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Kevin Tanghe1, Friedl De Groote2, Dirk Lefeber3, Joris De Schutter1, Erwin Aertbeliën1

Abstract—A real-time method is proposed to obtain a single,
consistent probabilistic model to predict future joint angles,
velocities, accelerations and jerks, together with the timing for
the initial contact, foot flat, heel off and toe off events. In a
training phase, a probabilistic principal component model is
learned from normal walking, which is used in the online phase
for state estimation and prediction. This is validated for normal
walking and walking with an exoskeleton. Without exoskeleton,
both joint trajectories and gait events are predicted without bias.
With exoskeleton, the trajectory prediction is unbiased, but event
prediction is slightly biased with a maximum of 33 ms for the
toe off event. Performance is compared with predictions based
on only the population mean. Without exoskeleton, estimation
errors are 5 to 30% lower with our method. With exoskeleton,
trajectory prediction errors are up to 20% lower, but gait event
prediction errors only improve for foot flat (30%) and are
worse for other events (30%–50%). The ability to predict future
joint trajectories and gait events offers opportunities to design
exoskeleton controllers which anticipate these trajectories and
events, allowing better tracking control and smoother, accurately
timed transitions between different control modes.

Index Terms—State estimation, kinematics prediction, event
prediction, real time, exoskeleton

I. INTRODUCTION

LOWER-limb exoskeletons have the potential to restore
or increase the mobility of impaired subjects. Some

exoskeletons are fixed to the environment and are used for
rehabilitation purposes, e.g., Lopes [1] and Lokomat [2]. Other
exoskeletons allow the subject to move freely, and can be used
for rehabilitation or permanent assistance [3]–[5].

The control of an exoskeleton can be enhanced if infor-
mation on the future is available. For instance, if the future
joint trajectory is known, adding a feedforward term will result
in better tracking behavior than relying purely on feedback.
The feedforward term can also be used to compensate time
delays in the control. Another example is the control mode
switching during gait. Gait has different phases. Each phase is
linked with a different exoskeleton control mode. For instance,
changing the ankle angle requires higher torques in the stance
phase than in the swing phase since the ankle has to push
up the whole exoskeleton and human body during the stance
phase. The control parameters of the ankle joint will therefore
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change between discrete control modes depending on the
current phase. It is beneficial to have a smooth transition
between control modes instead of a discrete switch. This
requires information on the future such that the transition
to another control mode can be initiated prior to the actual
occurrence of the gait event that marks the change of gait
phase.

To determine the amount of assistance, most of the current
exoskeletons rely on a reference trajectory as an input [6],
[7]. The controller will assist the subject to follow this
trajectory. These reference trajectories can be calculated in
a static way, but for the user it would feel more natural if
this reference trajectory is constantly adapting to the subject’s
current execution style. Hence, estimated future healthy joint
trajectories can be used as a reference input.

The paragraphs above motivate the two goals of this paper:
1) the prediction of future joint trajectories during gait and
2) the prediction of future gait events. Section II gives an
overview of the state of the art and states the contributions of
this paper. Section III reports the collected data. Section IV ex-
plains our method. Section V presents validation experiments
and section VI discusses the results of our method.

II. CONTRIBUTIONS TO THE STATE OF THE ART

A. Trajectory Prediction

The prediction of joint trajectories has already been tackled
by several researchers, mainly in the rehabilitation research
field. In this field, patients are guided towards an estimated
reference trajectory. These trajectories used to be recordings
of healthy gait or were set by a clinical expert. Nowadays
methods are available to make these trajectories more patient
specific. One possibility is to estimate spatio-temporal values
of key points in the gait cycle, such as extrema of the joint
angle trajectories, based on a regression of different parameters
(e.g. walking speed, body height, step length, . . . ) [8], [9].
Complete trajectories are reconstructed by spline interpolation
between these key points. It is also possible to estimate the
total trajectory (instead of some key points) using Gaussian
process regression on a large set of body parameters [10].
Yet another approach is to collect a dataset with reference
joint trajectories and body parameters (age, height, mass, . . . )
from different subjects. A reference trajectory for a new
subject can be estimated by selecting trajectories from subjects
with similar body parameters and apply principal component
analysis on the selected trajectories [11]. In this way, common
features are extracted and used to create a reference trajectory
for the new subject.
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The above methods estimate the trajectory in a static way,
there is no online adaption to the execution by the subject. For
better rehabilitation and comfort, joint trajectories should not
be purely based on some parameters, but should adapt to the
current motion of the subject. Several methods are available to
adapt the offline estimated trajectories to current observations.
For instance, the offline trajectory can be scaled in time and
amplitude, and an offset parameter can be added [12]. The
offline trajectory can also be modified online by using an
admittance control law, where a feedback error term and an
online learned offset are added to the reference trajectory [13].
Another approach is to set reference values for some key
events, such as the step length and cycle time at heel strike
and use model predictive control to generate trajectories that
guide the subject to these points, given current observations
[14]. An alternative for model predictive control are dynamic
movement primitives [15], where an attractor guides the user
towards an end goal while performing a motion which is close
to some learned trajectory.

Other online adapting methods do not start from a pre-
defined trajectory or predefined key points. For hemiparetic
subjects, a trajectory for the impaired leg is generated by a
low-dimensional space mapping from the observed trajectory
of the healthy leg [16]. Since gait is quasi-periodic, it is also
possible to get a trajectory from a weighted sum of already
observed trajectories that are close to the current observations
[17]. The past observations can also be used to reconstruct
the quasi-periodic movement with adaptive oscillators [18].
This method is also able to estimate the current phase of the
gait cycle. Furthermore, machine learning methods can predict
joint angles at the next time step from a series of observed joint
angles, making use of a large dataset of comparable motions
[19], [20].

Although walking movements have been predicted based
on a musculoskeletal model by minimizing an object func-
tion [21]–[23], this requires high computational times and is
therefore not applicable in the context of real-time exoskeleton
control.

B. Event prediction

Fig. 1 shows the different gait events that initiate the
different gait phases. For an exoskeleton, the initial contact
(IC) and toe off (TO) events are the most important, since these
events determine the ground contacts. The foot flat (FF) and
heel off (HO) event can also be useful, since these events mark
the start and end of full ground contacts, where interaction
moments are possible.

A lot of publications present algorithms for the real-
time detection of the current gait phase. A good overview
is presented in [24] and [25]. The algorithms use a wide
variety of wearable sensor signals: foot switches, pressure
insoles, accelerometers, gyroscopes, IMUs, electromyography
or combinations of the above. These sensor signals are often
processed with a threshold-based algorithm or a machine-
learning algorithm.

In this paper, the goal is not only to detect the transition to
the next gait phase as it happens, but also to predict the timing

Fig. 1. One gait cycle with indicated gait events [26]. For exoskeleton
purposes, the initial contact and toe off event are the most important ones.
Other relevant events are foot flat and toe off.

of future events. The authors are not aware of any reported
methods where the timing of future events is predicted.

C. Contributions

A first contribution of this work is to propose a methodology
to obtain a model to predict A) smooth joint trajectories:
angles, velocities, accelerations and higher order derivatives,
and B) the timing of future events. This stands in contrast to
the state of the art where these issues are handled separately.
Prediction of future event prediction is not discussed in the
state of the art. Because a single, consistent model is obtained,
measurements of the joint angles also give information on
the event prediction. Additionally, derivatives of the joint
trajectories are calculated analytically, avoiding numerical
techniques which do not produce useful results in the presence
of noise. These higher order derivatives can be useful to
enhance the control of assistive devices such as exoskeletons,
e.g. information on the derivative of joint acceleration can
improve control of series-elastic actuators [27].

Secondly, the solution presented here is probabilistic, i.e.,
the used model takes into account uncertainty and also gen-
erates information on the uncertainty of its predictions. We
can exploit such a probabilistic model in the control of an
exoskeleton: measured human motion can be checked to see
whether it is probabilistically conforming to our gait model;
additional model-based information can be used to improve
the estimates; or control strategies can be designed to provide
assistance taking into account the predicted uncertainty (e.g.
see [28]). To achieve this goal we started from the probabilistic
modeling approach of [29], and we adapted and extended it for
the prediction of events and higher order derivatives. A new
online estimation approach is developed to robustly estimate
the variables in this model at run-time. Due to this added
robustness, it is possible to do predictions for gait trajectories
for walking with exoskeleton, whereas the model is based on
demonstrations of gait without exoskeleton.

Thirdly, the method is sufficiently efficient such that it can
be used in real time in a control loop.

Lastly, the developed methodology is validated on walking
with and without exoskeleton and compared to predictions that
only use mean trajectory data and mean event timings.

III. DATA COLLECTION

Two datasets were collected. The first dataset consists of
28 healthy young subjects walking on a treadmill without
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exoskeleton. The Medical Ethics Committee UZ KU Leuven
and School ethics committee of the School of Healthcare
Sciences of Cardiff University approved the experimental
protocol. Informed consent was obtained. The walking speed
varied between 2 and 5 km/h. In total, 1098 steps were
observed. The second dataset consists of 5 healthy young
subjects walking on a treadmill with an exoskeleton with a
speed of 2 km/h. They walked in a passive condition, where
the exoskeleton is unactuated, and in a transparent condition,
where the exoskeleton is compensating its own dynamics [27].
The exoskeleton has six rotational joints: hip, knee and ankle
joint for each leg [30] [31]. Each joint has a rotary shaft
encoder to determine the position of the joint at a frequency of
500 Hz. The exoskeleton itself has no sensors to detect ground
contact.

For both datasets, Vicon cameras (Vicon, Oxford) measured
the trajectories of reflective markers attached to anatomical
locations of the subject at a frequency of 100 Hz. A generic
musculoskeletal model with 37 degrees of freedom [32], [33]
was scaled to the subject’s anthropometry to calculate joint
kinematics from the recorded marker trajectories using a
Kalman smoothing algorithm [34]. The instrumented split-belt
treadmill recorded the ground reaction forces under each foot
separately at a frequency of 1000 Hz. From the kinematics
and ground reaction forces, the timing of the initial contact
(IC), toe off (TO), foot flat (FF) and heel off (HO) event was
calculated, following the conventions from [35]: IC occurs
when the vertical force exceeds 20 N; TO occurs when the
vertical force drops below 20 N; FF is the first of at least ten
time instants after IC which have a vertical toe velocity lower
than 100 mm/s; HO is the last of at least ten time instants
before TO that have a vertical heel velocity lower than 100
mm/s.

IV. METHOD

Fig. 2 shows the outline of the method. In the offline learn-
ing phase, see Section IV-A, a probabilistic model for joint
trajectories and gait events of a leg during one gait cycle is
learned from the repetitive demonstrations of human walking
patterns. The result is a probabilistic model in function of a
normalized time s, indicating the progress along the trajectory,

Offline Learning Online Estimation
 & Prediction

Repetitive
demonstrations

Statistical Model

Measurements

State 
Estimation

Trajectory and
Event Prediction

Fig. 2. The outline of the method. In the offline learning phase, a probabilistic
model for the joint trajectories and gait events is learned from the dataset.
Online, we first estimate the state from the available measurements. With this
state we can predict future joint trajectories, their derivatives and gait events.

and some latent variables x∗. In the online estimation phase,
see Section IV-B, joint velocity measurements are used to
provide an estimate for the latent variables x∗ together with
an estimate of the current normalized time of left and right leg
and an estimate of the stride time. Once we know the complete
state, we can predict future joint trajectories, their derivatives
and gait events for both sides, see Section IV-C.

In contrast to machine learning approaches that use a short-
term history of the position or velocity signals as input such
as [19], [20], our approach has the advantage that it can take
into account a longer-term history. In contrast to the approach
of e.g. Jezernik [12], our approach can handle more than
scaling in amplitude and time or adding an offset: during
the offline learning phase, our approach will determine the
shape of “modes” by which the trajectories can vary; during
the online phase, we estimate the optimal amplitude of these
modes in order to predict future events and the future evolution
of the trajectories. The scaling in time is handled explicitly
during the online phase.

A. Offline learning phase

In the offline learning phase, a gait dataset is used to learn
joint trajectories and gait events following the ideas of [29].
A model from a dataset of joint trajectories is constructed by
applying probabilistic principal component analysis (PPCA).
The PPCA is an adaptation of principal component analysis
(PCA) that is used to describe a high-dimensional Gaussian
probability distribution using a model that only involves a
limited number of variables [36]. Similarly to PCA, it is
a dimensionality reduction technique, but it is applied to
probability distributions. A procedure to compute the PPCA is
readily available in Matlab [37]. The offline learning approach
explained below samples the joint trajectories into a larger
number of discrete points; constructs a covariance matrix
to represent the distribution of the trajectories; and reduces
the dimensionality of this probabilistic model using PPCA.
Afterwards, a probabilistic model that is a continuous function
of normalized time s is obtained by fitting the discretized
model. The result is a probabilistic model that concisely
describes the probabilistic variations of the joint trajectories
and gait events.

As joint angles can be affected by offsets, we choose to
model joint angular velocities. The trajectories are modeled
in function of a normalized time s = t/T , with t time and
T the stride time. Under the assumption that the amplitudes
of the joint angle trajectory are approximately independent of
walking speed, we define normalized joint velocities ˜̇q as:

˜̇q = T q̇. (1)

A vector function y(s) represents all the information of a
stride (from IC at s = 0 to IC at s = 1):

y(s) =
[
˜̇qh(s) ˜̇qk(s) ˜̇qa(s) sFF sHO sTO

]T
, (2)

where the indices h, k and a respectively refer to the hip,
knee and ankle joint, whereas sFF , sHO and sTO refer to the
normalized timing of FF, HO and TO. The timing of IC is
implicitly represented by our method since, by construction,
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IC always occurs at s = 0, 1, 2, 3, . . . where each integer
value marks the start of the gait cycle of a leg.

Using a collected gait dataset, we construct a compact
probabilistic model for y(s) by first discretizing this vector
function into a discrete vector ys. The velocity of the hip,
knee and ankle are sampled at d equidistant normalized times
s1, s2, . . ., sd with s1 = 0 and sd = 1, to obtain a discrete
vector ys ∈ R3d+3:

yTs = [˜̇qh(s1) . . . ˜̇qh(sd) ˜̇qk(s1) . . . ˜̇qk(sd)

˜̇qa(s1) . . . ˜̇qa(sd) sFF sHO sTO], (3)

where d is the number of discrete normalized sample times.
Before constructing the model, the vector yTs is weighted with
a weighting matrix Ws:

ys,w = Ws · ys (4)

with

Ws = diag(I3d, wFF , wHO, wTO), (5)

where I3d represents a unit matrix with size 3d. This weight
matrix Ws ∈ R(3d+3)×(3d+3) makes a trade-off between the
3d columns representing trajectory velocities and the three
columns representing the timing of each event. Higher weights
wFF , wHO, wTO will result in better modeling of the events
and worse modeling of the trajectories. If some joints have less
accurate measurements, we can choose the weights inversely
proportional to the covariance of the measurement uncertainty.
Here, we assume all joints to have the same accuracy.

In our learning approach, we construct yis,w for all strides i
in the dataset. We assume a symmetric gait pattern, so we
consider the left and right side as separate samples of the
same distribution. The methodology of this paper is however
still applicable without this assumption, but more data will be
necessary for the same performance.

The PPCA procedure [36] [37] is used to implicitly con-
struct a covariance matrix and to obtain a reduced model for
the probability distribution of ys,w. This reduced model for
ys,w is described by m modes in a matrix Hs,w ∈ R(3d+3)×m

(each corresponding to a column), a mean bs,w ∈ R3d+3, and
a remaining uncertainty εs,w in the following way:

ys,w = Hs,wx
∗ + bs,w + εs,w, (6)

with εs,w ∼ N (0, σ2I3d+3). The values of Hs,w, bs,w and σ
are determined using PPCA [36], [37]. Using (4), ys can be
written as:

ys = Hsx
∗ + bs + εs, (7)

with Hs = W−1
s Hs,w, bs = W−1

s bs,w and εs ∼
N
(
0, σ2W−1

s W−T
s

)
. Using this model, each instance of

ys ∈ R3d+3 is described by a reduced vector x∗ ∈ Rm, which
has a normal distribution x∗ ∼ N (0, Imm). x∗ represents the
prior knowledge on the trajectories and events. In the online
learning phase we will introduce additional knowledge and
measurements to provide improved estimates for x∗.

In (7), the elements of Hs and bs can be grouped as follows:

ys =


Hh(s1 . . . sd)
Hk(s1 . . . sd)
Ha(s1 . . . sd)

HFF

HHO

HTO

x∗ +


bh(s1 . . . sd)
bk(s1 . . . sd)
ba(s1 . . . sd)

bFF
bHO
bTO

+ εs, (8)

Hj(s1 . . . sd) =

Hj,1(s1) . . . Hj,m(s1)
...

. . .
...

Hj,1(sd) . . . Hj,m(sd)

 , (9)

bj(s1 . . . sd) = [bj(s1) bj(s2) . . . bj(sd)]
T , (10)

with j = h for the hip, k for the knee, and a for the ankle, and
s1. . . sd the normalized discrete times. Equation (8) models the
joint velocity trajectories at discrete normalized time instances.
To model the continuous trajectories, we fit a Fourier Series
(FS) of the form

FS =
∑
k

ac,k cos (2πks) +
∑
k

as,k sin (2πks) (11)

through each column of Hj and through bj . The Fourier series
do not have an offset parameter, as the mean joint velocity
over a gait cycle should be zero. The period of the series
is equal to one, as the normalized time also has a period
of one. Using these Fourier series, we obtain a probabilistic
model for the trajectories and the events, that is continuous in
normalized time s, and has only a limited number of remaining
variables x∗:

y(s) =


Hh(s)
Hk(s)
Ha(s)
HFF

HHO

HTO

x∗ +


bh(s)
bk(s)
ba(s)
bFF
bHO
bTO

+ ε (12)

= H(s) x∗ + b(s) + ε, (13)

ε ∼ N (0, σ2W−1W−T ), (14)
W = diag(I3, wFF , wHO, wTO). (15)

This model, periodic in s with a period equal to 1, remains
valid for s ≥ 1 and can be interpreted in the following way:
a joint trajectory or gait event time is described by the mean
joint trajectory or event time, represented by the 6× 1 vector
of Fourier functions b(s), plus deviations from the mean,
represented by H(s)x∗. The model correlates the deviations
of one joint to the deviations of another joint and from one
time instant to another. The columns of the 6 × m matrix
H(s) can be seen as m basis functions or modes describing
these coupled deviations from the mean. The latent variables
x∗ are the coefficients of these basis functions. These columns
represent the principal components, i.e., the directions of the
largest variability in the dataset. The number of basis functions
m is chosen at the start of PPCA. It should be high enough
to have a good model, but not too high to avoid overfitting.
However, m is also limited by the computational load during
real-time execution.
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B. Online estimation phase

Using the methods of subsection IV-A, we can concisely
describe the joint trajectories and gait events belonging to a
single side of the body using a state vector x∗. Under the
assumption of a symmetric gait pattern, we can extend this to
both sides of the body using a state x ∈ Rm+3:

x = [v, sl, sr,x
∗T ]T , (16)

lb∆s ≤ sl − sr ≤ ub∆s, (17)

where v is the reciprocal of the stride time T : v = T−1, and
x∗ describes the gait pattern of both left and right side, and
sl the normalized time for the left side and sr for the right
side. The difference between sl and sr is constrained to be
approximately 0.5 (half a gait cycle) with an upper and lower
bound.

An estimator estimates this state from the joint velocity
measurements of both left and right side (see Fig. 2). We
follow a Bayesian approach starting from a prior belief in the
state x, represented by a mean x̄0 and covariance matrix P0.
We model how this belief evolves over time using a process
model. Measurements, described by a measurement model are
used to update this belief, resulting in a posterior belief, and
this procedure is repeated over time. The (iterative extended)
Kalman filter [29] is such an approach. However, a Kalman
filter can suffer from robustness problems due to the strong
nonlinearity of process and measurement equations. Therefore,
we choose a moving horizon estimator (MHE) to handle
this estimation problem. The MHE takes into account all the
measurements inside a sliding time window by maximizing the
posterior probability to estimate the (not directly observable)
state xi [38]:

min
x.,ep.,em.,v.

µT0 P
−1
0 µ0 +

N−1∑
i=0

eTp,iQ
−1ep,i

+

N−1∑
i=0

eTm,iR
−1
i em,i (18)

subject to:
xi+1 = Fxi + ep,i ∀i = 0 . . . N − 1 (19)

zi = h(xi+1) + em,i ∀i = 0 . . . N − 1 (20)
µ0 = x0 − x̄0 (21)

lbx∗ ≤ x∗
i ≤ ubx∗ ∀i = 0 . . . N (22)

lbv ≤ vi ≤ ubv ∀i = 0 . . . N (23)
lb∆s ≤ sl,i − sr,i ≤ ub∆s ∀i = 0 . . . N (24)

This optimization problem is solved iteratively using a window
size N . N = 1 is equivalent to an extended (i.e., linearized)
Kalman filter. The variables and equations in this optimization
problem are explained in the next paragraphs.

The process model (19) describes the probabilistic evolution
of the state. We assume that the stride time T , hence also v,
and the latent variables x∗ are approximately constant over

time and that the dimensionless time sl and sr vary linearly
with time:

F =


1 0 0 O1×m

∆t 1 0 O1×m
∆t 0 1 O1×m

0m×1 0m×1 0m×1 Im

 . (25)

The process noise ep,i describes how much x∗, v, sl and sr
can deviate from their nominal behavior; its covariance matrix
is described by a diagonal matrix:

Q = diag(Qv, Qsl , Qsr ,Qx). (26)

The optimization criterion (18) contains a term that minimizes
this process uncertainty ep,i, weighted with Q−1 .

The measurement model (20) expresses how well the mea-
surements zi are explained by the current state xi. The
measurements zi consist of joint velocities:

zt = [q̇hl
(t) q̇kl(t) q̇al(t) q̇hr

(t) q̇kr (t) q̇ar (t)]T . (27)

Combining (1),(2) and (13) leads to a probabilistic relationship
between the state and these velocities:

q̇j(t) =
1

T

(
Hj(s)x

∗ + bj(s)
)

+ δj , (28)

where j= h, k, or a. δj ∼ N (0, σ
2

T 2 I) represents the remaining
measurement uncertainty, which can be deduced from the
learned model in section IV-A, see (1), (2), and (12)–(15).
This leads to an expression for h(xi):

h(xi) = vt




Hh(sl,i)
Hk(sl,i)
Ha(sl,i)
Hh(sr,i)
Hk(sr,i)
Ha(sr,i)

x∗
t +


bh(sl,i)
bk(sl,i)
ba(sl,i)
bh(sr,i)
bk(sr,i)
ba(sr,i)



 , (29)

and for the variance of the measurement uncertainty:

Ri = v2
t σ

2I6. (30)

The matrix W does not appear in this equation, since the
weights belonging to the joint velocities are equal to one.
This measurement equation is nonlinear in s. The optimization
criterion (18) contains a term that minimizes the measurement
uncertainties em,i, weighted with R−1

i .
The term µT0 P

−1
0 µ0 of the criterion (18) corresponds to our

prior belief for the state x, described by a mean x̄0 and vari-
ance P0. This belief is based on older measurements, outside
of the optimization window. The result of the optimization will
be used to update P0 and x̄0 for the next instance of the sliding
window. P0 has to take into account that a single measurement
is part of many sliding windows, to avoid counting the same
information multiple times. See [39] for a complete description
of these updates.

The last three constraints (22)–(24) represent bounds on x∗

and v and on the normalized time difference of the left and
right leg (see (17)).
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C. Online prediction phase

In the prediction phase, we use the estimation of the current
state to predict joint velocities at a future instant. Using the
process equation (19) we can evaluate the state at a future
time t:

v(t) = vnow (31)
sl(t) = sl,now + vnow(t− tnow) (32)
sr(t) = sr,now + vnow(t− tnow) (33)
x∗(t) = x∗

now (34)

With this state at time t, we can evaluate the measurement
equation (29) to get the joint velocities at t. Recall that bh,
bk, ba and each column of Hh, Hk, Ha are written as a
Fourier series. Substituting (32) and (33) in (11) results in
analytical functions in t. Therefore, equation (29) can be
integrated and differentiated analytically w.r.t. t to get the
joint angles, accelerations, and higher order derivatives. The
integration constant can be determined from the current angle
measurements.

The normalized time of a gait event is computed as:

sev = w−1
ev

(
Hevx

∗ + bev

)
(35)

with ev = FF, HO or TO. By convention, sev = 0 for IC. The
time until the left side event (s = sl) or the right (s = sr) can
be computed as:

∆tev =


sev −mod(s, 1)

v
sev ≥ mod(s, 1)

sev + 1−mod(s, 1)

v
sev < mod(s, 1)

(36)

with mod the modulo operator. If sev < mod(s, 1), then the
event already occurred in the current gait cycle. Hence we add
one to calculate the time to the event in the next gait cycle.

V. VALIDATION EXPERIMENTS AND RESULTS

In section III, two datasets were collected, dataset 1 contains
data on walking without an exoskeleton, dataset 2 data on
walking with an exoskeleton. Fig. 3 shows the timing of the
measured gait events for these two datasets. Walking with an
exoskeleton results in slightly different walking patterns. For
trials with exoskeleton, the stance phase of a leg is longer than
for trials without exoskeleton, since the TO event appears later
in the gait cycle.

TABLE I
DESCRIPTION OF THE TWO VALIDATION EXPERIMENTS

Experiment name Validation approach

Without exoskeleton
Learning dataset 1

(leave 1 subject out)
Validation dataset 1

(28-fold cross-validation)

With exoskeleton
Learning dataset 1
Validation dataset 2

FF HO TO

0

0.2

0.4

0.6

0.8

s
 (

-)

wo exo

with exo

Fig. 3. The timing of the measured gait events. The IC event by definition
occurs at s = 0 in both cases. The horizontal red line in the boxplot marks the
median. The box ranges from the 25th to the 75th percentile. The whiskers
contain 90% of the data.

Table I describes the two validation experiments that are
performed using these collected datasets. In a first validation
experiment (without exoskeleton), a cross-validation approach
is used where dataset 1 is split into a validation set, consisting
of all gait cycles of one subject, and a learning dataset,
consisting of all gait cycles of the other subjects. This is
repeated for every subject in the dataset until each subject
is used for validation and excluded for learning once. In a
second validation experiment (with exoskeleton), the learning
data set is the full dataset 1, the validation dataset is full
dataset 2. Note that the second validation experiment, with
exoskeleton, is very strong: we extrapolate from walking
without an exoskeleton to a situation were the walking pattern
is disturbed by an exoskeleton.

The learning phase consists of the methods explained in
subsection IV-A, the validation phase consists of the methods
explained in subsections IV-B and IV-C. These methodologies
require a number of hyperparameters that are described in
Table II. Window size N , number of modes m and sample
time ∆t are determined by the trade-off between computation
time and accuracy. We assumed a reasonable requirement for
the sample time ∆t = 0.01s, and determined the largest
achievable m and N using both datasets. The number of
discretization points d for the learned model has to be chosen
sufficiently high and does not influence online computation
time, since we constructed a continuous model in the offline

TABLE II
VALUE OF THE USED HYPERPARAMETERS.

Hyperparameter Value Hyperparameter Value

d 50 ∆t 0.01 s
m 10 N 10

wFF 50 lbx∗ −5
wHO 50 ubx∗ 5
wTO 50 lbv 0.4s−1

Qv 1e− 6s−2 ubv 1.5s−1

Qsl 1e− 6 lb∆s 0.45
Qsr 1e− 6 ub∆s 0.55
Qx 1e− 6 · I
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learning phase. The event weights wFF , wHO and wTO are
chosen such that all event variables and all trajectory variables
in the vector ys are weighed equally. The bounds lbv and ubv
on the inverse stride time v are determined using both datasets,
and are chosen such that the system does not extrapolate too
much outside the range that we verified in these validation
experiments. The bounds lbx∗ and ubx∗ on x∗ are applied for
the same reason, and their value is not critical for the results.
With the bounds lb∆s and ub∆s on the difference between
the progress left sl and right sr, we enforce our knowledge
that the subjects walk with an approximately symmetrical gait
pattern.

The process noise hyperparameters Qv , Qsl , Qsr and Qx

determine how variable v, sl, sr and x∗ are during walking.
For an ideal, systematic walking pattern, they should remain
constant; in reality there are variations in the human walking
pattern. The lower we set these process hyperparameters, the
more the estimator averages out the measurements and the
higher the estimation robustness of the gait pattern, but the
less the system can describe the variations in the gait pattern.
For these validation experiments we determined (manually,
by order of magnitude) reasonable values based on dataset 1
and 2.

Fig. 4 illustrates the joint trajectory prediction for walking
without an exoskeleton. At each time instant t, joint angle,
velocity, acceleration and jerk are predicted for time points
A, B and C relative to t. Point A, B and C are located
in the future, respectively 10%, 50% and 100% of a gait
cycle. Fig. 4 shows the estimation in progress. Initially, with
no measurements available, the prediction is equal to the
mean of the dataset. The shape of the prediction is similar
to the measured pattern, but the amplitude and timing need
improvement. After only a few measurements the timing and
amplitude estimation improves. After still more observations,
the amplitude is estimated even better.

Fig. 5 shows the prediction of the time to IC without
exoskeleton. The predicted time to IC follows the true time to
IC very closely except during the first step where the estimator
still needs to converge.

Table III reports the accuracy of the trajectory prediction
and the estimation of higher order derivatives: the table shows
the mean and standard deviation of the trajectory estimation
errors of q, q̇, q̈, ...

q for points A,B, and C, and for hip, knee and
ankle joint, for trials with and without exoskeleton. Predicted
and measured values at the three points are compared in order
to validate the joint trajectory prediction in short, mid and long
term. The error between predicted and measured signals are
reported as a percentage of the range of the signal during a
trial.

Fig. 6 validates the event prediction: we calculate the
predicted time until the next event at 0.2 seconds before the
true event. Hence, the prediction error is zero if the predicted
time to the event is equal to 0.2. If the predicted time is larger
than 0.2, the event is predicted later than the true event.

Lastly, Fig. 7 compares the result of our proposed method-
ology with a simpler method using only the mean of the
trajectories and the event timings (i.e., m = 0). The effect
of learning a probabilistic model and using latent variables on

the standard deviation of the gait trajectory predictions and
the interquartile range of the event predictions is shown. For
the case without the latent variables, the process noise was
lowered with a factor 10 to improve robustness.

VI. DISCUSSION

Some general trends are visible in Table III. All predictions
are unbiased since the mean error is in all cases very close
to zero. The standard deviation of the estimations show
differences. So, although the estimates are on average very
close to their ground truth value, individual estimates can vary
with a standard deviation ranging from 4.4% for the knee joint
angle at a prediction horizon of 10% without the exoskeleton,
to 28.5% for the ankle joint position at a prediction horizon of
50%, with the exoskeleton. For the trials without exoskeleton,
higher order derivatives systematically have a higher standard
deviation of the error; for the trials with exoskeleton there
is no similar systematic trend. For the first, second and third
derivatives, the prediction gets progressively worse for points
B and C further in the future. For the joint angle positions at
time horizon C (100%), there is no such trend. Furthermore,
except for the hip joint angle at time horizon C (100%) with
and without exoskeleton, and the third derivative of the ankle
angle with exoskeleton, the knee is better predicted than the
hip or ankle joint. This can be explained by the knee velocity
trajectory that has three well distinct extrema during one
gait cycle, around t = 0.2s, t = 0.8s and t = 1.1s, see
Fig. 4. Measurements of these extrema gives information on
both the timing and amplitude of the trajectory. Our method
can take this implicitly into account, resulting in a better
estimation. In all cases, the standard deviation of joint angle
prediction errors (and their higher order derivatives) is lower
in trials without exoskeleton than in trials with exoskeleton.
This can be expected because the training data is only based on
trials without exoskeleton, and because there are differences
between the trials with and without an exoskeleton, see Fig. 3.

Fig. 6 shows the error statistics of the event prediction at
0.2 seconds before the true event. For the dataset without
exoskeleton, the (absolute value of the) median error is lower
than 9 ms for all events. Also, the contours of the box
containing the 50% lowest errors are very close to zero. The
HO events are the most difficult to predict, as can be seen
from the interquartile range and the 90% bounds. Compared
to the other events, the measured HO events vary more in
the dataset, see Fig. 3. Because the model was only trained
on a dataset for walking without exoskeleton, the prediction
error with exoskeleton is worse than without exoskeleton. For
the case with exoskeleton, the median of the prediction errors
for the IC and TO events are 15 and 33ms respectively. In
the control of the exoskeleton, this bias could be subtracted
from the prediction. However, these statistics are only based
on 5 subjects all walking in the same exoskeleton. This is not
enough to have good estimates of the bias. Remarkably, the
prediction error of HO is on average only 19 ms, although
Fig. 3 shows that HO with exoskeleton occurs significantly
later in the gait cycle compared with the event without
exoskeleton. However, the HO event remains hard to predict,
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TABLE III
MEAN AND STANDARD DEVIATION (BETWEEN PARENTHESES) OF THE JOINT ANGLE, VELOCITY, ACCELERATION AND JERK PREDICTION ERRORS FOR

POINTS AT 10% (A), 50% (B) AND 100% (C) OF A GAIT CYCLE IN THE FUTURE. THE ERROR IS EXPRESSED AS A PERCENTAGE RELATIVE TO THE
RANGE OF THE SIGNAL DURING A TRIAL.

Without Exoskeleton With Exoskeleton

A B C A B C

q -0.1% (4.9%) -0.5% (9.1%) -0.0% (7.4%) -0.2% (9.2%) -0.6% (14.7%) -0.6% (10.6%)
hip q̇ -0.3% (7.0%) 0.3% (8.0%) 0.3% (9.0%) -0.3% (12.2%) 0.1% (13.6%) -0.3% (14.3%)

q̈ -0.2% (9.8%) -0.1% (10.9%) -0.4% (12.1%) 0.1% (14.9%) -0.1% (15.6%) -0.3% (16.9%)...
q 0.2% (12.1%) -0.0% (12.7%) -0.3% (13.7%) 0.1% (15.1%) 0.2% (15.2%) -0.2% (15.9%)

q 0.3% (4.4%) -0.1% (8.7%) -0.1% (8.8%) 0.2% (7.2%) 0.0% (13.1%) 0.6% (12.0%)
knee q̇ 0.4% (4.5%) -0.1% (6.7%) -0.1% (8.5%) 0.4% (8.0%) -0.4% (10.5%) -0.7% (11.8%)

q̈ 0.0% (6.3%) 0.4% (8.7%) 0.7% (10.5%) -0.0% (10.8%) 0.4% (13.7%) 0.4% (14.8%)...
q -0.3% (8.4%) -0.0% (9.7%) 0.2% (11.2%) -0.3% (12.6%) -0.1% (14.0%) 0.3% (14.4%)

q 0.4% (8.8%) 0.1% (15.1%) -0.2% (9.4%) 1.6% (19.2%) 1.0% (28.5%) -0.4% (14.5%)
ankle q̇ 0.4% (7.8%) 0.1% (9.3%) 0.1% (10.7%) 0.6% (13.3%) 0.0% (14.0%) 0.2% (14.9%)

q̈ -0.1% (8.8%) 0.0% (10.7%) 0.2% (12.5%) -0.4% (13.2%) -0.0% (14.2%) 0.7% (15.7%)...
q -0.3% (9.7%) -0.0% (11.6%) 0.2% (13.3%) -0.0% (13.1%) -0.0% (13.6%) 0.1% (14.5%)
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Fig. 4. The measured (blue) and predicted (red) knee velocity without
exoskeleton. The prediction gets better when more measurements become
available. The errors between measured and predicted signal are evaluated at
points A, B and C.
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Fig. 5. The predicted time to IC (blue) and true time to IC (red) for trials
without exoskeleton.

as it has a large interquartile range and 56 outliers (out of 689
analyzed time instances) bigger than 1 s. These outliers occur
because the prediction using the decision rule (36) in those
cases assumes that HO already occurred at 0.2 s before the
true event and is already predicting the next HO event. Other
decision policies can be designed, depending on the controller
application. A controller can use the prediction of IC, FF and
TO to generate a smooth transition from one control mode to
another.

The current method is suitable for real-time computation.
On average the estimation and prediction phase took 6 ms per
time instant on a laptop with an Intel Core i7-4800MQ 2.7
GHz processor, which is fast enough to update the predictions
every 0.01 s as indicated in Table II.

Fig. 7 shows that, for the validation without exoskeleton,
using the latent variables is certainly better than just using the
population mean: the spread on trajectory and gait event pre-
dictions decreases with 5 to 30%. With the exoskeleton, using
the latent variables is better for predicting joint trajectories
except for predicting the jerks where the prediction error does
not improve. Furthermore, the interquartile range on FF event
decreases with 30%, but the interquartile ranges of the other
events increases 30% to 50% compared to the prediction with
only the population mean. This shows that the probabilistic
model is able to capture the correlations between the kine-
matics and the events for the validation without exoskeleton.
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Fig. 6. The errors of gait event prediction using latent variables for trials
with and without exoskeleton at 0.2 s before the true event. The horizontal
red line in the boxplot marks the median. The box ranges from the 25th to the
75th percentile. The whiskers contain 90% of the data. The HO prediction
with exoskeleton has 56 outliers bigger than 1 s which are not shown for
readability of the graph.

These correlations are captured inside the H matrix. The latent
variables are estimated solely from observation of the joint
velocities without event observations. However, this learned
correlation is not sufficient to extrapolate the model to the
validation with exoskeleton, leading to the worse predictions
of the event timings in Fig. 7. This can be solved in two
ways: i) include exoskeleton trials in the learning phase, ii) add
exoskeleton sensors that reliably detect gait events, e.g., IC
event can be measured with a foot switch or a distance sensor.

The probabilistic model can easily include such additional
information, e.g., when the left IC event is detected, an
additional measurement equation is added to express that the
normalized time is approximately equal to the closest integer
multiple of 1, i.e. sl mod 1 ≈ 0. . Similarly, we can use (2)
and (12)–(15) to establish a measurement model for the other
events. In this way, latent variables can be estimated based on
both kinematics and event information.

The proposed probabilistic methodology also includes
bounds on the latent variables x∗ indicating that the shape of
the trajectories should not change to drastically, and bounds
on v = T−1, indicating that the stride time should only be
allowed to vary within a given range. The bounds on ∆s
indicate the expected symmetry of the gait pattern. A big
advantage of our approach is that we can determine how
far our model should extrapolate outside the range of x∗, v
and ∆s encountered during training. The bounds have a clear
physical meaning, and are therefore easier to tune, compared
to black-box machine-learning techniques.

In future work, results can be improved by learning from a
dataset that includes exoskeleton trials. For validation, this will
however require more subjects than the five that were available
for this study. An exoskeleton disturbs the walking pattern.
This disturbance depends on the ability of the exoskeleton con-
troller to actively compensate its own dynamics and friction.
The signals generated by the gait prediction methodology of
this paper could significantly improve the performance of such
controller by generating an appropriate feedforward (partially)

wo exo

with exo

Fig. 7. Improvement of using the latent variables on the standard deviation and
interquartile range of the prediction errors for the joint and event prediction.
The result with latent variables is reported relative to the result with only
using the mean trajectories and timing events. Values above 1 indicate that
the result with latent variables is larger than the result with just using the
mean.

compensating dynamics and friction [27]. For healthy gait, we
therefore envision the following procedure: first, learn a model
solely based on trials without exoskeleton. Use this model
to (partially) improve the performance of the exoskeleton
controller and acquire a new training dataset. Then repeat this
procedure until there are no further improvements.

The computed probabilities could also be used inside the
control strategy, e.g. by controlling the joints of an exoskeleton
using an impedance matrix that is proportional to the inverse of
the covariance matrix at a point on the probabilistic trajectory
model, in a similar way is as done in [28] for the control of
a robot arm. Another example would be an exoskeleton con-
troller that checks whether measurements are still conforming
to the probabilistic model, and use this to decide when to
switch control modes.

VII. CONCLUSION

In this work we presented an integrated, real-time proba-
bilistic methodology to estimate a single, consistent model to
estimate higher order derivatives of the joint angles and to
predict future gait joint trajectories and events from measured
kinematics.

The method was trained on a dataset for walking with-
out exoskeleton; afterwards the method was validated: Using
cross-validation, we showed that our method is effective for
walking without exoskeleton for both trajectory and event
prediction. Since the walking pattern for walking with an
exoskeleton is disturbed, the dataset for walking with an
exoskeleton represented an extrapolation of the trained model.
The gait trajectory prediction was still improved, but the results
of event prediction were mixed.

The ability to predict future joint trajectories and gait
events offers opportunities to design exoskeleton controllers
which anticipate these trajectories and events, allowing better
tracking control and smoother, accurately timed transitions
between different control modes.
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