
Software Engineering Education Beyond the Technical
A Systematic Literature Review

Wouter Groeneveld
OVI and LESEC, Department of Computer Science, KU Leuven

wouter.groeneveld@kuleuven.be
 https://orcid.org/0000-0001-5099-7177

Joost Vennekens

OVI, Department of Computer Science, KU Leuven
joost.vennekens@kuleuven.be

Kris Aerts

OVI, Department of Computer Science, KU Leuven
kris.aerts@kuleuven.be

Conference Key Areas: Lifelong Learning, New Notions of Interdisciplinarity in
Engineering Education
Keywords: Soft Skills, Software Engineering Education, Teaching Methods, Required
Skills

ABSTRACT
Higher education provides a solid theoretical and practical, but mostly technical,
background for the aspiring software developer. Research, however, has shown that
graduates still fall short of the expectations of industry. These deficiencies are not
limited to technical shortcomings. The ever changing landscape of ‘lean’ enterprise
software development requires engineers to be equipped with abilities beyond the
technical. How can higher education help students become great software developers in
this context? As a first step towards answering this question, we present the results of a
systematic literature review, focusing on noncognitive abilities, better known as ‘soft
skills’. Our results identify self-reflection, conflict resolution, communication, and
teamwork as the top four taught skills. Internships and capstone projects require more
attention as a teaching aspect to facilitate the learning of multiple skills, including
creativity. Interdisciplinary teaching and group composition are other important factors
that influence learning. By providing novel insights on relationships between
noncognitive abilities and teaching aspects, this work contributes to the continuous
improvement of software engineering curricula. These findings may also serve as a
springboard for further investigation of certain undervalued skills.

1. INTRODUCTION
When teaching aspiring software developers, educators are faced with the question:
‘What makes a software engineer stand out in his or her profession?’. Possible answers
might include the ease of coming up with sound technical solutions, or the empathic

ability to work well with others. Technical proficiency used to be the primary condition for
success [1], but this knowledge is no longer enough [2]. Researchers, educators, and
practitioners have all tried to answer the question what makes modern developers stand
out. Papers ranging from 1994 [3] to 2018 [4] share a global message that still does not
seem to be fully carried out by higher education. There is still no general consensus
reached.
In this paper, we perform a systematic literature review to gain a deeper understanding
of how modern engineering education has been shaped towards this new skillset. The
formalized process of a systematic review has proven to be very insightful for identifying
the current state-of-the-art on a given subject, and has been used widely in different
fields, including software engineering research [5]. We focus our review on software
engineering education, aiming to answer the following research question:

What is the current state-of-the-art of teaching noncognitive abilities in
software engineering education?

The remainder of this paper is divided into the following sections. Section 2 describes
background information on noncognitive skills and abilities, and why they are of growing
importance, including related work on this topic. Section 3 clarifies the systematic review
process we have used. Next, in section 4, we present and discuss the results of the
review. Possible threats to validity are identified in section 5, while the last section, part
6, concludes this work.

2. BACKGROUND AND RELATED WORK
Defining boundaries for the term ‘noncognitive abilities’ is becoming increasingly hard as
different authors interpret it differently [6]. We have found other frequently used terms
that slightly differ in meaning, although they have been used as synonyms in the
literature. These terms range from soft skills, 21st century skills, intangible skills, human
factors, interpersonal skills and generic competencies to social & emotional intelligence
and people skills. Multiple interpretations make the comparison of papers quite difficult.
For the purpose of this literature review, we used all these different synonyms in our
search, in order to obtain a broad picture of the domain.
A large amount of research on soft skills for software engineers exists, including specific
industry studies [2,7]. Most of these studies do not explicitly focus on the education
system itself. Instead, they highlight shortcomings from the point of view of the industry
with the help of e.g. job ad analysis and focus groups. For instance, the SWEBOS
(Software Engineering Body of Skills) framework by Sedelmaier, et al. [2] highlights the
shortcomings of soft skill inclusions in the conventional SWEBOK (Software Engineering
Body of Knowledge) model [1].
Examples of recent literature reviews similar to ours are [8] by Garousi, et al. in 2018
and [9] by Radermacher, et al. in 2013. Although these works provide insight into
required noncognitive abilities, they do not focus solely on education, as our research
does. Other publications delve deeper into specific subjects, such as the impact of pair
programming [10,11], and the added benefit of improved confidence and self-esteem.
Lenberg, et al. conducted an interdisciplinary research of ‘the psychology of
programming’, redefining and reviewing behavioral software engineering [12]. This
combination of practical psychology with software engineering yields promising results
for understanding what makes great developers tick [13].

Another approach to identify skills is by investigating success stories in software
development. Dutra, et al. explored high performance teams using a systematic
literature review [14], while Li, et al. simply asked practitioners: ‘what makes a great
software engineer?’ [15] Unsurprisingly, more than 50% of the answers can be
categorized as non-technical, attributed to external (teammates) and internal (personal
characteristics) factors.
These publications all strongly indicate the need for a revision in software engineering
education, beyond technical knowledge. However, academic knowledge and skill
requirements do not always perfectly match the abilities required from a software
developer in the industry. Radermacher, et al. use the term ‘knowledge deficiency’ to
describe this lack of skills [9]. It seems that these deficiencies are given little attention
but are becoming more and more important in the industry because of the way software
is created: together, in close collaboration [4,6]. By providing a literature overview on
noncognitive skills in software engineering education, we identify the current state of
knowledge on teaching noncognitive skills to future software developers.

3. METHODOLOGY
The Systematic Literature Review (SLR) procedure we followed is an adaptation of
Kitchenham’s guidelines, which was adapted specifically for software engineering [5,16].
After establishing a review protocol, we formulated two research questions to steer the
reviewing process. These questions, together with the search strings and criteria, helped
us narrow down the publication result list, filtering out irrelevant papers.
The following research questions were identified:
• Q1: Which noncognitive abilities have been identified by educators as important to

teach software engineering students?
• Q2: How have those abilities been successfully taught?

The ACM Digital Library and IEEE Xplore libraries were used as our main search
services as they provide export functionalities, and our institution provides full-text
access. Our focus is on software (1) engineering/development (2) noncognitive skills (3)
in education (4). These are the search strings used to gather data, in conjunction with
the many synonyms of ‘noncognitive skills’ as described in section 2: "software" (1)
AND ("engineering" OR "developer" OR "development") (2) AND [synonym] (3)
AND ("education" OR "educational" OR "teaching" OR "curriculum") (4).
Additional ad-hoc searching via index aggregation services such as Google Scholar was
needed to make sure we did not miss any major work. A technique called ‘snowballing’
was adopted to consider publications from reference lists of papers in the review pool
[16]. As part of the quality control, papers were required to contain at least some
empirical evidence. Papers written in languages other than English were not taken into
consideration. Also, to keep the results relevant for modern software engineering and to
further limit the amount of results, publications older than 2014 were not included.
However, this date limitation has not been applied while ad-hoc searching.
There is a lot of existing literature about engineering education in general. However, the
software engineering discipline is unique compared to other engineering disciplines
because of the complete absence of a fabrication cost and the increased speed of
innovation [17]. This could result in different requirements of non-technical skills for each

field. Therefore, papers in this review will not be included without the explicit mention of
software. Also, to be able to answer question 2, we are only interested in success
stories, thereby eliminating negative results.
1962 publications were initially screened based on their title, keeping 146 results. The
next screening phase was based on paper abstracts, keeping 60 results. The last
screening phase was based on the entire publication content, evaluating quality and
applicability. In the end, 26 papers remained to be discussed in section 4. The complete
dataset of all considered publications including extracted data can be found at
https://people.cs.kuleuven.be/~wouter.groeneveld/slr/.

4. RESULTS AND DISCUSSION
A lot of different approaches towards integrating noncognitive skills into the curriculum
have been found. These approaches maintain different time frames, ranging from one-
day projects to extensive capstone projects and internships. The papers include diverse
research methods, from single case studies to literature reviews [12]. The combined
dataset has been published from 16 countries world-wide, with Germany (8 papers),
Israel (3), and USA (3) on top. The advantage of our systematic review is that this
combined data provides stronger evidence than each individual study.
Some papers have a narrow focus, targeting only a single skill [18,19] or a single
teaching aspect [20–22]. Others are fairly broad, discussing soft skills in general [8,23].
We will discuss the results for literature review questions (Q1, Q2) individually,
concluding with connections between the two.
4.1. Which skills are perceived as important? (Q1)

Table 1: Identified skills.

Table 1 contains a list of extracted non-
technical skills, identified as important to teach
software engineering students. Due to the
vague definitions of each term, interpretations
might overlap. Elaborate descriptions of the
skills were mostly absent in reviewed
publications, making it difficult to generalize or
group results. We have refrained from using
our own interpretation of these terms and only
marked a term as present in a certain
publication if it appears literally. Also, the
absence of a term does not mean it is not
deemed as important to teach by the authors,
since it may yet be included implicitly in the
program.
The reported non-technical skills in SWEBOS

correspond roughly to the results in Table 1. SWEBOS uses the following skill groups:
collaboration with others, communication, structuring one’s way of working, personal
competencies, consciousness of problems, problem solving, and further competencies
[2]. It is difficult to say whether competencies from SWEBOS, such as ‘acceptance of
responsibilities’, can be seen as a combination of role awareness, motivation, and

Key Skill #papers
S01_Comm Communication 25
S02_Team Teamwork/dynamics 25
S03_Refl Self-reflection 13
S04_Conf Conflict resolution 13
S05_Mntr Mentoring 10
S06_Ledr Leadership 7
S07_Moti Motivation 6
S08_Role Role awareness 4
S09_Cult Cultural Intelligence 4
S10_Crea Creativity 4
S11_Ethi Ethics 3
S12_Lifl Lifelong Learning 3
S13_Empt Empathy 2

leadership. The same applies to ‘handling criticism’ or ‘working calmly and efficiently
under stress’: they show overlapping but cannot be identified with a single result. As a
consequence, the SWEBOS list is not directly visible in Table 1. Time management and
problem solving are not part of our interpretation of the term ‘noncognitive skills’.
Communication and teamwork were the most common identified skills, and have also
been the most commonly identified in industry surveys [9]. We did not make the
distinction between written and oral communication, such as presentation skills. Holzer,
et al. advocate for a separate course devoted to communication [18] while others
integrate it more implicitly into the curriculum [24–26]. There is a clear correlation
between communication and teamwork: when one skill appears in a paper, the other
also occurs. The term ‘teamwork’ is also very common within software engineering
education, as students usually need to finish at least one form of project within a team
during the program.
Mentoring, and being mentored, has been identified as a skill for both students and
teachers. Students can act as an ‘advisor’ (mentor) in special programs [27], or can be
mentored by peers or the teaching staff. Most papers left room for mentoring as part of
the (capstone) project. Most mentoring happens outside of classrooms, such as the 25%
time spent as part of the ‘Communications & Networks’ course design outlined by
Cukierman, et al. [23].
Conflict resolution also appears in conjunction with teamwork and communication.
Most papers view this skill as the classic interpersonal mediation skill when working
together on capstone projects [20]. However, some papers introduced conflict resolution
as an intrapersonal skill when developing your own career [28] or thinking about global
issues introduced in a communications course [18].
Leadership suggests taking on a leading role in student team projects [20,29] or group
discussions [18]. It can also imply spontaneously taking on the role of mentor when a
fellow student is in need of help. There are clear connections between leadership and
teamwork: being a good leader demonstrates the ability to work well within a team.
Self-reflection comes in many forms, ranging from general self-improvement [27,30] to
specific reflections on the skills learned in the form of surveys [22,26] or assessment
tools [21]. The better the student’s ability to reflect, the better the ability to absorb other
skills. Ebentheuer, et al. reported on a soft skill guidance program that ran successfully
for years at their faculty, in which self-reflection plays a central role [27]. It is also
important when working with an interdisciplinary group of students [24], or when thinking
about one’s future role as a software engineer in society [28]. Educators acknowledge
the importance of self-reflection: we found the term in 50% of our results. It can be seen
as the main enabling skill that increases the likelihood of learning anything else:

“Self-reflection is a crucial enabler for self-improvement in all areas of life.” [30]
Motivation as a separate skill denotes the importance of being driven to learn new
skills. Students are likely to be more motivated when consistently working together [31].
4 out of 6 occurrences of motivation also included self-reflection.
Role awareness also requires some self-reflection to see how a software engineer can
play a meaningful role in our modern society [2,32]. Acheson, et al. advocate for a
deeper understanding of specific strengths in different engineering roles [28].

Ethics appears in conjunction with role awareness in the work of Li et al. [32]. Ethics of
software engineering is a topic that usually appears in courses such as ‘Soft Concepts
of Computer Science’ introduced by Hazzan, et al. [33].
Cultural Intelligence/Diversity has been explicitly mentioned in 4 papers. It is a critical
skill for future developers as engineering teams can be culturally diverse. This is
especially the case with global software development.
Empathy is closely related to cultural diversity and ethics, but there was no overlap
found in the usage of these terms. Levy is the only author to completely focus on
empathy in an interdisciplinary course [21].
Creativity scores surprisingly low at only 4 occurrences. It is mostly related to open
assignments in project-oriented learning [22,27,34,35]. We firmly believe that creativity
is important to arrive at a good software solution, although hardly any explicit attention is
paid to it.
Lifelong Learning is the odd one out among the identified skills. It describes a set of
skills, such as creativity, leadership and problem solving in general. Lifelong learning is
an attitude, not an individual skill. However, since it was explicitly mentioned in several
papers, we decided to include it in the results.

4.2. How have these skills been successfully taught? (Q2)

Table 2: Identified levels at which to integrate skills
into the curriculum.

Key Level #papers
L1_Course Lectures of a single

course
13

L2_Projec Projects within a course 9
L3_Curric Throughout entire

curriculum
5

L4_Capsto Capstone projects 4
L5_Intern Internships 2
L6_Module Modules within a course 1

Table 3: Identified important teaching aspects.

Key Teaching aspect #papers
A1_Inter Interdisciplinarity 7
A2_Group Group composition 5
A3_Colla Collaborative Tools 4
A4_Testi Assessment Tools 4
A5_Activ Active Learning 3
A6_Video Video Watching 2
A7_Playf Playful Learning 2

The skills identified in Table 1 can be taught in different ways. Table 2 shows the
different levels at which the included publications try to integrate these skills into the
curriculum. Table 3 contains a list of the different aspects of teaching on which these
publications focus. Both topics are equally relevant for research question two, and will
be discussed below, starting with levels of integration.
Lectures (13 appearances) as part of a specific course and Projects (9) are the most
popular levels. These have always been the classic tools for introducing new goals in
the curriculum. Project courses can be converted completely into ‘service-learning
projects’, to contribute to the community and further practice soft skills [28]. These
projects involve working on real-world problems beyond university boundaries. Service-
learning projects also strengthen the bond between community and the university.
Curriculum-wide incorporation is the ultimate way to integrate noncognitive skills into
every facet of the whole software engineering program. ‘Soft skills must be included in

curricula’, according to Garousi, et al. [8]. Sedelmaier, et al. propose SWEBOS to guide
curriculum changes, instead of looking at SWEBOK [2].
Capstone projects and Internships might require more time than a few seminars, but
according to [20], the effort is worth it in the increased amount of skills learned.
Capstone and internship projects pay off even more if they are real projects developed
in-company instead of at the university [36]. These projects might not lead to students
completely mastering skills such as teamwork and conflict resolution, but they will at
least learn the relevance of these skills:

“We designed the course so as its main learning outcome is that students
internalize how relevant it is having and developing critical soft skills to succeed
in software development projects.” [36]

Modules within a course, such as interdisciplinary seminars, indicate the integration of
specific parts in an existing course, without completely redesigning it. For instance,
Acheson, et al. invite industry experts for seminars in their career development course.
This integration is a good alternative, because, as stated in [28]:

“1) does not require much additional classroom time and instructor efforts; 2) can
be seamlessly integrated into existing course materials; and 3) can start from the
student’s freshmen year and continues through their undergraduate study in the
program.”

Interdisciplinarity, as the most important teaching aspect (7 appearances), refers to
the mixing of teaching staff and students between different faculties, but also between
industry and academia. Chatley, et al. introduce industry-relevant content by inviting
guest speakers that talk about real-world problems [37]. In the communications module
of Holzer, et al., the staff of the Technology faculty worked together with the Social and
Human Science faculty [18]. Vicente, et al. sent students divided into interdisciplinary
teams across programs on a 3-day team-building event to reinforce team spirit [38]. This
cross pollination has proven to be effective to teach empathy, cultural diversity and
ethics.
Group composition is another major factor in enhancing teaching of mentoring, conflict
resolution and leadership [39]. In particular, cohesion within a student team has shown
to influence motivation, productivity and performance [31]. Teaching staff might
assemble teams themselves, as was the case with the interdisciplinary teams of [38].
Alternatively, surveys may be used to group students with the same primary goal,
strengthening certain competencies within the group [30].
Collaborative tools have proven to be effective in assisting the skill learning process.
Papers reported on the usage of digital tools such as forums and social media to
facilitate learning communication [23,40]. However, these tools can just as well be
simple analog post-it notes when employing agile practices in a project [37], or when
reflecting upon the learned knowledge [30].
Assessment tools have to be developed to evaluate students’ abilities during and at
the end of a course [41]. In comparison to hard skills, soft skills are difficult to pin down
in terms of grading. The speed of evaluation matters: employing a ‘fast feedback cycle’
allows students to practice their reflection skill more often [37].
Active Learning and Video Watching help foster further learning of soft skills. Galster,
et al. opted for what they call ‘Active Video Watching’, integrating interactive activities

into videos to reduce the resource costs involved in teaching [25]. Videos are also used
as supportive material together with classes [18]. Especially for soft skills, active
engagement with others is required to construct mental models. This interaction itself
again requires the application of soft skills [33].
Playful learning has been used in the form of gamification [34] and experimental
investigations to discover unknown content [22]. Learning through play with supportive
guidance creates more space to discover, improvise and challenge. Therefore, this
method directly influences the creativity and motivational skills. Playful learning,
however, is apparently still in an early stage of adoption in software engineering
education, as witnessed by the fact that this term appeared only in 2 of our papers.
4.3. Relationships between results
Figure 1 visualizes the relationship between identified noncognitive skills and topics
relevant for teaching these skills. To put emphasis on skills, contents from Table 2 and 3
have been combined in a single axis, totaling 13 topics. The following interesting
connections have been discovered by interpreting the visual links between skill and
teaching topic, or the striking absence of a link where we would expect one. These
findings are even more easy to deduce from the interactive version of this diagram.

	

Figure 1: An overview of the relationships between skill, aspect and level, outlined as a heatmap. Keys
can be translated into corresponding values via tables 1, 2, and 3. An interactive visualization is available
at https://people.cs.kuleuven.be/~wouter.groeneveld/slr/.

Generally popular combinations: self-reflection and conflict resolution each appear in
13 out of 26 papers (50%) included in this study. Each time either is mentioned, all
identified teaching aspects are also mentioned. The same effect holds for the two most
common skills, communication and teamwork. These four abilities are the top studied
skills in publications. Motivation is the next highly linked skill, missing only internships
and modules within a course. It surprises us that capstone projects are not linked with
mentoring (or being mentored), as one would expect that this kind of guidance is crucial
to complete such a project.
Collaborative Tooling and Test Assessment show promise: While collaborative tools
assist the learning of communication skills, they are not yet used to facilitate the
teaching of ethics, empathy, and cultural diversity. Forums and social media could also
be deployed for these abilities. Testing students’ behavior on non-technical abilities also
shows encouraging results. We believe this can be further extended by involving role
awareness, ethics, and leadership. Creativity is much more difficult to assess using
tests.
Internships and capstone projects seem underused: Besides the four top studied
skills, internships are only connected to leadership and role awareness. Capstone
projects are also linked to motivation. The lack of more links is surprising considering the
outcry to bring industry and academia closer together. Strangely enough, there is only a
very weak link between leadership and internships, and none at all between mentoring
and capstone projects.
Interdisciplinarity is an advantage in teaching beyond the technical: While
interdisciplinary teaching aspects are only mentioned in 7 out of 26 papers (27%), they
do cover all skills except role awareness and cultural diversity: 11 out of 13 skills (85%).
The use of an interfaculty team, or even an interdisciplinary team across industry and
academia, is strongly recommended [18].
Lifelong learning is perceived as a secondary goal: The low number of appearances
of lifelong learning (3), combined with the low number of coupled teaching aspects and
levels (4 out of 13, 30%), leads us to conclude that teaching students the importance of
continuous training is considered only a secondary or implicit goal. Perhaps educators
feel that it is being (semi-)automatically induced by other skills. We believe it should
instead be given the greatest attention, especially in an ever-changing world like
software engineering. Figure 1 confirms the relationship between lifelong learning and
self-motivation or self-reflection.
Creativity is absent in bigger project development: Creativity appears in 4 out of 26
papers (15%). While it is related to a reasonable number of teaching aspects and levels
(6 out of 13, 46%), it is not explicitly found when students embark on bigger projects
such as capstone projects and internships. The papers included in our study never focus
explicitly on creativity alone.
Lectures might not be the best way to induce noncognitive skills: It is interesting to
note that lectures, appearing 13 times (50%) and connecting with all skills, also seem to
be preferred to induce more practical skills. Perhaps this is simply because it is a well-
established method to teach theoretical knowledge. One could ask whether this is the
most effective way to engage students.

5. THREATS TO VALIDITY
A possible threat to the correctness of our results is that the list of non-technical skills
we identified in Table 1, or the teaching aspects and levels in Table 2 and 3, is incorrect
or misaligned, and that some of these concepts are misinterpreted. Even though we
recognize this possibility, we consider it unlikely, given the used methodology which
reduces the risk of making these errors.

Limited visibility of publications may have led us to exclude certain important work. Most
papers focus on soft skills in general, but some are more devoted towards certain
individual skills. This will influence the visualization of the relationships between skills
and aspects. Since the data extraction process is a manual process, we cannot
guarantee that some papers, skills or aspects, have not mistakenly been excluded or
missed. Therefore, we discuss our results as a whole and tried not to draw conclusions
based on a single paper or identified relationship.

6. CONCLUSION
The results of our systematic literature review based on 26 papers identify which
noncognitive abilities are perceived as important by educators, and how these are
currently being taught, i.e. at which level they are integrated in the curriculum and to
which aspects attention is being paid. We discussed each skill, aspect, and integration
level individually to provide some context, highlighting the most and least common
occurrences. By looking at the relationship between skill and aspect with the help of
Figure 1, we discovered popular combinations and interesting trends in software
engineering education.
It is clear to us that collaborating across academia and industry has had a major positive
impact on the teaching of non-technical abilities. The first steps have already been taken
to successfully blend practical psychology and philosophy with software engineering, but
there is still room for improvement, both in depth and breadth.
Our findings may serve as a foundation to further investigate how to integrate the
teaching of noncognitive skills into the curricula. For instance, this work can be
compared to findings from industry surveys, further investigating certain skills or
teaching methods based on the greatest common denominator. This will be our next
step in contributing to research of soft skills in software engineering education.
Based on the results and conclusions of this study, we reckon that the following steps
should be taken to strengthen the current software engineering curricula. First, the
program should focus more on interdisciplinary teaching, not only by inviting lecturers
from other faculties, but also from outside the university. Next, noncognitive abilities
should be examined in more detail in combination with external internships and
capstone projects. Lastly, skills such as creativity and a strong emphasis on lifelong
learning should be induced in all available courses, including technical ones.

7. REFERENCES
[1] P. Bourque, R. E. Fairley, and others, (2014), Guide to the software engineering body of

knowledge (SWEBOK (r)): Version 3.0, IEEE Computer Society Press.

[2] Y. Sedelmaier and D. Landes (2014), Software engineering body of skills (SWEBOS), in
Global engineering education conference (EDUCON), 2014 IEEE, pp. 395–401.

[3] B. Friedman and P. H. Kahn (1994), Educating computer scientists: Linking the social and the
technical, Commun. ACM, vol. 37, no. 1, pp. 64–70.

[4] L. F. Capretz and F. Ahmed (2018), A call to promote soft skills in software engineering, arXiv
preprint arXiv:1901.01819.

[5] Z. Stapić, E. G. López, A. G. Cabot, L. de Marcos Ortega, and V. Strahonja (2012),
Performing systematic literature review in software engineering, in CECIIS 2012-23rd
international conference.

[6] G. Matturro, F. Raschetti, and C. Fontán (2015), Soft skills in software development teams: A
survey of the points of view of team leaders and team members, in Proceedings of the eighth
international workshop on cooperative and human aspects of software engineering, pp. 101–
104.

[7] M. Stevens and R. Norman (2016), Industry expectations of soft skills in it graduates: A
regional survey, in Proceedings of the Australasian Computer Science Week Multiconference,
p. 13. ACM.

[8] V. Garousi, G. Giray, E. Tüzün, C. Catal, and M. Felderer (2018), Closing the gap between
software engineering education and industrial needs, arXiv preprint arXiv:1812.01954.

[9] A. Radermacher and G. Walia (2013), Gaps between industry expectations and the abilities
of graduates, in Proceeding of the 44th ACM technical symposium on computer science
education, pp. 525–530.

[10] M. Schumm, S. Joseph, I. Schroll-Decker, M. Niemetz, and J. Mottok (2012), Required
competences in software engineering: Pair programming as an instrument for facilitating life-
long learning, in Interactive collaborative learning (ICL), 2012 15th international conference
on, pp. 1–5.

[11] K. Chen and A. Rea (2018), Do pair programming approaches transcend coding? Measuring
agile attitudes in diverse information systems courses, Journal of Information Systems
Education, vol. 29, no. 2, pp. 53–64.

[12] P. Lenberg, R. Feldt, and L. G. Wallgren (2015), Behavioral software engineering: A definition
and systematic literature review, Journal of Systems and software, vol. 107, pp. 15–37.

[13] D. Graziotin, X. Wang, and P. Abrahamsson (2015), Understanding the affect of developers:
Theoretical background and guidelines for psychoempirical software engineering, in
Proceedings of the 7th international workshop on social software engineering, pp. 25–32.

[14] A. C. Dutra, R. Prikladnicki, and C. França (2015), What do we know about high performance
teams in software engineering? Results from a systematic literature review, in Software
engineering and advanced applications (SEAA), 41st euromicro conference on, pp. 183–190.

[15] P. L. Li, A. J. Ko, and J. Zhu (2015), What makes a great software engineer? in Proceedings
of the 37th international conference on software engineering-volume 1, pp. 700–710.

[16] C. Wohlin (2014), Guidelines for snowballing in systematic literature studies and a replication
in software engineering, in Proceedings of the 18th international conference on evaluation
and assessment in software engineering, p. 38.

[17] M. Young and S. Faulk (2010), Sharing what we know about software engineering, in
Proceedings of the fse/sdp workshop on future of software engineering research,pp.439–442.

[18] A. Holzer, S. Bendahan, I. V. Cardia, and D. Gillet (2014), Early awareness of global issues
and development of soft skills in engineering education: An interdisciplinary approach to
communication, Information technology based higher education and training (ITHET), pp.1–6.

[19] M. Levy (2018), Educating for empathy in software engineering course, in Joint proceedings
of refsq-2018 workshops, doctoral symposium, live studies track, and poster track.

[20] G. Zheng, C. Zhang, and L. Li (2015), Practicing and evaluating soft skills in it capstone
projects, in Proceedings of the 16th annual conference on information technology education,
pp. 109–113.

[21] M. Marques, S. F. Ochoa, M. C. Bastarrica, and F. J. Gutierrez (2018), Enhancing the student
learning experience in software engineering project courses, IEEE Transactions on
Education, vol. 61, no. 1, pp. 63–73.

[22] A. Soska, J. Mottok, and C. Wolff (2015), Playful learning in academic software engineering
education, in Global engineering education conference (EDUCON), 2015 IEEE, pp. 324–332.

[23] U. R. Cukierman and J. M. Palmieri (2014), Soft skills in engineering education: A practical
experience in an undergraduate course, in Interactive collaborative learning (ICL), 2014
international conference on, pp. 237–242.

[24] C. Andersson and D. Logofatu (2018), Using cultural heterogeneity to improve soft skills in
engineering and computer science education, in Global engineering education conference
(EDUCON), 2018 IEEE, pp. 191–195.

[25] M. Galster, A. Mitrovic, and M. Gordon (2018), Toward enhancing the training of software
engineering students and professionals using active video watching, in Proceedings of the
40th international conference on software engineering: Software engineering education and
training, pp. 5–8.

[26] Y. Sedelmaier and D. Landes (2014), Practicing soft skills in software engineering: A project-
based didactical approach, in Overcoming challenges in software engineering education:
Delivering non-technical knowledge and skills, IGI Global, pp. 161–179.

[27] A. W. Ebentheuer, J. Kammermann, and H.-G. Herzog (2017), Adveisor—analysis of an
established soft skill program for students in the field of electrical engineering, in Global
engineering education conference (EDUCON), 2017 IEEE, pp. 468–475.

[28] L. Acheson and R. Rybarczyk (2016), Integrating career development into computer science
undergraduate curriculum, in Computer science & education (ICCSE), 2016 11th international
conference on, pp. 177–181.

[29] F. Patacsil and C. L. S. Tablatin (2017), Exploring the importance of soft and hard skills as
perceived by IT internship students and industry: A gap analysis, JOTSE, vol. 7, no. 3, pp.
347–368.

[30] V. Thurner, K. Schlierkamp, A. Böttcher, and D. Zehetmeier (2016), Integrated development
of technical and base competencies: Fostering reflection skills in software engineers to be, in
Global engineering education conference (EDUCON), 2016 IEEE, pp. 340–348.

[31] D. Tamayo Avila, W. Van Petegem, Y. Cruz Ochoa, and M. Noda Hernández (2018), A
Correlational Study On Factors That Influence The Cohesion Of Software Engineering
Students Teams, INTED2018 Proceedings, no. March, pp. 5697–5702, 2018.

[32] K. F. Li, J. Fagan, and I. Bourguiba (2016), Teaching professional practice and career
development to graduate students, in Teaching, assessment, and learning for engineering
(TALE), 2016 IEEE international conference on, pp. 398–402.

[33] O. Hazzan and G. Har-Shai (2013), Teaching computer science soft skills as soft concepts, in
Proceeding of the 44th ACM technical symposium on computer science education, pp. 59–
64.

[34] B. R. Maxim, S. Brunvand, and A. Decker (2017), Use of role-play and gamification in a

software project course, in 2017 IEEE frontiers in education conference (FIE), pp. 1–5.

[35] H. Chassidim, D. Almog, and S. Mark (2018), Fostering soft skills in project-oriented learning
within an agile atmosphere, European Journal of Engineering Education, vol. 43, no. 4, pp.
638–650.

[36] M. C. Bastarrica, D. Perovich, and M. M. Samary (2017), What can students get from a
software engineering capstone course?, Software engineering: Software engineering
education and training track (ICSE-SEET), IEEE/ACM 39th international conference, pp.137–
145.

[37] R. Chatley and T. Field (2017), Lean learning-applying lean techniques to improve software
engineering education, in Software engineering: Software engineering education and training
track (ICSE-SEET), 2017 IEEE/ACM 39th international conference on, pp. 117–126.

[38] A. Vicente, T. Tan, and A. Yu (2018), Collaborative approach in software engineering
education: An interdisciplinary case, Journal of Information Technology Education:
Innovations in Practice, vol. 17, no. 1, pp. 127–152.

[39] A. Mujkanovic and A. Bollin (2016), Improving learning outcomes through systematic group
reformation: The role of skills and personality in software engineering education, in
Proceedings of the 9th international workshop on cooperative and human aspects of software
engineering, pp. 97–103.

[40] R. Y.-Y. Chan et al. (2017), Direct evidence of engineering students, in 2017 IEEE frontiers in
education conference (FIE), pp. 1–5.

[41] V. Thurner, A. Bottcher, and A. Kamper (2014), Identifying base competencies as
prerequisites for software engineering education, in Global engineering education conference
(EDUCON), 2014 IEEE, pp. 1069–1076.

