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ABSTRACT

Teaching robotics to engineering students can be a challenging endeavor. In order to provide hands-on
experiences, physical robot platforms are required. Previously, obtaining these platforms could be
expensive, and required a lot of technical expertise from teaching staff. However, more recent models
address these issues, therefore providing more opportunities for hands-on sessions. In this paper, we
describe how we used the Turtlebot 3 mobile robot in master courses at KU Leuven. We provide an
overview of the main functionalities, and suggest a number of improvements to further lower the
learning curve for students. Additionally, we elaborate on the curriculum and learning outcomes of
two courses that utilized Turtlebots in practically oriented sessions..
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1 Introduction

When designing the curriculum for a particular course, one can include a variety of different learning activities. Lectures
are often used to convey theoretical concepts to large groups of students, while practically oriented lab sessions or
projects can encourage students to apply their knowledge to real-world problems. Standardized test scores were found
to be correlated to the frequency of hands-on learning [1]. In science education specifically, these practically oriented
learning activities can take the form of simulations, remote experiments or hands-on experiments. An extensive literature
survey by Ma and Nickerson [2] concluded that there are proponents and opponents to all types. However, some form
of experimental work may offer benefits over a pure simulation approach. Sauter et al. [3] found that students who
conducted remote labs were more engaged in the experiment they were performing than those who used computer
simulations. Additionally, remote lab users wrote higher-quality research questions and were more open to performing
repeated experiments. In robotics education, a physical robot is required for hands-on or remote experiments. However,
selection of an educational robotics platform is not straightforward. In the past, one often had to choose between
purchasing expensive models, or building a custom platform from scratch. Table 1 provides an overview of several
wheeled robotics platforms, with release dates ranging from 1995 up to 2018. This is list is not meant to be exhaustive,
rather, it is intended to show a trend. One can observe that while robotics education has become significantly more
affordable, platforms with sensors that enable functionalities such as mapping and autonomous navigation are still
relatively expensive.

When selecting a platform for introductory robotics courses at KU Leuven Campus group T, we set forward the
following requirements:

• Wheeled robot: Most of the envisioned practical sessions focus on wheeled robotics, rather than humanoids
or robot arms.

• Low cost: Due to the large number of students, the cost per robot needs to be limited.
• Low learning curve: The introductory mobile robotics course that is to make use of the platforms, only has

three lab sessions (see Section 4). The time required to get familiar with the platforms should therefore be
minimized, in order to maximize the available learning time.
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Table 1: Overview of wheeled robot platforms

Robot Year of
release

Cost
[e] Target audience Sensors

Pioneer 3DX [4] 1995 3233.00 Higher education sonar / encoder
Khepera [5] 1999 2999.00 Higher education sonar / IR
Amigobot [6] 2001 3150.00 Higher education sonar
Scribbler 3 [7] 2010 220.86 Secondary education IR / ambient light / encoder
Turtlebot 2 [8] 2012 1673.00 Higher education RGB-D / gyroscope / encoder
Edison [9] 2014 51.58 Secondary education IR / sound / ambient light
Cozmo [10] 2016 199.99 Secondary education camera / IMU / IR
Turtlebot 3
(burger) [11]

2017 585.95 Higher education LIDAR / IMU / encoder

Turtlebot 3
(waffle) [11]

2017 1399 Higher education LIDAR / RGB / IMU / encoder

Rosbot 2.0 [12] 2018 1661.00 Higher education RGB-D / LIDAR / encoder / IR

• Advanced perception: While simpler robots are capable of tasks like line-following, this is not sufficient for
the envisioned courses and projects. In master level courses, more advanced perception is required. Some form
of depth perception should at least be available (e.g., in the form of an RGB-D camera, or a laser scanner).

• Standard software framework: It is imperative that the skills students acquire are as broadly applicable as
possible. By using a standard software framework, students are more likely to use the same software again in
their later career. Additionally, such a standard framework usually has more third party software available,
broadening the possibilities of the platform.

Based on our requirements, the Turtlebot 3 burger stands out from the others, as it offers advanced sensors for a
significantly lower price. Moreover, it makes use of the "Robotic Operating System" (ROS), which is an open source
framework. In the rest of this work, we will discuss our experiences in using this platform for robotics education. The
paper is structured as follows; Sections 2 and 3 provide an overview of the hardware and software, and the additions that
were made. We made use of these platforms in several educational projects, two case studies are described in Sections 4
and 5. Section 6 discusses the learning outcomes, before and after the introduction of new robot platforms. Finally, a
conclusion is presented in Section 7.

2 Hardware Overview

Turtlebots are sold in 2 main configurations, referred to as the "burger" and "waffle" models (see Fig. 1). The waffle
model is larger, has an additional camera sensor and is significantly more expensive than the burger model. As we had
no need for a larger robot or the camera, we opted for the burger model. The main hardware components of the platform
are:

• LIDAR: a 360◦ laser scanner is mounted on top of the robot. This sensor transmits a rotating laser, which
reflects of nearby obstacles. By using the reflection time, distances to nearby objects can be obtained, which
can be used for mapping or obstacle avoidance.

• Raspberry Pi: one level below the LIDAR is a Raspberry Pi 3 (RPi) single-board computer. Since its intro-
duction a few years ago, the Raspberry Pi has gained incredible popularity among hobbyists and researchers
due to its small size, low cost and power use. It is most useful in applications that require a computer, but not a
large amount of processing power. On the Turtlebot, it reads data from the sensors and communicates with a
’master’ pc, which does the actual computations.

• OpenCR: one level below the RPi, the OpenCR hardware control board is located, which is based around
an Arduino Uno. The board contains an Inertial Measurement Unit (IMU) with a three axis accelerometer,
gyroscope and magnetometer. Its main function is to connect the Raspberry Pi to the motors and sensors, such
that data can be read and commands can be sent. Additionally, the board provides power connections for all
components.

• Finally, on the lowest level, we find the motors and the 11.1V Lithium Polymer (LiPo) battery. Both the burger
and the waffle models have a differential drive configuration, which means that they have 2 independently
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driven motors and 1 caster wheel for stability. Dynamixel XL430-W250 servo motors are used to drive the
wheels.

Figure 1: Overview of the Turtlebot 3 models [13]

3 Software Overview

The operating system on the Raspberry Pi is Ubuntu MATE 16.04, a lightweight version of the Linux distribution
Ubuntu. This version is better suited for single-board computers due to the lower hardware requirements compared to
the complete desktop version [14]. A number of modifications were made to the default version to make it more suited
to our needs:

• The Raspberry Pi functions as a wireless access point (AP). Previously, we utilized a central AP, to which all
robots and control computers were connected. However, this infrastructure resulted in unstable connections
due to the large number of devices connected to the router. If the robots function as their own AP, less devices
need to be connected to each network. Therefore, the requirements of such a network are lower. We found that
the individual networks did not interfere with each other significantly. Even when 10 robots were used in the
same room, connections remained stable. Another advantage of this approach is that students do not need
to stay in the same room to test their programs. They can temporarily move to a more open space if needed.
Turning a Raspberry Pi into a wireless AP was achieved with the help of a few online tutorials [15][16]. When
connected to the robot WiFi, a Secure Shell (SSH) connection can be established on a fixed IP address. The
first connected device will also be assigned a fixed IP address.

• Superfluous software such as LibreOffice, Thunderbird, etc. was removed. Additionally, the Pi was set to boot
without a graphical interface.

• A number of Bash aliases were defined, which replace frequently used lengthy commands with shorter versions.
For example, the complete command to initialize sensor communication on the robot is:

r o s l a u n c h t u r t l e b o t 3 _ b r i n g u p t u r t l e b o t 3 _ r o b o t . l a u n c h

which we replaced by:

b r i n g u p

Besides a Linux distribution, the Robotic Operating System was also installed on the SD card of the RPi. ROS is an
open-source, meta-operating system used in robotics research and industry [17]. It provides functionality like hardware
abstraction, localization, navigation, visualization, etc. in a standard communication structure. ROS works via a
publisher-subscriber interface. Programs are broken up into smaller units called ’nodes’. Nodes communicate with each
other trough ’topics’. A node can make information available by ’publishing’ it on a topic, in the form of a ’message’
(ROS data formats). Another node can then ’subscribe’ to receive this information. This approach enables modularly
built programs and abstraction. While ROS simplifies getting started in robotics education and research, the learning
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curve can still be quite steep. Therefore, we also make use of the Robotics System Toolbox, which enables publishing
and subscribing to ROS topics in MATLAB [18]. At our campus, students already complete several projects with
MATLAB before starting their Masters degree. Therefore, it is preferred over other ROS interfaces such as C++ and
Python. A custom toolbox was developed as a final abstraction level for the mobile robotics exercise sessions (Section
4) and the control systems project (Section 5). The focus of these courses is not to learn ROS, therefore the internal
software processes of the robot are abstracted away. The custom code, the documentation and the exercises can be
found on our GitHub page1.

The resulting software architecture is shown in Fig. 2. The robot acts as a slave to a master PC on which the program
is executed. A ’roscore’ (central ROS process that connects nodes to each other) needs to be started manually by
executing a command on the RPi over an SSH connection. The Robotics System Toolbox starts a similar process in the
background on the master PC. Following initialization, the two processes share data, which can be used on either the
PC or the RPi. The use of the MATLAB toolboxes is optional, as the robot can also be directly controlled via a roscore
on the master PC. This is the case in, for example, master theses that make use of these robot platforms. These students
will work on their project much longer and therefore have more time to gain a better understanding of ROS.

Figure 2: Software architecture

4 Example Use Case: Mobile Robotics Exercise Sessions

As a first use case, we will discuss the autonomous vehicles course offered at KU Leuven Campus Group T. This course
consists of an introduction to robotics, and an introduction to mobile robotics. In the introduction to robotics chapter,
concepts such as workspace analysis, forward and reverse kinematics are discussed, while the mobile robotics course
focuses on autonomous navigation. Course material is based on the book "Robotics, Vision and Control" by Peter
Corke [19]. The associated MATLAB toolbox is also used [20].

To enable autonomous navigation, a robot needs to know where it is. Therefore, localization is the first chapter of the
course and is discussed in depth. Dead-reckoning is introduced first as it is arguably the simplest the simplest form of
localization. By integrating displacement measurements, one is able to acquire a position estimate relative to the initial
position. However, every measurement has a slight error, therefore the overall error only grows over time. Nonetheless,
it is a useful source of information, as it is generally always available due to the use of proprioceptive sensors (such as
IMU’s and encoders). To combat drift, additional sources of information are needed. The Kalman filter is discussed as a
sensor fusion algorithm. Additionally, the non-linear Extended Kalman Filter is introduced. Besides localization, an
autonomous robot needs to be able to plan a trajectory between the starting location and the destination. Therefore,

1https://github.com/RobinAmsters/GT_mobile_robotics
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several of the most used path planning algorithms (A*, D*, distance transform, etc.) are covered in the lectures and the
exercise sessions. The special case of a robot that does not need a specific plan, is also discussed. These robots make
use of so called ’reactive navigation’, and react directly to sensor input (such as driving towards a light, or following a
line) [19]. Finally, an autonomous robot needs to be able to execute its plan. Path following falls into the category of
control theory, and is therefore not a part of this course.

The Turtlebot platforms are used during the lab sessions of the mobile robotics course. Students receive three such
lab sessions. In order to make the most of the available time, students are asked to prepare each session beforehand.
And receive a few questions to turn in at the beginning of each session. The majority of their grade is based on these
preparations. Labs are organized as follows:

1. Introduction and dead reckoning: In the very first session, students get acquainted with the robots and
software. Basic tasks such as driving in a straight line or an ellipse are to be performed by the robots.
Additionally, the concept of dead-reckoning is treated in a number of simulation and practical exercises. The
disadvantages of drift are discussed. Finally, students gain experience with so called ’error ellipses’, which are
visual representations of uncertainty on a position estimate.

2. Kalman filter: Drift is one of the main disadvantages of dead-reckoning based localization. The Kalman filter
and its derivatives can be used to include more sensor data into the position estimate, and thus compensate for
this drift. In the second session, students design a linear Kalman filter, derive state transition and observation
models for an Extended Kalman Filter (EKF) and experiment with the effects of different types of sensor noise
on pose estimation.

3. Path planning: In this session, students test different path planning algorithms that were discussed in the
lectures. They are then asked to compare their advantages and disadvantages for certain situations. Finally,
students design a program that makes the Turtlebot follow a wall. Braitenberg vehicle type behavior is used to
achieve this task [21].

5 Example Use Case: Embedded Control Systems Experience

In this second use case, we discuss how we made use of the robots in a guided project that was part of an Embedded
Control Systems (ECS) course. We refer to this project as an ’experience’. Students learn the theoretical concepts in a
lecture format. Several control strategies are covered in these lectures. The more classical approach of PID controllers
and design with the Ziegler-Nichols method is discussed. Additionally, more modern control schemes in the Z-domain
or in state space are also covered [22][23]. In exercise sessions, students practice designing the controllers discussed in
the lectures on paper or in a simulation environment. MATLAB is used for these simulations. Finally, the experiences
require students to put concepts from the lectures and exercise sessions into practice. The aim of these experiences is to
independently design a controller for a physical system. In groups of 2 or 3 students, different parts of the control loop
are built according to a milestone system. This means that the overall assignment is broken up into parts, each of which
can grant a percentage of the total grade. After completing one of these parts, teaching staff checks progress, and gives
a pass/fail on the current milestone. A pass allows students to progress to the next milestone, a fail means that current
work is not sufficient, and more time on the current milestone is needed. This system provides students with regular
feedback, and allows major flaws to be detected early. At the end of the project, students present their work with a
demonstration and turn in a written report.

The campus building is constructed with a spiral walkway in the center (see Fig. 3), the overall assignment of the
experience sessions is to follow this spiral with the Turtlebot. The robot should keep a constant distance relative to the
wall whilst driving. The overall control loop is shown in Fig. 4, the following sections will explain the different parts in
further detail.

M1: Motor model identification: The servo motors of the Turtlebot have built-in PID controllers, which regulate
the speed of each individual wheel. In the very first sub-assignment, a model for the DC motors with PID
controllers is identified. From the step response, students can derive the transfer function.

M2: Speed control: Using the transfer function (M1), students are asked to design a controller, which takes wheel
speed as an input, and outputs an actuator command such that the speed follows a given reference. Next,
individual wheel speeds are translated to a forward (v) and rotational (w) speed of the robot. The overall
controller therefore takes v and w as an input, and internally translates these to velocity commands for the left
and right wheel. By writing the controller inputs this way, we found it easier to design the distance controller
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Figure 3: Spiral walkway inside the Group T campus

Figure 4: Overview of the control loop and milestones of the project
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(M3). Students are allowed to use any control scheme they know of. However, all groups designed some form
of PID controller.

M3: Distance control The final part of the overall control loop is a controller that allows the robot to drive at a
constant distance relative to the wall of the spiral. It will take LIDAR measurements as an input (which may
have to be processed first) and return a forward and a rotational speed as an output. These speeds are then used
as an input for the speed controller (M2). In this stage, students are asked to use a state feedback controller,
such that they gain hands-on experience in designing this type of controller as well.

M4: State estimator It is possible to control the speed of the motors based on just encoder measurements. However,
sensors are not perfect. In order to reduce inaccuracies, students are asked to include a state estimator into the
control loop. An estimator can filter noisy sensor values and include multiple sources of information, thus
improving accuracy and robustness.

6 Evaluation of learning outcomes

Table 2 summarizes performance indicators from the academic years before (2017) and after (2018) the introduction
of the Turtlebots. In the academic year 2017 and before, robot platforms were already used. Therefore, the change
between 2017 and 2018 is not the introduction of physical platforms, rather, the platforms used are now much better
suited for teaching. For the Embedded Control systems course, other factors changed as well between the academic
years (different teacher, course content and project). Therefore, only data for the mobile robotics course is included.
Table 2 shows the median final scores per academic year. These scores are based on the exercises of the exam, as
the theory questions should not be influenced by the use of robot platforms. Scores for Mobile robotics increased
by 2%. However, the correlation between the lab scores and the exam scores is very low. While the correlation
increases in 2018, the low value may indicate that better lab performance may not necessarily influence exam scores.
Therefore, we can not make any definitive conclusions about the impact of these new robot platforms on students’ grades.

Table 2 also shows the passing rate of students. That is, the percentage of students who pass the course on their first
examination attempt. For both courses, the passing rate increased by approximately 4%, reaching almost 90% for the
Mobile Robotics course. However, this increased passing rate might not be completely be attributed to the introduction
of new robots. Small fluctuations are always possible. Therefore, a longer time period should be observed before
drawing conclusions.

Table 2: Learning outcomes before and after Turtlebots
Academic year 2017 2018
Number of students 60 65
Median score 60% 62%
Exam participation 100.00% 96.92%
Correlation lab/exam 0.13 0.20
Success rate 85.00% 89.23%

6.1 Mobile Robotics

Through an anonymous feedback form, students were asked to rate the course based on a number of questions. 10
students responded to this request. With the maximum score being 6, the question "The things I learned in this course
are relevant for my education." scored 4.9. The question "I was satisfied with the quality of teaching in this course."
received an average score of 4.8. Figure 5 shows the distribution of the received responses. When asked for feedback in
person, many students requested more sessions to expand on the discussed topics. Contrary to previous years (when
Turtlebots were not used), students had no negative comments on the platforms themselves.

6.2 Embedded Control Systems

No anonymous feedback forms are available for this course. The university organizes course evaluation, and not every
course is evaluated every year. Nonetheless, students were still asked for their feedback in person. This feedback was
also positive. Students appreciated the hands-on experience, as they found implementing a control loop on a physical
system to be quite different from designing one based on a theoretical model. The project was, however, deemed
more challenging than initially estimated. Particularly the design of the state feedback controller was the most difficult
milestone.
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(a) The things I learned in this course
are relevant for my education

(b) I was satisfied with the quality of
teaching in this course

Figure 5: Student responses to anonymous survey

7 Conclusion

In this paper, we discussed our experiences in using the Turtlebot 3 as a robotics platform in higher education. We
propose a number improvements to the software, and discuss how we used the robots in two different courses. We
present performance indicators before and after the introduction of the new platforms. It is challenging to draw a
definitive conclusion about the effect of these platforms on student performance. Feedback from students and teaching
staff has, however, been overwhelmingly positive. Their experience in using the robots has significantly improved
compared to previous years. In the future, we would like to improve the platforms further by implementing a system
to automatically update the software. Such a system would make the platforms easier to maintain. Additionally, for
the control systems course, we would like to offer students different kinds of projects to choose from, instead of one
common track.
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