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Abstract. Constructing features for classifying time series data is a chal-
lenging and time-consuming task. This has motivated the development
of systems that aim to automate the feature construction process. These
systems typically provide a library of feature extraction transformations
along with a selection method to find the relevant features. However, the
existing systems are designed for univariate time series data. In practice,
time series are often generated by multiple sensors. It may be useful
to define new series by fusing the series generated by these sensors. In
this work, we propose a feature construction method that considers such
transformations. In addition, we develop a Python package called TSFuse

that implements our approach. To evaluate the system, we perform ex-
periments on real-world time series datasets and evaluate classification
models trained with the constructed features. The experimental results
show that our feature-based approach can outperform a neural network
approach in terms of both accuracy and time. Compared to univariate
feature extraction, our system is able to find a better feature represen-
tation when time series fusion is beneficial. Our findings suggest that
TSFuse is suitable for medium-sized datasets where neural networks fail
to learn a good representation, but where the problem is too complex to
construct the features manually.

Keywords: Feature construction · Sensor fusion · Time series analysis.

1 Introduction

Time series are collected in various applications such as human activity recogni-
tion [9], athlete monitoring [22], water consumption analysis [25], and condition
monitoring of industrial systems [16]. When the series are annotated with labels
(e.g., the activity performed by a person at each point in time), analyzing the
data typically involves training a classification model to predict these labels.

There exist different approaches for classifying time series data. The feature-
based approach [11] transforms the time series to a feature vector representation
and then applies standard supervised learning techniques on top of this repre-
sentation. Section 2 describes the state-of-the-art of this approach. The (deep)
neural network approach learns time series classification models in an end-to-end
fashion [10, 18]. Examples of such networks are multilayer perceptrons, recur-
rent neural networks, and convolutional neural networks. Other approaches
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include distance-based methods which employ a similarity metric (e.g., dynamic
time warping), model-based methods such as hidden Markov models, and many
more [3].

This work focuses on feature-based time series classification where there
has been a growing realization that manually defining and extracting features
repeatedly for each application is time consuming and error prone. Even though
manual feature construction often works well for small datasets, larger datasets
allow for a more complex feature representation, which is difficult for humans to
come up with based on domain knowledge alone. This has spurred the development
of approaches that automate the feature construction process by computing a
set of predefined features from the time series and possibly selecting a subset of
the most relevant ones for the prediction task at hand [8, 13]. Yet, the current
approaches have several weaknesses, namely that they are designed for univariate
time series. Many applications are characterized by the presence of multiple
different sensors, e.g., multiple accelerometers and gyroscopes attached to different
body parts of a person [22] or pressure, humidity, temperature and wind speed
sensors placed at different locations of an industrial site [29]. Oftentimes it may
be useful to define new series (e.g., deriving the total acceleration [22]) or to
compute features by comparing values from different series (e.g., to measure
the symmetry between the left and right side of the body [22]). Unfortunately,
current approaches do not exhibit such functionality.

In this work, our goal is to fill this gap and develop an automated feature
construction approach that works for data characterized by the presence of
multiple time series. Technically, this is challenging because there are many more
possible features to consider. We propose a search method for finding a set of
relevant features. In addition to considering the original time series, the proposed
method constructs new series by fusing multiple existing series. We implement
our system as a Python package called TSFuse, which contains the search method
along with a library of time series feature extraction transformations. Empirically,
we find that our approach outperforms existing automated feature construction
approaches and deep neural networks on three datasets.

We can summarize the contributions of this paper as follows:

1. We propose a feature construction method that automates the process of
extracting and selecting features from multiple time series.

2. We implement a library of time series feature transformations which also
includes pre-processing steps.

3. We develop TSFuse, a Python package that contains the library of feature
transformations and an implementation of the proposed construction method.

4. We compare the performance of our approach to a state-of-the-art feature
construction system as well as to an LSTM network on three real-world time
series datasets.
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2 Related Work

In this section, we describe the state-of-the-art of the feature-based approaches
for time series classification. A popular approach is the highly comparative ap-
proach [12]. This approach constructs features by computing a large set of
pre-defined features, typically hundreds or thousands of features, and select-
ing the relevant ones using a filter or wrapper selection method [14]. The set
of features can include both time-domain features (mean, variance, number of
peaks, etc.) and frequency-domain features (Fourier transform coefficients, power
spectral density, etc.).

There exist different systems that implement the highly comparative approach.
Currently, tsfresh [8] is one of the most widely used tools. This system extracts
a set of 63 features with different parameters, resulting in a feature vector of
length 794. The relevant features are selected using the FRESH algorithm (Fea-
tuRe Extraction based on Scalable Hypothesis tests). This algorithm performs
hypothesis tests to measure the dependency between the target labels and each
feature’s values, and selects a subset of the features based on the p-values com-
puted by these tests. Another popular system is hctsa [13], which is implemented
in Matlab. This system extracts a similar set of features as tsfresh, but uses
a different selection approach. Instead of a statistical test, it applies forward
selection with a linear model.

Another feature-based approach is genetic programming (GP) [15, 20, 24].
Different from the highly comparative methods, GP is not limited to a pre-defined
set of features. Instead, this approach can invent new features by generating ex-
pression trees that compute features. However, this involves a high computational
cost, since evaluating the fitness of the expression trees requires computing a
large number of features. Moreover, as opposed to the different implementations
that exist for the highly comparative approach, the systems developed for the
GP approach (e.g., Autofead [15]) are not publicly available.

3 Preliminaries

Our goal is to automatically construct a set of features that are relevant for a
time series classification task. This section formally defines this task and the
representation of the input data.

The input of our system is a multi-view time series dataset. Such a dataset
consists of time series generated by multiple views. A view typically corresponds
to the data collected by a single sensor. Since sensors can measure more than
one variable, the data of each view is represented as a multivariate time series.
For example, a three-dimensional accelerometer collects three series: the x, y
and z acceleration. We employ a similar notation as in [19] and specify the
representation in the definitions below.

Definition 1. A multivariate time series is an ordered sequence of m vectors
X = [x1, . . . , xm] ∈ Rd×m where each xt is a d-dimensional vector containing the
values recorded at the tth time stamp.
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Definition 2. A multi-view time series is a set X̂ = {X1, . . . , XV } where
each Xv ∈ Rdv×mv is the multivariate time series of the vth view.

Our aim is to automatically transform X̂ into a feature vector representation
that can be used as the input of a classification model. Learning such a model
requires a dataset where each instance represents a window labeled with a class.
Formally, the datasets that we consider are defined as follows:

Definition 3. A multi-view time series dataset is a set of N instances with
views X̂ = {Xi,v | i = 1, . . . , N, v = 1, . . . , V } and labels y = {yi | i = 1, . . . , N}.

4 Feature Construction

Our problem can be defined as follows:

Given: A multi-view time series dataset {X̂,y}.
Construct: A feature vector representation which is relevant with respect to

the target data y.

Our approach defines the feature vector representation using a computation
graph G. This graph specifies all transformation steps that have to be applied on
the input data in order to compute the features. A computation graph G can be
seen as a function that can be applied to the input data X̂. The result G(X̂) is
an attribute-value representation, which can be used directly as an input for a
classification model. Consequently, the automated feature construction problem
involves discovering a good computation graph. This can be thought of as a
search problem which requires picking which transformations to apply as well as
the order in which they have to be applied.

The remainder of this section describes our computation graph representation
as well as our search procedure. Algorithm 1 shows the pseudo-code for our
construction method.

4.1 Computation Graph

A computation graph is a directed acyclic graph (DAG) whose nodes are connected
by edges that represent the flow of the data. There are three types of nodes:
inputs, constants, and transformers. Inputs are nodes without incoming edges.
They serve as placeholders for the given time series data. Constants also have no
incoming edges, but as opposed to inputs they hold values that do not depend
on the input data. Transformer nodes represent the computation steps. Each
transformer creates new data from existing data, which is given by the nodes
linked to its incoming edges. We consider two types of transformers:

Series-to-series transformers These create new time series from existing time
series, e.g., the ratio between two series.

Series-to-attribute transformers These transform time series into an attribute-
value representation, e.g., the mean of a series.
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The outputs of a computation graph are the values computed by all transformers
that either have no outgoing edges or are marked as an output node. Figure 1
shows an example of a computation graph. The graph has two inputs, representing
two views with time series data. The Ratio transformer computes the ratio
between these series. Then, the result of this transformer is passed on to two
series-to-attribute transformers, whose results are the outputs of the graph.

Ratio

Input(1) Input(2)

Mean Kurtosis

Fig. 1. Example of a computation graph.

4.2 Searching for a Good Computation Graph

When searching for a good computation graph, the central challenge that arises
is that considering all possible transformations, particularly when deriving new
series such as the total acceleration, can become prohibitively expensive due to
the number of possible combinations that exist. Therefore, our approach separates
this process into a sequence of distinct steps. Moreover, it attempts to limit the
number of series that are considered by trying to quickly assess the redundancy
among the set of series and ignoring those it deems to be redundant. Concretely,
it performs the following three steps:

Step 1: Select a subset of the input views to add to G.
Step 2: Add series-to-series transformers to G to derive new views from the

selected input views.
Step 3: Add series-to-attribute transformers to G to extract an attribute-value

representation.

Step 1: Select Input Views Initially, the computation graph G is empty,
meaning that it does not contain any inputs or transformer nodes. Step 1 adds
input nodes to this graph one at a time where each input node corresponds to
a view Xv of the given multi-view time series dataset. This step selects views
according to the following redundancy test: we evaluate the correlation between
the series and all other series in G on the basis of six statistical features that are
fast to compute: min, max, mean, variance, skewness and kurtosis. If at least
one of these statistics is not highly correlated to the statistics of the previously
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Algorithm 1: Feature construction method

Input: Multi-view time series dataset X̂ with labels y
Parameters:
– Series-to-series transformers S
– Maximal correlation coefficient c for the redundancy test
– Series-to-attribute transformers A
– Significance level α for the relevance test

Output: Computation graph G which computes the constructed features

Initialization
G = empty computation graph
stats = ∅

Step 1: Select Input Views
for v ∈ {1, . . . , V } do

statsv = compute stats(Xv)

if non redundant(statsv, stats, c) then
add Input(v) to G
stats = stats ∪ {statsv}

end

end

Step 2: Construct Fused Views
for Transformer ∈ S do

for ∗inputs ∈ combinations(Transformer.n inputs, G.inputs) do
node = Transformer(∗inputs)
statst = compute stats(apply(node))

if non redundant(statst, stats, c) then
add node to G
stats = stats ∪ {statst}

end

end

end

Step 3: Extract Attributes
for parent ∈ G.series do

for Transformer ∈ A do
node = Transformer(parent)
valuest = apply(node)

if relevant(valuest, y, α) then
add node to G

end

end

end
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selected series, then the view is added. We consider a variable highly correlated
when its Pearson correlation coefficient exceeds a user-defined maximal correlation
coefficient c.

Step 2: Construct Fused Views After adding the input nodes, we add series-
to-series transformers selected from a given list S in order to construct new
views. The inputs of the series-to-series transformers are combinations of the
input nodes. These combinations can consist of multiple nodes. For example, the
Ratio transformer fuses two views by computing the ratio between the series
of these views at each point in time. When adding a transformer from S, we
generate all combinations of n nodes selected among G’s input nodes, where n
is the number of required inputs of the transformer (e.g., n = 2 for Ratio). For
each combination, we test the redundancy of the resulting view using the same
test as in Step 1, and add a transformer node to G for each combination that
results in a non-redundant series.

Step 3: Extract Attributes The final step starts from the series-to-series
computation graph G created in Step 1 and 2, and adds series-to-attribute
transformers selected from a given list A. These transformers are added for
both the selected input views and the constructed views. This step selects
the transformers that compute relevant attributes with respect to the target
value y by performing an F -test to evaluate the linear dependency between the
transformer’s output and y. We add the transformer when the p-value of this
test is lower than a given significance level α. While other criteria can be used to
measure non-linear dependencies (e.g., mutual information), we only consider
linear dependencies to limit the computational cost of the test.

5 Experiments

To experimentally evaluate the proposed system, we address the following research
questions:

Q1 How does our system compare to (1) existing feature-based methods, and (2)
neural networks, in terms of accuracy and computational cost?

Q2 Can the fusion of multiple time series improve the feature representation of
univariate feature construction?

5.1 Datasets

We selected three real-world multi-view time series datasets to evaluate our
system. In all datasets, the time series are recorded using multiple sensors, where
each sensor’s data corresponds to one view. The sensors are different in terms
of the measured variables as well as the sample rate at which they operate. We
describe the datasets below and summarize their properties in Table 1.
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mHealth The Mobile Health dataset is a human activity recognition dataset
collected from 10 participants [4, 5]. The input data consists of measurements
generated by eight sensors at a sample rate of 50Hz. The sensors include seven
inertial sensors at three body parts (one accelerometer at the chest, and two
accelerometers, gyroscopes and magnetometers at the left ankle and the right
lower arm). Each of these sensors has three dimensions, i.e., one series for each
axis. Apart from the inertial sensors, a 2-lead ECG sensor was attached to the
chest. We split the sensor readings in sliding windows with a length of 5.12s (256
samples) and a step size of 1s, which is the same windowing strategy used in
previous studies [23]. The task is to predict for each window which activity is
performed.

Skoda The Skoda mini checkpoint dataset is a gesture recognition dataset
collected from a person working in a car quality control checkpoint [30]. The
sensors consist of accelerometers positioned at different locations of the person’s
left and right arm, 10 at each side, resulting in a total of 20 views. Similar to
the mHealth dataset, each accelerometer has three dimensions. Each repetition
of a gesture is considered as one instance. Since some gestures take longer than
others, the repetitions contain 69–1713 samples. With an approximate sample
rate of 98Hz this corresponds to instances of 0.7–17.5s in duration. The goal is
to detect the gesture that the person performs.

UnoViS The Unobtrusive Vital Sign dataset is a medical monitoring database
with unobtrusive vital sign data [27]. It consists of multiple datasets collected
in different settings. Here, we use the dataset collected from 10 subjects lying
on a bed [26]. The dataset is collected using six sensors, each generating a one-
dimensional series at a sample rate of 200Hz. The sensors include three capacitive
electrocardiography (cECG) sensors and three optical photoplethysmography
(PPG) sensors. The goal is to detect the subject’s heart beats as annotated
using a reference ECG sensor. The series are split into windows of 0.5s (101
samples) in such a way that the center t of each window (the 51th sample)
corresponds to a heart beat. Additionally, for each such window there is a shifted
window of the same length, starting at a time stamp randomly chosen from
[t− 100, t− 20] ∪ [t+ 20, t+ 100]. The target label is a binary variable where a
positive example corresponds to a window with a heart beat in its center.

5.2 Approaches

This section lists the methods that we evaluate in our experiments.

Our Approach In order to evaluate the benefit of constructing fused views, we
consider two versions of our system:

TSFuseR This version skips step 2 of Algorithm 1 and only uses the raw input
views to construct the features.
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Table 1. Dataset properties.

mHealth Skoda UnoViS

Views 8 20 6
Dimensions 23 60 6
Sample rate (Hz) 50 98 200
Samples per instance 256 69–1713 101
Instances 6329 700 14918
Target Activity Gesture Heart beat
Classes 12 10 2

TSFuseF This version applies the complete construction method and hence uses
both the raw input views and the constructed fused views.

Like tsfresh, TSFuse has three settings which employ different subsets of the
series-to-attribute transformers:

– minimal : a small set of statistical transformations;

– fast : the transformations for which TSFuse has a fast C implementation;

– full : all transformers that are implemented in TSFuse.

Selecting one of these settings allows control of the computational cost of the
construction method. However, it also involves making a trade-off between time
and expressivity. Appendix A denotes which transformers apply in each setting.

Baselines We compare our system with two baselines:

tsfresh [8] This feature-based approach is currently a popular time series
feature construction tool. It is designed for univariate time series, but can
work for multiple series as well by considering each series separately. tsfresh
is run under the same three sets of series-to-attribute transformers as TSFuse:
minimal, fast, and full.

LSTM [17] Long short-term memory (LSTM) neural networks are a form of a
recurrent deep neural network that are often applied to time series classifica-
tion tasks. Even though there exist many other types of architectures [10],
we restrict our comparison to one type.

The feature-based methods (TSFuse and tsfresh) only return a set of features.
Therefore, we train a gradient boosted tree model on top of the features con-
structed by these methods.

5.3 Methodology

This section describes how we evaluate the different methods.
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Evaluation Metrics We report two metrics. First, we report the accuracy of
the methods. Second, we report their run time as the wall clock time. For the
feature-based methods, this includes the time to construct the features and learn
the model. All experiments are run on a single CPU.

Cross-Validation We employ 5-fold cross-validation. In the mHealth and
UnoViS datasets, the instances represent trials collected from different sub-
jects. Therefore, we split the data on the subject level to ensure that a subject
does not appear in both the training and testing data. For the Skoda dataset,
the trials are collected from a single subject. The instances of this dataset are
split in a stratified way, i.e., making sure that the percentage of instances for
each class is preserved.

Implementation Details As shown in Algorithm 1, TSFuse requires four
parameters: a list of series-to-series transformers S and series-to-attribute trans-
formers A, a maximal correlation coefficient c for the redundancy test, and a
significance level α for the relevance test. The series-to-attribute transformers
correspond to the three settings described above. For the series-to-series trans-
formers, the system currently uses four transformers: the resultant of the series
of a single view, and the ratio, absolute difference and relative difference between
the series of a pair of views. We set the maximal correlation coefficient c = 0.99
in all experiments. For the relevance test, we set α = 0.05 which is a commonly
used default value in filter feature selection methods, for example, in the false
positive rate test implemented in scikit-learn.

For the tsfresh baseline, we use the default parameter settings. That is, we
use the default statistical tests for computing the p-values of the features, and use
the default value of 0.05 for the false discovery rate of the Benjamini-Hochberg
procedure that selects the features based on these p-values.

For training the gradient boosted tree models, we employ XGBoost [6] with
subsample = 0.9 for subsampling the instances and subsample bynode = 0.5
for subsampling the features, which reduces the risk for overfitting. We use the
default values for all other parameters. Since the subsampling steps involve a
random selection of instances and features, we repeat the evaluation three times
and average the results.

For the LSTM network, we set up an architecture where each view’s data (a
multivariate time series) is given as an input to an LSTM layer with 128 hidden
units. We concatenate the hidden units of all LSTM layers. To prevent overfitting,
we use a dropout layer with a 0.5 dropout ratio. The output layer is a softmax
layer with one output per class. To train the networks, we use Keras [7] with
TensorFlow [1] as the backend engine. We use the Adam optimizer and set the
number of epochs to 100.

5.4 Results

In this section, we evaluate our system by comparing it to feature-based and
neural network baselines (Q1). Additionally, we evaluate the benefit of fusing
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multiple series (Q2) compared to a univariate approach which considers each
series separately.

Results for Q1 Table 2 shows the accuracy for all approaches. TSFuse is always
able to find a better or equivalently good feature representation as tsfresh

on all three datasets. For the Skoda dataset, TSFuseF improves the feature
representation by selecting input views and constructing new views. Note that
for the other two datasets, TSFuseR selects all input views, and hence evaluates
the same features as tsfresh. For these datasets, the difference in accuracy is
due to using a different test for selecting the relevant attributes.

Interestingly, the feature-based approaches yield big wins compared to the
LSTM network in terms of accuracy on the Skoda (all feature settings) and
UnoViS (on the fast and full feature settings) datasets. They perform equivalently
on the mHealth dataset. Note that the datasets used in our experiments can be
considered medium-sized datasets. On the one hand, deep learning may work
better for larger datasets, since deep neural networks have the potential to learn
discriminative features that our feature construction may miss. On the other
hand, for small datasets it may be hard to automatically select relevant features.
A manual approach based on domain knowledge may be more suitable for such
datasets.

Table 2. Accuracy of the models, averaged over the five cross-validation folds. For the
feature-based methods, the table shows the results for three settings: minimal (min),
fast, and full. On all datasets, TSFuse is able to find a better or equivalently good
feature representation as tsfresh.

Method mHealth Skoda UnoViS

tsfresh

min
0.942 0.979 0.808

TSFuseR 0.951 0.985 0.811
TSFuseF 0.952 0.985 0.806

tsfresh

fast
0.946 0.990 0.874

TSFuseR 0.957 0.989 0.874
TSFuseF 0.956 0.996 0.859

tsfresh

full
0.953 0.990 0.872

TSFuseR 0.957 0.992 0.899
TSFuseF 0.943 0.992 0.876

LSTM network 0.951 0.881 0.814

Table 3 shows the run times for all approaches. TSFuseR outperforms tsfresh
in all cases. For TSFuseF, the run times are lower than tsfresh in 8 out of 9
cases, even though it considers a much larger number of time series. The speed-up
is due to three reasons. First, TSFuse selects a subset of the input views by
removing redundant views. This accounts for some of the difference in the Skoda
datasets where only 10 out 20 views (see Table 4) are selected, but TSFuse selects
all views in the other two datasets. Second, our method uses a different test
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for selecting the relevant attributes. Different from tsfresh, this test does not
control the false discovery rate, but instead selects features directly based on
the p-values, which saves time. Third, the minimal and fast transformers are
implemented more efficiently in TSFuse since they avoid looping over the data
using Python.

The feature-based approaches are substantially faster to train than the LSTM
network. Even though deep learning has been applied to each of these datasets
in related work [2, 21, 28], our comparison shows that the feature-based methods
can find more accurate models in a more computationally efficient way.

Whereas our experiments evaluate the system for different settings of S and
A, we did not consider different values for the maximal correlation coefficient
c and the significance level α. Similar to the false discovery rate parameter of
tsfresh, c and α affect the accuracy and run times of our system. For the
datasets considered in our experiments, the chosen parameter settings result
in a reasonable trade-off between the computational cost of the construction
method and the accuracy of the models trained with the constructed features.
Other datasets may need different parameter settings, e.g., noisy datasets where
all p-values are larger than 0.05. Future work can look into ways to set these
parameters automatically based on the given time series data.

Table 3. Run time (in seconds), reported as mean ± standard deviation aggregated
over the five cross-validation folds.

Method mHealth Skoda UnoViS

tsfresh

min
158.9 ± 18.1 135.6 ± 7.9 95.2 ± 3.5

TSFuseR 23.3 ± 0.4 10.8 ± 0.7 2.4 ± 0.2
TSFuseF 113.4 ± 5.5 45.9 ± 3.3 20.8 ± 1.6

tsfresh

fast
2103.2 ± 249.0 1190.6 ± 104.1 1079.4 ± 234.1

TSFuseR 317.1 ± 3.8 108.9 ± 5.5 104.0 ± 2.5
TSFuseF 1151.6 ± 53.0 197.8 ± 12.0 518.7 ± 44.5

tsfresh

full
10 106.3 ± 507.9 6018.0 ± 125.8 7664.6 ± 719.3

TSFuseR 3917.6 ± 64.6 2367.4 ± 134.5 1039.0 ± 36.7
TSFuseF 12 821.6 ± 661.4 3688.3 ± 163.1 5267.5 ± 589.5

LSTM network 34 553.9 ± 947.3 59 266.0 ± 1117.5 23 753.7 ± 353.9

Results for Q2 To evaluate the benefit of fusing multiple series, Table 2 com-
pares TSFuseR (without fusion) with TSFuseF (with fusion). For the Skoda
dataset, the most accurate model is obtained with TSFuseF using the fast trans-
formers. This shows that fusing time series can be more beneficial than using a
more extensive set of series-to-attribute transformers. On the other datasets and
settings, sometimes fusing helps a little, and other times it slightly degrades the
performance.

In terms of run time, TSFuseF is computationally more expensive than
TSFuseR since it requires computing features for a larger number of views.
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The run times heavily depend on the number of constructed views. With the
series-to-series transformers currently implemented in the system, the number of
views that can possibly be constructed is O(V 2) where V is the number of input
views.1 Therefore, the redundancy test of steps 1 and 2 is an important check to
keep the number of views low. To evaluate the effect of this test, Table 4 shows
the total number of views that are selected (in step 1) and constructed (in step 2)
for all datasets. As can be seen from this table, the number of constructed views
is typically much lower than the total number of possibilities. This makes sure
that the run times of TSFuseF do not increase with a factor O(V 2) compared to
TSFuseR.

Table 4. Number of selected raw views VR and fused views VF, and the total number
of views (VR + VF) generated by TSFuseF. The table also shows the total number of
views that our method would construct without the redundancy test.

Views mHealth Skoda UnoViS

VR 8 out of 8 10 out of 20 6 out of 6

VF 30 out of 176 53 out of 1160 43 out of 96

VR + VF 38 out of 184 63 out of 1180 49 out of 102

6 Conclusion

This paper presented TSFuse, a feature construction system designed for multi-
view series data. The key contribution of the proposed construction method is the
ability to fuse multiple series instead of considering the series independently from
each other. We evaluated the system on three real-world datasets containing time
series collected by different types of sensors. Empirically, we found that our system
is able to improve the feature representation constructed by existing univariate
approaches. In terms of run time, it is able to do so in a computationally efficient
way compared to both feature-based and neural network baselines.
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A Series-to-Attribute Transformers

Min Fast Full Parameters

ArgMax x x first ∈ {t, f}
ArgMin x x first ∈ {t, f}
AutoCorrelation x x
AutoRegressiveCoefficients x i ∈ {0, 1, . . . , 9}



16 A. De Brabandere et al.

Min Fast Full Parameters

BinnedEntropy x x bins = 10
C3 x x lag ∈ {1, 2, 3}
CID x x
CWT x i ∈ {0, 1, . . . , 9}
CountAboveMean x x
CountBelowMean x x
Energy x x
EnergyRatio x x chunks = 10
FFT x i ∈ {0, 1, . . . , 99}
FriedrichCoefficients x m=3; r=30; i ∈ {0, 1, 2, 3}
HasDuplicate x
HasDuplicateMax x x
HasDuplicateMin x x
HighStandardDeviation x x r ∈ {.1, .2, .3, .4, .6, .7, .8, .9}
HighVariance x x
IndexMassQuantile x x q ∈ {.1, .2, .3, .4, .6, .7, .8, .9}
Kurtosis x x x
Length x x x
LinearTrend x
LongestStrikeAboveMean x x
LongestStrikeBelowMean x x
Max x x x
MaxLangevinFixedPoint x m=3; r=30
Mean x x x
MeanChange x x abs ∈ {t, f}
MeanSecondDerivativeCentral x x
Median x x x
Min x x x
NumberCrossings x x threshold ∈ {-1, 0, 1}
NumberPeaksCWT x
NumberUniqueValues x
Outliers x x r ∈ {1, 1.5, 2, 3, 4, 5}; rel ∈ {t, f}
PowerSpectralDensity x
Quantile x q ∈ {.1, .2, .3, .4, .6, .7, .8, .9}
RangeCount x x (min, max) ∈ {(-1, 1), (-∞, 0), (0, ∞)}
Skewness x x x
SpectralKurtosis(FFT) x
SpectralMean(FFT) x
SpectralSkewness(FFT) x
SpectralVariance(FFT) x
StandardDeviation x x x
Sum x x x
SumChange x x
SumReoccurringDataPoints x
SumReoccurringValues x
SymmetryLooking x x r ∈ {.1, .2, .3, .4, .6, .7, .8, .9}
TimeReversalAsymmetryStatistic x x lag ∈ {1, 2, 3}
ValueCount x x value ∈ {-1, 0, 1}
Variance x x x
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