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Abstract. Kernel PCA is a powerful feature extractor which recently
has seen a reformulation in the context of Restricted Kernel Machines
(RKMs). These RKMs allow for a representation of kernel PCA in terms
of hidden and visible units similar to Restricted Boltzmann Machines.
This connection has led to insights on how to use kernel PCA in a gen-
erative procedure, called generative kernel PCA. In this paper, we in-
vestigate the use of generative kernel PCA for exploring latent spaces of
datasets. New points can be generated by gradually moving in the la-
tent space, which allows for an interpretation of the components. Firstly,
we show illustrative examples of this feature space exploration on two
datasets. Afterwards, we demonstrate the use of the tool in combination
with novelty detection, where the latent space around novel patterns
in the data is explored. This helps in the interpretation of why certain
points are considered as novel.

Keywords: Kernel PCA · Restricted Kernel Machines · Latent Space
Exploration.

1 Introduction

Latent spaces provide a representation of data by embedding the data into an
underlying vector space. Exploring these spaces allows for deeper insights in the
structure of the data distribution, as well as understanding relationships be-
tween data points. Latent spaces are used for various purposes like latent space
cartography [10], object shape generation [16] or style-based generation [7]. In
this paper, the focus will be on how the synthesis of new data with genera-
tive methods can help with understanding the latent features extracted from a
dataset. In recent years, generative methods have become a hot research topic
within the field of machine learning. Two of the most well-known examples in-
clude variational autoencoders (VAEs) [8] and Generative Adversarial Networks
(GANs) [2]. An example of a real-world application of latent spaces using VAEs
is shown in [15], where deep convolututional VAEs are used to extract a bi-
ologically meaningful latent space from a cancer transcriptomes dataset. This
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latent space is used to explore hypothetical gene expression profiles of tumors
and their reaction to possible treatments. Latent space exploration is also used
for interpreting GANs, where interpolation between different images allows for
the interpretation of the different features captured by the latent space, such as
windows and curtains when working with datasets of bedroom images [11]. More
recently, the concept of latent space exploration with GANs has been further de-
veloped by introducing new couplings of the latent space to the architecture of
the generative network, this allows for control of local features for image synthe-
sis at different scales in a style-based design [7]. These adaptations of GANs are
known as Style-GANs. When applied to a facial dataset, the features can range
from general face shape and hair style up to eyes, hair colour and mouth shape.

In this paper, kernel PCA is used as a generative mechanism [13]. Kernel PCA,
as first described in [12], is a well-known feature extractor method often used
for denoising and dimensionality reduction of datasets. Through the use of a
kernel function it is a nonlinear extension to regular PCA by introducing an im-
plicit, high dimensional latent feature space wherein the principal components
are extracted. In [14], kernel PCA was cast within the framework of Restricted
Kernel Machines (RKMs) which allows for an interpretation in terms of hid-
den and visible units similar to a type of generative neural network known as
Restricted Boltzmann Machines (RBMs) [3]. This connection between kernel
PCA and RBMs was later used to explore a generative mechanism for the kernel
PCA [13].

The goal of this paper is to explore the latent feature space extracted by kernel
PCA using a generative mechanism, in an effort to interpret the components.
This has led to the development of a Matlab tool which can be used to visualise
the latent space of the kernel PCA method along its principal components. The
use of the tool is demonstrated on two different datasets. As an illustration,
feature space exploration is used in the context of novelty detection [5], where
the latent space around novel patterns in the data is explored. This to help the
interpretation of why certain points are considered as novel.

In Section 2, we will give a brief review on generative kernel PCA. In Section 3,
we describe the tool we developed to perform latent feature space exploration
using generative kernel PCA. Subsequently we will illustrate how latent feature
space exploration can help in interpreting novelty detection in Section 4. We
conclude the paper in Section 5.

2 Generative kernel PCA

In this section we give a short review on how kernel PCA can be used to generate
new data, as introduced in [13]. We start with the calculation of the kernel
principal components for a d-dimensional dataset {xi}Ni=1 with N data points
and for each data point xi ∈ Rd. Compared to regular PCA, kernel PCA first
maps the input data to a high dimensional feature space F using a feature map
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φ(·). In this feature space, regular PCA is performed on the points φ(xi) for
i = 1, . . . , N . By using a kernel function k(x, y) defined as the inner product
(φ(x) · φ(y)), an explicit expression for φ(·) can be avoided. Typical examples

of such kernels are given by the Gaussian RBF kernel k(x, y) = e−‖x−y‖
2
2/(2σ

2)

or the Laplace kernel k(x, y) = e−‖x−y‖2/σ, where σ denotes the bandwidth.
Finding the principal components amounts to solving the eigenvalue problem
for the kernel matrix1 K, with matrix elements Kij = (φ (xi) · φ (xj)). The
eigenvalue problem for kernel PCA is stated as follows:

KH> = H>Λ, (1)

where H = [h1, . . . , hN ] ∈ Rd×N , the first d ≤ N components are used, is
the matrix with the eigenvectors in each column and Λ = diag{λ1, . . . , λd} the
matrix with the corresponding eigenvalues on the diagonal. In the framework
of RKMs, the points φ(xi) correspond to visible units vi and hi are the hidden
units. As in [13], we can now construct the generative equation:

v? = φ(x?) =

(
N∑
i=1

φ(xi)h
>
i

)
h?, (2)

where h? represents a newly generated hidden unit and v? the corresponding
visible unit. Finding x? in Eq. (2) corresponds to the pre-image problem [6]. In
[13], the authors give a possible solution by multiplying both sides with φ(xk),
which gives the output of the kernel function for the generated point in the input
space x? and the data point xk:

k̂(xk, x
?) =

N∑
i=1

k(xk, xi)h
>
i h

?. (3)

The above equation can be seen as the similarity between the newly generated
point x? and xk. This expression can be used in a kernel smoother approach to
find an estimate x̂ for the generated data point x?:

x̂ =

∑S
i=1 k̃(xi, x

?)xi∑S
i=1 k̃(xi, x?)

, (4)

where k̃(xi, x
?) is the scaled similarity between 0 and 1 calculated in (3) and

S the number of closest points based on the similarity k̃ (xi, x
?). Given a point

in the latent space h?, we get an approximation for the corresponding point x̂
in input space. This mechanism makes it possible to continuously explore the
latent space.

1 For simplicity, we assume that the mapped data are centered in F . Otherwise, we
have to go through the same algebra using φ̃(x) := φ(x) −

∑N
i=1 φ(xi). This is the

same assumption as in [12].
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3 Latent space exploration

Our goal is to use generative kernel PCA to explore the latent space. Therefore
we developed a tool where generative kernel PCA can easily be utilised for
new datasets. First kernel PCA is performed to find the hidden features of the
dataset. After choosing an initial hidden unit as starting point, we vary the
values for each component of the hidden unit to explore the latent space. The
corresponding newly generated data point in the input space is estimated using
the kernel smoother approach.

In the tool, a partial visualisation of the latent space projected onto two principal
components is shown. We continuously vary the values of the components of the
selected hidden unit. This allows the exploration of the extracted latent space
by visualising the resulting variation in the input space. The ability to perform
incremental variations aids interpretation of the meaning encoded in the latent
space along a chosen direction. In Fig. 1, the interface of our tool is shown.

Generated image
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Fig. 1: Interface of the Matlab tool for generative kernel PCA. At the bottom, the
parameter values and position in the latent space can be chosen. In the top right
position, the latent space along two selected principal components is shown. In
the top left, the newly generated data point in the input space is visualised for
the MNIST data set.

As an example we use this tool to explore the latent space of the MNIST hand-
written digits dataset [9], where we sample 1000 data points each of digits zero



Latent Space Exploration Using Generative Kernel PCA 5

and one. We use a Gaussian kernel with bandwidth σ2 = 50, S = 15 and number
of components d = 10. In Fig. 2, the latent space is shown along the first two
principal components as well as the first and third components.
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Fig. 2: Latent space of the MNIST digits dataset for the digits 0 and 1. The
dotted lines indicate the direction along which new data points are generated.
(a) Data projected on the first two principal components (b) Data projected on
the first and third principal component.

Fig. 3: Exploration of the latent space of the MNIST digits data set. In the top
two rows images are generated along the directions A and B in Fig.2a and in the
bottom row the images are generated along direction C in Fig. 2b.

In Fig. 3, digits are generated along the directions indicated on the plots of
the latent space in Fig. 2. This allows us to interpret the different regions and
the meaning of the principal components. Along direction A, corresponding to
the first principal component, we find an interpolation between the regions with
digits of zero and one. Direction B seems to correlate with the orientation of the
digit. This explains the smaller variation along the second principal component
for the zeros as rotating the digit zero has a smaller effect compared to the
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rotation of digit one. The third direction, corresponding to component 3, seems
to be related to squeezing the zeros together, which explains the larger variance
for the zeros compared to the ones.

Another example of latent space exploration is done on the Extended Yale Face
Database B [1], where we sample 1720 data points. We use a Gaussian kernel
with bandwidth σ2 = 650, S = 45 and number of components d = 20. The latent
space along the first two principal components is shown in Fig. 4e. Four different
regions within the feature space are highlighted from which corresponding im-
ages are generated. The dissimilarity between the images in the various regions
suggests the components capture different lighting conditions on the subjects.
The tool allows us to gradually move between these different regions and see the
changes in the input space as shown in Fig. 5. Moving between regions A and
B shows a increasing illumination of the subject. We can thus interpret the first
principal component as determining the global level of illumination. The bottom
row seems to indicate that the second principal component can be interpreted
as the position of the light source. In region C of the feature space the points
are illuminated from the right and region D from the left.

(a) (b)

(c) (d)
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Fig. 4: Exploring different regions of the latent space of the Yale Face Database.
(e) Data projected on the first two principal components for the Yale Face
Database. (a)-(d) Generated faces from the different regions.

As a further example of generative kernel PCA, we use the tool to interpolate
between 2 faces. Kernel PCA is performed on a subset of the database consisting
out of 130 facial images of two subjects, the hyperparameters are the same
as above. Variation along the fourth principal component results in a smooth
interpolation between the two subjects, shown in Fig. 6.
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Fig. 5: Exploring the space between the regions of the latent space in figure
4e.The top row shows images generated between regions A and B, while the
bottom row explores the space between regions C and D.

Fig. 6: Two examples of interpolation between two subjects of the Yale Face
Database B along the fourth component.

4 Novelty detection

As a final illustration of latent space exploration using generative kernel PCA,
we consider an application within the context of novelty detection. We use the
reconstruction error in feature space as a measure of novelty [4], where Hoffmann
shows the metric demonstrates a competitive performance on synthetic distribu-
tions and real-world data sets. The novelty score is calculated for all data points,
where the 20% of data points with the largest novelty score are considered novel.
These points typically reside in low density regions of the latent space and are
highlighted as interesting regions to explore using the tool. we consider 1000
instances of the digit zero from the MNIST dataset. After performing kernel
PCA with the same parameters as in the previous section, we explore the latent



8 D. Winant et al.

space around the detected novel patterns. The data projected on the first two
principal components is shown in Fig. 7.
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Fig. 7: The latent space for 1000 zeros of the MNIST digits data set. The cen-
tral cluster of points consists out of data points with a high novelty score, this
corresponds to a low density region in the latent space. The black dots indicate
locations in the latent space from where new points are sampled for generative
kernel PCA.

The generated images from the positions indicated by the black dots in Fig. 7 are
shown in Fig. 8. The first row allows us to interpret the first principal component
as moving from a thin round zero towards a more closed digit. The middle of
the latent space is where the novel patterns are located which seems to indicate
most zeros are either thin and wide or thick and narrow. A low amount of zeros
in the data set are thick and wide or very thin and narrow. The bottom row of
Fig. 8 gives the interpretation for the second principal component as rotating
the digit. The novel patterns seem to be clustered more together and as such
have a less obvious orientation. Important to note is that we only look at the
first 2 components for the interpretation, while in practice the novelty detection
method takes all 20 components into consideration.

Above experiment shows that latent space exploration methods can give addi-
tional insights for novelty detection. Both the generating mechanism, as well as
the novelty detection make use of the kernel PCA formulation. The two meth-
ods naturally complement each other: the novelty detection provides interesting
regions in the latent space to explore, at the same time helps the generative
mechanism in interpreting why certain points are considered as novel.
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Fig. 8: Exploration of the latent space in Fig. 7. The top row indicates the points
generated from the horizontal black dots, while the bottom row correspond to
the vertical positions.

5 Conclusion

We showed the use of generative kernel PCA in exploring the latent space. Grad-
ually moving along components in the feature space allows for the interpretation
of components and consequently additional insight into the underlying latent
space. This mechanism is demonstrated on the MNIST handwritten digits data
set and the Yale Face Database B. As an illustration, feature space exploration is
used in the context of novelty detection [5], where the latent space around novel
patterns in data is explored. This to helps the interpretation of why certain
points are considered as novel. Possible future directions would be the consid-
eration of the geometry of the latent space. Not moving in straight lines, but
curves trough high density regions. We would also like to explore more data sets
and real-life examples using this newly developed tool.
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