde{s}_1 & x & \tilde{\sigma}_2 & & & \\
 & & & \cdot & \cdot & \tau_{n-1} \\
s_2 & x & \cdot & & & \\
 & & & & \cdot & \cdot & \tau_{n-1} \\
 & & & & & & \cdot & \cdot \\
 & & & & & & \cdot & \tau_{n-1} \\
 & & & & & & & \cdot & \tau_{n-1} \\
 & & & & & & & \cdot & \tau_{n-1} \\
 & & & & & & & & \cdot & \tau_{n-1} \\
 & & & & & & & & \cdot & \tau_{n-1}\n\end{bmatrix}.
$$

Hence, by equating the second superdiagonals and second subdiagonals of both pentadiagonal matrices we get

$$
\begin{cases}\nt_i \tilde{\tau}_{i+1}^H = s_i \tilde{\sigma}_{i+1}^H, & i = 1, \dots, m-2 \\
\tau_{i+1} \tilde{t}_i^H = \sigma_{i+1} \tilde{s}_i^H, & i = 1, \dots, m-2\n\end{cases}
$$
\n
$$
\begin{cases}\n\xi_i = t_i / s_i = \tilde{\sigma}_{i+1}^H / \tilde{\tau}_{i+1}^H, & i = 1, \dots, m-2, \\
\psi_i = \tilde{s}_i / \tilde{t}_i = \tau_{i+1}^H / \sigma_{i+1}^H,\n\end{cases}
$$

О

337 where the last equality uses the result from Lemma [5.1.](#page-14-2)

⇒

338

339 Note that Lemma [5.2](#page-14-3) allows for freedom in the choice of $T_{1,2}$ and $S_{1,2}$. The results from 340 Theorem [4.5,](#page-12-0) Lemma [5.1](#page-14-2) and Lemma [5.2](#page-14-3) can be used to construct a six-term recurrence ³⁴¹ relation, which builds biorthogonal bases for rational Krylov subspaces. This is the Lanczos-³⁴² type iteration, code is included which implements this. The derivation of the iteration is 343 omitted since it is straightforward but lengthy.

³⁴⁴ 5.2. Numerical experiments. The validity of the Lanczos-type iteration is verified by 345 applying it to solve an eigenvalue problem. Three characteristics of the algorithm will be ³⁴⁶ monitored:

³⁴⁷ • $||W_n^H V_n - I||_2$, a measure for the biorthogonality of bases W and V,

 $\bullet \quad \|W_{n+1}^H A V_{n+1} \underline{S}_n - \underline{T}_n \|_2$, a measure for the quality of the oblique projection and,

³⁴⁹ • a Ritz plot visualizing the quality of Ritz values as approximations to eigenvalues. The projection measure uses the expansion matrices $(\mathbf{\underline{T}}_n, \mathbf{\underline{S}}_n)$ resulting from the Lanczos iteration, i.e., they are of dimension $(n + 1) \times n$. We compare the Ritz values $\theta^{(n)}$ of (T_n, S_n) , last row of $(\underline{T}_n, \underline{S}_n)$ removed, with the eigenvalues λ of A. Ritz plots visualize how close the *n* Ritz values $\theta_i^{(n)}$, $1 \le i \le n$, are to the closest eigenvalue $\lambda_i := \min_{\lambda} |\theta_i^{(n)} - \lambda|$ for increasing $n.$ The colours show how accurate the approximation is:

red:
$$
\|\theta_i^{(n)} - \lambda_i\|_2 < 10^{-8}
$$
,
yellow: $\|\theta_i^{(n)} - \lambda_i\|_2 < 10^{-5}$,
green: $\|\theta_i^{(n)} - \lambda_i\|_2 < 10^{-2}$,
blue: $\|\theta_i^{(n)} - \lambda_i\|_2 \ge 10^{-2}$.

 EXAMPLE 5.3. Consider a random 50 \times 50 upper triangular matrix with eigenvalues ³⁵¹ $\lambda_i = i$, $i = 1, 2, ..., 50$. Krylov subspaces $\mathcal{K}(A, v; \Xi)$ and $\mathcal{L}(A^H, w; \Phi)$ are build using $352 \quad v = w$ and $\Xi = \Phi = \{0, 24.1, 0, 24.1, \dots\}$. Biorthogonal projection using these subspaces lead to Figure [5.1a](#page-16-0) for the biorthogonality measure, Figure [5.1b](#page-16-0) for the measure quantifying ³⁵⁴ the projection (T, S) and Figure [5.2](#page-16-1) showing the Ritz plot. The Ritz plot clearly shows that convergence is concentrated around the chosen poles 0 and 24.1. This is the expected behaviour, the convergence of rational Krylov methods can be focussed on certain parts of the spectrum [\[25\]](#page-18-3).

Fig. 5.1: Measures for Example [5.3,](#page-16-2) with n the dimension of the rational Krylov subspaces.

Fig. 5.2: Ritz plot for Example [5.3,](#page-16-2) with n the dimension of the rational Krylov subspaces.

 EXAMPLE 5.4. To show the connection between convergence of eigenvalues and biorthog- onality, we choose a pole closer to an eigenvalue. This leads to faster convergence to this eigenvalue and thus to faster loss of biorthogonality [\[24\]](#page-18-19). The poles chosen now are $\Xi = \Phi = \{0, 24 + 10^{-5}, 0, 24 + 10^{-5}, \dots\}$. Figure [5.4](#page-17-0) shows that eigenvalue $\lambda = 24$ is ³⁶² found in fewer iterations than in Example [5.3.](#page-16-2) This leads to faster loss of biorthogonality of ³⁶³ the bases, shown on Figure [5.3a.](#page-17-1) Figure [5.3b](#page-17-1) shows that the quality of the projection is related to the biorthogonality of the bases.

365 Note that we did not use examples where $\Xi \neq \Phi$, since the behaviour of such choices is not comparable with any existing Lanczos-type iterations and subject to future research. From Example [5.3](#page-16-2) and Example [5.4](#page-16-3) we conclude that the novel Lanczos-type iteration exhibits the expected behaviour, i.e., comparable to the behaviour of known iterations. Hence, the validity

Fig. 5.3: Measures for Example [5.4,](#page-16-3) with n the dimension of the rational Krylov subspaces.

Fig. 5.4: Ritz plot for Example [5.4,](#page-16-3) with n the dimension of the rational Krylov subspaces.

³⁶⁹ of the rational Lanczos iteration is substantiated.

³⁷⁰ 6. Conclusion. A general framework to predict the various structures arising in the 371 context of rational Krylov subspace methods is developed. From this framework a pair of short ³⁷² recurrence relations for biorthogonal bases of rational Krylov subspaces is deduced. Based on 373 the short recurrence relation a Lanczos-type iteration is derived which constructs these bases ³⁷⁴ together with a tridiagonal pencil representing the obliquely projected matrix. The framework ³⁷⁵ generalizes many classical and more recent results, as does the novel rational Lanczos iteration. 376 Numerical tests are performed as a proof of concept for the iteration.

³⁷⁷ **7. Future Research.** A proper analysis of the numerical behaviour of the Lanczos 378 iteration could provide the means to make it more stable.

³⁷⁹ Furthermore the relation between biorthogonal rational Krylov subspaces and biorthogonal

³⁸⁰ functions will be looked into.

REFERENCES

- [30] B. SIMON, *CMV matrices: Five years after*, Journal of Computational and Applied Mathematics, 208 (2007), pp. 120–154.
- [31] M. STEWART, *A generalized isometric Arnoldi algorithm*, Linear Algebra and its Applications, 423 (2007), pp. 183–208.
- [32] H. A. VAN DER VORST, *BiCGSTAB a fast and smoothly converging variant of BiCG for the solution of nonsymmetric linear systems*, SIAM Journal on Statistical Computing, 13 (1992), pp. 631–644.
- [33] H. A. VAN DER VORST, *Iterative Krylov Methods for Large Linear Systems*, Cambridge University Press, 2003.
- [34] R. VANDEBRIL, *Chasing bulges or rotations? A metamorphosis of the QR-algorithm*, SIAM Journal on Matrix Analysis and Applications, 32 (2011), pp. 217–247.
- [35] R. VANDEBRIL, M. VAN BAREL, AND N. MASTRONARDI, *Matrix Computations and Semiseparable Matrices: Linear Systems*, vol. 1, John Hopkins University Press, 2007.
- [36] D. S. WATKINS, *Some perspectives on the eigenvalue problem*, SIAM Review, 35 (1993), pp. 430–471.