
A Lingua Franca for Security by Design

Alexander van den Berghe, Koen Yskout, Riccardo Scandariato
and Wouter Joosen

IEEE Cybersecurity Development Conference (IEEE SecDev 2018)
01 October 2018



“Improving software security should be an easy sell if your software has a significant
number of users; the sheer cost of applying security updates makes it worth getting
security, privacy, and reliability right early in the process rather than putting the burden
on your customers to apply updates.”

M. Howard and S. Lipner, The Security Development Lifecycle (2006)

2



How vicious can a security design flaw be?

Group Policy Remote Code Execution Vulnerability (CVE-2015-0008)1

Boils down to the improper use
of DNS for authentication

• rated as critical

• impacted multiple Microsoft products

• fix required comprehensive architectural
changes (1 year of development)

• older products are not patched due to
impact on stability and compatibility

1https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2015/ms15-011
3

https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2015/ms15-011


It seems beneficial to start
tackling security early on

Requires the ability to create and reason about
a high-level security view of the software

ISO/IEC/IEEE 42010: Systems and software engineering — Architecture description
“architecture view
work product expressing the architecture of a system
from the perspective of specific system concerns”

A security view thus expresses only the
security-relevant aspects of a system

Requires a modelling language
“suitable” for security

What does this mean?

4



Intermezzo: What is a security view?

Requires the ability to create and reason about
a high-level security view of the software

ISO/IEC/IEEE 42010: Systems and software engineering — Architecture description
“architecture view
work product expressing the architecture of a system
from the perspective of specific system concerns”

A security view thus expresses only the
security-relevant aspects of a system

Requires a modelling language
“suitable” for security

What does this mean?

5



It seems beneficial to start
tackling security early on

Requires the ability to create and reason about
a high-level security view of the software

ISO/IEC/IEEE 42010: Systems and software engineering — Architecture description
“architecture view
work product expressing the architecture of a system
from the perspective of specific system concerns”

A security view thus expresses only the
security-relevant aspects of a system

Requires a modelling language
“suitable” for security

What does this mean?

6



Who uses (security) views and for what?

ISO/IEC/IEEE 42010

• as basis for system design and
development activities;

• as input to automated tools for
simulation, system generation and
analysis;

• communicating among parties involved
in the development, production,
deployment, operation and
maintenance of a system;

• . . .

Our observation is that

• specialised security teams are
responsible to assess and harden the
security of the designed software; and

• these teams communicate with
architects, implementers, managers,
. . .

7



A security by design lingua franca needs
to reconcile two contradicting forces

Communication to a broader audience

Language that is easily comprehensible

Currently used notations are
often ad hoc and informal

Design and analysis of security solutions

Language that is precise and expressive

Proposed languages often go very formal
and/or cover few security properties

8



So we developed our own
security modelling language

It essentially consists of data manipulated by processes,
which can collaborate by grouping them into networks,
each of which can be further refined by assumptions

Our language is equipped with a graphical notation and
is fully formalised using the Coq Proof Assistant

Built-in types for ciphertexts, cryptographic keys, credentials, . . .
23 pre-defined types (Encrypter, Attacker, Fork, . . . )
Each exhibiting well-defined (non-deterministic) behaviour

Connected processes
communicating data

e.g. Attacker cannot obtain original data from a hash value

9



So we developed our own
security modelling language

It essentially consists of data manipulated by processes,
which can collaborate by grouping them into networks,
each of which can be further refined by assumptions

Our language is equipped with a graphical notation and
is fully formalised using the Coq Proof Assistant

Built-in types for ciphertexts, cryptographic keys, credentials, . . .

23 pre-defined types (Encrypter, Attacker, Fork, . . . )
Each exhibiting well-defined (non-deterministic) behaviour

Connected processes
communicating data

e.g. Attacker cannot obtain original data from a hash value

10



So we developed our own
security modelling language

It essentially consists of data manipulated by processes,
which can collaborate by grouping them into networks,
each of which can be further refined by assumptions

Our language is equipped with a graphical notation and
is fully formalised using the Coq Proof Assistant

Built-in types for ciphertexts, cryptographic keys, credentials, . . .

23 pre-defined types (Encrypter, Attacker, Fork, . . . )
Each exhibiting well-defined (non-deterministic) behaviour

Connected processes
communicating data

e.g. Attacker cannot obtain original data from a hash value

11



So we developed our own
security modelling language

It essentially consists of data manipulated by processes,
which can collaborate by grouping them into networks,
each of which can be further refined by assumptions

Our language is equipped with a graphical notation and
is fully formalised using the Coq Proof Assistant

Built-in types for ciphertexts, cryptographic keys, credentials, . . .
23 pre-defined types (Encrypter, Attacker, Fork, . . . )
Each exhibiting well-defined (non-deterministic) behaviour

Connected processes
communicating data

e.g. Attacker cannot obtain original data from a hash value

12



So we developed our own
security modelling language

It essentially consists of data manipulated by processes,
which can collaborate by grouping them into networks,
each of which can be further refined by assumptions

Our language is equipped with a graphical notation and
is fully formalised using the Coq Proof Assistant

Built-in types for ciphertexts, cryptographic keys, credentials, . . .
23 pre-defined types (Encrypter, Attacker, Fork, . . . )
Each exhibiting well-defined (non-deterministic) behaviour

Connected processes
communicating data

e.g. Attacker cannot obtain original data from a hash value

13



A security by design lingua franca needs
to reconcile two contradicting forces

Communication to a broader audience

Language that is easily comprehensible

Design and analysis of security solutions

Language that is precise and expressive

14



Evaluating our language with
respect to these two forces

Comprehension
in the small

Creation in
the small

Comprehension
in the large

Creation in
the large

Deals with real(istic) designs

Deals with building blocks and
small designs as a prerequisite
Performed a user study with master
students in computer science

Software architecture course
105 participants
Security novice, junior software developers

Created a realistic model of
password-based authentication

15



Evaluating our language with
respect to these two forces

Comprehension
in the small

Creation in
the small

Comprehension
in the large

Creation in
the large

Deals with real(istic) designs

Deals with building blocks and
small designs as a prerequisite
Performed a user study with master
students in computer science

Software architecture course
105 participants
Security novice, junior software developers

Created a realistic model of
password-based authentication

16



Evaluating our language with
respect to these two forces

Comprehension
in the small

Creation in
the small

Comprehension
in the large

Creation in
the large

Deals with real(istic) designs

Deals with building blocks and
small designs as a prerequisite

Performed a user study with master
students in computer science

Software architecture course
105 participants
Security novice, junior software developers

Created a realistic model of
password-based authentication

17



Evaluating our language with
respect to these two forces

Comprehension
in the small

Creation in
the small

Comprehension
in the large

Creation in
the large

Deals with real(istic) designs

Deals with building blocks and
small designs as a prerequisite

Performed a user study with master
students in computer science

Software architecture course
105 participants
Security novice, junior software developers

Created a realistic model of
password-based authentication

18



Evaluating our language with
respect to these two forces

Comprehension
in the small

Creation in
the small

Comprehension
in the large

Creation in
the large

Deals with real(istic) designs

Deals with building blocks and
small designs as a prerequisite

Performed a user study with master
students in computer science

Software architecture course
105 participants
Security novice, junior software developers

Created a realistic model of
password-based authentication

19



Research questions

RQ1.1: Do participants comprehend the individual
building blocks provided by the modelling language?

RQ1.2: Do participants comprehend models where
multiple building blocks have been tied together?

RQ1.3: Do participants comprehend models where
security mechanisms and an attacker are intertwined?

RQ2.1: Can participants use the language to express
an informally described situation?

Not covered in this presentation

20



Study Design

Tutorial
lecture

(2h)

Software security introduction
Detailed explanation of language

Lab session
(max. 2.5h)

Individually complete a questionnaire
41 questions (36 multiple choice and 5 open)

Entry
survey

Background information

Data analysis

Exit
survey

Experiences and comments

21



Multiple choice questions

3. What is valid output data for this Encrypter process?

© d

© symk 1

© enc d (symk 1)

© enc d (symk 6)

© Nothing

© Don’t know

Encrypter
{symk 1}d

symk 6

?DD
K

Remarks:

Difficulty: © Very difficult © Rather difficult © Rather easy © Very easy

Multiple
correct
options

Differentiate blank answers from
those a participant does not know

Optional (unless selected “Don’t know”)

Asses perceived difficulty

Sometimes we ask
to provide rationale

22



The data we measured

Scored each answer to multiple choice questions

score = max

(
0,

S+ − S−

N+

)
× 100%

Correctly selected options Incorrectly selected options

Total number of correct options

Rationale is manually analysed and coded
A code can, for example, indicate the presence of a common error

23



Resulting scores

RQ Topic
Score (%)

Box plot
Min. Mean Max.

RQ1.1 Individual building blocks 41 87 100

RQ1.2 Combined building blocks 33 79 100

RQ1.3 Security aspects 50 77 100

RQ1 47 83 97
0 50 100

24



What were the recurring problems?

Non-determinism

Attacker omnipotence

(Complex processes)

(Data equality)

25



Non-deterministically processing inputs

Roughly 50% of the participants prefer processes
to deal with multiple inputs in a certain order

Significant majority of these participants prefer
that “configuration” precedes “functionality”

Encrypter
{symk 1}d

symk 6

?DD
K

Among the participants
40% do not prefer order (correct answer)
48% configure key before encrypting
5% encrypt before configuring key

26



The challenge of an omnipotent attacker

Our Attacker process can guess any data as well as
derive any data from other data it already knows,
unless explicitly constrained using assumptions

What data can be obtained by a
given, unconstrained Attacker?

Attacker
{plain 2 5, cred 6, id 5,
sid 9, hashed (cred 1),
enc (cred 1) (symk 3)}

Replies by 36% of the participants indicate
they implicitly constrain the attacker’s
guessing and derivation abilities

27



Such implicit assumptions are problematic

They remain unchecked with respect to the software under design

Potentially allowing possible attacks to go unnoticed

28



So what have we learned from this?

We now know what the shortcomings are

Building blocks and small models seem fairly easy to comprehend
given limited training (2h)
without going into the formal specification

Underlying formal machinery does seem necessary to cover all possibilities
e.g. make assumptions on attacker’s abilities explicit

29



Evaluating our language with
respect to these two forces

Comprehension
in the small

Creation in
the small

Comprehension
in the large

Creation in
the large

Deals with real(istic) designs

Deals with building blocks and
small designs as a prerequisite
Performed a user study with master
students in computer science

Software architecture course
105 participants
Security novice, junior software developers

Created a realistic model of
password-based authentication

30



What we modelled

Modelled features
Username-password authentication
User registration
Two-factor authentication
Sessions
Change password
Reset password

Followed OWASP’s best practices

Resulted in a large, complex model
containing 200+ processes
I won’t dive into it here, excerpts can be found in
paper and full model is available online

31



Experience

% Model quickly grows in size and complexity

% Defining a comprehensive set of assumptions is laborious

% Some processes get cumbersome to work with

% Expressing time-based aspects is clumsy

" Pre-defined building blocks to fall back on

" Existing set of process types was sufficient

" Revealed some possibilities we did not think of up-front
e.g. use of password reset to reactivate an account

32



Wrapping up



It is advantageous to tackle security issues
early on in the software development cycle

This requires a suitable security modelling language

Comprehensible by a broad audience

Allows security experts to design and analyse security solutions

34



We evaluated our proposed modelling
language with respect to these forces
At least to some extend

User study to assess comprehensibility of the building blocks and
small models for security novice, junior software developers

Modelled a realistic version of username-password
based authentication to assess expressivity

Results are promising and have shown us what the current shortcomings are

35



A Lingua Franca for Security by Design

Alexander van den Berghe, Koen Yskout, Riccardo Scandariato
and Wouter Joosen

IEEE Cybersecurity Development Conference (IEEE SecDev 2018)
01 October 2018


	Wrapping up

