

Citation Marian Verhelst and Bert Moons, (2017)

Embedded Deep Neural Network Processing: Algorithmic and processor

techniques bring deep learning to IoT and edge devices

IEEE SOLID-STATE CIRCUITS MAGAZINE fall 2017, 55-65.

Archived version Author manuscript: the content is identical to the content of the published

paper, but without the final typesetting by the publisher

Published version https://ieeexplore.ieee.org/abstract/document/8110869

Journal homepage https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4563670

Author contact Marian.verhelst@kuleuven.be

+ 32 (0)16 328617

Acknowledgement This work has been supported by the EU ERC project Re-SENSE under grant

agreement ERC-2016-STG-715037.”

(article begins on next page)

https://ieeexplore.ieee.org/abstract/document/8110869
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4563670

eep learning has
recently become

im-mensely pop-
ular for image rec -

ognition, as well as
for other recognition and pattern match -
ing tasks in, e.g., speech processing,
natural language processing, and so
forth. The online evaluation of deep
neural networks, however, comes with
significant com putational complex-
ity, making it, until recently, feasible
only on power-hungry server plat-
forms in the cloud. In recent years,
we see an emerging trend toward em-
bedded processing of deep learning

networks in edge devices: mobiles,
wearables, and Internet of Things
(IoT) nodes. This would enable us
to analyze data locally in real time,
which is not only favorable in terms
of latency but also mitigates privacy
issues. Yet evaluating the powerful
but large deep neural networks with
power budgets in the milliwatt or even
microwatt range requires a signifi-
cant improvement in processing en-
ergy efficiency.

To enable such efficient evalua-
tion of deep neural networks, optimi-
zations at both the algorithmic and
hardware level are required. This
article surveys such tightly interwo-
ven hardware-software process-
ing techniques for energy efficiency

and shows how implementation-
driven algorithmic innovations,
together with customized yet flex-
ible processing architectures, can
be true ga me changers . To help
readers fully understand the im-
plementation challenges as well as
opportunities for deep neural net-
work algorithms, we start by briefly
summarizing the basic concept of
deep neural networks.

The Birth of Deep Learning
Deep learning [1] can be traced back
to neural networks, which have been
around for many decades and were
already gaining popularity in the
early 1960s. A neural network is a
brain-inspired computing system,

Acknowledgement: This work has been supported by the EU ERC
project Re-SENSE under grant agreement ERC-2016-STG-715037.”

Algorithmic and processor techniques
bring deep learning to IoT and edge devices

Embedded Deep Neural
Network Processing

Marian Verhelst and Bert Moons

D
b

a
c

k
g

r
o

u
n

d
—

f
o

o
ta

g
e

 f
ir

m
, i

n
c

.

typically trained through supervised
learning, whereby a machine learns
a generalized model from many
training examples, enabling it to
classify new items.

The trained classification model
in such neural networks consists of
several layers of neurons, wherein
each neuron of one layer connects
to each neuron of the next layer, as

illustrated in Figure 1. The output
of the network indicates the prob-
ability that a certain object class is
observed at the network’s input. In
such a network, every individual neu-
ron creates one output o, which is a
weighted sum of its inputs i. For the
nth neuron, of layer ,l this can be for-
malized as

. .o w i b ln ln
m

lmn lmv= +/c m (1)

The weights w lmn and biases bln are
the flexible parameters of the net-
work that enable it to represent a
particular desired input/output map-
ping for the targeted classification.
They are trained with supervised
training examples in an initial off-
line training phase, after which the
network can classify new examples
presented to its inputs, a process typi-
cally referred to as inference.

Such neural networks have been
used for decades in several applica-
tion domains. In a classical pattern-
recognition pipeline [Figure 2(a)],
features are generated from an input
image by an application-specific fea-
ture extractor, hand-designed by an
expert engineer. This preliminary
feature extraction step was necessary
because, at that time, one could use
only small neural networks with a
limited number of layers that did not
have the modeling capacity required
for complex feature extraction from
raw data. Larger neural networks were
impossible to train due to noncon-
vergence issues, lack of sufficiently
large data sets, and insufficient com-
pute power.

Yet, after a long winter for neural
networks in the 1970s and 1980s,
they regained momentum in the
1990s and again in the 2010s. The
increasing availability of pow-
erful compute servers and graph-
ics processing units (GPUs), the
abundance of digital data sources,
and innovations in training mecha-
nisms allowed training deeper and
deeper networks, with many layers of
neurons. This meant the start of a new
era for classification, as it allow -
ed training networks with enough

i11 o11

o11

o13

o21

o23

o11

o31

o32

o33

i12

i13

i11

i12

i13

i11

i12

i13

i14

i15

Car?

House?

Dog?

× w111

× w112

× w113

b11

+

σ

Oln
= σ (∑

m

wlmn × ilm + bln)

+

o12 o22

Figure 1: A traditional fully connected neural network is made up of layers of neurons.
 Every neuron makes a weighted sum of all its inputs, followed by a nonlinear transformation.

�

�
Image Trained

Feature
Extraction

Neural
network

Trained
Classifier

Class
Label

…

…

…

�
Image Designed

Feature
Extraction

Edges
Gradients
Corners

HOG
…

Neural
Network

Trained
Classifier

“House”

“House”

“House”

Class
Label

(a)

(b)

Image Trained
Feature

Extraction

Trained
Classifier

Class
Label

(c)

Figure 2: (a) Traditionally, machine learning classifiers were trained and applied on hand-
crafted features. (b) The advent of deep learning allowed the network to learn and extract the
optimal feature sets. (c) Such a network trains itself to extract very coarse, low-level features
in its first layers, then finer, higher-level features in its intermediate layers, and, finally, targets
full objects in the last layers. HOG: histogram of oriented gradients.

modeling capacity to operate directly
on raw data. [Figure 2(b)]. Such “deep
learning networks” thus fulfilled
the role of both feature extractor
and classifier.

A deeper network can automati-
cally learn the best possible features
during its training phase, instead of
relying on features hand-crafted by
humans. When inspecting trained
networks, one can see that a deep
neural network trains itself to extract
very coarse, low-level features in its
first layers and finer, higher-level
features in its intermediate layers
and then targets full objects in the
last layers [Figure 2(c)].

A network’s ability to learn the
most optimal features significantly
boosted the classification accuracy
of such networks, resulting in their
true breakthrough: deep learning was
born. Over the last decade, deep learn-
ing has, as such, been able to move to
deeper and deeper network architec-
tures, enabling tremendous improve-
ments in achievable classification
accuracy, as illustrated by the results
from the yearly ImageNet challenge
(Figure 3) [2].

Deep Neural Network Topologies
Another crucial factor in the break-
through of deep learning technol-
ogy is the advent of new network
topologies. Classical neural networks—
which rely on so-called fully con-
nected layers, with each neuron of
one layer connected to each neuron
of the next layer (Figure 1) —suffer
from a very large number of training
parameters. For a network with L
layers of N neurons each, . ()L N N2+
parameters must be trained. Know-
ing that N can easily reach the
order of a million (e.g., for images
with a million pixels), this large
pa rameter set becomes unpractical
and untrainable.

For many tasks (mainly in image
processing and computer vision),
convolutional neural networks (CNNs)
are more efficient. These CNNs, in -
spired by visual neuroscience, orga-
nize the data in every network layer
as three-dimensional (3-D) tensors.

The first part of the network con-
sists out of a sequence of convo-
lutional layers and pooling layers,
replacing the traditional fully con-
nected layers. A convolutional layer
transforms a 3-D input tensor O (of

size)H H C# # into a 3-D output ten-
sor I (of size).M M F# #

As illustrated in Figure 4, each
element of the output tensor O does
not need all elements of the input
tensor I to be computed. Instead, it

28.2
25.8

16.4

11.7

7.7 6.7

3.57

IL
SVRC’10

IL
SVRC’11

IL
SVRC’13

IL
SVRC’12

Alex
Net

IL
SVRC’14

VGG

IL
SVRC’14

Goo
gle

Net

IL
SVRC’15

Res
Net

Human
5.1%

ImageNet Challenge:
1,000 Classes
1.3 M Training Images/50 k
Validation/100-k Testing

Hand-Crafted
Features

Deep
Learning

Top 5 Classification Errors (%)

22 Layers

19 Layers

Eight Layers

Eight Layers

152 Layers

Figure 3: The classification results of the ImageNet challenge have seen enormous boosts
in accuracy since the appearance of deep learning submissions. (Data from [2].) ILSVRC: Ima-
geNet Large-Scale Visual Recognition Challenge; AlexNet: a CNN named for Alex Krizhevsky;
VGG: a network from the Visual Geometry Group at Oxford University; ResNet: Residual Net.

To enable efficient evaluation of deep
neural networks, optimizations at both the
algorithmic and hardware level are required.

Per Output Pixel of a Layer:
• Load C.K2 Weights
• Load C.K2 Inputs
• Do C.K2 MACs
• One Output Store

for (int f = 0; f < F; f++)
for (int mx = 0; mx < M; my++)
for (int my = 0; my < M; mx++)

for (int c = 0; c < C; c++)
for (int kx = 0; kx < K; kx++)
for (int ky = 0; ky < K; ky++)
o [c][mx][my] += w [f][c][kx][ky] . i [c][mx + kx][my + ky]);

Max-Pooling Convolutional

C

K

K

F

Convolutional Max-Pooling

Fully Connected
Classification

ReLU ReLU

Classification Trained Feature Extraction

H
M

Repeat F.M2 Times Per Layer

Figure 4: The topology and pseudocode of one layer of a typical CNN. The psuedocode is
for one layer of the network. MACs: multiply accumulation.

is connected only locally to a patch
of the input tensor of size ()K K C# #
through a trainable 3-D kernel W (of
size)K K C# # and a bias .B A formal
mathematical description to com-
pute the outputs of a convolution
layer, ,l is given as

. .O I W Blfxy

c

C

i

K

j

K

lc x i y j lfcij lf

0 0 0

= +
= = =

+ +/ / / ^ ĥ h

The result of the local sum com-
puted in this filter bank is then
passed through a nonlinearity layer,
typically a rectified linear unit (ReLU),
using the nonlinear activation func-
tion , .maxf u u0 =^ ^h h This output
can finally be processed by a max-
pooling layer, which outputs only the

maximum of a local patch (typically
2 × 2 or 3 × 3) of output units to the
next layer. This thereby reduces the
dimension of the feature representa-
tion and creates invariance to small
shifts and distortions in the inputs.
A modern CNN consists of tens [3]
to hundreds [4] of such alternating
convolutional and max-pooling lay-
ers, typically followed by one to
three classification layers, imple-
mented using the traditional fully
connected neurons (Figure 4).

It is important to note that the
same convolution kernel W and bias
B are used to compute all (M X M)
outputs of one slice in the output ten-
sor. As such, every layer of the net-
work needs only F x K K C 1 # # +^ h

parameters. With K typically rang-
ing between one and seven and F and
C on the order of tens or hundreds,
this method allows the creation of
very large networks while keeping
the number of trainable parameters
under control—all of which gave
deep learning its significant boost.

The majority of recent state-
of-the-art deep learning networks
rely on such CNNs. The optimal net-
work architecture, characterized
by the number of cascading stages
and the values of model param-
eters , , , ,F H C K and ,M varies for
each specific application. Over the
last few years, various alterations
have been proposed to this stan-
dard topology, such as, e.g., introduc-
ing feed-through connections in
ResNets [4], concatenating very small
convolutions in inception networks
[5], stacking depthwise and pointwise
convolutions in Xception networks
[6], extracting full-image dense mul-
tiscale features using DenseNets
[7], or recurrent connections in RNNs
or long short-term memories [8].
These, however, lie beyond the scope
of this tutorial.

Challenges for Embedded
Deep Inference
Both the training of a deep network
and its own inferences to perform
new classifications are now typically
executed on power-hungry serv-
ers and GPUs [Figure 5(a)]. There is,
however, a strong demand to move
the inference step, in particular, out
of the cloud and into mobiles and
wearables to improve latency and
privacy issues [Figure 5(b)]. How-
ever, current devices lack the capa-
bilities to enable deep inferences for
real-life applications.

Recent neural networks for image
or speech processing easily require
more than 100 giga-operations (GOP)/s
to 1 tera-operations (TOP)/s, as well
as the ability to fetch millions of
network parameters (kernel weights
and biases) per network evaluation.
The energy consumed in these numer-
ous operations and data fetches is
the main bottleneck for embedded

Embedded Device: Inference Cloud: Training

Training
Information

Network
Parameters

Latency
Privacy

Tx Energy
uP Energy

Scarce Resources Infinite Resources

Raw Data

Classification
Result

Latency
Privacy

Tx Energy

Embedded Device: Tx/Rx Cloud: Training + Inference

Scarce Resources Infinite Resources

(a)

(b)

Figure 5: Concerns regarding user privacy, recognition latency, and energy wasted on raw
data transmission push deep learning inferences from (a) the cloud to (b) the embedded device.
Tx/Rx: transmitter/receiver; uP = microprocessor.

A deeper network can automatically learn
the best possible features during its training
phase, instead of relying on features hand-
crafted by humans.

inference in energy-scarce milliwatt or
microwatt devices. Currently, micro-
controllers and embedded GPUs
are limited to efficiencies of a few
tens to hundreds of GOP/W, while
embedded inference will only be
fully enabled with efficiencies well
beyond 1 TOP/W. Overcoming this
bottleneck is possible yet requires
a tight interplay between algorith-
mic optimization (modifying the
network topology) and hardware
optimization (modifying the process-
ing architectures).

The following section elaborates on
the most promising optimizations cur-
rently being explored toward energy-ef-
ficient, embedded deep in ference. The
focus here is on the energy-efficient
execution of convolutional layers,
which form the bulk of the workload
during inference. However, several tech-
niques can also be applied to fully con-
nected layers.

Algorithmic and Architectural
Techniques for Energy Efficiency
GPUs and central processing units
(CPUs) are extremely flexible, general-
purpose machines. While this makes
them widely deployable and easy to use
and program, it also limits their effi-
ciency because they cannot exploit
several computational aspects of
deep inference networks, resulting
in both a memory bottleneck and a
computational bottleneck. More spe-
cifically, deep inference networks
have three typical characteristics
that can be exploited—or further
enhanced—to improve execution en -
ergy efficiency:
1) Deep learning networks exhibit a

very particular data flow with a
large amount of potential paral-
lelism and data reuse. This can,
moreover, be manipulated dur-
ing network training by playing
with the , , , ,F H C K and M pa-
rameters of the network.

2) Deep learning networks prove
to be quite robust to approxima-
tions or fault introductions. This
is exploited in various reduced-
precision hardware implementa-
tions. Also, this characteristic can

be manipulated when training the
network, allowing it to find the
best tradeoff between a low com-
plexity and a robust network.

3) Deep learning networks dem-
onstrate large sparsity. Many
parameters become very small,
even equal to zero, after network
training. Also, many data values
propagated with the network
during evaluation become zero.
This can be exploited to reduce
operations and memory fetches
in hardware yet can also be stim-
ulated further with innovative
training techniques.
We will show how, for each of these

three aspects, hardware can benefit
from the network’s characteristics
but also how, during the algorith-
mic training phase of the network,
it is possible to additionally opti-
mize the particular characteristic to
reach even greater efficiency gains.
As such, it is clear that the hardware
and algorithmic level need to closely
cooperate not only to exploit but also
to enhance the network’s character-
istics toward the most efficient hard-
ware-software realization. All of the

techniques highlighted in this article
are summarized in Figure 6.

Enhancing and Exploiting
Network Structure
In many application areas, designers
have improved the energy efficiency
of embedded network evaluation by
moving away from general-purpose
processors and developing custom-
ized hardware accelerators. Such
accelerators can exploit the known
data flows within the algorithm to
1) enhance the parallel execution of
the algorithm as well as 2) minimize
the number of data movements (Fig-
ure 7). Descriptions of several app -
lication-specific integrated circuits
targeting the efficient execution of
convolutional and fully connected
layers have recently been published.

All solutions exhibit a very large
degree of parallelization, far beyond
CPU parallelism. This easily demon-
strates itself in a data path contain-
ing a few hundred to thousands of
multiply accumulators (MACs), with
Google’s recent tensor processing
unit as an extreme example (64,000
MACs) [9].

Algorithmic
Techniques

Processor
Architecture
Techniques

Tightly
Linked

Solving the Memory Bottleneck Solving Computational Bottleneck

• Spatial Data Reuse
• Hierarchical Memory

Exploiting Data Locality

• Highly Parallel Architectures
• Distributed Processing

• Quantized Training
• Stochastic Memories

• Network Pruning
• Network Compression

and Weight Sharing

• (Dynamic) Fixed Point
• Analog and Statistical
Processing

• Memory and Computational
Gating

• Compressed Computing

A) Enhancing and Exploiting Network Structure

B) Enhancing and Exploiting Fault Tolerance

C) Enhancing and Exploiting Network Sparsity

Figure 6: An overview of the algorithmic and processor architecture techniques discussed to
increase efficiency and enable the inference of deep neural networks in embedded devices.

CNNs, inspired by visual neuroscience,
organize the data in every network layer
as 3-D tensors.

Providing data to all these func-
tional units in parallel would be near-
 ly impossible if the temporal and
spatial locality of the data was not
exploited. Indeed, many computa-
tions within one network layer share
common inputs. More specifically, as
highlighted in the pseudocode shown
in Figure 4, every weight parameter
is reused approximately M2 times
across multiple convolutions of the
same slice in the output tensor, and
every input data point is reused
across F different slices of the out-
put tensor. Moreover, the intermedi-
ate accumulation results o have to be
accumulated .C K2 times. This can, in
a custom accelerator, be exploited in
several ways to further boost efficien-
cies beyond the highly parallel, yet
not data-flow-optimized, GPUs.

Data reuse can be exploited by
reusing the same data across multi-
ple parallel execution units or, equiv-
alently, across multiple time steps on
the same execution unit. In this topol-
ogy, three extreme cases can be dis-
tinguished, as shown in Figure 8.

The first multiplies the same input
data value with several weights of
a layer’s different output channels.
This is also called weight parallel or
input stationary. In this implementa-
tion, every input will ideally be loaded
into the system only once. This, how-
ever, has negative repercussions on
the weight memory bandwidth, as
the weights must be reloaded fre-
quently (every time a new input is
applied). Moreover, the accumula-
tion of the output o cannot be per-
formed across different clock cycles,

requiring intermediate accumulation
results o to be pushed into mem-
ory and refetched later, strongly im-
pacting the input/output memory
bandwidth. A similar scheme fetches
every weight once and multiplies it
with many input values. This “weight
stationarity” or “input parallelism”
improves the weight memory band-
width, yet at the expense of the in-
put memory bandwidth. Finally, the
output stationary scheme reloads
new weights and inputs every single
clock cycle and yet is able to accumu-
late the intermediate results locally
within the MAC unit across different
clock cycles, to the benefit of the out-
put memory bandwidth.

All these optimizations can be
seen as a reshuffling of the nested
loops in the pseudocode of Figure 4.
Of course, in practice, most realiza-
tions implement a hybrid form of
the three presented extreme cases.
Examples include [23] and [24], where
a two-dimensional (2-D) data path
multiplies every input with several
weights, while every weight is also
multiplied with several inputs, and
[10], where the input and output
stationarities are optimized to mini-
mize the chip input/output band-
width. Which parallelization scheme
is optimal depends strongly on the
network’s dimensions; the parame-
ters , , , ,F H C K and ,M which allow
cooptimization of the hardware; and

Input Stationary
(Weight Parallel)

Weight Stationary
(Input Parallel)

Output Stationary Hybrids

Input BW Low High High Medium

Weight BW High Low High Medium

Output BW High High Low Medium

In
pu

ts +
+

+

× × × × × × × × × ×
× × × ×
× × × ×
× × × ×

×

×
×

×
×
×

Weights Weights WeightsWeight

In
pu

t +
+

+
+ In
pu

ts +
+

+
+

O
ut

pu
ts

O
ut

pu
ts

In
pu

t

Figure 8: Different architectural topologies allow data reuse to be maximized, reusing either inputs, weights, intermediate results, or a
combination of the three. BW: bandwidth

MAC Array

×
+

×
+

×
+

×
+

FSM or
Processor
Controlled

Weight Memory

Input/Output Memory

Minimize Data
Movements

Maximize
Parallelism

Maintain
Flexibility

×
+

×
+

×
+

×
+

×
+

×
+

×
+

×
+

Figure 7: Custom deep neural network processors gain efficiency by minimizing data move-
ments and maximizing parallelism. Still, it is crucial not to lose all flexibility in mapping a
wide variety of networks. FSM: final state machine.

the network itself. A more elaborate
overview of the different paralleliza-
tion schemes can be found in [11]
and [12], along with an assessment of
their merits.

A complementary way to reduce
the energy burden of continuous
data fetches is not to minimize the
number of data fetches but rather to
reduce the energy cost of every data
fetch by exploiting temporal data
locality. Most realistic deep networks
require so much weight and input/out-
put memory (megabytes to gigabytes)
that it is impossible to fit them in on
a chip memory, thus requiring fetches
from energy-costly external dynamic
random-access memory (DRAM). Simi-
lar to traditional processors, this can,
however, be mitigated by a memory
hierarchy having one or more levels of
on-chip static RAM (SRAM) or register
files. Frequently accessed data can, as
such, be stored locally to reduce its
fetching cost (Figure 9).

An important difference with gen-
eral-purpose solutions, however, is
that the sizes of the memories in the
hierarchy can be optimized toward
the network’s structure, e.g., foresee-
ing a local memory capable of cach-
ing exactly one weight tensor, or one
of the tensor [11]. Even more impor-
tantly, the networks can be trained
with the processor’s memory hierar-
chy in mind. As such, networks have,
e.g., been explicitly trained to com-
pletely fit in on-chip memory. This
optimization is, of course, highly
interwoven with the parallelization
scheme. By jointly optimizing these,
one can adjust the degree of parallel-
ization to the memory hierarchy and
minimize the product of the number
of memory accesses with the cost of
every memory access [13].

Distributed and systolic process-
ing can be seen as an extreme type
of such hierarchical memories. In the
systolic processing concept, a 2-D
array of functional units processes
data locally and passes inputs and
intermediate results from unit to
unit instead of to/from global mem-
ory. These functional units are each
equipped with a very small SRAM (as

in [14]) or even just registers (as in [9])
to store data locally and maximize
data reuse within the array. Process-
ing happens as a systolic wavefront
through the array, wherein weight
coefficients can be kept stationary in
the functional units, input data are
shifted in one direction through the
array, and output data accumulate in
the orthogonal direction. This allows
the performance of a very large num-
ber of computations for convolution
or matrix multiplication in parallel
by keeping all systolic elements busy
without burdening the memory band-
width. Interested readers are pointed
to [15] and [9] for more details.

Such systolic operation opens the
door to in-memory computing, where
the computation is integrated inside
the memory array. While this is also
pursued in traditional memory archi-
tectures, the results look especially
promising for emerging nonvolatile
memory arrays. For example, in resistive
memory technologies, a multiplication
can be implemented by exploiting
the memory cell’s conductance as the
kernel weight, while accumulating cur-
rent from different elements to imple-
ment the convolution’s accumulation
operation [16]. However, this technol-
ogy currently still suffers from large
variability, limiting applications to very

low-resolution operations with very lim-
ited kernel and network sizes.

While all the aforementioned tech-
niques can dramatically boost the
system’s throughput and energy effi-
ciency, it is important to keep an eye
on their impact on the design’s pro-
grammability and flexibility. Espe-
cially in the fast-paced area of deep
learning, it is of the utmost impor-
tance to maintain sufficient flexibility
toward alternative network dimensions
and novel network topologies. Most
accelerators, however, succeed in this
by enabling the acceleration of matrix
multiplications (for the fully con-
nected layers) and convolutions (for
the convolution layers) of any size,
yet with maximal efficiency for a sub-
set of sizes.

Enhancing and Exploiting
Fault Tolerance
A second important aspect of deep
neural networks that can be exploited
in custom processor designs is their
fault tolerance. Many studies observe
the robustness of CNNs and other
networks to perturbations on their
weight parameters and intermediate
computational results [17], [18]. This
can be exploited both at the hard-
ware as well as the algorithmic level
in several ways.

MAC Array

×
+ + + +

+ + + +

+ + + +

Off-Chip
DRAM

On-Chip
SRAM

R
eg

is
te

rs

GB
Hundreds of pJ/Word

MB
Tens of pJ/Word B

<pJ/Word

Local
SRAM

kB
pJ/Word

× × ×

× × × ×

× × × ×

Figure 9: A well-designed memory hierarchy avoids drawing all weights and input data
from the costly DRAM interface and stores frequently accessed data locally. pJ: picojoule.

In the systolic processing concept, a 2-D array
of functional units processes data locally and
passes inputs and intermediate results from
unit to unit instead of to/from global memory.

A straightforward way to ben-
efit from the network’s fault toler-
ance is to perform the computations
at reduced computational accuracy
with limited recognition loss. Typi-
cal benchmarks can be run at a 1–9-b
fixed point rather than a 32-b floating
point at lower than 1% accuracy loss
[18]. This is possible by quantizing
all weights of a floating-point-trained
network before execution. Improved
results can be obtained when intro-
ducing quantization during the train-
ing step itself [19], [38], resulting in
smaller or lower-precision networks
for the same application accuracy. As
an extreme example, networks have
been specifically trained to oper-
ate with only 1-b representations of
weights alone [20] as well as with
both weights and activations [20],
[21] wherein all multiplications can
be replaced by efficient XNOR opera-
tions [22]. In [20], a binary-weight
version of ImageNet is only 2.9% less
accurate (in top-1 accuracy) than the
full-precision AlexNet [3].

This observation can lead to major
energy savings, as current CPU and
GPU architectures operate using
32–16-b floating-point number for-
mats. Reducing precision from 32-b
floating point to low precision not
only reduces computational energy
but also minimizes the storage and
data-fetching cost needed for network

weights and intermediate results.
Moreover, for very low bit widths,
this even allows the replacement of
multipliers that have several data
values with a common weight factor
via preloaded lookup tables [10]. As
a result, all custom CNN accelerators
operate in fixed point. While most
processors operate at constant 16-,
12-, or 8-b word lengths, some recent
implementations support variable
word-length computations, wherein
the processor can change the used
computational precision from opera-
tion to operation [23], [10], [24]. This
accommodates for the observation
that the optimal word length for a
deep network strongly varies from
application to application and is
even shown to differ across various
layers of a single deep network [18]
[Figure 10(a)].

Energy-efficient variable-resolu-
tion processors have been realized
using a technique termed dynamic
voltage-accuracy-frequency scaling
[25] to jointly reduce the switching
activity, supply voltage, and par-
allelization scheme when computa-
tional resolution drops [Figure 10(c)].
This results in a scaling of the sys-
tem’s energy consumption, which is
super-linear with the computational
resolution [Figure 10(b)], thus allow-
ing every network layer to run at its
own minimal energy point. Reduced

bit-width implementations all exploit
the deep network’s tolerance to faults
in a deterministic way.

Another school of thought targets
energy savings through tolerating
nondeterministic statistical errors.
This can be accomplished by execut-
ing the convolutional kernels in the
noisy analog domain [26]. Alterna-
tively, in the digital domain, stochas-
tic fault tolerance can be exploited
by operating the circuits [27] and/
or memory [28] in the energy-effi-
cient near-threshold regions. In this
region, circuit delays as well as
memory failures suffer from large
variation. Yet the networks can tol-
erate such stochastic behavior up to
a certain limit. Such circuits are com-
bined with circuit monitors that con-
stantly assess and control the circuit’s
fault rate [28].

Finally, the operational circum-
stances can strongly influence the net-
work’s tolerance to approximations. In
a given classification application, the
quality of the inputs might change
dynamically, or some classes might be
easier to observe than others. If one
tries to train one common network
that performs acceptably under all
possible circumstances and classes,
a large, complex, energy-hungry
network topology would be needed.
Recent work, however, promotes the
training of hierarchical or staged

AlexNet on ImageNet

Q
ua

nt
iz

at
io

n
(B

its
)

R
el

at
iv

e
P

ow
er

Computational Precision

33× Gain
at 1% RMSE

10

8

6

4

2

0
2 4 6 8

Layer Number
(b) (c)(a)

Uniform at 100%

Nonuniform at 99%

100

10–2

10–4

10–6 10–4 10–2 100

1 Bit

6 Bit

16 Bit

x0/0

x1/0

x2

x3

y0/0y1/0y2y3

p0/0

p1/0

p2/0

p3/0

p7 p6 p5 p4

Figure 10: (a) When quantizing all weight and data values in a floating point AlexNet uniformly, the network can run at 9-b precision.
Lower precision can be achieved without significant classification accuracy loss by running every layer at its own optimal precision. This allows
(b) saving power in the function of computational precision and (c) building multipliers whose energy consumption scales drastically with com-
putational precision, through reduced activity factor and critical path length.

networks [29] that perform classifica-
tions in several optional stages. At
each stage, only a few layers of the net-
work are executed, after which a clas-
sification layer tries to guess the class
from the current outputs. Additional
network layers and classifiers are run
only if the obtained probabilities are
not outspoken enough, until a classi-
fication with distinct probabilities is
obtained. Such dynamic evaluations
can be performed on any hardware
platform but, again, benefit signifi-
cantly from implementation-aware
training techniques or topology-
optimized implementations. Infer-
ence on the ImageNet data set [29]
required up to 2.6 times fewer opera-
tions than state-of-the-art networks at
equivalent accuracy.

Enhancing and Exploiting Sparsity
Deep neural networks exhibit extreme
sparsity, i.e., many of the weight val-
ues, as well as intermediate data val-
ues, are zero. Figure 11(a) shows the
sparsity of an AlexNet in function
of the used fixed-point word length
within the network. As can be seen,
even for large word lengths, more
than 70% of the activations are zero.
At reduced bit-width computations,
also many weight values are quan-
tized to zero. This opens up many
opportunities.

On the hardware side, this can be
exploited by preventing any MAC with
a zero-valued input [see Figure 11(b)],
by not even fetching zero-valued data
values from memory, and by strongly

compressing the on/off chip data
stream using, e.g., Huffman or other
types of encoding. Several hardware
implementations exploit these CNN
characteristics. The authors of [24]
and [11] skip all unnecessary sparse
operations by gating the inputs to
their arithmetic units if the input data
is zero, as a multiply-accumulate with
zero does not change the internal
accumulation result. Both implemen-
tations also compress off-chip data
streams, either through run-length
encoding [14] or through a simpli-
fied Huffman scheme [23]. The archi-
tectures presented in [30] and [31],
on the other hand, allow speeding up
sparse network evaluation s by only
scheduling non-zero operations for
execution, improving computational
throughput up to 1.52 and 5.2 times,
respectively.

More powerful opportunities arise,
again, when the hardware and algo-
rithmic plane are jointly involved.
Deep network training algorithms
can be modified to enhance the net-
work’s sparsity by iteratively pruning
the smallest weight values (quantiz-
ing them to zero) and retraining the
network [32]. Going one step further,
energy-aware pruning techniques
even take the energy consumption

model of the hardware into account
and start pruning the layers that con-
sume the most energy, to maximize
pruning efficacy [33]. This easily
allows the pruning of 70–90% of the
weights and saves up to 70% of ener-
 gy consumption.

Interestingly enough, networks
have more compression capabili-
ties beyond simply that of pruning
low-valued weights. After pruning
and quantizing a network, it turns
out that the resulting weight values
are highly clustered. This allows, e.g.,
the clustering of 8-b weights in only
16 (24) different weight clusters, each
of which can share a common weight
value expressed by a 4-b label. For
every weight value, only the 4-b labels
are stored, and these are expanded
online to their original 8-b value using
a small embedded lookup table.

Recent work has shown that the
combination of pruning, weight shar-
ing, and Huffman compression com-
presses state-of-the-art networks by
50 times in memory size (deep com-
pression [32]). Traditional accelerators
can benefit from such compression
but only in terms of a reduction
in memory size and the amount of
memory accessed. To execute convo-
lutional operations, they must still

Fixed Point Precision (bits)

AlexNet

M
ea

n
S

pa
rs

ity
 (

%
)

Layer Inputs
Weights

0 0
0

0

00
0

MAC Array

+ + + +

+ + + +

+ + + +

Weight
Memory

Input/Output
Memory

DRAM

Compress
Off-Chip

Communication

Prevent Fetching
Zero-Valued

Data

Prevent Executing
Zero-Input

MACs

100

50

0
2 4 6 8 10

× × × ×

× × × ×

× × × ×

(a) (b)

Figure 11: (a) The sparsity of input and weight values of a typical network in function of computational precision at which the network is
evaluated. (b) This sparsity allows energy to be saved in the processor’s input/output interface, on-chip memories, and data path.

An important difference with general-purpose
solutions, however, is that the sizes of the
memories in the hierarchy can be optimized
toward the network’s structure.

decompress the data and, at best,
remain idle during zero-valued op -
erations. The efficient-inference engine
[35], however, demonstrates that it
is also possible and highly benefi-
cial to operate directly on the com-
pressed data by adapting the data
path and memory interface to the
compressed data format.

A network compression technique
that does enable straightforward
network execution in the complex
domain without any hardware adapta-
tion uses singular value decomposi-
tion (SVD) [36]. By performing SVD on
a sparse weight matrix of a fully con-
nected network layer, the matrix can
be decomposed into two matrices,
the rows and columns of which are
ordered by the function of the most
significant network parameters. By
simply removing the nonsignificant
sections of the matrix, one is left with
a strongly compressed representa-
tion of the original network layer. The
result can be executed on any regu-
lar neural network accelerator, as it
is identical to the execution of two
(much smaller) fully connected layers.
While this method is more straightfor-
ward from a hardware point of view, it

offers only limited compression capa-
bilities, ranging typically up to only
five times compression [36].

Outlook
In this short tutorial, we have pre-
sented a selection of very promising
hardware and algorithmic techniques
from the rapidly expanding and
growing field of deep learning. Each
exploits and/or enhances the unique
features of deep networks to improve
the energy efficiency of their execu-
tion. Together, they have allowed the
achievement of tremendous energy
savings compared to traditional
CPU- and GPU-based compute plat-
forms. As can be seen in Figure 12
[37], this recent wave of innovations
breaks the barrier for embedded
deep inference in mobile devices.
Implementations far surpassing the
efficiencies of 1-TOP/W have recently
been demonstrated, while computa-
tional throughput is boosted to sev-
eral 100 GOP.

Still, challenges remain to effec-
tively bring deep learning to IoT and
edge devices. First, few (if any) com-
plete end-to-end solutions have been
demonstrated. Doing so involves

integrating the deep-inference chips
in complete vision-processing pipe-
lines mapping real-life applications.
This requires not only an efficient
execution of the inference kernel itself
but also efficient image slicing, data
transfer, and results interpretation.

A second interesting challenge
lies in the learning process. So far, most
chips focus on the inference part,
where pretrained models are efficiently
executed on-chip. In the future, how-
ever, the desire for more privacy and
user customization will stimulate chips
capable of executing the training phase
as well. This, however, comes with new
computational challenges and the
need for a careful algorithm–archi-
tecture cooptimization.

It is, thus, very clear that, more
than ever, the hardware and algo-
rithmic layer must be optimized
jointly, grasping the various cross-
layer opportunities of deep neural
networks. This is also apparent from
the interest of many traditionally
software-oriented companies (like
Google, Amazon, and Microsoft) in
the development of new proprietary
hardware for deep learning.

This field is so vibrant that every
single week new ideas pop up. Of
course, space does not allow us to
cover all of the exciting ideas going
around in the embedded deep learn-
ing space at the moment. Yet we hope
that we were able to spark readers’
interest and stimulate further explo-
ration of this lively field.

References
[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep

learning,” Nature, vol. 521, no. 7553, pp
436–444 2015.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet large scale visual
recognition challenge,” Int. J.Computer
Vision, vol. 115, no. 3, pp. 211–252,
2015.

[3] A. Krizhevsky, I. Sutskever, and G. Hinton,
“ImageNet classification with deep convo-
lutional neural networks,” in Proc. Conf.
Neural Information Processing Systems,
2012, pp. 1097–1105.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep
residual learning for image recogni-
tion,” arXiv Preprint, arXiv:1512.03385,
2015.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.
Reed, D. Anguelov, and A. Rabinovich,
“Going deeper with convolutions,” in Proc.

Throughput (GOPs)

E
ne

rg
y-

E
ffi

ci
en

cy
 (

T
O

P
s/

W
)

1 10 100 1,000

4 b

8 b
16 b
Minimum Energy
Peak Performance

4-b Sparse

2016 References

1 TOPs/W

GPU
CPU

10-f/s ResNet at 30 mW
10

1

0.1

10
0

G
O

P
s

Figure 12: An overview of the reported performance of the deep neural network processors
published at the International Solid-State Circuits Conference in 2016 and 2017. Performances
beyond 100 GOP and 1 TOP/W will be a game changer for deep inference in embedded devices.

Recent work has shown that the combination
of pruning, weight sharing, and Huffman
compression compresses state-of-the-art
networks by 50 times in memory size.

IEEE Conf. Computer Vision and Pattern
Recognition, 2015, pp. 1–9.

[6] F. Chollet, “Xception: Deep learning with
depthwise separable convolutions,” arXiv
Preprint, arXiv:1610.02357, 2016.

[7] F. Iandola, M. Moskewicz, S. Karayev,
R. Girshick, T. Darrell, and K. Keutzer,
“Densenet: Implementing efficient con-
vnet descriptor pyramids,” arXiv Preprint,
arXiv:1404.1869, 2014.

[8] F. A. Gers, J. Schmidhuber, and F. Cum-
mins, “Learning to forget: Continual pre-
diction with LSTM,” Neural Comput., vol.
12, no. 10, pp. 2451–2471, 2000.

[9] N. P. Jouppi, et al. “In-datacenter perfor-
mance analysis of a tensor processing
unit,” arXiv Preprint, arXiv:1704.04760,
2017.

[10] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, “DNPU:
An 8.1 TOPS/W reconfigurable CNN-RNN
processor for general-purpose deep neu-
ral networks,” in Proc. IEEE Int. Solid-State
Circuits Conf., 2017, pp. 240–241.

[11] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss:
A spatial architecture for energy-effi-
cient dataflow for convolutional neural
networks,” in Proc. IEEE Annu. Int. Symp.
Computer Architecture, 2016, pp. 367–
379.

[12] M. Peemen, et al. “Memory-centric accel-
erator design for convolutional neural
networks,” in Proc. IEEE 31st Int. Conf.
Computer Design, 2013, pp. 13–19.

[13] L. Cecconi, S. Smets, L. Benini, and M.
Verhelst, “Optimal tiling strategy for
memory bandwidth reduction for Cnns:
Advanced concepts for intelligent vision
systems,” Ph.D. dissertation, Univ. Bolo-
gna 2017.

[14] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze.
“Eyeriss: An energy-efficient reconfigu-
rable accelerator for deep convolutional
neural networks,” in Proc. IEEE Int. Solid-
State Circuits Conf., 2016, pp. 262–263.

[15] H. T. Kung, “Systolic algorithms for the
CMU WARP processor,” Research Show-
case @ CMU, 1984.

[16] A. Shafiee, A. Nag, N. Muralimanohar, R.
Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar, “ISAAC: A
convolutional neural network accelerator
with in-situ analog arithmetic in cross-
bars,” in Proc. 43rd Int. Symp. Computer
Architecture, 2016, pp.14–26.

[17] P Gysel, M. Motamedi, and S. Ghiasi,
“Hardware-oriented approximation of
convolutional neural networks,” in Proc.
Workshop Contribution to Int. Conf. Learn-
ing Representations, 2016.

[18] B. Moons, B. De Brabandere, L. Van Gool,
and M. Verhelst, “Energy-efficient Con-
vNets through approximate computing,”
in Proc. IEEE Winter Conf. Applications
Computer Vision, 2016, pp. 1–8.

[19] I. Hubara, M. Courbariaux, D. Soudry, R.
El-Yaniv, and Y. Bengio, “Quantized neu-
ral networks: Training neural networks
with low precision weights and activa-
tions,” arXiv preprint, arXiv:1609.07061,
2016.

[20] M. Rastegari, V. Ordonez, J. Redmon, and
A. Farhadi, “XNOR-Net: Imagenet classifi-
cation using binary convolutional neural
networks,” in Proc. European Conf. Com-
puter Vision, 2016, pp. 525–542.

[21] I. Hubara, M. Courbariaux, D. Soudry, R.
El-Yaniv, and Y. Bengio, “Binarized Neural
networks in advances” in Neural Informa-
tion Processing Systems 29, D. D. Lee, M.
Sugiyama, U. V. Luxburg, I. Guyon, and R.
Garnett, Eds. Curran Assoc., Inc. 2016, pp.
4107–4115.

[22] R. Andri, L. Cavigelli, D. Rossi, and L. Be-
nini, “YodaNN: An ultra-low power convo-

lutional neural network accelerator based
on binary weights,” in Proc. IEEE VLSI
Computer Society Annu. Symp., July 2016,
pp. 236–241.

[23] B. Moons and M. Verhelst, “A 0.3–2.6 TOPS/W
precision-scalable processor for real-time
large-scale ConvNets,” in Proc. IEEE Symp.
VLSI Circuits, 2016, pp. 1–2.

[24] B. Moons, et al. “Envision: A 0.26-to-10
TOPS/W subword-parallel dynamic-volt-
age-accuracy-frequency-scalable convo-
lutional neural network processor in 28
nm FDSOI,” in Proc. IEEE Int. Solid-State
Circuits Conf., 2017, pp. 246–257.

[25] B. Moons, R. Uytterhoeven, W. Dehaene,
and M. Verhelst, “DVAFS: Trading com-
putational accuracy for energy through
dynamic-voltage-accuracy-frequency-
scaling,” in Proc. Conf. Design, Automa-
tion and Test in Europe, Lausanne, 2017,
pp. 488–493.

[26] L. Fick, D. Blaauw, D. Sylvester, S. Skrzyn-
iarz, M. Parikh, and D. Fick, “Analog in-
memory subthreshold deep neural net-
work accelerator,” in Proc. IEEE Custom
Integrated Circuits Conf., Austin, TX, 2017,
pp. 1–4.

[27] Y. Lin, S. Zhang, and N. R. Shanbhag.
“Variation-tolerant architectures for con-
volutional neural networks in the near
threshold voltage regime,” in Proc. IEEE
Int. Workshop Signal Processing Systems,
2016, pp. 17–22.

[28] P. Whatmough, S. Kyu Lee, H. Lee, S. Rama,
D. Brooks, and G.-Y. Wei, “A 28nm SoC
with a 1.2GHz 568nJ/pred sparse deep
neural network engine with >0.1 timing
error rate tolerance for IoT applications,”
in Proc. IEEE Int. Solid-State Circuits Conf.,
2017, pp. 242–243.

[29] G. Huang, et al. “Multi-scale dense con-
volutional networks for efficient predic-
tion,” arXiv Preprint, arXiv:1703.09844,
2017.

[30] J. Albericio, P. Judd, T. Hetherington, T.
Aamodt, N. E. Jerger, and A. Moshovos,
“Cnvlutin: Ineffectual-neuron-free deep
neural network computing,” in Proc. ACM/
IEEE 43rd Annu. Int. Symp. Computer
 Architecture, June 2016, pp. 1–13.

[31] D. Kim, J. Ahn, and S. Yoo, “A novel zero
weight/activation-aware hardware archi-
tecture of convolutional neural network,”
in Proc. IEEE Design, Automation & Test in
Europe Conf. & Exhibition, 2017, pp. 1462–
1467.

[32] S. Han, J. Pool, J. Tran, and W. Dally.
“Learning both weights and connections
for efficient neural network,” in Proc. Ad-
vances in Neural Information Processing
Systems, 2015, pp. 1135–1143.

[33] V. Sze, T.-J. Yang, and Y.-H. Chen, “Design-
ing energy-efficient convolutional neural
networks using energy-aware pruning,”
in Proc. Conf. Computer Vision and Pat-
tern Recognition, Honolulu, Hawaii, July
21–26, 2017, pp. 5687–5695.

[34] S. Han, H. Mao, and W. J. Dally, “Deep
compression: Compressing deep neural
networks with pruning, trained quantiza-
tion and Huffman coding,” arXiv Preprint,
arXiv:1510.00149, 2015.

[35] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram,
M. A. Horowitz, and W. J. Dally, “EIE: Ef-
ficient inference engine on compressed
deep neural network,” arXiv Preprint,
arXiv:1602.01528, 2016.

[36] J. Xue, J. Li, and Y. Gong, “Restructuring
of deep neural network acoustic models
with singular value decomposition,” in
Proc. Interspeech Conf., 2013, pp. 2365–
2369.

[37] M. Verhelst. (2017). Deep learning pro-
cessor survey. [Online]. Available: http://

www.esat.kuleuven.be/~mverhels/DLIC-
survey.html

[38] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and
Y. Zou, “Dorefa-net: Training low bitwidth
convolutional neural networks with low
bitwidth gradients,” arXiv preprint, arX-
iv:1606.06160.

About the Authors
Marian Verhelst (marian.verhelst@
kuleuven.be) has been an assistant
professor at the Micro-Electronics and
Sensors Laboratories of the Electrical
Engineering Department at KU Leu-
ven, Belgium, since 2012. Her research
focuses on self-adaptive circuits and
systems, embedded machine learn-
ing, and low-power sensing and pro-
cessing for the Internet of Things. She
received a Ph.D. degree from KU Leu-
ven (cum ultima laude) in 2008. She
was a visiting scholar at the Berke-
ley Wireless Research Center of the
University of California, Berkeley, in
2005. From 2008 to 2011, she worked
in the Radio Integration Research
Lab of Intel Laboratories, Hillsboro,
Oregon. She is an IEEE Solid-State Cir-
cuits Society Distinguished Lecturer
and a member of the Young Academy
of Belgium and has published over
100 papers in conferences and jour-
nals. She is a member of the Interna-
tional Solid-State Circuits Conference
(ISSCC) Technical Program Committee
and the Design, Automation, and Test
in Europe (DATE) and ISSCC Executive
Committees. She was associate edi-
tor for IEEE Transactions on Circuits
and Systems II and currently serves in
the same capacity for IEEE Journal of
Solid-State Circuits.

Bert Moons received his B.S. and
M.S. degrees in electrical engineering
from KU Leuven, Belgium, in 2011 and
2013, respectively. In 2013, he joined
the Micro-Electronics and Sensors Lab-
oratories of KU Leuven as a research
assistant, funded through an indi-
vidual grant from the Research Foun-
dation of Flanders. In 2016, he was a
visiting research student at Stanford
University, California, in the Murmann
Mixed-Signal Group. Currently, he is
working toward the Ph.D. degree on
energy-scalable and run-time adapt-
able digital circuits for embedded
deep learning applications.

	Open_Access_frontpage
	final_OA

