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Abstract—A method for estimating the relevant quantities in
a multi-channel Wiener filter (MWF) for speech dereverberation
is proposed for a microphone system consisting of a local mi-
crophone array (LMA) and a single external microphone (XM).
Typically these MWF quantities can be estimated by considering
pre-whitened correlation matrices with a dimension equal to the
number of microphones in the system. By following another
procedure involving a pre-whitening-transformation operation,
it will be demonstrated that when a priori knowledge of the
relative transfer function (RTF) vector pertaining to only the
LMA is available and when the reverberant component of the
signals received by the LMA is uncorrelated with that of the
XM, the MWF quantities may be alternatively estimated from a
2 × 2 matrix. Simulations confirm that using such an estimate
results in a similar performance to that obtained by using the
higher-dimensional correlation matrix.

Index Terms—Multichannel Wiener Filter, Speech Dereverber-
ation, Microphone Array, External Microphone

I. INTRODUCTION

Speech communication applications incorporating the use of
multiple microphones, such as automatic speech recognition,
assistive hearing, and hands-free telephony, are compromised
in highly reverberant environments, as the excessive rever-
beration captured by the microphone signals results in a
degradation of speech quality and intelligibility. Signal pro-
cessing techniques for speech dereverberation are therefore
necessary in order to restore the optimal functionality for
such applications. Throughout this paper, a reverberation sup-
pression approach [1] will be followed, where the reverberant
component is modelled as an additive distortion.

In devices equipped with a local microphone array (LMA),
a multi-channel Wiener filter (MWF) can be used to suppress
this reverberant component, provided that there are estimates
of the relevant quantities, namely the speech and reverberant
power spectral densities (PSDs), and the relative transfer
function (RTF) vector pertaining to all of the microphones [2]–
[5]. Recently, microphone systems consisting of an LMA and
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a single external microphone (XM) have also been considered,
(such as a hearing aid that has access to the microphone
signal on a mobile device) but for tasks of noise reduction
and binaural cue preservation [6]–[9]. This paper therefore
investigates how such an additional XM to the LMA can
be exploited for estimating the relevant MWF quantities for
speech dereverberation.

It should firstly be understood that with an LMA and
an XM, the RTF vector required for the MWF would now
consist of an RTF vector for the LMA and an additional
RTF component for the XM. While a priori knowledge of
an RTF vector can be imposed for the LMA as in blocking-
based methods for speech dereverberation [3], [4], [10], a
priori knowledge of the RTF component for the XM cannot
be imposed as its relative position to the LMA is typically
unknown. Therefore an estimate is required for this RTF
component in order to complete the entire RTF vector for the
MWF. Furthermore, as the XM may not always be close to
the speech source, it should not be expected that listening to
the XM signal alone would be a reliable option.

In [2], the MWF quantities were estimated by considering
pre-whitened correlation matrices with a dimension equal to
the number of microphones in the system. In the proposed
approach, it is assumed that a priori knowledge of the RTF
vector for the LMA is available, and that the XM is sufficiently
far from the LMA [8], so that the reverberant component of the
LMA signals is uncorrelated with the reverberant component
of the XM signal. By following a procedure involving a pre-
whitening-transformation operation, it is then shown how the
relevant MWF quantities can be estimated from the eigenvalue
decomposition (EVD) of a 2× 2 matrix.

As will be demonstrated by simulations in a noise-free
environment, using such an estimate results in a similar
performance to that obtained by using the higher-dimensional
correlation matrix. Additionally, it is observed that a micro-
phone system consisting of an LMA and an XM is in general,
more advantageous for speech dereverberation in comparison
to using an LMA alone or an XM alone.

II. DATA MODEL

A reverberant environment consisting of an LMA of Ma

microphones, one additional XM, and one target speaker is
considered as in Figure 1. In the short-time Fourier transform
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Fig. 1: Acoustic scenario consisting of a target speaker, an
LMA, and an XM.

(STFT) domain, the stacked vector of microphone signals at
frequency bin k and time frame l, are modelled as:

y(k, l) = d(k, l)s1(k, l)︸ ︷︷ ︸
xd(k,l)

+ xr(k, l) (1)

where y(k, l) = [yT
a (k, l) ye(k, l)]T , consists of the stacked

LMA signals, ya(k, l) = [y1(k, l) y2(k, l) . . . yMa
(k, l)]T ,

and the XM signal, ye(k, l). xd(k, l) is the contribution from
the direct path component of speech, represented by s1(k, l),
the speech signal in the first microphone of the LMA (i.e.
the target signal of interest), filtered with the direct path
RTF vector, d(k, l) = [dT

a (k, l) de(k, l)]T , consisting of the
direct path RTF vector for the LMA, da(k, l) (with the first
microphone used as the reference, i.e. the first component of
da(k, l) equal to 1), and the direct path RTF component for the
XM, de(k, l). Finally, xr(k, l) is the reverberant component.
Throughout this paper, variables with the subscript “a” refer
to the LMA and those with the subscript “e” refer to the XM.

In the following, the early reflections of the reverberant
component of the signals are deliberately excluded. However,
such a model is not uncommon [1] and the proposed derever-
beration procedure will be evaluated using signals that contain
all direct, early, and reverberant components. Assuming that
all frequency bins can be treated independently, only the
dependence on time in the following derivations will be
retained (where necessary) in order to simplify the notation.

With the consideration of a single speaker in a fixed
position, and modelling the reverberant field as spatially
homogeneous, the corresponding (Ma + 1)× (Ma + 1) corre-
lation matrices for the microphone signals, Φy(l), direct path
component of speech, Φxd

(l), and the reverberant component,
Φxr(l), can be given respectively as:

Φy(l) = E{y(l)yH (l)} (2)

Φxd
(l) = E{xd(l)xH

d (l)} = Φs(l)ddH (3)

Φxr(l) = E{xr(l)x
H
r (l)} = Φr(l)Γ (4)

where E{.} is the expectation operator and {.}H is the Hermi-
tian transpose. Φxd

(l) is a rank-1 matrix, Φs(l) = E{|s1(l)|2}
is the time-varying power spectral density (PSD) of the target
signal, Φr(l) is the time-varying PSD of the reverberation, and
Γ is a time-invariant spatial coherence matrix. d and particu-
larly, de is assumed time-invariant, however, the position of the
XM still remains unknown with respect to the LMA. Assuming
that the direct path component of the speech is uncorrelated
with the reverberant component, Φy(l) can be expressed as:

Φy(l) = Φxd
(l) + Φxr(l) = Φs(l)ddH + Φr(l)Γ (5)

It will also be assumed that there is a perfect communication
link between the LMA and XM with no bandwidth constraints
and synchronous sampling, so that the signal correlations can
be estimated as if all signals were available in a centralised
processor. The estimate of the target signal, ŝ1(l), i.e. the
direct path component of the speech in the first microphone
of the LMA, is then obtained through the linear filtering of
the microphone signals, such that ŝ1(l) = wH (l)y(l), where
w(l) = [wT

a (l) we(l)]T . As discussed, an MWF will be used,
which consists of a minimum variance distortionless response
(MVDR) beamformer, followed by a single-channel post-filter:

w(l) =
Γ−1d

dHΓ−1d︸ ︷︷ ︸
MVDR

Φs(l)

Φs(l) + Φr(l)(dHΓ−1d)−1︸ ︷︷ ︸
Single-Channel Post-Filter

(6)

Consequently, estimates are required for the quantities d,
Γ, Φs(l), and Φr(l) in order to compute the MWF filter.

III. ESTIMATION OF THE MWF QUANTITIES

This section summarises the state-of-the-art methods for
estimating the MWF quantities, d, Γ, Φs(l), and Φr(l). As
such methods have only considered an LMA, they are also
extended to include an XM.

Firstly, Γ can be modelled as a spherically diffuse coherence
matrix, so that each element, γp,q , in the matrix can be
computed as γp,q = sinc (ω rpq/c) [11], where ω is the angular
frequency (rad/s), c is the speed of sound (m/s), and rpq
is the distance (m) between the p-th and q-th microphone.
Although the distance between the microphones in the LMA
and the XM are unknown in practice, it can be assumed that
the XM is far enough away from the LMA [8] so that the
reverberant component of the XM signal is uncorrelated with
the reverberant component of the LMA signal. An estimate
for Γ in block matrix representation can then be given as:

Γ̂ =

[
Γ̂a 0Ma×1

01×Ma
1

]
(7)

where Γ̂a is the (Ma × Ma) diffuse field coherence matrix
for the LMA, whose elements can be computed as the inter-
microphone distances in an LMA are typically known.

A spatial pre-whitening operation can then be defined by
using the Cholesky decomposition:

Γ̂ = Γ̂
1/2 Γ̂

H/2 (8)

where Γ̂
1/2 is a lower triangular matrix. The MWF quanti-

ties can be estimated by using the pre-whitened correlation
matrices in the optimization problem:

min
Φr(l),Φs(l),d

||Γ̂ − 1/2(Φ̂y(l)− Φr(l)Γ̂− Φs(l)ddH )Γ̂
− H/2||2F

(9)
where ||.||F is the Frobenius norm and Φ̂y(l) is the estimate of
Φy(l) (for instance with recursive averaging [12]). Perform-
ing an eigenvalue decomposition (EVD) on the pre-whitened
microphone signal PSD matrix, results in:

Γ̂
− 1/2Φ̂y(l)Γ̂

− H/2 = UΛ(l)UH (10)



where U is a unitary matrix of eigenvectors and Λ(l) =
diag{λ1(l), λ2(l), . . . λMa+1(l)} is a diagonal matrix of eigen-
values arranged in descending order. As the Frobenius norm
is invariant under a unitary transformation [13], substituting
(10) in (9) results in:

min
Φr(l),Φs(l),d

||Λ(l)− Φr(l)IMa+1 −UH Γ̂
− 1/2Φxd

(l)Γ̂
− H/2U||2F

(11)
where IMa+1 is the (Ma + 1)× (Ma + 1) identity matrix (in
general Iϑ will denote the ϑ×ϑ identity matrix). The solution
to (11) can be interpreted as the best approximation of Λ(l)
by means of a sum of a scaled identity matrix and a rank-1
(Ma + 1)× (Ma + 1) matrix. Firstly an estimate for d can be
computed from the principal eigenvector of U [14] as:

d̂pw =
1

ρ
Γ̂

1/2Ue1 (12)

where ρ = eT
1 Γ̂

1/2Ue1, and the (Ma + 1) selection vector,
e1 = [1 0 . . . 0]T . On replacing d with d̂pw in (11) then gives:

min
Φr(l),Φs(l)

||Λ(l)− Φr(l)IMa+1 − Φs(l)Λx||2F (13)

where Λx = diag{ 1
|ρ|2 , 0, . . . 0}. An estimate for Φr(l)

follows by averaging the last Ma eigenvalues of Λ(l) [2]:

Φ̂pw
r (l) =

1

Ma

(
trace{Λ(l)} − λ1(l)

)
(14)

Finally, on replacing Φr(l) with Φ̂pw
r (l) in (13) an estimate

for Φs(l) can be computed as [12]:

Φ̂pw
s (l) =

(
λ1(l)− Φ̂pw

r (l)
)
|ρ|2 (15)

IV. ESTIMATION OF MWF QUANTITIES WITH A PRIORI
KNOWLEDGE OF THE RTF VECTOR FOR THE LMA

With a priori knowledge of the direct path RTF vector for
the LMA, the direct path speech component and the associated
correlation matrix can be re-defined respectively as:

d̃ = [d̃T
a de]T ; Φ̃xd

(l) = Φs(l)d̃d̃H (16)

where the d̃a is the known direct path RTF vector for the
LMA. Therefore only an estimate is required for de as opposed
to the entire RTF vector as in Section III.

Following from the approach outlined in [9], a transforma-
tion matrix can then be defined such that:

Υ1 =

[
[Ca fa] 0Ma×1

01×Ma
1

]
(17)

where the Ma × (Ma − 1) blocking matrix, Ca, and Ma × 1
fixed beamformer, fa, are defined such that:

CH
a d̃a = 0(Ma−1)×1; fHa d̃a = 1 (18)

A transformed version of the microphone signals is therefore:

ΥH
1 y(l) =

[
(CH

a ya(l))T fHa ya(l) ye(l)
]T

(19)

consisting of the blocking matrix signals from the LMA, the
fixed beamformer output signal, and the XM signal. A new
spatial pre-whitening operator, L, can then be defined from
the transformed spatial coherence matrix:

ΥH
1 Γ̂Υ1 = LLH (20)

where L is lower triangular and can be factorised as L =
ΥH

1 Γ̂
1/2Θ, for some unitary matrix, Θ. In fact, since the

reverberant component of the XM signal is assumed to be
uncorrelated with the reverberant component of the LMA
signals, the last row L consists of only zeros except for a one
in the last entry. After some rearranging [9], (9) can eventually
be re-written as:

min
Φr(l),Φs(l), de

||ΩHΦ̂y(l)Ω− Φr(l)IMa+1 −ΩHΦs(l)d̃d̃HΩ||2F
(21)

where ΩH = L−1ΥH
1 is the pre-whitening-transformation

operation. As a consequence of this operation, the last term
in (21) is all zeros except for the bottom-right 2 × 2 block.
Hence the EVD of the 2× 2 matrix is considered:

JTΩHΦ̂y(l)ΩJ = UΛ(l)UH (22)

where J = [ 02×(Ma−1) | I2 ]T , U is a 2 × 2 unitary matrix
of eigenvectors and Λ(l) = diag{λ

1
(l), λ

2
(l)} is a diagonal

matrix of eigenvalues arranged in descending order.
Applying a unitary transform to (21) with the block diagonal

matrix, G = blkdiag{IMa−1,U} (blkdiag{.} is an operator
that creates a block diagonal matrix from its arguments),
then results in (23), where only the bottom 2 × 2 block is
diagonalised from the first term in (21) and P11,P12, and
P21 are the residual matrices. The solution to (23) is now the
best approximation of the first term in (23) by means of a sum
of a scaled identity matrix and a rank-1 2×2 matrix, which is
in contrast to the rank-1 (Ma + 1)× (Ma + 1) matrix required
to solve (11).

From (22), an estimate for de then follows as the last
element from: [

d̃T
a d̂pwt

e

]T
=

1

ζ
Ω−HJUe

1
(24)

where ζ = eT
1 Ω−HJUe

1
, and the 2-element selection vector,

e
1

= [1, 0]T . Substitution of (24) for d̃ in (23) eventually

min
Φr(l),Φs(l), de

||
[

P11 P12

P21 Λ(l)

]
− Φr(l)

[
IMa−1 0

0 I2

]
−GHΩHΦs(l)d̃d̃HΩG||2F (23)

min
Φr(l),Φs(l)

||
[

P11 P12

P21 Λ(l)

]
− Φr(l)

[
IMa−1 0

0 I2

]
− Φs(l)

[
0 0
0 Λ

x

]
||2F (25)



results in (25), where Λ
x

= diag{ 1
|ζ|2 , 0}. Similar to (13), it

is once again the diagonal elements which contribute to the
solution of (25). Estimates for Φr(l) and Φs(l) then follow
similarly to those in section III:

Φ̂pwt
r (l) =

1

Ma

(
trace{P(l)} − λ

1
(l)
)

(26)

Φ̂pwt
s (l) = (λ

1
(l)− Φ̂pwt

r (l)) |ζ|2 (27)

where P(l) = GHΩHΦ̂y(l)ΩG, i.e., the first term of (25).
Alternative estimates for Φr(l) and Φs(l) may also be

considered by approximating (25) with its lower 2× 2 blocks
only, i.e. by solving the following problem:

min
Φr(l),Φs(l)

||Λ(l)− Φr(l)I2 − Φs(l)Λx
||2F (28)

Estimates for Φr(l) and Φs(l) would then follow as:

Φ̂pwt,22
r (l) = trace{Λ(l)} − λ

1
(l) = λ

2
(l) (29)

Φ̂pwt,22
s (l) = (λ

1
(l)− Φ̂pwt,22

r (l)) |ζ|2 (30)

where the estimate for Φr(l) is not anymore an average of
the diagonal elements of P(l). The advantage here is that
it is not necessary to compute P(l), but then it is only an
approximation to the original problem of (21).

In terms of complexity of this approach, an EVD is per-
formed on a 2×2 matrix as opposed to a (Ma +1)×(Ma +1)
matrix, but the pre-whitening-transformation operation, ΩH

still remains to be computed. However, as L, Υ1, and Γ̂ are
all known and are data-independent, ΩH can be pre-computed
and multiplied with the microphone signal vector as a pre-
processing stage. It is then the last two elements of this pre-
processed vector which can be used to construct the 2 × 2
matrix on the left hand side of (22).

V. SIMULATIONS

The simulated acoustic scenario to be evaluated consisted of
a linear LMA with five omnidirectional microphones separated
by 8 cm, along with one XM, and an end-fire positioned speech
source 2 m from the LMA in a room of dimensions 5.1 m
× 6.3 m × 2.5 m with a reverberation time of 600 ms. The
room impulse responses were obtained using the randomised
image method [15] and implemented from [16]. The speech
source consisted of five sentences from the hearing in noise test
(HINT) database [17]. All simulations were performed using
the Weighted Overlap and Add (WOLA) method [18], with a
Discrete Fourier Transform (DFT) size of 512, 50% overlap,
and sampling frequency of 16 kHz. Φ̂y was computed using
recursive averaging with a time constant of 100 ms.

A far-field approximation was used to define d̃a, such
that d̃a = [1 e−jωτ2(θ) . . . e−jωτMa (θ)]T , where τm(θ) is the
relative time delay between the mth microphone and the first
microphone, and θ is the a priori assumed location of the
source with respect to the LMA, with 0o defined as the end-
fire direction. Using this definition of d̃a, Ca, and fa were
defined accordingly from (18).

TABLE I: MWF quantities used for the evaluated algorithms.

Algorithm Signals used RTF vector Φr(l) Φs(l)
XM XM - - -

LMA LMA d̃a Φ̂pw
r

(1) Φ̂pw
s

(1)

PW LMA+XM d̂pw Φ̂pw
r Φ̂pw

s

PW-PR LMA+XM [d̃T
a d̂pwt

e ]T Φ̂pw
r Φ̂pw

s

PWT LMA+XM [d̃T
a d̂pwt

e ]T Φ̂pwt
r Φ̂pwt

s

PWT-22 LMA+XM [d̃T
a d̂pwt

e ]T Φ̂pwt,22
r Φ̂pwt,22

s
1 Φ̂pw

r and Φ̂pw
s for the LMA algorithm were modified accordingly using only

the LMA signals (i.e. as per [2] and [12]).

Table I summarises the list of algorithms evaluated and
the estimates used for the direct path RTF vector, Φs(l), and
Φr(l) for the MWF filter. PW is the pre-whitened procedure
from Section III, PW-PR is the PW but with the a priori
RTF vector for the LMA and estimate of de, PWT uses the
pre-whitening-transformation procedure involving the 2 × 2
matrices from Section IV, and PWT-22 is the approximation
to PWT considering only the diagonalised matrices from (25).
Processing with the LMA only and the unprocessed XM
signal were included as benchmarks against which processing
with both LMA signals and the XM signal together could be
compared. Figure 2 illustrates the two scenarios evaluated: (a)
a scenario with the XM close to the speech source, and (b) a
scenario with the XM further away from the speech source.

Figure 3 displays the results of these scenarios, with the
figures on the left-hand column (i.e, (a), (b), and (c)) cor-
responding to the scenario where the XM was closer to the
speech source and the figures on the right-hand column (i.e,
(d), (e), and (f)) corresponding to the scenario where the XM
was further away from the speech source. The difference (∆)
in the metrics, STOI [19], Cepstral Distance (CD) [20], and
unweigthed segmental SNR (SNRseg) (i.e fwSNRseg from
[20] with a neutralised weighting) from the reference signal
were used for evaluation. This reference signal was the direct
component of the speech signal in the first microphone of the
LMA. Higher values of ∆-STOI, and ∆-SNRseg indicate a
benefit, whereas lower values for ∆-CD indicate a benefit.

On observation of the left-hand column of Fig. 3, it can
be seen that the PW-PR, PWT and PWT-22 algorithms per-
form better than using the LMA algorithm, and all exhibit a
similar performance. This suggests that the PWT and PWT-22
methods can indeed be appropriate for estimating the MWF
quantities. The difference in performance between the PW and
PW-PR is due to the fact that d̂pw for the PW from (12) would
have contained both direct and early components, and hence
resulted in an estimate different from the anechoic reference.
Finally, while it may seem that the XM outperforms all other
algorithms, it should be noted that the spatial cue would be
different from that of an estimate of the source in the reference
microphone of the LMA, which may not be desirable in some
applications.

In the right-hand column of Fig. 3, it can be observed that
the XM yields a poor performance, which also indicates that
listening to an XM signal alone could yield unpredictable
quality as its location is subject to change. It is also seen once
again that the PW-PR, PWT and PWT-22 algorithms all exhibit
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Fig. 2: Sketches of the simulated scenarios (a) XM at an angle
of 15° and 1.7 m away from the LMA, (b) XM at an angle of
50° and 1.3 m away from the LMA. The LMA was positioned
at (1.9 m, 3.6 m, 1.4 m).
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Fig. 3: Performance of the algorithms from table I: (a)-(c)
when the XM is closer to the speech source (Fig.2 (a)); (d)-
(f) when the XM is further from the speech source (Fig.2 (b)).

a similar performance and are preferable to the LMA algorithm
or the XM alone. It is noted, however, that the absolute values
of the metrics have decreased in comparison to when the XM
was closer to the speech source. Nevertheless, this scenario
also confirms that the PWT and PWT-22 methods would be
appropriate for estimating the MWF quantities. Audio samples
from these simulations may be heard at [21].

VI. CONCLUSIONS

A method has been proposed to estimate the relevant quanti-
ties in an MWF for speech dereverberation using a microphone
system consisting of an LMA and an XM. With a priori
knowledge of the RTF vector pertaining to only the LMA and
when the reverberant component of the signals received by
the LMA is uncorrelated with that of the XM, it was shown
that by using a pre-whitening-transformation operation that
these MWF quantities could be estimated from a 2×2 matrix.
Simulations have also confirmed that using such an estimate
results in a similar performance to what would obtained by
using a higher-dimensional correlation matrix, and that using
an LMA with an XM is generally advantageous for speech
dereverberation in comparison to using an LMA alone or an
XM alone.
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