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Abstract. In the present-day, sensor data and textual logs are generated
by many devices. Analyzing these time series data leads to the discovery of
interesting patterns and anomalies. In recent years, numerous algorithms
have been developed to discover interesting patterns in time series data as
well as detect periods of anomalous behaviour. However, these algorithms
are challenging to apply in real-world settings. We propose a framework,
consisting of generic transformations, that allows to combine state-of-
the-art time series representation, pattern mining, and pattern-based
anomaly detection algorithms. Using an early- or late integration, our
framework handles a mix of multi-dimensional continuous series and event
logs. Finally we present an open-source, lightweight, interactive tool that
assists both pattern mining and domain experts to select algorithms,
specify parameters, and visually inspect the results, while shielding them
from the underlying technical complexity of implementing our framework.

1 Introduction

Discovering interesting patterns and anomalous periods in heterogeneous time
series data is often the main interest of people generating and analyzing these
data. In the past decades, the field of pattern mining has developed a large body
of algorithms to automatically discover different types of interesting patterns,
such as frequent itemsets and sequential patterns [I5]. However, these algorithms
are difficult to use for domain experts that are not familiar with their inner
workings. Moreover, the algorithms require the data to be preprocessed to the
proper format and the type and quality of the patterns being found is largely
dependent on the choices made in the preprocessing steps. If a dataset consists of
multiple time series or dimensions this becomes even more problematic. Recent
pattern-based algorithms for anomaly detection in time series suffer from the
same drawbacks [417] .

More importantly, when a new sequential pattern mining or a pattern-based
anomaly algorithm is presented, important time series representation choices
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are often only discussed in the experimental design, and a review of alternative
representations is often out of scope. Therefore, we propose several techniques
for preprocessing and reducing continuous time series, and event logs. A wealth
of itemset and sequential pattern mining algorithms has been developed in
the past decades [5]. These pattern mining algorithms are optimized towards
specific, built-in constraints, such as mining closed itemsets or mining sequential
patterns satisfying temporal constraints efficiently [I1]. We propose to add generic
external constraints for reducing the set of discovered patterns independently
from any specific algorithm, such as temporal constraints. Doing so allows for
more flexibility. Finally, for anomaly detection we generalize two methods for
computing an anomaly score based on patterns: frequent pattern based outlier
factor (FPOF) [7] and pattern-based anomaly detection (PBAD) [], that employs
an isolation forest to predict anomaly scores based on distance-weighted pattern
embedding. We extend both algorithms to support multiple time series and
ensembles of pattern sets.

We propose a framework that allows for flexibility at the cost of being slightly
less efficient by supporting several generic transformations, namely: (i) generic
transformations and aggregations for continuous time series, (ii) a transformation
that creates a transaction or sequence database for both single, multi-dimensional,
and mized continuous and discrete time series data, (iii) a transformation that
re-computes support based on temporal constraints compatible with any pattern
mining algorithm, and (iv) two anomaly detection algorithms that are compatible
with any pattern mining algorithm and can handle pattern sets mined from
multiple dimensions. By providing these generic transformations, end-users have
the freedom to create new compositions not considered by the original authors.
For example, instead of frequent sequential patterns, an end-user of our frame-
work can mine a set of sequential patterns using an alternative interestingness
measure [3[12], subsequently apply temporal constraints, and then use these
patterns as input to an anomaly detection algorithm. We have implemented
this framework and made it available as an open-source, interactive time series
pattern mining tool (T1PM) that enables an iterative, exploratory workflow for
preprocessing, finding patterns, discovering anomalies, and visualizing time series
data and patterns.

2 Method

The general workflow of our framework is shown in Figll] In this section we
discuss each step in our framework, also shown in the overview in Fig. [

2.1 Time series representation for pattern mining

Non-stationary time series. First, we must consider that time series naturally
exhibit a large amount of variation. Typically, event logs are sparse and contain
small periods where there is a burst of events. Continuous sensor values are often
assumed to be autocorrelated, meaning that the next value is closely related to
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Fig. 1: Workflow of our framework.

the previous value in the raw signal. A stationary time series has the property
that the mean, variance, and autocorrelation structure do not change over time.
Some authors assume that there is a global trend and that after correcting for
this trend, the time series is stationary. We will not make such assumptions and
consider that different periods have different means, variance, and autocorrelation
structures.

Dealing with outliers. Two strategies are available in the framework. First,
removing the outliers by capping values that deviate a user-specified number of
standard deviations from the mean. Second, keeping the outliers and discretising
them along with the rest of the data. Which strategy to use depends on the
use case and can be freely chosen by the user. When applying a pattern-based
anomaly detection technique, we are mainly interested in patterns that occur
frequent in normal regions, and prefer the first strategy.

Time series dimensionality reduction. A straightforward transformation to
reduce time series is piecewise aggregate approximation (PAA) [8]. We set a
window duration w and replace all continuous values in each window with the
window mean, effectively downsampling a time series S by a factor |S|/w. In
practice, we often want to downsample each time series as we are more interested
in patterns that span a larger period. Note that PAA allows more flexibility than
symbolic aggregate approximation [10]. The latter assumes that the time series
values are normally distributed, which is rarely the case in a non-stationary time
series.

Discretisation. After reducing dimensionality, we discretise continuous time
series using equal-width or equal-length bins. As a rule-of-thumb, equal-width
discretisation is applied if the observations are normally or uniformly distributed
over the bins. If this is not the case, equal-length binning with a slightly larger
number of bins can be selected by the end-user. The goal of discretisation is to
have good coverage of items that occur in at least 5% of segments.
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Fig. 2: Detailed overview of our framework.

Segmentation. Before pattern mining we create fixed-size sliding windows, or
segments. We specify the window duration and increment in time units or steps.
Setting segmentation parameters is largely domain-specific. For instance, if the
length of the datasets is two hours, but measurements (or events) are sampled
every second, then finding patterns within 1 minute makes sense. The window
duration and increment are important parameters towards pattern mining since
they directly determine the length of the average window (or transaction), and
the total number of windows. In practice, patterns are limited in length so we
must ensure that windows are of moderate size. We ensure this by either setting
a relatively small value for the duration or by reducing time series dimensionality.

Filters and aggregation. Finally, our framework supports basic filtering and
aggregation on the time series, as well as generic SQL queries. Filtering is
useful if we want to model only a part of the dataset. For instance, an end-user
can filter the time series on time, on periods where certain event codes (e.g.,
warning/error codes) occur, or periods where some continuous variable exceeds a
certain threshold. This has the advantage that end-users can mine and discover
interesting patterns local to certain event or condition. Finally, we provide options
to aggregate values within each window and compute summary statistics such as
min, mean, max, count and unique.

Automatically selecting parameters. Using our framework we can manually
change parameters for representing time series. Good parameters can be selected
using domain knowledge or set interactively in a trial-and-error way. However, it
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is possible to select parameters using a wrapped approach for anomaly detection.
For instance, let [ be the duration, 7 the increment, w the window for PAA, and
b the number of bins. We can select a parameter setting from the parameters
space §2 = {l,4,n,b} using random search and select those settings that optimise
an evaluation metric on the anomaly scores.

2.2 Pattern mining

Frequent pattern mining. After preprocessing, an end-user can discover
patterns for each dimension that is either discrete or has been transformed
to a discrete representation. Our current framework integrates with the SPMF
library [5] containing more than 40 algorithms for itemset and sequential pattern
mining, covering efficient algorithms for mining frequent, closed, and maximal
itemsets and sequential patterns, top-k sequential patterns ranked on leverage
[12], and a set of sequential patterns compressed using minimal description
length [9]. For the brevity of this paper, we will not discuss details of these
algorithms and refer to existing work [BIT5]. Itemset and sequential pattern
mining algorithms require a suitable representation for enumerating patterns and
computing support. Itemset mining algorithms require a transaction database.
This databases is created by generating a transaction, or unordered set of items, for
each window. Likewise, sequential pattern mining algorithms require a sequence
database where for each window, we create a chronologically ordered list of
items (if two events happen at the same time, this is also encoded). Each item
is encoded using an integer identifier and either represents an event code or
discretised continuous value. When applying a pattern mining algorithm, our
framework creates a transaction (or sequence) databases in the background,
transparent to the end-user. We encode events using items, consisting of integer
identifiers, and decode item identifiers to report human-readable patterns.

External constraints. A recent benchmark study found that temporal con-
straints for pattern mining in time series are of high importance [I6]. Our
framework computes occurrences of itemsets and sequential patterns, reported
by any algorithm, and computes the occurrences that have a minimum duration
in each window, by looking at the raw dataset. If the minimal occurrence does
not satisfy temporal constraints on maximal duration and maximal gap (time
between two pattern items in one occurrence), we remove the occurrence and
re-compute the support for each pattern. In addition, we provide basic external
constraints for filtering patterns on the minimum and maximal length, filtering
the top-k patterns on support, and removing redundant patterns using a threshold
on Jaccard similarity, i.e., if two patterns cover mostly the same transactions, we
filter the pattern with the lowest support.

Multi-dimensional pattern mining. Thus far, pattern mining algorithms
only work on a single-dimensional event log or continuous time series, after
preprocessing. Our framework makes it possible to uncover patterns with events
from multiple dimensions. If more that one input dimension is selected for pattern
mining in our framework, we create a multi-dimensional transaction (or sequence)

5
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database in the background, transparent to the end-user. For itemset mining, we
create a transaction for each window by adding events from multiple time series
to a single set. For sequential pattern mining, we create a sequence transaction for
each window by adding events from multiple dimensions sorted chronologically.
We differentiate between events from different dimensions by encoding the item
identifier to reflect the source dimension.

Pattern explosion in time series. While the pattern mining community
has gone through great lengths in creating efficient algorithms for different
tasks, time series remain a difficult data source for efficient pattern mining.
For example, imagine a time series that contains a sequence of 20 values, that
occurs frequently. Because this series is frequent, any subsequence will also be
frequent, thereby generating an exponential number of patterns. In general, time
series generate a lot of patterns due to naturally occurring autocorrelation. The
problem becomes even worse when two or more dimensions are added, especially if
different time series dimensions are highly correlated. In practice, mining maximal
patterns with relatively high support in each dimension separately seems to work
well. Alternatively, we can change the representation of the time series. In our
experience, we find that using pattern sets with more than a few thousand of
patterns rarely results in higher accuracy.

2.3 Pattern-based anomaly detection

We provide two algorithms for anomaly detection: a generalised version of FPOF
and a generalised version of PBAD. Both methods take a set (or sets) of patterns
as input and compute an anomaly score between 0.0 (normal) and 1.0 (abnormal)
for each segment. If we select an increment of a single timestamp we can compute
an anomaly score at each timestamp.

Generic outlier factor. FPOF [7] computes a score for each segment S; in time
series S, given a pattern set P, based on the total number of patterns matching
each segment, denoted by P < S;:

‘{Pklpk e P and P, < Sl}‘

p(Sz P) =1.0-
P

The authors only consider closed itemsets over a single dimension, but we can
extend FPOF to compute this score for any pattern set, such as sequential patterns,
and for multiple pattern sets mined over multiple dimensions. To compute the
score over two patterns sets, P; and Ps, we can compute

{Pk|Pk € P1 U P2 and Pk < Sl}|
‘Pl UP2| ’

p(Si,Pl U PQ) =1.0-— ‘

It is trivial to extend this formula to d dimensions. The only requirement is
that for computing a match from dimension d, we check if the pattern mined
from dimension d matches the segment of the corresponding dimension. Note
that multiple pattern sets can also be mined over the same dimension, but using
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different algorithms and settings. For example, we can combine both itemsets
and sequential patterns in a single dimension.

Generic isolation forest of distance-weighted occurrences. PBAD em-
ploys an isolation forest, based on an embedding of both maximal itemsets and
sequential patterns for each continuous and discrete dimension [4]. For continuous
variables, the authors use a distance-weighted match to match both itemsets and
sequential patterns with each original, non-discretised, segment. For example,
itemset Py, = {“0.5”, “0.6”} will be close to segment S1 = (0.50,0.61,0.11,0.10)
and further from segment Sy = (0.31, 0.42,0.12,0.04). We generalise PBAD by
decoupling the pattern mining from the anomaly detection phase. Concretely, we
can use the distance-weighted embedding and isolation forest on any ensemble
of pattern sets. This allows combining different preprocessing, pattern mining,
and external constraints available in our framework. We extend PBAD to two
dimensions as follows. Assume we have two pattern sets Py and Ps. First, we
compute the distance-weighted match between each pattern and each window for
continuous time series, and the exact match for discrete (or multi-dimensional)
time series. We now have two matrices of dimensions |S| x |P;| and |S| x |P2|, and
can represent each segment S; using a feature vector (or embedding) of length
|P1| + |P2|. Finally, we feed this embedding to an isolation forest to compute
anomaly scores.

Multi-dimensional anomaly detection using early- and late integration.
For anomaly detection in time series there exist two main strategies for dealing
with multiple dimensions. In early integration, we mine patterns using a single
multi-dimensional transaction (or sequence) database and then predict anomalies
on a single pattern set. We can compute an anomaly score using the generic
outlier factor or isolation forest. In late integration, we mine pattern sets in each
dimension separately, and compute the anomaly score based on the union of these
pattern sets using either anomaly detection method. As remarked in PBAD [4], it
would be tempting to prefer early integration, because patterns directly represent
multiple dimensions. However, this leads to more items and a larger search space,
making pattern explosion more likely. We recommend late integration for larger
time series, as the anomaly detection algorithms combine patterns from different
dimensions.

2.4 Implementation of framework

We implemented the framework in Java as an open-source web-based application
called T1pMEL

Interactive workflow. For preprocessing, we can upload any dataset that con-
tains at least a timestamp and one or more value columns. TIPM visualizes
the histogram and summary statistics for each column and allows to transform
continuous time series using our framework, as shown in Fig. |3} For subsequent
pattern mining we apply algorithms implemented in SPMF [5]. Multi-dimensional

3 Source and datasets available at https://bitbucket.org/len_feremans/tipm_pub
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Fig. 3: Time series representation, pattern mining, anomaly detection, and visu-
alisation are implemented interactively in T1PM.

mining transformations, external constraints and anomaly detection algorithms
are implemented in our framework. For visualisation, T1PM can plot continuous
time series values, transformed values, discrete event logs, labels, and segmenta-
tion, on different levels of granularity in time (raw, hourly, daily, yearly, etc.).
For validation of data mining, we can render pattern occurrences and anomaly
scores. TIPM saves intermediate files after each operation allowing end-users to
undo any operation.

Representing mixed-type real-world datasets. Many real-world datasets,
such as SCADA data for wind turbines, contain missing values, non-continuous
periods, and timestamped values stored together with event log data in a single
file. In our framework, we stay close to this tabular format as this is most
convenient for collaborating with domain experts who prefer to look at the raw
data for validation. In addition, we provide two explicit temporal join operations:
partition and merge. Partition takes a subgroup of columns having non-zero
values and saves them in a separate table. This is useful for extracting event log
data from continuous time series data. Merge is the opposite operation and takes
the union of two tables and sorts them on time. If two column names match in
both tables, merge takes the column value of the first table. For example, merge
can be used to join time series datasets from multiple devices.

Scale to a large dataset. Most transformations in our framework are imple-
mented using streaming techniques, thereby loading only a small set of rows
at a time, instead of loading all data into main memory. By only loading and
processing data in a streaming, or paginated, way, the interface and most pre-
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processing and postprocessing transformations can handle large time series with
millions of samples in an instant of time. For pattern mining, we can manage
resources by setting support to a relatively high value, and reducing time series
as discussed before. A possible extension would be to support streaming pattern
mining algorithms.

3 Experiments

In this section, we will illustrate our framework, implemented in T1PM, to mine a
multivariate dataset. The time series dataset that was obtained by using a Kinect
sensor to track the body movements during indoor physical exercises [I]. The
goal is to assist people in performing exercises correctly. We focus on detecting
incorrectly executed exercises during a continuous workout session consisting of
60 lunges and 10 squats. The ground-truth values are known. We remark that
the original dataset consists of 75 time series, and we reduced this to 3 time
series using principal component analysis [4].

First, we upload the time series in tabular file format. T1PM shows statistics
and histograms for each time series (pcl, pc2 and pc3) as well as the label as
shown in Fig. 8] We can now select options to preprocess each time series. First
we cap outlier values based on the 1% and 99% quantiles. Next, we compute and
store the average value every 10 time steps to reduce the 3 continuous dimensions
using PAA. We then apply equal-width discretisation with 16 bins. For multi-
dimensional mining, our input dataset thus consists of 16 x 3 discrete items. We
create sliding windows with a duration of 10 steps (or 3 seconds in absolute time)
and an increment of 5, resulting in 223 windows of length 10 that overlap for 50%.
With all continuous data time series represented as discretised segments, we start
mining patterns. We opt for early integration, and select all three dimensions as
input. We select an algorithm for mining maximal itemsets with a support of
20%. For reducing patterns, we remove itemsets that co-occur in at least 90% of
windows, resulting in 999 itemsets. We compare this set of patterns by mining
maximal sequential patterns with the same settings, resulting in 360 patterns.
Finally, we run the generic outlier factor and compute an anomaly score for both
types of pattern sets individually.

Fig. @] shows the first minute of the Kinect dataset. T1PM shows the trans-
formed time series and overlapping segments. We selected the top-5 most frequent
maximal itemsets for visualisation. The first itemset is {pcl = 1,2,4 A pc2 =
1 A pc3 = 4,5} which has a support of 56 (or relative support of 0.25). This
means that 25% of segments contain both (discretised) values of 1, 2 and 4
in time series pcl, 1 in pc2, and 4 and 5 in pc3. Notice that the first frequent
pattern, as well as the 27?, 3** and 5", but not 4*", almost never occur in
any anomalous segment. Consequently, the patterns are examples of frequent
interpretable patterns discriminative towards anomalies. T1PM allows to sort
pattern on confidence towards normal (or abnormal) segments. We find that
sequential patterns containing high values of pc1 are the most predictive towards
abnormal behaviour. Fig. [5| shows the anomaly scores over the entire 6 minute

9



10 Feremans et al.

Wy DR S

W AR TR AR AL i\le\/j\f

Fig. 4: Visualisation in T1PM of first minute of Kinect data. The blue line is pc1,
the light blue line pc2, and the orange line pc3. We show the top-5 most frequent
maximal itemsets, mined over all three dimensions.

Fig.5: Visualisation in T1PM of anomaly detection results. Segments with a
red background are labelled anomalies, and the black line is the anomaly score
predicted (unsupervised) using generic outlier factor using maximal sequential
patterns. The dotted line is the results using maximal itemset patterns.

time series. Using the generic outlier factor anomaly detection method we can
report an AUROC of 0.839 and average precision of 0.767 for maximal itemsets,
and an AUROC of 0.884 and average precision of 0.833 for maximal sequential
patterns.

4 Related work

Most general data mining libraries, such as WEKA or KNIME, are very immature
when it comes to pattern mining. T1PM extends SPMF [5] by providing temporal
constraints, multi-dimensional pattern mining, and pattern-based anomaly detec-
tion algorithms. In contrast to SPMF, and other libraries that implement time
series transformations on consecutive numeric vectors, we support timestamped
tabular data with multiple dimensions, and mixed-type attributes. Other tools
for anomaly detection in time series uses either shapelets or motifs in single-
dimensional continuous time series. Interactive pattern mining tools, such as
MIME [6], are immature towards time series processing.

There exist algorithms for directly mining patterns with temporal con-
straints [I1]. However, by providing temporal constraints as an external post-
processing filter, we can apply them to any pattern mining algorithm. This is of
interest for many efficient algorithms for mining closed, maximal or interesting
patterns that do not support temporal constraints. Many more transformations
for reducing the length of the time series exist [2]. We prefer PaA for two reasons.
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First, different authors have confirmed that more advanced techniques are not
necessarily more effective [2/T0]. Second, many other representation techniques,
i.e., transformation to spectral space, single value decomposition, or clustering,
make interpretation much harder while patterns of binned values, are easy to
interpret. Other transformations, such as differencing or smoothing the raw time
series are not problematic regarding interpretation.

Two popular techniques for classification and anomaly detection in time series
are the matriz profile [I4], that computes an outlier score relative to the euclidean
or dynamic time warping (DTw) distance to its nearest neighbour, and time
series shapelets, which are subsequences from a continuous time series and are
used in combination with the DTw distance to classify time series segments [13].
A key difference is that frequent patterns naturally handle both continuous time
series and event logs [4]. If we compare sequential patterns to shapelets, we argue
that on the one hand, sequential patterns generalise shapelets, because we use
non-continuous subsequences with gaps. On the other hand, sequential patterns
are more specific, because they consist of discretised values instead of continuous
values. The latter argument against sequential patterns, however, can be relaxed
by using a weighted distance []. Itemsets, however, are radically different from
shapelets and of value for predicting anomalies [7]. Future work can look at an
ensemble of representations. That is, we can compute itemset and sequential
pattern distances, exact pattern matches, shapelet distances, motif distances,
and combine those in one feature vector, as input for existing classification or
anomaly detection algorithms.

5 Conclusion

Existing pattern-based anomaly detection algorithms focus on a particular com-
bination of time series representation, pattern mining, and computation of the
anomaly score [4[7]. In PBAD, the authors remarked that this method is a promis-
ing general framework for time series anomaly detection, where certain variations
might be more effective in different applications. In this paper, we implement such
a framework and discuss a wealth of general techniques, that can be composed
using general transformations to create new variations. This allows data scientists,
together with domain experts, to create novel unsupervised anomaly detection
models. We also present T1PM, an interactive, easy-to-use, and open-source tool
that implements our framework. T1PM is unique since we have a rich set of
options for interactively preprocessing and mining patterns from mixed-type
time series, supported by visualisation of (raw and transformed) time series,
event logs, segments, patterns and anomaly scores. With our framework, we
show how to discover interesting interpretable patterns and detect anomalies in
multi-dimensional time series.
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