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Abstract—A coustic source localization and dereverberation are
formulated jointly as an inverse problem. The inverse problem
consists of the approximation of the sound field measured by
a set of microphones. The recorded sound pressure is matched
with that of a particular acoustic model based on a collection of
plane waves arriving from different directions at the microphone
positions. In order to achieve meaningful results, spatial and
spatio-spectral sparsity can be promoted in the weight signals
controlling the plane waves. The large-scale optimization problem
resulting from the inverse problem formulation is solved using
a first order optimization algorithm combined with a weighted
overlap-add procedure. It is shown that once the weight sig-
nals capable of effectively approximating the sound field are
obtained, they can be readily used to localize a moving sound
source in terms of direction of arrival (DOA) and to perform
dereverberation in a highly reverberant environment. Results
from simulation experiments and from real measurements show
that the proposed algorithm is robust against both localized and
diffuse noise exhibiting a noise reduction in the dereverberated
signals.

Index Terms—Dereverberation, Source localization, Sparse
sensing, Inverse problems

I. INTRODUCTION

While there are many source localization algorithms that
work well in free-field acoustic scenarios, source localization
in highly reverberant environments is challenging [1]], [2].
Reverberant environments are also problematic for speech
intelligibility and significant research efforts have been fo-
cusing on dereverberation [3|]. Dereverberation and source
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localization are often connected: for example many derever-
beration algorithms require the knowledge of the direction
of arrival (DOA) of the sound source [4], [5]]. Instead, other
algorithms rely either on channel equalization which requires
estimation of the room impulse responses (RIRs) [6] or on
multi-channel linear prediction (MCLP) which requires no a
priori knowledge of the acoustics but is non-robust to additive
noise [7]], [8].

Recently, source localization has been posed as an in-
verse problem where physical acoustic models are used to
reconstruct and localize the sound source in terms of spatial
coordinates using microphones scattered in the room [9]-
[L1]. This is achieved by exploiting compressed sensing (CS)
techniques [12] i.e., by including a sparse regularization in
the inverse problems that exploits the fact that the sound
field is generated by sound sources that are spatially sparse.
Such methods allow precise localization of the source position
inside the room but require detailed knowledge of the room
geometry and boundary conditions. Alternatively, the plane
wave decomposition method (PWDM) has been shown to
approximate well any sound field in source-free volumes [/13]].
This allows sound sources to be localized without knowledge
of the room geometry. In [[14] a narrowband source is localized
in terms of spatial coordinates. This is achieved by splitting
a sound field into its direct and reverberant components and
by modeling the latter using the PWDM. Once this step is
achieved, it is shown that standard localization techniques
can be readily applied to the estimated direct sound field
component to retrieve the coordinates of the sound sources.
However, splitting the sound field into its reverberant and
direct sound field components requires a large number of
microphones, particularly when these are scattered in a large
volume. This number can be reduced when partial knowledge
of the room geometry is available [15]. Additionally, in [|16]]
the low-rank nature of the reverberant sound field component
is exploited and combined with the spatial sparsity of the
direct sound field component. When localization is sought only
in terms of DOA compact microphone arrays are typically
employed. In this context CS techniques have also been found
useful. In [17] the microphone measurements are matched
with an over-complete dictionary of steering vectors. The
promotion of a sparse solution enables a precise estimate of the
DOA of multiple sound sources with an increased resolution.
A similar approach is proposed in [[18]] using the spherical
harmonic decomposition method (SHDM), a method that is



closely related to the PWDM. Here the SHDM is used to
construct an over-complete dictionary that accounts for the
presence of a rigid baffle of a spherical microphone array.
Group sparsity has also been proposed to model sound fields
leading to spatial, spatio-temporal and spatio-spectral sparsity
[19], [20] and has been shown to improve DOA estimation par-
ticularly when combined with speech modeling [21]. Similar
approaches have been used also for a dereverberation task. For
example, channel equalization and beamforming are employed
in [22], [23]] respectively after estimating DOAs using sparse
regularization. More recently, in [24] joint dereverberation and
DOA estimation has been achieved through a sparse signal
reconstruction task. In particular, a beamformer with enhanced
resolution is obtained by exploiting sparse Bayesian learning
(SBL) to automatically tune the hyperparameters that control
the level of sparsity outperforming affirmed beamforming al-
gorithms such as the minimum variance distortionless response
(MVDR) [25]

In this paper, a recently proposed RIR interpolation al-
gorithm [[19]], is reformulated and modified to be able to
perform joint source localization and dereverberation. The
proposed algorithm, called acoustic dereverberation and local-
ization through field approximation (ADeLFi), relies on the
approximation of the sound field recorded by a set of micro-
phones which is formulated as a regularized inverse problem.
This consists of an optimization problem that matches the
sound pressure measured by the microphones with the sound
pressure predicted by an acoustic model. Here the PWDM is
used, which is capable of approximating the sound field in
a source-free volume where the microphones are positioned.
The PWDM is based on a large collection of plane waves
that contribute to the sound field from a particular direction
and are associated with a DOA. Plane waves are controlled
by signals, named weight signals, that are estimated through
the optimization problem. It is shown that, employing specific
sparsity-inducing regularization, different kinds of sparse pri-
ors can be promoted in the weight signals: spatial sparsity
and spatio-spectral sparsity. Spatial sparsity promotes only
few weight signals to be active, hence limiting the number
of directions from which the plane waves can arrive. On the
other hand, spatio-spectral sparsity lead to weight signals that
have a spectrum composed by few frequency components.
Notice that in [19] spatio-temporal sparsity is promoted as
well by employing a different acoustic model named time-
domain equivalent source method (TESM). Being a time-
domain method, TESM can easily allow for the promotion
spatio-temporal sparsity. While in the context of RIR interpola-
tion spatio-temporal sparsity outperformed spatial and spatio-
spectral sparsity, in the context of speech dereverberation
this regularization is not effective as the sound field is not
generated by a temporally sparse sound source [26].

The resulting optimization problem has a large scale and
nonsmooth cost function: this is solved using an accelerated
version of the proximal gradient (PG) algorithm [27] and com-
bined with a weighted overlap-add (WOLA) procedure. Once
the approximation step is achieved, the weight signals can be
used to estimate the DOA of a sound source. It is observed
that the weight signal with strongest energy is associated with

a particular DOA which is more likely to correspond to the
DOA of the original sound source. This enables to localize
the sound source and as a consequence a dereverberated
signal can be readily obtained by selecting the weight signal
corresponding to the estimated DOA. Alternatively, one can
compute the sound pressure inside the source-free volume
with the acoustic model using a small set of weight signals
with corresponding DOAs close to the estimated one. In fact,
solving the inverse problem accounts for decomposing the
sound field into different plane waves with specific directions.
This effectively creates a spatial distribution of reverberation
among the weight signals controlling these plane waves,
resulting in the weight signals to effectively be dereverberated
signals. Additionally, this decomposition will occur also in the
presence of a noise field; the contribution of the noise field
will also be spatially distributed among the weight signals
which therefore exhibit a noise reduction. It is shown that
the WOLA procedure also enables the DOA estimation and
dereverberation of a moving sound source.

The formulation of joint DOA estimation and dereverber-
ation through a sound field approximation task allows to
propose a new procedure for tuning the level of regularization,
which represents the major element of novelty of this paper. In
particular, the level of sparsity is not extrapolated from signals
statistics as it is commonly pursued in sparsity-based beam-
forming, like e.g., in [24]], but rather by assessing the quality
of the approximation through an additional microphone. This
is achieved by adopting a modified version of K-fold cross
validation (KCV), a procedure often employed in machine
learning. The KCV strategy is simplified to be suited for online
audio processing. Simulated and real measurement results
show that in a sound field generated by a speech source, spatio-
spectral and spatial sparsity based regularization have similar
performances both in terms of sound field approximation
and dereverberation. The proposed algorithm is shown to be
robust even when localized and diffuse noise are present in
the microphone signals; accurate DOA estimation and noise
reduction in the dereverberated signal are achieved. Notice that
this paper will not focus on the computational complexity of
the proposed algorithm which is rather large and could be
effectively reduced by employing parallel computing and fast
transformations [28]], [29]. Instead, the aim of the paper is to
to introduce a novel approach and to compare it qualitatively
to state-of-the-art algorithms in a variety of scenarios.

This paper is organized as follows: in Section [[T|the PWDM
is described. Section |III] describes the inverse problem that is
used to perform the sound field approximation. In Section
the ADeLFi algorithm is presented describing the optimization
algorithm, showing the WOLA procedure and the regular-
ization tuning strategy. Finally, in Section [V| the algorithm
is validated using simulated and real measurements and in
Section [VII conclusions are drawn.

Preliminary results have been presented in [26]]. The main
novelties of this paper are: (i) a novel processing of the weight
signals to reduce artifacts in the dereverberated signals, (ii)
modifications to the proposed algorithm which allow the pos-
sibility of tracking the position of a moving sound source, (iii)
a comparison with state-of-the-art dereverberation and DOA



estimation algorithms, (iv) the inclusion of more objective
perceptual performance measures and (v) the validation of the
proposed algorithm using real measurements.

II. ACOUSTIC MODEL

A plane wave is defined as
d)l,m(f) _ eikfanxm’ (D)

and is the homogeneous solution of the Helmholtz equation.
Here x,,, is the the m-th microphone position, n; is the unit
vector indicating the direction of the [-th plane wave, f is
the frequency in Hz, k; is the wave number defined as ky =
2nf/c = wy/c, where c is the speed of sound. A sound field in
a source-free volume can be represented by a finite weighted
sum of plane waves coming from NN, different directions [[13]:

Ny—1
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where the weight w;(f) is a complex scalar that weights the
I-th plane wave at the frequency f. Equation (2)) describes the
plane wave decomposition method (PWDM). This equation
can be generalized for N, discrete positions x,,, € {2 and Ny
discrete frequencies:

P = DW, 3)

where P € CNs*Nm is a matrix in which the m-th column
is the discrete Fourier transform (DFT) of the sound pressure
signal p(x,n)|x—x,, at a particular time window (snapshot)
and W € CVs>*Nw is a matrix containing the weights w;(f).
The linear mapping D : CN/*Nw — CNr*Nm represents a
dictionary of plane waves. In this paper D will be constructed
such that N,, > N,,, leading to an over-complete dictionary.
Equation (3) should not be confused with a linear matrix
equation, ie., D is indeed a mapping rather than a matrix
multiplier.

The dictionary D can be also viewed as a dictionary of
steering vectors. In particular, the row of P corresponding to
the f-th frequency can be expressed as

[Pros-- PNy —1]T = Aflwyo, ... wp N, 1], “)

where Ay € CN»*Ne is a matrix having in its columns
steering vectors, commonly referred to as sensing matrix.
Notice that in the following D will indicate the PWDM. Other
acoustic models could be employed as well, such as acoustic
models of microphones mounted on spherical rigid baffles [[18§]]
or of human heads using head-related transfer function (HRTF)
[24].

III. THE INVERSE PROBLEM

Consider a single sound source in the far field and a set of
of N,, microphones. It is assumed that the microphones are
far from any scattering object and have the sound source in
their line of sight. Additionally, it is assumed that P can be
decomposed as follows:

P=P.+P,. ®)
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Figure 1. Horizontal cross-section of a room. A sound source in the front

left corner generates a reverberant sound field. A spherical microphone array
(light green dots) measures the sound field of the room. A set of plane
waves (depicted with three lines) represents the acoustic model that is used
to match the sound pressure measured by the microphones. The sound field
is approximated in the shaded volume 2. An additional microphone is placed
at the center of the array to validate the quality of the approximation.

The first term P, represents early reflections which are
generated by a relatively small number of plane waves. The
early reflections component P, also includes the line of sight
which is assumed to be the plane wave with the strongest
energy. This plane wave is associated with the location of the
sound source in terms of DOA. The second component Py
represents the diffuse sound field and consists of uncorrelated
plane waves arriving from a large number of directions. The
microphones are positioned at the boundary of the source-
free volume 2 € R? as depicted in Figure [1} The directions
of the plane waves can be selected from a spherical lattice
centered at the center of the microphone array. In this paper
a Fibonacci lattice [30] is used to provide a nearly uniform
sampling of the surface of a sphere. Notice that other types
of lattices with even more uniform spherical sampling exist
[31]l, [32]. In order to achieve accurate approximation, a large
number of plane waves must be used.

The aim is to approximate the sound field inside this volume
to jointly dereverberate and localize the sound source. What is
sought by the inverse problem is to estimate the weight signals
that lead to the optimal sound field approximation. This can be
achieved by matching the microphone measurements with the
acoustic model described in Section [ An interior Dirichet
problem can be formulated as the following optimization
problem [33]:

1 -
W = argmin ¢(W) = 3[DW — P, |, (6)

where || - || is the Frobenius norm and the columns of the
matrix f’r contain the microphone measurements, i.e., the
Ny-long measured complex sound pressure at the r-th time
window.

Problem (6) is heavily ill-posed. This will in general lead
to over-fitting: the measured sound pressure will coincide
with the sound pressure of the acoustic model but only at
the microphone positions, resulting in a poor sound field
approximation in other positions. Additionally, (6) can be
ill-conditioned: it is possible that some of the elements of



‘W7 become unbounded when their corresponding frequency
coincides with the eigenvalues of the interior Dirichet problem
[33]]. This instability is also known as the forbidden frequency
problem [34, §8.10.2]. To avoid both instability and over-
fitting, a regularization term g is added to to g, i.e.:

W; = ar%rvnin (W) + Ag(W), 7
where A is a scalar often referred to as hyperparameter. The
regularization term g acts as a soft constraint limiting the
magnitude of W (instability) and avoiding ¢(W) becoming
too small (over-fitting). A possible choice for g is the sum of
lo-norms regularization corresponding to

Ny—1
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9(W) = ®)
where w; indicates the [-th column of W. This regularization
consist of a convex function, often referred to as lp 1 mixed
norm with the notation || - ||2,;. If a large value of A is
used, group sparsity is promoted and only few columns of
‘W7 will be non-zero. In practice, this would mean only few
plane waves being active, meaning that the sum of /5-norms
regularization promotes spatial sparsity. Another common
regularization is the l1-norm regularization corresponding to

Ny —1
9(W) = [vec(W)lli = 37 [[wills, 9)

1=0
which is a convex function that promotes sparsity in W7,
i.e., only few elements of the matrix to be non-zero. When
a frequency domain acoustic model is used, as in the case
of the PWDM, spatio-spectral sparsity is promoted. Notice
that unlike the sum of /5-norms, the /;-norm promotes spatial
sparsity but it fails to do it consistently between different
frequencies. This is due to the fact that non-zero elements
are not constrained to belong to any particular column.

The choice of these sparsity promoting regularization terms
is motivated by the fact that P., consists of a sparse set of
plane waves arriving from a limited number of directions.
However, (7) aims at reconstructing the whole sound field P,
which due to the presence of the diffuse field component P,
is not a sparse set of plane waves. The parameter A should
be tuned such that both P, and P, are jointly reconstructed
with accuracy while preserving a sufficient level of sparsity
to enable joint localization and dereverberation. As it will be
described in Section an additional microphone will be
used to tune A\ and find the best balance between sparsity
and sound field approximation. There exist other types of
regularization that can promote sparsity within group sparsity:
these can enable both the presence of few non-zero columns
in W7 and let these columns be sparse vectors [20], [35].
However, these types of regularization are not treated in
this paper and left for future work as they may lead to
nonconvex problems or to the nontrivial tuning of multiple
hyperparameters.

Once a solution is obtained, the DOA of the sound source
can be inferred by finding the weight signal with the strongest
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Figure 2. Visualization of the mean of the energy of the weight signals, i.e.

1/N, Zi\;"gl [lwx l||§, as a function of the azimuth angle ¢ and polar angle

6. The red dots represent the true source position. Darker lines represent the
Ny, neighbor weight signals around the estimated DOA. The weight signals
are obtained from simulation results using N, = 500 plane wave directions
and N,, = 16 microphones with a sensor noise of 40 dB SNR. These results
will be presented in detail in Section [V-A]

energy:

Wy I3 = max {[|wy o3, Wy, 1l3} (10)

since the b-th weight signal is associated with a plane wave
direction of the Fibonacci lattice and hence to a polar angle
¢} and azimuth angle ¢7. Here wy, is the {-th column of the
solution of (7) of the r-th snapshot W. Figure [2] shows the
mean of the energy of the weight signals of different snapshots
as a function of the azimuth and polar angles for the simulation
results presented in Section A clear maximum is visible
towards the direction of the sound source shown by the red
dot.

A dereverberated signal is also readily available: the weight
signal w, will have less reverberation compared to the micro-
phone sig}lals. That is because w. ; accounts only for a single
plane wave which contributes to the sound field from a specific
direction. If a sufficient level of sound field approximation
is reached, the effect of reverberation is spatially distributed
among the plane waves of the acoustic model. Promoting
sparsity is fundamental since the prior knowledge given by the
sparsity regularization term biases the solution W towards
a better sound field approximation of the early reflection
component P, rather than of the diffuse sound field P,.
This bias enables DOA estimation using . Nevertheless, if
spatial sparsity is promoted too strongly, reverberation would
not be spatially distributed among the plane waves resulting in



only few plane waves trying to approximate the entire sound
field P. This would result in w7 , strongly contributing to P4
and hence containing a level of reverberation close to the one
of the unprocessed microphone signals. This condition can be
avoided when spatial distribution of reverberation among the
plane waves is achieved, that is when A is properly tuned.

Howeyver, since a finite number of directions is used, it is
possible that other plane waves with similar directions to the
plane wave corresponding to w, contribute significantly to
the sound field generated from that particular direction. It is
therefore advantageous to employ multiple weight signals to
produce the dereverberated signal. This can be achieved by
selecting NV, weight signals that are the nearest neighbors
of the plane wave directions corresponding to wy, in the
Fibonacci lattice. These weight signals, together with wj,,
can be used as the columns of W, € CNr*(Notl) The
energy of these weight signals is visualized with darker lines
in Figure 2] A dereverberated signal can then be obtained by
generating a new sound field P,;, = Dr,bW;b, using the
same acoustic model employed in the inverse problem. Here,
D,y : CNrx(Notl) 5 Ny XNm maps a smaller number of
weight signals to P,.; which now represents a new sound field
created by a limited number of plane waves corresponding to
the selected directions. Although here D,.; utilizes the same
microphone positions of the measurements, any position inside
2 can be chosen as well. This is achieved by setting different
microphone positions during the construction of D, ;. As it
will be shown in Section the artifacts present in the P,
signals are often less audible than those in w7 ,, particularly
when spatio-spectral sparsity is promoted.

1V. THE ADELFI ALGORITHM

In this section the proposed algorithm is presented, referred
to as acoustic dereverberation and localization through field
approximation (ADeLFi). The pseudo-code of ADeLFi is given
in Algorithm |l| and a detailed explanation is provided in the
next subsections.

A. Optimization algorithm

Problem is nonsmooth and can easily become of large
scale. A well known algorithm that can address this type of
problems is the proximal gradient (PG) algorithm which is a
first-order optimization algorithm suitable for nonsmooth cost
functions and having minimal memory requirements [36], [37].
The PG algorithm generalizes the gradient descent algorithm
to a class of nonsmooth problems such as the problem in (7))
where ¢ is smooth and g is nonsmooth, as the regularization
terms of (8) and (9). The PG algorithm consists of iterating

AVAREIES prox. , (W? —yVq(W?)), (11)

starting from an initial guess W?. Here V¢ is the gradient of
q, 7y is the step-size, and prox,, is the proximal mapping of
the function g [36].

For the regularization terms described in and @) the
proximal mapping consists of a computationally cheap oper-

g9

ation. If g(W) = ||[vec(W)]|1, its proximal mapping reads:

(W) =P (W =Xy) =P(-W = Xy), (12)

Prox, s,

where Py is the element-wise mapping performing
max{0,| - |} with | - | indicating the modulus of a complex

number. On the other hand, if g(W) = lN;(’)_lel\ 2, the
proximal mapping becomes:
Prox. (W) = .
A A
[WoP+(1— ”wgﬂz) W, Pr(l = ||WNU:Y,1\|2)]-

In both cases the proximal mapping performs a soft-
thresholding of either the elements of W (/1-norm) or its
columns (sum of /o-norms) which is a computationally simple
operation.

Another fundamental operation needed in the PG algorithm
is the evaluation of the gradient of ¢ which is given by

J = V¢(W) = D*(DW - B,),
N———r
R

(14)

where J is a matrix with the gradient with respect to w; in
the [-th column, R is the residual matrix, i.e., the difference
between the sound pressure recorded by the microphones and
the sound pressure predicted by the acoustic model, and D* :
CNs>*Nm . CNsxNw s the adjoint mapping of D. In this
context, D is often referred to as the forward mapping. The
adjoint mapping is a generalization of the transpose of a matrix
to linear mappings. In general, when D is a linear mapping
between two large finite-dimensional spaces, it is not ideal
to use a matrix-vector multiplication based algorithm for its
evaluation, as this in fact would require the storage of a very
large matrix. Instead, it is possible to compute the mapping
using its definition, i.e., by directly applying iteratively
or by utilizing fast transformations. The same strategy can be
adopted for the adjoint mapping whose definition is similar to
the definition of the forward mapping. The adjoint mapping
of the PWDM is obtained as the cross-spectrum between qASLm
and 7,,:
Ny —1
]l(.f) = Z d);‘,m(f)mn(f)a (15)
m=0

where 7, is the residual of the m-th microphone in the fre-
quency domain. In both cases j; indicates the complex signal
appearing in the [-th column of J. The gradient at the iterate
‘W? can be efficiently computed together with the evaluation
of ¢(W?): this strategy is also known as back-propagation in
machine learning [38] or automatic differentiation [39] and
leads to matrix-free optimization [37]], [40].

Finally, an accelerated variant of the PG algorithm is used
employing a limited-memory quasi-Newton method [27]]. An
implementation of the algorithm written in the Julia language
is also available online [41]].

B. Weighted overlap-add procedure

Solving the optimization problem in using long time
windows is not feasible since evaluating the linear mapping



Algorithm 1 Acoustic Dereverberation and Localization
through Field Approximation (ADeLFi) method

1: Inputs:
P, € RN Nm b, € RN
9, Nw, N'r’ Nb, Nm Ug, Us, ﬂ € (07 1}’ n
Outputs:
P, € RV Nm ;€ RN, o* € RN, % € RN
Construct the acoustic model
D: CfoNw - CfoNm
D, : CNs*Nw 5 €N+ using N,, directions
Compute candidate angles ¢ € RV«, § € RV
Setk=0,r=0,€,_1=+00,&=0¢€RN,
P;=0,w;=0,¢*=0, 0" =0.
12: while £ + N, < N; do

R Al O o ol

[
—_ O

13: Select samples of r-th snapshot and weight with u,
14 P, FSiPy, Proy < Flpui(k) ... pos(k+ Ny — 1)
15: where Sy, : RNeXNm — RN=*Nm gelection operator
16:  and F: RN~*Nm _ ¢NsXNm real DFT

17: A 1075\ ax
18: for z=0,...,Ny—1do

19: Wi * < argminl||DW — P, |% + A\g(W)
W

20: €v,z < [DeWZ =B [13/11Br0ll3

21: if €, . > €,,,—1 + 1 then break

22: else

23: W, « Wr?

24: increase A logarithmically

350 ey [[Wroll3e- . [Wrw, 13T,

26: €<« e, + e

27: Set b as the index of the maximum element of e

28 Set @} < ¢y, 05 < 0,

29: Weight F~'w], with u, and append to W,

30: Find N, neight,)ors plane waves

31 Construct D,.;, and W,

32: Compute P, = D, , W,.;
33: Weight F~!P,.;, with u, and append to P,
34: r«<~r+1, k< k+N,—N,

D and its adjoint becomes too costly and the optimization
problem becomes too large. Additionally, it is well known
that speech is sparse in the short-time Fourier transform
(STFT) domain. Therefore, a weighted overlap-add (WOLA)
procedure is used for processing single-snapshots (SSs): the
N;-long microphone time-domain signals appearing in the
column of the matrix P, € RN*Nm are split into N,
frames of N, samples each. An analysis window function
is applied to the r-th frame which is then converted to a
complex signal by applying a real DFT (Line[I4). If N; = 512
and N,, = 500 the optimization problem will then have
N¢N,, = 128.5 x 10° complex optimization variables, which
is manageable. Notice that only Ny = [N./2]+1 frequencies
need to be processed since a real DFT that exploits Hermitian
symmetry is used. Analysis and synthesis window functions,
here chosen to be both square-rooted Hann windows, are

indicated in Algorithm [I] with u, and u, respectively. The
frames are overlapped by IV, samples: here an overlap of 50%
is used.

The size of the volume (2, and hence the microphone
array geometry, imposes a constraint on the frame length V...
Assuming that a common phase shift is introduced in @) such
that all of the acoustic delays of the plane waves are causal,
the following inequality must be satisfied:

cN,

F
This means that the length of the frame should at least allow
for the plane waves to reach all of the microphones. In practice
it is better to choose a longer frame in order to minimize the
duration of the transient which should correspond only to a
short initial part of the frame. If this is the case the effect of
the transient will then be effectively canceled by the weighting
and averaging operations of the WOLA procedure. The above
inequality also suggests that the use of a microphone array
scattered in a large volume should be avoided when using
the ADeLFi algorithm. In the following, a frame length of
N, = 512 will be used, corresponding to time window of 64
ms at F; = 8 kHz for all the microphone array configurations
used in the simulations and real measurements of Section [V
This frame length always significantly exceeds the lower

bound (I6).

> max {[lx —yll2 [ x,y € 2}, (16)

C. Tuning of parameter \

The parameter )\, scaling the regularization term g in (7)),
controls the level of regularization and should be tuned prop-
erly. One of the most popular tuning strategies is the K-fold
cross validation (KCV): this involves solving the optimization
problem multiple times with different values of A and K folds
(partitions) of the available data. However, this strategy is not
ideal for online audio processing: if N, candidate values for
A are used, it is then required to solve KN, optimization
problems per frame.

Therefore, a novel simplification of the KCV strategy is
adopted as follows. An additional microphone, referred to as
validation microphone, is positioned inside the volume €2 to
record the time-domain sound pressure p;, and validate the
quality of the approximation. For each frame, the optimization
problem is solved multiple times using different values of .
In Algorithm [I| the best A is chosen in each frame inside the
for-loop with counter z (Line[I8)). A low level of regularization
is initially used, i.e., \ is first chosen to be 107\ .x, where
Amax 18 the value for which W* = 0 [19]. Hence the first
optimization problem utilizes a low level of regularization and
is initialized with a null initial guess. Once a solution is ob-
tained, the validation error €, ¢ is computed (Line , namely
the normalized mean squared error (NMSE) between the
validation microphone frequency-domain signal p,, in the r-
th frame, weighted as well by the square-rooted Hann window,
and the validation microphone sound pressure signal predicted
by the acoustic model when regularized by A. In practice €, o,
gives a measure of the quality of the approximation, which for
small values of ) is expected to be poor due to over-fitting. The
problem is then solved again after increasing A logarithmically.



This is also warm-started using the previous solution which
helps in reducing the number of iterations of the current
optimization problem. This procedure is stopped once the
validation error stops decreasing, €, . > €, .—1 + 7, namely
when the regularization ceases to be beneficial in terms of the
quality of the approximation. Here i = 10~% is a small value
that prevents the procedure being stopped too early if €, .
and €, ._1 are very close. Finally the solution with the best
regularization parameter is chosen, that is W**~1 which was
copied to W,. during the previous iteration. The optimization
algorithm solving the problems in Line[T9]is stopped whenever
the number of iterations exceeds 200 or when the following
condition is satisfied ||vec(W?® — Ws=1)| /v < 1073,

D. DOA estimation and dereverberation

The last part of Algorithm [T](starting from Line [23]) consists
of estimating the DOA and obtaining a dereverberated signal
from the weight signals. As described in Section the
DOA can be inferred from the weight signal with strongest
energy. However, the frame-based WOLA procedure offers
the possibility of estimating DOAs in different time windows
allowing the localization of a moving sound source.

After processing the r-th frame of the microphone signals
to obtain W,, the energy of each of its columns can be
calculated and stored in a vector e, € R™V». The index of the
maximum element of e, will then correspond to the weight
signal with strongest energy corresponding to the DOA at the
r-th frame. However, it is possible to include the memory
of the previous DOA estimates by performing a recursive
averaging with forgetting factor § in order to give more
weight to the latest estimates (Line [26). This will prevent
abrupt changes of the DOA estimates. An index b will then be
retrieved (Line , which can be used to obtain the azimuth
and polar angles ¢} and 6} of the r-th frame DOA (Line [28).
These angles are selected out of the candidate angles stored
in 4‘5 = [9507 ey Sz)Nw—l]T and é = [éo, ce aéNw—l]T which
correspond to spherical coordinates with origin at the center
of the microphone array, obtained from the Fibonacci lattice
(Line 0). This enables tracking the DOA of a moving sound
source, ie., creating the vectors ¢* and 8* which contain the
estimated azimuth and polar angles of each frame, i.e., ¢} and
0 for r =0,..., N, — 1, respectively.

Once the b-th weight signal is chosen, this can be appended
to the dereverberated time-domain signal w; (Line [29). Al-
ternatively, as described in Section the weight signals
of the N, plane waves with nearest neighbor directions of
the one corresponding to W, ; can also be used to produce
dereverberated signals. The neighbor weight signals can be
selected together with w,.;, to construct W,.;, € RN~ *(Ne+1)
(Line . Once the the acoustic model D, ; : RV x(No+1)
RN-*Nm is constructed, the selected weight signals Wr,b
can be used to generate the sound pressure signals Pr,b at
the microphone position (or at any other positions inside €2),
corresponding to a new sound field with sound waves arriving
only from a limited number of directions. Similarly to what
is performed for w; in Line dereverberated signals can
then be obtained by appending P, to P; (Line [33). Once all

of the frames are processed, the columns of P, will consist
of time-domain N;-long dereverberated signals, typically with
less pronounced audio artifacts than those in wy.

V. RESULTS
A. Simulation results

In this section, results of simulations using the ADeLFi
algorithm are presented. A reverberant shoebox-shaped room
with dimensions [L,, L,, L,] = [7.34, 8.09, 2.87] m and rever-
beration time of Tgg = 1 s is modeled using the randomized
image method (RIM) [42]. The sound source is placed in the
front left corner of the room ( xs = [L;/8, L,/8, 1.6] m),
and a sampling frequency of F; = 8 kHz is used. An anechoic
sound sample of 5.3 s of male speech from [43]] is convolved
with the RIRs to simulate the microphone signals. The micro-
phones are positioned to form a spherical microphone array
with a radius of 10 cm, centered at x, = [4.4, 5.7, 1.4] m,
position at which the validation microphone is also set. Here,
N,, = 500 plane wave directions are used. This number is
chosen empirically: a lower number leads to a reduction of
the performances and a higher number does not particularly
change the results while increasing the computational load
of the algorithm. Three different scenarios are compared:
(i) sensor noise only, (ii) diffuse babble noise generated
using the technique proposed in [44] with a SNR of 10 dB
(iii) localized noise from a white source signal placed at
[7/8L., L,/8, 1.6] m with a SNR of 15 dB. Spatially
incoherent white noise is added with a SNR of 40 dB to
simulate sensor noise in all cases. The validation microphone
signal is also corrupted by these types of noise. Here, since
only static sound sources are used to simulate the microphone
signals, a forgetting factor of 5 = 1 is employed.

Figure [3(a) shows the median €, of the validation errors:
almost identical validation errors are achieved using ADeLFi
with either sum of lo-norms (spatial sparsity) or [;-norm
(spatio-spectral sparsity) regularization. The performance is
slightly worse in the case of diffuse babble noise and decreases
for the case of localized noise.

Remarkably, even if the diffuse babble noise has lower SNR
than the localized noise, better performance is achieved in
the former case. This is due to the different nature of the
noise. The diffuse babble noise is highly spatially correlated at
low frequencies where most of its energy lies. ADeLFi seems
capable of effectively approximating this diffuse noise field as
proven by the low NMSE shown in Figure [3[a). On the other
hand, the localized noise is white meaning it generates a full
band diffuse sound field in such reverberant environment. At
high frequencies the noise is spatially uncorrelated making it
more difficult to approximate this sound field due to the lack
of spatial correlation.

As the lower plots of Figure 3{b) show, all the ADeLFi
configurations achieve good localization even when only 4
microphones are used. Here a minimum angular distance of
4.5° is reached, corresponding to an angular similarity of
0o = 0.97 , which is due to the finite number of plane wave
directions. The localization performance is also compared with
well established localization algorithms, namely the MUItiple
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the ADeLFi algorithm as a function of the number of microphones (excluding the validation microphone). Notice that for SBL, MUSIC, TOPS and SRP-PHAT

the validation microphone is included.

Frequency (kHz)

Time (s)

Figure 4. Spectrogram of anechoic speech signal (a), reverberant microphone
signal (b), dereverberated signal obtained through ADeLFi with sum of l2-
norms regularization (spatial sparsity) (c), and with [1-norm regularization
(spatio-spectral sparsity) with single component (w¢) (d), and multiple
components (N, + 1 = 12) (e) using Ny, = 20 microphones with diffuse
babble noise (SNR = 10 dB).

SIgnal Classification (MUSIC) [43]], test of orthogonality of
projected subspaces (TOPS) and steered response power-
phase transform (SRP-PHAT) the implementation of
which is found in [48]). For a fair comparison, these algorithms
use the same set of candidate directions given by the Fibonacci
lattice used in ADeLFi. While MUSIC fails to retrieve the
correct DOA due to the highly reverberant environment, TOPS
and SRP-PHAT both achieve good localization in the sensor
noise and diffuse babble noise scenario, achieving similar
performance as ADeLFi. However, in the presence of localized
white noise they are outperformed by all of the different
configurations of ADeLFi. In fact in this noise scenario, both
TOPS and SRP-PHAT often identify either the DOA of the
noise source instead of the DOA of the speech source or
something in between. Once more the localized white noise
scenario is the most difficult one but ADeLFi proves itself
robust achieving almost the same performance as in the other
scenarios.

Additionally, ADeLFi is compared with a recently proposed
algorithm that also performs joint dereverberation and DOA
estimation []23[] In particular, the same acoustic model of
ADeLFi can be employed in the algorithm of which
essentially utilizes a different strategy to tune the sparse
regularization based on sparse Bayesian learning (SBL) to
promote spatial sparsity. This algorithm, here referred to as
SBL, can be employed using either a single-snapshot (SS) or
a multi-snapshot (MS) approach. Using the same parameters
of the simulation results of [24]], the MS approach consists of
processing groups of 8 ms time windows with 50% overlap.
This results in the estimation of the DOA in longer time
windows of 40 ms with 10% overlap. On the other hand,
in the SS approach a single DOA is obtained for the whole
signal. For the SS configuration, the same choice of time
windows of ADeLFi is adopted (64 ms with 50% overlap). In
Figure 3] SS SBL reaches similar localization performance to
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Figure 6. Estimated azimuth angle ¢* using measurements. Thick line
indicates the ground truth. Gray areas visualize the time windows with voice
activity.

ADeLFi. Poorer results are only reported for the case of diffuse
and localized noise with 4 microphones. On the contrary, the
MS SBL seems to fail to reach proper localization. However,
it should be pointed out that, unlike in ADeLFi, MS SBL
does not implement a recursive averaging of DOA estimates
between consecutive frames. Therefore, the poor localization
performance of the MS configuration is most likely due to
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Figure 7. STOI and PESQ scores (RAW) for different choices of the number
of weight signal Np. Results of ADeLFi using /1-norm regulatization and
Ny, = 12 microphones are shown for different types of noise: sensor noise
(40 dB), diffuse noise (10 dB) and localized noise (15 dB).

the DOA estimates changing abruptly between time windows
without voice activity. The use of a similar strategy such as the
one described in Section [[V-D] or the employment of a voice
activity detection (VAD) algorithm would possibly solve this
issue.

Figure f] compares the spectrogram of the dereverberated
signals produced by ADeLFi with the original anechoic speech
signal and one of the microphone signals. In the latter the
presence of the babble noise can be seen as well as the speech
components being smeared out by reverberation. Both rever-
beration and noise are effectively reduced by ADeLFi. Figure[d]
(c) and (d) show the spectrogram of the dereverberated signal
produced when using spatial sparsity (sum of [;-norms) and
with spatio-spectral sparsity (I/;-norm) respectively. In the
latter figure spectral sparsity is particularly visible at higher
frequencies. This effect results in audible artifacts, i.e., the
presence of musical noise in the dereverberated signal. This
is effectively reduced when multiple weight signals are used
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as show in Figure [f] (e) visualizing the spectrogram produced
at the same microphone position using N, + 1 = 12 weight
signals with spatio-spectral sparsity. A clear reduction of the
spectral sparsity is seen which leads to a substantial reduction
of the musical noise.

Figure [5] shows speech intelligibility and quality scores
obtained using the short-time objective intelligibility (STOI)
and perceptual evaluation of speech quality (PESQ) [50]
respectively. These are in line with the results of Figure [3| with
scores increasing with the number of microphones. It can be
seen that ADeLFi with spatio-spectral sparsity achieves the
best performances in particular when multiple weight signals
are used. For all configurations, the results of ADeLFi outper-
form the ones of SBL achieving a higher level of dereverbera-
tion. The algorithms have comparable results only when 4 mi-
crophones are used. Notice that the unbiased estimate of SBL
was used to produce the dereverberated signals as suggested
in [24]. A comparison with sound samples dereverberated
using the adaptive sparse MCLP-based speech dereverberation
(ADA) algorithm is also reported. This is a state-of-the-
art dereverberation algorithm based on MCLP that does not
require any prior knowledge on the DOA of the desired source
and on the acoustic properties of the room. Here, ADA utilizes
a forgetting factor of 1. ADA outperforms ADeLFi in the case
of the sensor noise scenario reaching high scores with only 4
microphones. However, the performance of ADA deteriorates
significantly in the other scenarios, particularly in the case
of diffuse babble noise. On the contrary, ADeLFi is more
robust and capable of performing noise reduction too: since the
algorithm aims at approximating the diffuse noise field as well,
it evenly distributes the noise energy among the active plane
waves and hence selecting the weight signal with the strongest
energy generally leads to a SNR increase. This can be seen in
Figure ff] when comparing the spectrogram of the microphone
signal (b) with the dereverberated signals produced by ADeLFi

(b-e).

Figure [7] shows the scores for STOI and PESQ as function
of the number of weight signals NN,. For large values of N,
the scores approach the ones of the unprocessed signals, while
for values close to 1 the performance are similar to the one
of wy;. It can be seen that in many cases an increase of the
scores is present in the range 5 < N, + 1 < 40. Here, only
the results using the [;-norm regularization are shown for
brevity: similar figures are reached for the sum of /5-norms
regularization. These results justify the choice of N, +1 = 12
which corresponds to selecting only 2.4% of the plane wave
directions.

Informal listening tests indicate that dereverberated signals
obtained by adopting either spatial sparsity or spatio-spectral
sparsity based regularization are comparable with the latter
having less audible distortions. The dereverberation effect
increases as more microphone are used. When listening to the
dereverberated signals, it is evident that the noise is reduced
when compared to the microphone signals. Audio samples can
be found in [52].

B. Results using real measurements

In this section the performance of the ADeLFi algorithm
is validated using real measurements. The measurements are
taken from the LOCATA challenge development database [53].
This database provides different recordings taken in a room
with reverberation time of approximately 759 = 0.15 s. Here
5 different scenarios are tested: three scenarios with a static
source (denoted in the figures and tables with (A), (B) and (C)
and corresponding to recordings 1, 2 and 3 respectively of Task
1 of the LOCATA database) and two scenarios with a moving
sound source (denoted (D) and (E) corresponding to recordings
1 and 3 respectively of Task 3 of the LOCATA database).
For the static source scenarios loudspeaker sources (Genelec
1029A & 8020C) were used playing speech signals from the



(A) (B) (©) (D) (E)

Ga & (dB) Fa & (dB) Ga & (dB) Fa & (dB) Ga & (dB)
ADeLFi [y 0.96 -17.24 0.83 -16.77 0.94 -15.71 091 -12.79 0.9 -13.30
ADeLFi l; Comp. 0.9 -20.89 0.93 -20.84 0.94 -19.21 0.88 -15.14 0.89 -15.87
ADeLFi Sl, 0.93 -17.24 0.88 -16.78 0.94 -15.71 0.9 -12.70 0.9 -13.26
ADeLFi Xl Comp. 0.95 -20.84 0.88 -20.82 0.94 -19.10 0.88 -15.10 0.87 -15.83

SBL 0.99 - 0.96 - 0.9 - - - - -

SBL Comp. 0.96 - 0.96 - 0.85 - - - - -

Table I
MEDIAN OF VALIDATION ERROR €, AND ANGULAR SIMILARITY 0, BETWEEN THE ESTIMATED DOA AND THE GROUND TRUTH DURING VOICE ACTIVITY
TIME WINDOWS FOR DIFFERENT SCENARIOS OF THE LOCATA CHALLENGE USING ADELFI AND SBL WITH AND WITHOUT COMPENSATION OF THE
SCATTERING FIELD OF THE MICROPHONE ARRAY RIGID BAFFLE.

CSTR VCTK database [54]]. The moving sound sources were
created by people talking while walking around the room.
The ground-truth positions of the speakers were measured
using infra-red cameras (type Flex 13) using a tracking system
(OptiTrack) with frame rate of 120 Hz [55]]. All of the results
presented here were obtained using a spherical microphone
array of 32 microphones mounted on a rigid sphere with a
radius of 4.2 cm (Eigenmike) [56]]. Out of these recordings
only N,, = 15 microphones are used in the ADeLFi al-
gorithm. Two additional microphones are used as validation
microphones. It is possible to compensate for the effect of the
rigid baffle of the microphone array: the sound field scattered
by the sphere can be effectively removed by applying a specific
normalization in the spherical harmonic domain (SHD) [57].
This compensation is performed using the MATLAB code of
[58], [59]. A sampling frequency of Fy, = 8 kHz is used.
The microphone recordings contain measurement noise and in
some cases traffic noise as well coming from outside of the
building (particularly in scenarios (B) and (D)). The forgetting
factor is empirically chosen to be 8 = 0.9 for all the results
presented here, including the static source scenarios. Here,
N,, = 500 plane wave directions are used as well.

Figure[6|shows the estimated azimuth angle ¢* as a function
of time. The ground truth is visualized using a thick line.
The grey areas in the plots visualize the time windows where
voice activity is present. For the static scenarios, only case
(B) is shown for brevity. It can be seen that, as soon as voice
activity begins, all of the various configurations of ADeLFi
succeed in finding a good estimate of the azimuth angle with
similar performance. Figure [6] (D-E) shows the case of the
moving sound sources where it is seen that the estimated
azimuth angle is successfully tracked within the time windows,
with few exceptions. Similar results can be observed for the
elevation angles and are not reported here for brevity. Instead,
Table [[] summarizes the median angular distances between
the estimated DOAs and the ground truth DOAs in the time
windows with voice activity. As it can be seen ADeLFi with
spatio-spectral sparsity based regularization achieves the most
accurate estimates, although it is sometimes almost equaled
or surpassed by the spatial sparsity based regularization.
Although ADeLFi assumes that no scattering object should
in the proximity of the microphones, these results shows that
it is still capable of reaching almost equivalent results in
terms of dereverberation and localization even when the rigid

baffle compensation is not applied to the microphone signals.
Concerning the sound field approximation, as it can be seen
in Table |I, an improvement of around 2 dB in the median
of the validation error €, is seen for all of the scenarios
when the rigid baffle compensation is used. This indicates that
better sound field approximation is indeed reached when the
rigid baffle compensation is employed although this does not
substantially increase the DOA estimation and dereverberation
performance. In some cases, the median angular similarity o,
is slightly lowered but only in case of the moving sources
scenarios. This is most likely caused by a different DOA
estimation in time windows without voice activity as shown in
Figure[6] (D-E) which influences the DOA averaging procedure
described in Section In Table [} the localization perfor-
mances of SBL are also reported using a SS approach using the
same parameters described in Section [E Here, SBL reaches
similar performance to ADeLFi. As in the case of ADeLFi,
the rigid baffle compensation does not particularly affect the
results. The comparison is not carried out for the moving
source scenarios, since SBL was not specifically designed for
such task.

Finally, Figure [§] shows the STOI and PESQ scores of the
dereverberated signals obtained with ADeLFi. The reference
signals used to compute these measures are the semi-anechoic
speech signals used to drive the loudspeakers for the static
sources scenarios while for the moving speaker scenarios the
recordings of a microphone near the mouth are used. In most
of the cases, ADeLFi improves both the audio quality and the
speech intelligibility, with visible improvements when multiple
weight signals are used. In most of the cases, the rigid baffle
compensation does not lead to a substantial increase of the
objective measure scores indicating a particular robustness of
ADeLFi against model errors. In all scenarios, the objective
measure scores of SBL are only slightly lower than the ones
of ADeLFi. Here only the results with rigid baffle compen-
sation are shown for SBL since almost equivalent results are
obtained for the unprocessed microphone signals case. The
difference between ADeLFi and SBL is less noticeable than
in the simulation results of Section possibly due to the
lower amount of reverberation present in the room where the
real measurements took place. These results are once more
compared with ADA: the scores of the dereverberated signals
of ADA are often outperformed by ADeLFi, particularly in
the moving source scenarios. Notice that here the forgetting



factor of ADA is set to 0.99 and the validation microphones are
included in the processing. As for the simulation results of the
previous Section, in many cases the best results are achieved
using ADeLFi in combination with spatio-spectral sparsity
based regularization (I;-norm), although spatial sparsity based
regularization (sum of ly-norms) often outperforms this, espe-
cially for the moving source scenarios. Sound samples can be
found in [52].

VI. CONCLUSIONS

In this paper a novel algorithm for joint source localization
and dereverberation has been proposed. This algorithm relies
on approximating the sound field using the measurements of
a set of microphones and solving an inverse problem that
employs a particular acoustic model. The inverse problem
is solved using an accelerated variant of the PG algorithm
using optimization and a WOLA procedure in order to ob-
tain the weight signals that control the plane waves which
effectively approximate the sound field. The inverse problem
is regularized using sparsity-promoting regularization and,
depending on the choice of the regularization term, spatial
or spatio-spectral sparsity can be promoted in the weight
signals. A novel technique for tuning the level of regularization
is proposed which is based on comparing the approximated
sound field with the sound field measured by an additional
microphone. It has been shown that, by finding the weight
signal with strongest energy during different time windows, a
moving sound source can be localized in terms of DOA. The
same weight signal, together with its neighbors can then also
be used for a dereverberation task. Simulations have shown
that DOA estimation can be achieved using relatively few
microphones (N, > 4) when a speech source generates the
sound field and that spatial and spatio-spectral sparsity based
regularizations are comparable in terms of both approximation
quality and dereverberation. The proposed algorithm is shown
to be robust against different types of noise using both
simulated and real measurements. Compared with state-of-the-
art algorithms for both DOA estimation and dereverberation,
the algorithm shows competitive performance and additionally
provides noise reduction in the dereverberated signals. A
main drawback of the proposed algorithm is its computational
complexity. For example, using N,, = 12 microphones and
N,, = 500 plane waves directions a real-time factor of 381 is
reached using a single core on a Intel Core™ i7 2.7 GHz
computer. However, many of the numerical operations can
be performed in parallel and the use of fast transformations
should be investigated. Future research will focus on the
reduction of the computational burden and on the extension
of the algorithm under more complex scenarios including the
localization of multiple sound sources and the use of moving
microphones.
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