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Integration of a priori and estimated constraints into
an MVDR beamformer for speech enhancement

Randall Ali, Toon van Waterschoot and Marc Moonen

Abstract—Conventionally, the single constraint of the min-
imum variance distortionless response (MVDR) beamformer
for speech enhancement has been defined using one of two
approaches. Either it is based on a priori assumptions such
as microphone characteristics, position, speech source location,
and room acoustics, or on a relative transfer function (RTF)
vector estimate using a data dependent method. Each approach
has its respective merits and drawbacks and a decision usually
has to be made between one of the approaches. In this paper, an
alternative approach of using an integrated MVDR beamformer
is investigated, where both the hard constraints from the two con-
ventional approaches are softened to yield two tuning parameters.
It will be shown that this integrated MVDR beamformer can be
expressed as a convex combination of the conventional MVDR
beamformers, a linearly constrained minimum variance (LCMV)
beamformer, and an all-zero vector, with real, positive-valued
coefficients. By analysing how the tuning parameters affect these
coefficients, two tuning rules for a practical implementation of the
integrated MVDR are subsequently proposed. An evaluation with
simulated and recorded data demonstrates that the integrated
MVDR beamformer can be beneficial as opposed to relying on
either of the conventional MVDR beamformers.

Index Terms—Speech Enhancement, Multi-Microphone Noise
Reduction, Beamforming, Minimum Variance Distortionless Re-
sponse (MVDR) Beamformer.

I. INTRODUCTION

Devices equipped with multiple microphones such as tele-
conferencing systems, assistive hearing devices (hearing aids
(HA) and cochlear implants (CI) for instance), and automatic
speaker recognition systems, are subject to a degradation in
performance as the microphones capture a certain degree of
noise in addition to the desired signal. This noise inevitably
corrupts the desired signal, resulting in poor audio quality and
intelligibility. The task of multi-microphone noise reduction
therefore involves the extraction of this desired signal from
the corrupted mixture of desired signal and noise, which in
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turn will restore the performance of the device in question.
In the case where the desired signal is a speech signal (as
will be considered in this paper), noise reduction is also
referred to as speech enhancement. An extensive overview of
the development of speech enhancement over the past 70 years
is provided in [1], with a comprehensive list of references.

One particular algorithm that has persevered and that is still
widely used is known as the linearly constrained minimum
variance (LCMV) beamformer [2] [3], whereby multiple con-
straints are imposed upon the minimisation of the total output
power of the beamformer. In this paper, a specific case of the
LCMV beamformer is considered, known as the minimum
variance distortionless response (MVDR) beamformer [4],
whereby only one constraint in the direction of the speech
source is imposed upon the minimisation of the total output
power of the beamformer. An adaptive implementation of the
MVDR beamformer has been presented by Frost [5] and a
common practical implementation is the generalised sidelobe
canceller (GSC) [6].

Regardless of the practical implementation of the MVDR
beamformer, the imposed constraint is usually defined from
one of two conventional approaches. In the first approach, the
constraint is based on a priori assumptions such as microphone
characteristics, position, speech source location, and room
acoustics (e.g. no reverberation). Therefore, a fixed model is
used to characterise the vector of acoustic transfer functions
(ATFs) from the speech source to the microphone array. For
instance, it is not uncommon in hearing devices to assume the
knowledge of the speech source location [7]–[10].

The second approach for defining the constraint for the
MVDR beamformer does not involve any such a priori as-
sumptions and alternatively, a data dependent estimate for the
ATF vector, or more commonly the relative transfer function
(RTF) vector, is performed [11] [12]. The RTF vector is
simply defined as the ATF vector normalised to a reference
microphone and the estimate is calculated from the second
order statistics of speech and noise signals (i.e. the speech-
plus-noise correlation matrix and the noise-only correlation
matrix).

Each of the mentioned approaches has its merits and
drawbacks and may be more suitable for specific acoustic
environments. For instance in the first approach, if the speech
source is indeed in the direction as defined by the a priori
assumptions and the microphone array is properly calibrated,
then a robust solution can be obtained. However, this approach
may not be so effective when the assumptions are broken,
particularly if there is a mismatch between the a priori assumed
direction and the actual speech source location [13]. The
second approach of estimating the RTF vector on the other
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hand, is not subject to such degradations as it is independent
of any such a priori assumptions. Nevertheless, for a reliable
performance, it is essential that an accurate distinction is made
between periods of speech and non-speech activity (for the
proper estimation of the speech-plus-noise correlation matrix
and the noise-only correlation matrix). While this distinction
can be made fairly accurate in favourable acoustic conditions,
in adverse acoustic environments such as for a low signal-to-
noise-ratio (SNR) and excessive reverberation, the ability to
make such a distinction becomes increasingly difficult [14].
The result is that the MVDR beamformer with an RTF vector
estimate in this case can result in an undesirable performance.

Therefore the question remains as to how can the mismatch
between an assigned RTF vector and the true RTF vector
be minimised, or in other words, how can the problem of
spatial robustness be addressed? Solutions to this problem have
already been proposed in [15] [16]. In this paper, however, the
strategy proposed in [17] is considered, where the constraint
from a priori assumptions and the constraint from a data
dependent estimate were integrated into one cost function
by softening these two hard constraints, thereby yielding
two tuning parameters. In [17], only a limited analysis was
performed on such a cost function and a solution was presented
that did not provide much insight into how such a strategy
could be applied in practice.

It is therefore the intention of this work to further analyse
the potential of the proposed strategy in [17] both theoretically
and experimentally. In this paper, the cost function proposed
in [17] is reframed in terms of an a priori RTF vector and
an estimated RTF vector and subsequently referred to as an
integrated MVDR beamformer. It will be shown that this
integrated MVDR beamformer can be expressed as a con-
vex combination of the conventional MVDR beamformers, a
linearly constrained minimum variance (LCMV) beamformer,
and an all-zero vector, with real, positive-valued coefficients.
An analysis of how the tuning parameters affect these co-
efficients both theoretially and through simulations will also
demonstrate that the integrated MVDR encompasses a wide
range of speech enhancement filters.

Finally, two tuning rules are proposed for a practical im-
plementation of the integrated MVDR beamformer, which
make use of a metric of confidence and the relationship
between the integrated MVDR and the speech-distortion-
weighted MWF (SDW-MWF). An evaluation with recorded
data demonstrates that the integrated MVDR beamformer can
indeed be beneficial and more accomodating for changes in
the acoustic environment as opposed to relying on either of
the conventional MVDR beamformers.

The paper is organised as follows. In Section II, the data
model and notation are defined. In Section III, a brief review
of the two conventional approaches to define the constraints
of the MVDR beamformer, and an LCMV approach is pro-
vided. In Section IV, the integrated approach is introduced
and analysed. In Section V, two tuning rules for a practical
implementation are proposed. In Section VI, the integrated
MVDR approach is evaluated with simulated and recorded
data from an office room. Finally in Section VII, conclusions
are drawn.

II. DATA MODEL

A speech enhancement system is considered with an array
of M microphones that receives a signal consisting of a desired
speech signal that is corrupted by noise in a reverberant envi-
ronment. In the short-time Fourier transform (STFT) domain,
the received signal at frequency, k, and time frame, l, is
represented as:

y(k, l) = h(k, l)s1(k, l)︸ ︷︷ ︸
x(k,l)

+ n(k, l) (1)

where (dropping the dependency on k and l for brevity)
y = [y1 y2 . . . yM ]

T is a vector containing the respective
microphone signals, x is the speech contribution, represented
by s1, the speech signal in the first microphone of the array,
filtered with h = [1 h2 . . . hM ]

T , the RTF vector for the
array (with the first microphone used as the reference, which
translates to the first component of h being equal to 1).
n = [n1 n2 . . . nM ]

T is the noise contribution.
The (M ×M) speech-plus-noise, noise-only, and speech-

only correlation matrices are given respectively as:

Ryy = E{yyH }; Rnn = E{nnH }; Rxx = E{xxH } (2)

where E{.} is the expectation operator and H is the Hermitian
transpose. It is assumed that the speech signal is uncorrelated
with the noise signal, and hence Ryy = Rxx + Rnn.

The estimate of the speech component in the first micro-
phone of the array, s1, is then obtained through the linear
filtering of the microphone signals, such that:

s1 = wHy (3)

where w = [w1 w2 . . .wM ]
T is the complex-valued filter

(beamformer) to be designed.

III. MVDR AND LCMV REVIEW

The minimum power distortionless response (MPDR) beam-
former [18] minimises the total output power while preserving
the received speech signal in accordance with a constraint that
would ideally result in a distortionless response. Using h from
(1) as the constraint, the MPDR problem is given by:

min
w

wHRyyw

s.t. wHh = 1
(4)

For a correct constraint, this total output power reduces to
the total noise power, so that Ryy in (4) can be replaced by
Rnn [19]. In practice, however, Rnn has to be estimated,
which is typically done by recursive averaging, along with
a voice activity detector (VAD) [20] or a speech presence
probability (SPP) estimator [21]. The optimisation problem
in (4) can then be replaced accordingly by:

min
w

wH R̂nnw

s.t. wHh = 1
(5)

where the MPDR beamformer is now referred to as the MVDR
beamformer and given by:

w =
R̂−1

nnh

hH R̂−1
nnh

(6)
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where R̂nn is the estimate of Rnn. Finally, the other critical
component for the MVDR, the RTF vector, h, is also not
typically known in practice. In sections III-A and III-B that
follow, strategies are discussed for computing this RTF vector.
In section III-C, an LCMV approach using these different RTF
vector approximations is also discussed.

A. MVDR with a priori assumptions (MVDR-APR)

One option replacing h in (6) is to use an a priori assumed
RTF vector, h̃ = [1 h̃2 . . . h̃M]T as an approximation to h.
h̃ can be based on a priori assumptions such as microphone
characteristics, position, speaker location, and room acoustics
(e.g. no reverberation). Similar to (6), the optimal noise
reduction filter is then given by:

w̃ =
R̂−1

nnh̃

h̃H R̂−1
nnh̃

(7)

which will be referred to as the MVDR-APR. The speech
estimate in the first microphone of the array is subsequently
calculated as:

z̃1 = w̃Hy (8)

It is noted that the quantities denoted as ( .̃ ) will be associated
with a priori assumed quantities.

In the case where the assumptions are satisfied, for instance
if the speech source truly lies in the direction defined by h̃,
the MVDR-APR can be regarded as robust in adverse acoustic
conditions. In other scenarios, however, it can be expected that
the speech signal does not always adhere to the assumptions,
and hence the MVDR-APR will degrade in performance and
potentially suffer from distortions.

B. MVDR with an estimated RTF vector (MVDR-EST)

In order to accommodate for the shortcomings of defining
an RTF vector based on a priori assumptions, methods for
alternatively estimating the RTF vector from the estimated
speech-plus-noise correlation matrix, R̂yy, and the estimated
noise-only correlation matrix, R̂nn, have been pursued [11]
[12]. This estimated RTF vector will therefore not rely on any
a priori assumptions and can be used to enhance the speech
in more practical scenarios, such as when the speech source
is not in the direction specified by the a priori assumptions.
Out of these methods, the method of covariance whitening
or equivalently that which involves a Generalised Eigenvalue
Decomposition (GEVD) has resulted in superior performance
[22].

The GEVD of the matrix pencil {R̂yy, R̂nn} follows as:

R̂−1
nnR̂yy = ÛΣ̂Û−1 (9)

where Σ̂ is a diagonal matrix of the generalised eigenvalues,
{σ̂1, σ̂2, . . . , σ̂M}, ordered such that σ̂1 ≥ σ̂2 ≥ . . . σ̂M, and
Û contains the corresponding generalised eigenvectors. As
the generalised eigenvectors are defined up to a scaling, it
is assumed without loss of generality that ÛH R̂nnÛ = IM ,
where IM is an M ×M identity matrix. Hence, the GEVD is

also equivalent to the following joint diagonalisation of R̂yy

and R̂nn:

R̂yy = Q̂Σ̂yQ̂H ; R̂nn = Q̂Q̂H (10)

where Q̂ = Û−H is an invertible matrix, and Σ̂y = Σ̂. The
corresponding estimate of the speech-only correlation matrix
can then be given as:

R̂xx = R̂yy − R̂nn = Q̂ (Σ̂− IM )︸ ︷︷ ︸
Σ̂x

Q̂H (11)

where Σ̂x is a diagonal matrix of eigenvalues,
{σ̂x1, σ̂x2, . . . , σ̂xM}, ordered such that σ̂x1 ≥ σ̂x2 ≥ . . . σ̂xM.
With a rank-1 approximation to R̂xx, the estimated RTF
vector is then:

ĥ =
Q̂e1

eT
1 Q̂e1

(12)

where the (M × 1) vector e1 = [1 0 . . . 0]T . This estimated
RTF vector can now be used as the approximation to h for
the MVDR beamformer defined in (6), and is given by:

ŵ =
R̂−1

nnĥ

ĥH R̂−1
nnĥ

(13)

which will be referred to as the MVDR-EST. The speech
estimate in the first microphone of the array is subsequently
calculated as:

ẑ1 = ŵHy (14)

It is noted that the quantities denoted as ( .̂ ) will be associated
with estimated quantities.

While such an MVDR beamformer that uses an RTF
vector estimate can be effective in many practical scenarios,
it is important to acknowledge that a critical requirement is
to distinguish between the speech-plus-noise and noise-only
periods for an accurate estimation of the respective correlation
matrices.

C. LCMV

Given the limitations of the previous MVDR beamformers,
it is expected that neither of them would be able to accomodate
for dynamic acoustic scenarios. Therefore, a first attempt to
resolve this issue would be to consider an LCMV beamformer,
where a distortionless response from both the a priori assumed
RTF, h̃, and the estimated RTF ĥ can be preserved, i.e.
multiple hard constraints can be imposed on the minimisation
of the total noise power:

min
w

wH R̂nnw

s.t. CHw = b
(15)

where

C = [h̃ ĥ]; b = [1 1]T (16)

The corresponding solution to this equality constrained least
squares problem can be found by defining the dual function
with a Lagrange multiplier vector, ν, and employing the
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Karush-Kuhn-Tucker (KKT) conditions to solve the following
linear set of equations:[

R̂nn C
CH 0

] [
w
ν

]
=

[
0
b

]
(17)

where the left-hand side coefficient matrix is known as the
KKT matrix [23]. The result is the well-known equation:

wlcmv = R̂−1
nn C V−1b (18)

where

V = [CH R̂−1
nn C] =

[
kaa kab
kba kbb

]
(19)

and

kaa = h̃H R̂−1
nnh̃; kbb = ĥH R̂−1

nnĥ

kab = h̃H R̂−1
nnĥ; kba = ĥH R̂−1

nnh̃ (20)

Upon expansion of (18), it can also be observed that
the wlcmv can be expressed as a linear combination of the
MVDR-APR, w̃, and the MVDR-EST, ŵ:

wlcmv =

[
kaa(kbb − kab)
kaakbb − kabkba

]
w̃ +

[
kbb(kaa − kba)

kaakbb − kabkba

]
ŵ

(21)

where the denominator, (kaakbb − kabkba) is the determinant
of V, real-valued, and always ≥ 0 due to the Cauchy–Schwarz
inequality. In the case of a single speaker, while this LCMV
solution can potentially provide a distortionless response if h̃
or ĥ is a suitable approximation to the true RTF vector, less
noise will be reduced as both constraints are always active.

Caution must however be taken with such an approach as
the constraints in C can become redundant in scenarios when
h̃ and ĥ are linearly dependent or even approximately so, i.e.
ĥ ≈ δh̃, where δ is a scalar. This is possible for instance
when estimation is reliable and the speech is in the a priori
assumed direction. Even though such a case can be deemed as
a “fortunate” circumstance of events, the consequence is that
V will become ill-conditioned. On closer observation of (17),
it can be seen that −V is the Schur complement of the 0-block
in the KKT matrix [23] and the Lagrange multiplier vector is
given as ν = −V−1b. Therefore, it can be concluded that
when ĥ ≈ δh̃, the dual problem is not well defined.

As an extreme case, if ĥ = h̃ (δ = 1), the weights
of w̃ and ŵ in (21) will be indeterminate forms of 0

0 . A
distinct example is as follows: for h̃ =

[
1 1 1

]T
and ĥ =[

1 1 + r cos θ 1 + r sin θ
]T

(with r being some distance
and θ ∈ [0, 2π]), it is readily shown that the hard constraints

CTw =
[
1 1

]T
are equivalent with

[
1 1 1
0 cos θ sin θ

]
w =[

1 0
]T

where the r cancels out. As a result, even for
infinitesimally small r (i.e. for ĥ arbitrarily close to h̃), the
LCMV beamformer as well as its noise reduction performance
will be independent of r but dependent on θ, which is indeed
undesirable.

One solution to this problem would be the diagonal loading
of V, which has been proven to avoid instabilities in the

LCMV context [24]. The procedure consists of adding a scaled
identity, εI, to V, resulting in a regularised version of (21):

wε
lcmv =

[
kaa(kεbb − kab)
kεaak

ε
bb − kabkba

]
w̃ +

[
kbb(k

ε
aa − kba)

kεaak
ε
bb − kabkba

]
ŵ

(22)

where kεaa = kaa + ε and kεbb = kbb + ε. When ĥ = δh̃ (22)
will tend toward a scaled version of the MVDR-APR provided
that ε << kaa.

IV. INTEGRATED APPROACH

A. Formulation

The fact that the MVDR-APR, the MVDR-EST, and LCMV
beamformers impose hard constraints is the underlying reason
why these approaches may still have a limited performance
in dynamic acoustic scenarios. Consequently, an alternative
approach may be considered such as that proposed in [17]
where these hard constraints are softened. Such a beamformer
can then merge the benefits of the MVDR-APR and the
MVDR-EST beamformers in order to yield a more versatile
one. For instance, if the speech source moves outside of
the a priori assumed direction, more weight can be given
to the estimated RTF vector to accommodate for the loss
in performance that would otherwise result from using the
a priori assumed RTF vector alone. On the other hand, if
the estimated RTF vector becomes unreliable, less weight
can be given to it and the system can revert to using the
a priori assumed RTF vector, which may have an improved
performance if the speech source is indeed close to the a priori
assumed direction.

Similar to [17], if the case is considered where h̃ is defined
according to some assumptions as in Section III-A and ĥ is
estimated as in III-B, an integrated MVDR cost function can
be given as:

min
w

wH R̂nnw + α |wH h̃− 1|2 + β |wH ĥ− 1|2 (23)

where α ∈ [0, ∞) and β ∈ [0, ∞) are tuning parameters
that control how much of the respective RTF vectors are
imposed. This cost function is simply the combination of the
MVDR-APR and MVDR-EST cost function, except that the
constraints have been softened by α and β. The solution to
(23) is then given by:

wint = (R̂nn + αh̃h̃H + βĥĥH )−1(αh̃h̃H + βĥĥH )e1

(24)

This will be referred to as the MVDR-INT, and can be re-
written as:

wint = (R̂nn + CΓCH )−1(CΓCH )e1 (25)

where Γ = diag{α, β}. Applying the matrix inversion lemma
to the inverse in (25) yields:

(R̂nn + CΓCH )−1 = R̂−1
nn − R̂−1

nnC
[
Γ−1

+ (CH R̂−1
nnC)

]−1
CH R̂−1

nn (26)

Substitution of (26) into (25) eventually results in a simple
expression for the MVDR-INT:



5

wint =
αkaa[1 + β(kbb − kab)]

D
w̃ +

βkbb[1 + α(kaa − kba)]

D
ŵ

(27)

where:

D = αkaa + βkbb + αβ(kaakbb − kabkba) + 1 (28)

It can now be observed from (27) that the MVDR-INT beam-
former is a linear combination of the MVDR-APR and the
MVDR-EST beamformers, whose complex-valued weightings
are defined by α, β, and the constants from (20).

In the limiting case where α → ∞ and β → ∞,
(23) is equivalent to (15) with the LCMV solution given
by (21). As was discussed in Section III-C, in scenarios
where ĥ ≈ δh̃, the LCMV suffers from an ill-conditioning.
Hence the limit as (α, β, ĥ) → (∞,∞, δh̃) (or equivalently
( 1
α ,

1
β , ĥ) → (0, 0, δh̃)) will also result in an ill-conditiong

problem in function of (27). For the LCMV, this problem was
resolved with diagonal loading resulting in (22). Hence the
ill-conditioning for the MVDR-INT can also be resolved by
regularising (27) as follows:

wε
int =

αkaa[1 + β(kεbb − kab)]
Dε

w̃ +
βkbb[1 + α(kεaa − kba)]

Dε
ŵ

(29)

where

Dε = αkaa + βkbb + αβ(kεaak
ε
bb − kabkba) + 1 (30)

For α→∞ and β →∞, (29) then indeed reduces to (22).
In order to realise practical values for α and β to analyse

the MVDR-INT further (for instance it is ambiguous as to
what exactly a practical value is for α→∞ or β →∞), it is
suggested to make the following normalisations:

α =
ᾱ

kaa
; β =

β̄

kbb
(31)

where ᾱ and β̄ are still real-valued constants. Substituting (31)
into (29) results in:

w̄ε
int =

ᾱ[1 + β̄(
kεbb−kab
kbb

)]

D̄ε
w̃ +

β̄[1 + ᾱ(
kεaa−kba
kaa

)]

D̄ε
ŵ (32)

where

D̄ε = ᾱ+ β̄ + ᾱβ̄(
kεaak

ε
bb − kabkba
kaakbb

) + 1 (33)

While it is evident that the MVDR-INT is a linear combi-
nation of the MVDR-APR and the MVDR-EST beamformers,
it should be highlighted that by the substitution of (22), (32)
can also be expressed as:

w̄ε
int =

ᾱ

D̄ε
w̃ +

β̄

D̄ε
ŵ +

ᾱβ̄(
kεaak

ε
bb−kabkba
kaakbb

)

D̄ε
wε

lcmv +
1

D̄ε
wz

(34)

where wz is the all-zero (M × 1) vector. (34) reveals that
the MVDR-INT is a convex combination of the MVDR-APR
beamformer, the MVDR-EST beamformer, the LCMV beam-
former, and the all-zero vector. Furthermore, as opposed
to (32) which consists of complex-valued coefficients, in

(34), the coefficients are all positive and real-valued since
(kεaak

ε
bb − kabkba) > 0 from the Cauchy–Schwarz inequality

and the regularisation that was introduced. The MVDR-INT
can therefore be truly regarded as a more global and versatile
beamformer that encompasses wide range of filters bounded
by the MVDR-APR, MVDR-EST, LCMV, and the all-zero
vector. Consequently, it suggests that (34) can be tuned for an
optimal performance depending on the acoustic environment.
As such, some interesting cases of different tunings of (34)
are discussed in the following.

B. Limiting cases of the tuning parameters

In terms of a contingency strategy as in [25], the fall back
mechanism will be to revert to an MVDR-APR when the
MVDR-EST becomes unreliable. One means by which this can
be achieved is to always keep the a priori constraint active, i.e.
set ᾱ → ∞ while only tuning β̄. This additionally simplifies
the practical implementation of the filter as only one tuning
parameter needs to be considered. Considering the limit of
ᾱ→∞ in (34) results in:

lim
ᾱ→∞

w̄ε
int =

1

1 + β̄(
kεaak

ε
bb−kabkba
kaakbb

)
w̃

+
β̄(

kεaak
ε
bb−kabkba
kaakbb

)

1 + β̄(
kεaak

ε
bb−kabkba
kaakbb

)
wε

lcmv (35)

which is a convex combination of the MVDR-APR and the
LCMV. Clearly, if β̄ = 0, (35) reverts to (7), satisfying the
notion of a contingency strategy. In scenarios where the a
priori assumptions are not satisfied, increasing values of β̄
in (35) will attempt to maintain a distortionless response and
tend toward the LCMV. This however, may be at the cost of
having less noise reduced as h̃ is always active. Nevertheless,
this compromised performance will be an improvement as
opposed to simply using only an MVDR-APR, provided that
ĥ is accurate.

A contrary filter can also be derived, where alternatively
all of the weight is placed on the estimated RTF vector, i.e.
β̄ →∞. Considering this limit in (34) results in:

lim
β̄→∞

w̄ε
int =

1

1 + ᾱ(
kεaak

ε
bb−kabkba
kaakbb

)
ŵ

+
ᾱ(

kεaak
ε
bb−kabkba
kaakbb

)

1 + ᾱ(
kεaak

ε
bb−kabkba
kaakbb

)
wε

lcmv (36)

which is now a convex combination of the MVDR-EST and
the LCMV. If ᾱ = 0, (36) reverts to (13), indicating that this
filter has the potential to perform better than the MVDR-APR
regardless of the speech source location, provided that ĥ is
accurate. If ĥ is not accurate as it will inevitably become in
some scenarios, then ᾱ can be increased to introduce more
of the a priori assumed RTF vector and the MVDR-INT will
tend toward the LCMV beamformer. If the speech source is
such that it adheres to some a priori assumed conditions, for
instance, if it is close to the direction defined by h̃, then
increasing ᾱ can result in a filter that has a better performance
than that of the MVDR-EST when ĥ is inaccurate.
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C. Equivalence to the Speech Distortion Weighted MWF

In the previous sections, it was demonstrated that the
MVDR-INT encompasses a number of different types of spa-
tial filters. It is worthwhile to highlight that the MVDR-INT
can also incorporate a postfilter on top of these spatial
filters for further noise suppression. This can be observed
by considering the case where either ᾱ = 0 or β̄ = 0,
which consequently results in an equivalence between the
MVDR-INT and the speech-distortion-weighted MWF (SDW-
MWF) [26]. In fact, the ability of the MVDR-INT to also
incorporate a postfilter is also evident from (34) as the all-
zero vector, wz is also included as one of the terms in the
convex combination.

In [22], it was shown that the solution for the GEVD-based
SDW-MWF is given by:

wsdw−mwf = (Rxx,r1 + µR̂nn)−1Rxx,r1e1 (37)

where µ ∈ [0 ∞) is a parameter to trade-off the amount
of speech distortion against the amount of noise reduction,
and Rxx,r1 is a rank-1 approximation to the speech-only
correlation matrix, Rxx. In the case of an a priori assumed
RTF vector, Rxx,r1 = R̃xx,r1 = Φ̂s1h̃h̃H , whereas for the
estimated RTF vector, Rxx,r1 = R̂xx,r1 = Φ̂s1ĥĥH , where
Φ̂s1 is an estimated speech power in the reference microphone.
Considering either of these cases, it is well known that (37)
can be decomposed into [19]:

wsdw−mwf =


Φ̂s1

Φ̂s1+µ(h̃H R̂−1
nn h̃)−1

w̃ if Rxx,r1 = R̃xx,r1

Φ̂s1

Φ̂s1+µ(ĥH R̂−1
nn ĥ)−1

ŵ if Rxx,r1 = R̂xx,r1

(38)
The conditions of Rxx,r1 = R̃xx,r1 and Rxx,r1 = R̂xx,r1

are equivalent to either β̄ = 0 or ᾱ = 0 respectively, hence
for the MVDR-INT in (34), it can be deduced that:

w̄ε
int =


ᾱ

ᾱ+kaa(h̃H R̂−1
nn h̃)−1

w̃ if β̄ = 0

β̄

β̄+kbb(ĥH R̂−1
nn ĥ)−1

ŵ if ᾱ = 0
(39)

Upon comparing (38) and (39), it is observed that both
solutions are indeed equivalent provided that:

ᾱ =
Φ̂s1kaa
µ

when β̄ = 0 (40)

β̄ =
Φ̂s1kbb
µ

when ᾱ = 0 (41)

A summary of the various tunings for ᾱ and β̄ as applied to
(34) and the corresponding speech enhancement strategies is
presented in Table I.

V. TUNING STRATEGY

Following the theoretical anaylysis of the MVDR-INT, the
next issue to be addressed is how should the parameters ᾱ and
β̄ be tuned in a practical situation? In this section two potential
tuning rules are proposed which make use of a metric of
confidence as well as the relationship between the MVDR-INT
and the SDW-MWF. The dependence of the quantities on time
is reintroduced in this section to emphasize that ᾱ and β̄ are

TABLE I
TABLE 1: SUMMARY OF SPEECH ENHANCEMENT STRATEGIES RESULTING

FROM (34) FOR DIFFERENT TUNINGS OF ᾱ AND β̄ .

Tuning Parameters Speech Enhancement Strategy Equation

ᾱ→∞, β̄ = 0 MVDR-APR (7)
ᾱ = 0, β̄ →∞ MVDR-EST (13)
ᾱ→∞, β̄ →∞ LCMV (22)

ᾱ→∞, β̄ ∈ [0, ∞) MVDR-APR + LCMV (35)
ᾱ ∈ [0, ∞), β̄ →∞ MVDR-EST + LCMV (36)
ᾱ = 0, β̄ ∈ [0, ∞) SDW-MWF (39)
β̄ = 0, ᾱ ∈ [0, ∞) SDW-MWF (39)

updated in each time frame (the dependence on frequency
is still omitted as all frequencies are updated in the same
manner).

A. Metric of confidence

Firstly, a metric of confidence is required to indicate how
accurate the RTF vector was estimated (i.e. the accuracy of
ĥ(l)), which can be subsequently used to assign more or less
weight to β̄(l). One potential option for such a metric can be
the generalised eigenvalues of Σ̂(l) from (9), or equivalently,
Σ̂y(l) from (10).

As only a single speaker is considered, and a rank-1 speech-
only correlation matrix is assumed, it is only the principal gen-
eralised eigenvalue, σ̂1(l), and its corresponding generalised
eigenvector that is of interest. σ̂1(l) can in fact, be interpreted
as an a posteriori SNR measure, and hence it is expected that
higher values of this a posteriori SNR measure will correspond
to a more accurate estimate of the RTF vector. In two extreme
cases of voice activity detection, σ̂1(l) will be given as (recall
(11)):

σ̂1(l) ≈

{
σx1(l) + 1 for perfect VAD

1
σx1(l)+1 worst case imperfect VAD

(42)

where σx1(l) is the expected (not estimated) eigenvalue from
the rank-1 speech-only correlation matrix. In the case of the
perfect VAD, where R̂yy ≈ E{yyH } and R̂nn ≈ E{nnH },
larger values of σ̂1(l), i.e. σ̂1(l) � 1 correspond to the
situation where σx1(l)� 1, indicative that speech was present
and correctly classified, which would lead to an accurately
estimated RTF vector. On the other hand for a worst case im-
perfect VAD, where R̂yy ≈ E{nnH } and R̂nn ≈ E{yyH },
since the speech is inaccurately classified, regardless the value
of σx1(l), σ̂1(l) ≤ 1. It can also be observed that in general,
when the speech is classified as noise, smaller values of σ̂1(l)
will be expected. In the case where the noise is classified as
speech, this can result in larger values of σ̂1(l) but is however,
not as detrimental to overall performance in comparison to the
case when speech is classified as noise [27].

A logisitic function can then be used to map σ̂1(l) to a
value, F(l) ∈ [0 1], where 0 indicates a low confidence in the
accuracy of the estimated RTF and 1 a high confidence in the
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accuracy of the estimated RTF. The relationship between F(l)
and σ̂1(l) is given by:

F(l) =
1

1 + e−ρ(σ̂1(l)−σt)
(43)

where ρ controls the gradient of the transition from 0 to 1, and
σt is a threshold generalised eigenvalue, beyond which F(l)→
1. Therefore, using higher values for σt would correspond to
a more conservative approach where F(l) would tend mostly
to 0 and lower values for σt would correspond to a more
aggressive approach where F(l) would tend mostly to 1.

B. Tuning rules

1) SDW tuning rule: The relationship between the
MVDR-INT and the SDW-MWF from Section IV-C sug-
gests that (40) and (41) can be used for tuning ᾱ(l) and
β̄(l) respectively. However, in order to control the respective
weights in accordance with how well the RTF vector has been
estimated, the previously proposed metric of confidence can
be incorporated such that ᾱ(l) and β̄(l) are tuned as follows:

ᾱsdw(l) = (1− F(l))
Φ̂s1(l)kaa(l)

µ
(44)

β̄sdw(l) = F(l)
Φ̂s1(l)kbb(l)

µ
(45)

For this tuning, µ must be chosen (which is a familiar trade-off
choice) and Φ̂s1(l) must be computed, for instance as in [28].
Furthermore, it should be noted that if ĥ = h̃, substitution of
(44) and (45) into (23) would yield the cost function for the
SDW-MWF for all values of F(l). Otherwise, there is a trade-
off between the MVDR-APR and the MVDR-EST, with more
emphasis placed on the respective beamformer as prescribed
by F(l). With values computed for ᾱsdw(l) and β̄sdw(l), these
parameters can then be substituted in (32) to compute the
MVDR-INT beamformer. This tuning rule is summarised in
Algorithm 1.

Algorithm 1 SDW tuning rule for the MVDR-INT at each
time frame for a particular frequency.

Set value for µ, ε, ρ, and σt
for l = 1 to L do

(1) Estimate Φ̂s1(l) from the reference microphone.
(2) Compute w̃(l) from (7) and ŵ(l) from (13)
(3) Compute F (l) from (43).
(4) Compute ᾱsdw(l) from (44) and β̄sdw(l) from (45).
(5) Compute w̄ε

int(l) from (32)
end for

2) Contingency tuning rule: A second tuning rule may
also be considered that is in line with the contingency noise
reduction strategy of [25]. For this strategy, only β̄ needs to be
tuned, which can be computed as β̄sdw(l) from (45). This can
then be substituted along with w̃ from (7), ŵ(l) from (13), and
wε

lcmv from (22) into (35). In such a strategy, smaller values
of β̄sdw(l) will tend to the MVDR-INT beamformer, while
larger values of β̄sdw(l) will tend to the LCMV beamformer.
This contingency tuning rule is summarised in Algorithm 2.

Algorithm 2 Contingency tuning rule for the MVDR-INT at
each time frame for a particular frequency.

Set value for µ, ε, ρ, and σt
for l = 1 to L do

(1) Estimate Φ̂s1(l) from the reference microphone.
(2) Compute w̃(l) from (7) and ŵ(l) from (13)
(3) Compute wε

lcmv(l) from (22)
(4) Compute F (l) from (43).
(5) Compute β̄sdw(l) from (45).
(6) Compute w̄ε

int(l) from (35) (the contingency version)
end for

VI. EVALUATION AND DISCUSSION

In order to evaluate the MVDR-INT strategy, both simulated
data as well as recorded data from a typical office room
were used. In the simulated case, scenarios with accurately
and inaccurately estimated RTF vectors were considered in
order to understand how the tuning parameters, ᾱ and β̄
affect the MVDR-INT beamformer. For the recorded data, the
tuning rules as described in Section V were applied to the
MVDR-INT beamformer and the resulting performance was
compared to that from the MVDR-APR, MVDR-EST, and
LCMV beamformers.

For the processing of the algorithms, the weighted overlap-
and-add (WOLA) method [29], with a discrete Fourier trans-
form (DFT) size of 512, 50 % overlap, a square-root Hanning
window, and a sampling frequency of 16 kHz was used.
Depending on the scenario under consideration, either a perfect
or imperfect means of voice activity detection was used to
retrieve R̂yy and R̂nn.

Although the processing described in this paper was done
in the frequency domain, the respective quantities were con-
verted back into the time domain for evaluation. The metrics
used to evaluate the various experiments were the change in
unweighted output SNR from the input to the output and
the short-time objective intelligibility (STOI) measure [30].
The change in unweighted SNR (∆ SNR) was computed as
follows:

∆SNR = 10 log10

(
E{|Zx,1[n]|2}
E{|Zn,1[n]|2}

)
︸ ︷︷ ︸

SNR output

− 10 log10

(
E{|X1[n]|2}
E{|N1[n]|2}

)
︸ ︷︷ ︸

SNR input

(46)

where n is the discrete time index, Zx,1[n] and Zn,1[n] are the
individually processed speech-only and processed noise-only
components in the discrete time domain resulting from the
particular algorithm, and X1[n] and N1[n] are the unprocessed
speech-only and unprocessed noise-only components in the
discrete time domain at the reference microphone.

The STOI metric used X1[n] as the reference signal in
order to evaluate the intelligibility of the processed signal,
Z1[n]. As opposed to the absolute values, a change in STOI
(∆ STOI) from its respective value resulting from using
the unprocessed signal was computed in order to reflect the
relative improvements of the various algorithms.
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A. Simulated Data

The simulation environment, depicted in Figure 1, consisted
of a reverberant room with reverberation time (RT) 0.25 s and
dimensions 4.3 m × 6.9 m × 2.6 m, a linear microphone array,
and a single speech source within a spherically diffuse noise
field. The array consisted of 4 omnidirectional microphones
with an inter-element spacing of 4 cm. For the speech source
signal, six sentences separated by silence from the English
Hearing-In-Noise Test (HINT) database [31] were used. The
diffuse noise field was generated using uncorrelated excerpts
of multitalker babble noise from Audiotec [32] and the method
outlined in [33]. Uncorrelated white noise was also added
to each of the microphone signals such that the ratio of the
speech signal power in the first microphone of the array to
the uncorrelated white noise power was 30 dB. The room
impulse responses were obtained using the randomised image
method [34] and implemented from [35]. R̂yy and R̂nn were
then estimated accordingly via recursive averaging with an
averaging time of 3 s.

Two general scenarios in which to observe the effect of
the tuning parameters of the MVDR-INT were considered:
(i) where the RTF vector was accurately estimated and (ii)
where the RTF vector was not accurately estimated. For each
scenario, the speech source was placed 1 m away from the
centre of the microphone array and was swept through a
series of angles from 0o to 180o (as indicated by the bold
curved arrow in figure 1). For each speech source angle, the
evaluation metrics previously discussed were then calculated
for the MVDR-APR, MVDR-EST and MVDR-INT for several
values of ᾱ and β̄ as a function of the angle of the speech
source. The regularised version of the MVDR-INT from (32)
was used for all evaluations with the regularisation parameter,
ε = 10−2kaa.

For the MVDR-APR, the a priori RTF vector , h̃ was defined
with respect to the endfire direction. A white noise signal
of 20 s was played at the position of the speech source in
the endfire direction in order to compute a rank-1 correlation
matrix per frequency. The first column normalised with respect
to a reference microphone was then used as the definition for
h̃. For these simulations, the first microphone (m1 in Fig. 1)
was used as the reference microphone. For the MVDR-EST,
ĥ was computed from (12) in section III-B.

1) Accurately estimated RTF vector : In this scenario, the
input SNR at the reference microphone was set to 4 dB, and
a perfect VAD was used to estimate the correlation matrices,
R̂yy and R̂nn. The use of a perfect VAD is idealistic of course,
however, it was used to ensure that the RTF vector would have
indeed been accurately estimated.

Fig. 2 displays the subsequent results from the simulations
in this scenario. On the left column, Figs. 2 (a)-(b) show the
performance metrics of the MVDR-APR, MVDR-EST and the
MVDR-INT for the tuning parameters such that ᾱ ≥ β̄. On
the right column, figures 2 (c)-(d) show the same performance
metrics for the MVDR-APR and MVDR-EST, but with the
MVDR-INT tuned such that β̄ > ᾱ. A global legend for all
of the plots in this section is provided in Table II, indicating
the exact values of ᾱ and β̄ used for the MVDR-INT.

4.3 m

6.9 m

m1

m2

m3

m4

Mic. array
Broadside (90o)

Endfire (0o)
h̃

Speech Source

Fig. 1. Plan view of simulation environment for an accurately estimated
RTF vector with a reverberation time of 0.25 s. The arrow on the speech
source indicates that simulations were done for different speech source angles,
including that corresponding to h̃. Not shown is the simulated diffuse noise
field. The room height was 2.6 m.

TABLE II
GLOBAL LEGEND FOR THE PLOTS OF THE DIFFERENT NOISE REDUCTION

ALGORITHMS IN FIG. 2 AND FIG. 3.

Plot Style Noise Reduction Strategy ᾱ β̄

MVDR-EST - -
MVDR-APR - -
MVDR-INT 100 0.1
MVDR-INT 100 1
MVDR-INT 100 5
MVDR-INT 100 10
MVDR-INT 100 100
MVDR-INT 0.1 100
MVDR-INT 1 100
MVDR-INT 5 100
MVDR-INT 10 100

From all of the plots, it can be observed that the
MVDR-EST is superior to the MVDR-APR as expected with
higher ∆ SI-SNR and ∆ STOI for all speech source angles.
The MVDR-APR on the other hand only has a performance
similar to the MVDR-EST at a speech source angle of 0o, i.e.
the direction from which h̃ was defined and a clear drop in
performance or all other speech source angles. It is noted as
well that for the MVDR-EST, there is a general reduction
in performance closer to the broadside direction. This is
in accordance with the fact that superdirective beamformers
achieve higher gains at endfire directions [36] and is not
surprising, considering the symmetry of the beam patterns
created by the array.

Focusing on the left column of Fig. 2, the various plots
of the MVDR-INT are for ᾱ fixed to 100 and β̄ =
{0.1, 1, 5, 10, 100}, i.e. ᾱ ≥ β̄. Firstly, it can be seen that
as ᾱ is increasingly greater than β̄, there is a convergence to
the MVDR-APR as demonstrated by the extreme case where
ᾱ = 100 and β̄ = 0.1. For non-zero values of β̄, it is observed
that there is an improved performance over the MVDR-APR
beyond a source location of 30◦.

On the right column of Fig. 2, the various plots of
the MVDR-INT are now for β̄ fixed to 100 and ᾱ =
{0, 0.1, 1, 5, 10}, i.e. β̄ > ᾱ. It can be seen that as β̄ is
increasingly greater than ᾱ, there is a convergence to the
MVDR-EST as demonstrated by the extreme case where
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Fig. 2. Performance of the MVDR-APR, MVDR-EST and MVDR-INT with
different values of ᾱ and β̄, for a scenario where ĥ was an accurately
estimated RTF vector. The input SNR was 4 dB. The left column, (a)-(b),
displays the MVDR-INT with ᾱ ≥ β̄ and the right column, (c)-(d), displays
the MVDR-INT with β̄ > ᾱ. The corresponding legend is shown in Table II.

β̄ = 100 and ᾱ = 0.1. As ᾱ is increased, however, the ∆
STOI seems to be maintained, with some minimal reduction
in the ∆ SNR. This reduction would have been due to the fact
that there is extra noise from the direction defined by h̃ for
greater values of ᾱ.

2) Inaccurately estimated RTF vector: Fig. 3 displays sim-
ulation results in the second scenario where the RTF vector
estimate has not been accurate. Here the noise was scaled such
that the input SNR at the reference microphone was -3 dB.
An imperfect VAD [37], using the Minimum Mean Square
Error (MMSE) method and with a mean talkspurt length of
500 ms was used to compute R̂yy and R̂nn. Once again, for
each speech source angle, the ∆ SI-SNR and the ∆ STOI
were computed for the MVDR-APR, MVDR-EST and the
regularised version of the MVDR-INT from (32) for several
tunings of ᾱ and β̄.

Immediately it can be observed that the MVDR-APR main-
tains its typical performance characteristic as in Fig. 2 for
∆ SNR and ∆ STOI metrics, where there is a maximum
improvement at the endfire direction that tapers off in all other
source angles. The MVDR-EST on the other hand suffers from
a uniform reduction in performance across all source angles
in comparison to Fig. 2 when the RTF vector was accurately
estimated. The loss is particularly apparent in the endfire
direction with respect to the MVDR-APR, which implies that
the RTF vector was poorly estimated. Although there seems
to be an improvement over the MVDR-APR outside of the
endfire direction, a robust performance is not expected in this
region due to the unpredictability of the imperfect VAD.

With respect to the MVDR-INT in both the left and right
columns of Fig. 3, it is seen again that in the extreme case of
ᾱ = 100 and β̄ = 0.1 it converges to the MVDR-APR and
for ᾱ = 0.1 and β̄ = 100, it converges to the MVDR-EST.
In all other tunings of ᾱ and β̄ displayed (i.e. the same
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Fig. 3. Performance of the MVDR-APR, MVDR-EST and MVDR-INT with
different values of ᾱ and β̄, for a scenario where ĥ was an inaccurately
estimated RTF vector. The input SNR was -3 dB. The left column, (a)-(b),
displays the MVDR-INT with ᾱ ≥ β̄ and the right column, (c)-(d), displays
the MVDR-INT with β̄ > ᾱ. The corresponding legend is shown in Table II.

tunings as described for Fig. 2), a similar performance is
achieved that is a compromise between the MVDR-APR and
the MVDR-EST. A benefit is indeed achieved in the endfire
region over the MVDR-EST as ᾱ is increasingly greater than
β̄, which introduces more of the MVDR-APR beamformer.

These simulations have provided some insight into the
question of how to set the ᾱ and β̄ for the MVDR-INT.
In the following section, the MVDR-INT will be applied to
recordings from a typical office room, which use the proposed
tuning strategies from Section V.

B. Recorded Data

Audio recordings were made in an office room of dimen-
sions 5.4 m×3.5 m×2.5 m with an approximate reverberation
time of 0.3 s. The audio signals (both speech and noise) were
played through an RME UCX sound card, Samson SERVO
200 amplifier and a JBL CONTROL 1 PRO loudspeaker.
These signals were then captured by a linear microphone array
consisting of four omni-directional AKG CK32 microphones
with an inter-element spacing of 4 cm. The microphones were
connected to a Behringer EURORACK MX 3242X mixer
and acquired through Simulink, Matlab via a Speedgoat real-
time acquisition system. The speech and noise were recorded
separately and added afterwards to create a desired input SNR.

As in the simulations, this experiment served to evaluate the
performance of the various algorithms on the basis of a speech
source in different locations. Hence, the speech source, SS1,
was instantaneously moved between locations (as depicted in
Fig. 4) - (i) the endfire direction (0o, which would be set to
the a priori direction), (ii) −45o, (iii) the broadside direction
(−90o), and finally again to (iv) the endfire direction. For each
of these locations 6 random sentences separated by silence
from the HINT database were used, each lasting for a duration



10

−90◦

−75◦

−60◦

−45◦

−30◦
−15◦0◦15◦

30◦

45◦

60◦

75◦

90◦

SS1

SS1

SS1

NS1

MOV-1

M
OV

-2

M
OV-3

1.0 m

Fig. 4. Scenario for recordings captured by a 4-element microphone array in
an office room. The speech source was played through SS1, which was moved
from 0o, −45o, −90o, and then back to 0o. The speech source remained in
each position for approximately 20 s. Speech-shaped noise was played through
the NS1 at 60o.

of approximately 20 s. A localised noise source of speech-
shaped noise was also recorded at an angle of 60o relative to
the endfire direction. In addition to recording the speech and
the noise separately, a white noise signal played at the endfire
position was also recorded and used to compute h̃ in a similar
manner to that of Section VI-A. The uppermost microphone
in Fig. 4 was used as the reference microphone.

Using the individual speech and noise recordings, a noisy
signal was created such that for the first 60 s (i.e. during the
instantaneous movements from the endfire to the broadside
direction), the input SNR at the reference microphone was
approximately 4 dB and for the last 20 s (when the source
was back in the endfire direction), the noise was increased so
that the input SNR at the reference microphone in this segment
was approximately −3 dB.

The upper plot of Fig. 5 illustrates this noisy input signal of
the reference microphone and the lower plot of Fig. 5 depicts
the corresponding probability if speech is present in the STFT
domain after applying the SPP estimator from [21]. Using this
result, periods for which the speech was active were extracted
if the SPP ≥ 0.5, and periods of noise were extracted if the
SPP < 0.5. R̂yy and R̂nn were then computed accordingly
via recursive averaging with an averaging time of 1 s. On
inspection of the lower plot of Fig. 5, it can be observed that
in the final 20 s, where the input SNR is lower, particularly in
the lower frequencies, the speech presence is not as distinct
as compared for previous times, which is indicative of some
misclassification.

Fig. 6 displays the resulting performance of the
MVDR-APR, MVDR-EST, and the regularised LCMV from
(22), along with the MVDR-INT, for the different tuning
rules described in Section V-B when µ = 0.001. Φ̂s1(l)
was computed using the method from [28] as implemented
in [37] but with the noise estimation update computed as
in [21]. The SDW tuning rule from Algorithm 1 will be
referred to as MVDR-INT-sdw and the contingency tuning
rule from Algorithm 2 will be referred to as MVDR-INT-cnt.
All algorithms were evaluated using the metrics mentioned at
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Fig. 5. (Top) Input noisy signal of the reference microphone. The arrows
above the plot indicate the 20 s intervals for which the speech source was at a
particular angle in accordance with Fig. 4. (Bottom) Corresponding probability
if speech is present in this signal after applying an SPP estimator from [21].

the beginning of this section and were computed over 5 s time
frames with a 50 % overlap. For the logistic function of (43),
the parameters were set such that ρ = 10, and σt = 20. For
the regularisation parameter, ε = 10−2kaa.

Firstly, focusing on the MVDR-APR and the MVDR-EST,
as expected, the MVDR-APR exhibits a robust performance
when the speech is in the endfire direction (a priori assigned
direction), i.e. during the time segments of the first 20 s and the
final 20 s. For all other time segments, where the speech was
outside of the endfire direction, the metrics are indicative of
a reduced performance. The MVDR-EST on the other hand
maintains its performance for changes in the speech source
location during the first 60 s, but then suffers a reduction
in performance in the final 20 s, where ĥ would have been
an inaccurate estimate due to the lower input SNR. For the
MVDR-EST, it should be noted that although the ∆ STOI
seems similar from 40 s to 80 s, the absolute STOI value of at
the reference microphone is much lower in the final 20 s, and
hence the MVDR-EST indeed exhibits a poor performance in
these final 20 s. The LCMV is able to attain a performance that
is in between that of the MVDR-APR and the MVDR-EST.
However, as indicated by the ∆ SNR, when the speech is
outside of the endfire direction, less noise is reduced in
comparison to the MVDR-EST , and when ĥ was inaccurate,
less noise is reduced in comparison to the MVDR-APR.

For the first 60 s, it can be observed that the performance
of the MVDR-INT-sdw is similar to that of the MVDR-EST
in terms of both ∆ SNR and ∆ STOI. In the final 20 s, when
ĥ was inaccurate, the MVDR-INT-sdw however moves away
from the performance of the MVDR-EST and approaches that
of the MVDR-APR, truly merging the benefits of both the
MVDR-APR and MVDR-EST. The MVDR-INT-cnt, on the
other hand, maintains the performance of the MVDR-APR
when the speech source is in the endfire direction, but other-
wise has a performance that is similar to the LCMV. Hence
the MVDR-INT-cnt also reduces less noise when the speech is
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Fig. 6. Performance of the MVDR-APR, MVDR-EST, LCMV,
MVDR-INT-sdw, and MVDR-INT-cnt when µ = 0.001 for the scenario of
Fig. 4.

not in the a priori assumed location, but nevertheless merges
the benefits of the MVDR-APR and the LCMV.

Fig. 7 displays the results for the same experiment as in
Fig. 6, except that µ = 0.1 for the MVDR-INT-sdw and
MVDR-INT-cnt. This larger value of µ introduces a more
aggressive post filter, which accounts for the increased ∆ SNR
for the MVDR-INT-sdw. The ∆ STOI remains similar to that
when µ = 0.001, although some audible artifacts can now
be heard, which is an expected result for more aggressive
postfilters. The performance of the MVDR-INT-cnt remains
relatively similar to that when µ = 0.001.

The results of Fig. 6 and Fig. 7 can be further explained
by observing the values of the metric of confidence, F(k, l)
in Fig. 8. In general, there was more confidence for the
higher frequencies and periods where the speech source was
outside of the a priori assumed direction, resulting in larger
values being assigned to β̄ and hence imposing more of the
MVDR-EST. In the final 20 s in particular, there was less
confidence in the lower frequency region, resulting in lower
values being assigned to β̄, which would have imposed more
of the MVDR-APR. This behaviour is indeed consistent with
the observations from the SPP of Fig. 5, where it was the
lower frequencies in the final 20 s that suffered from some
misclassification.

Both tuning rules have demonstrated that the MVDR-INT
can indeed be a useful strategy as it has exhibited a perfor-
mance that is more accomodating for changes in the acoustic
environment as compared to using either the MVDR-APR,
MVDR-EST, or LCMV only. The resulting audio signals from
this experiment and a repeated version that uses a babble noise
may be listened to for a subjective evaluation at [38].
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Fig. 7. Performance of the MVDR-APR, MVDR-EST, LCMV,
MVDR-INT-sdw, and MVDR-INT-cnt when µ = 0.1 for the scenario
of Fig. 4.
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VII. CONCLUSION

In an MVDR beamformer, the relative transfer function
(RTF) vector constraint is usually defined from either (i) a
priori assumptions regarding microphone characteristics, posi-
tion, speech source location and room acoustics (MVDR-APR)
or (ii) an estimate using the speech-plus-noise correlation
matrix and noise-only correlation matrix (MVDR-EST). Each
of these approaches has their respective merits and drawbacks
in certain acoustic scenarios and a decision usually has to
be made as to which of the approaches to follow for a
particular application. In this paper, an analysis and evaluation
has been carried out on an alternative approach of using an
integrated MVDR (MVDR-INT) beamformer, where both the
hard constraints from the two conventional approaches are
softened to yield two tuning parameters, ᾱ and β̄.

It was found that the MVDR-INT could be expressed as
a convex combination of the MVDR-APR beamformer, the
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MVDR-EST beamformers, a linearly constrained minimum
variance (LCMV) beamformer, and an all-zero vector, with
real, positive-valued coefficients. The effect of different tuning
combinations of ᾱ and β̄ on the behaviour of the MVDR-INT
beamformer was then explored theoretically and confirmed
through simulations in cases where an RTF vector estimate
was accurate and where it was inaccurate, demonstrating
that the MVDR-INT encompasses a wide range of speech
enhancement filters.

Using a metric of confidence and the relation of the
MVDR-INT to the speech-distortion-weighted Multi-channel
Wiener Filter, two tuning rules were proposed for a practi-
cal implementation of the MVDR-INT. An evaluation with
recorded data from an office room demonstrated that the
MVDR-INT beamformer can indeed provide a more versatile
beamformer by merging the benefits from the MVDR-APR
and MVDR-EST beamformers.
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