
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Lightweight Roots of Trust for
Modern Systems-on-Chip

Pieter Maene

Dissertation presented in partial
fulfilment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Electrical Engineering

October 2019

Supervisor:
Prof. dr. ir. Ingrid Verbauwhede

Lightweight Roots of Trust for Modern
Systems-on-Chip

Pieter MAENE

Supervisor:
Prof. dr. ir. Ingrid Verbauwhede

Examination Committee:
Prof. dr. Adhemar Bultheel
Chair

Prof. dr. ir. Yves Willems
Chair

Prof. dr. ir. Frank Piessens
Prof. dr. ir. Marian Verhelst
Prof. dr. ir. Bjorn De Sutter
UGent, Belgium

Prof. Dr.-Ing. Felix Freiling
FAU Erlangen-Nürnberg, Germany

Dissertation presented in partial
fulfilment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Electrical Engineering

October 2019

© 2019 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Pieter Maene, Kasteelpark Arenberg 10 bus 2452, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

§ Preface

Ten years ago, I arrived in Leuven to study at this university and obtain
my engineering degree. The week before, I had joined the student
organisation’s welcome weekend, where I not only met some truly

amazing people that would become my friends, but also remember saying that
I would never consider getting a PhD. However, I believe I can now say with
some confidence that eighteen-year-old me did not really know what he was
talking about, and am happy to have decided differently when I graduated.

First and foremost, I therefore want to thank Prof. Ingrid Verbauwhede for
extending me this incredible opportunity, and allowing us to freely explore our
ideas, readily giving direction when we need it. Over the past five years, I have
learned more about cryptography and software security, computer architectures,
and the technologies enabling these, than I could ever have imagined.

I also want to express my sincere gratitude to Prof. Felix Freiling for his
thoughtful insights, the many invitations to visit his chair in Germany, and the
warm welcome every time we were there. My thanks also go out to Prof. Frank
Piessens for his close collaboration, considering our solutions from a different
perspective and sharing his expertise. I am also grateful to the additional
members of my jury, Prof. Bjorn De Sutter and Prof. Marian Verhelst, for their
valuable feedback. Finally, I want to thank the chairs of my preliminary and
public defences, Prof. Yves Willems and Prof. Adhemar Bultheel.

None of this would have been possible without the many incredible co-authors
I had the privilege of working with, and I am thankful to all of you for your
experienced help and for looking at my proposals with a critical eye. Additionally,
I want to thank our trusted computing colleagues from DistriNet for the
uniquely interactive CosiNet meetings, which therefore consistently overran.
I am particularly grateful to Job Noorman for his enthusiasm in helping me
contribute to his projects, as well as Jan Tobias Mühlberg and Jo Van Bulck for
the interesting discussions. I also want to express my gratitude to Jens Hermans

i

ii PREFACE

and Roel Peeters for trusting me to come along on their spin-off adventure.
Furthermore, I am indebted to Johannes Götzfried for showing me a wonderful
time on every visit to Erlangen, for introducing me to climbing and taking me
snowshoeing, but especially for the many warm conversations.

Over the years, I’ve had the privilige of sharing an office with some genuinely
great people. I would therefore like to acknowledge Kimmo Järvinen and
Anthony Van Herrewege for their kind and helpful pointers when I was just
starting out. I also want to thank Furkan Turan and Toon Purnal for their
delightful company and productive discussions. However, I particularly want
to mention Ruan de Clercq, who moved along with me through the different
offices, and thank him for his friendship and all the exciting climbing trips.

It has also been an absolute pleasure to be a part of COSIC, and I could not have
wished for a friendlier group of colleagues. I would like to recognise the members
of the Hardware Group for the informative presentations and appreciated
feedback, but just as much everyone else at the group, who were always ready
to answer questions or give advice. I will continue to remember the entertaining
lunch conversations, the deliciously generous cake events, adventurous weekends,
and the relaxing evenings, sharing a beer on the castle’s lawn. This group
could not do without the care and assistance of its amazing technical and
administrative people. In particular, I want to express my gratitude to Wim
Devroye for his expert handling of our travel arrangements and equipment
purchases, and especially to Péla Noé for making us feel at home.

This thesis would not have been written without the financial help of different
organisations, notably the KU Leuven and the InvasIC project funded by
the German Research Foundation. I also want to acknowledge the Research
Foundation - Flanders for offering me an SB PhD fellowship.

After first discovering VTK during that weekend before my first year, I later
joined this organisation, and I am incredibly thankful to everyone there and at
Student IT for patiently bearing with me while I learned new skills. I also want
to extend my appreciation to my friends, and I hope we will continue to gather
regularly for many years to come. Although they are no longer all around, I
am grateful to my grandparents for passing on their passions and believing in
me. Furthermore, I want to thank my little sister Liesbeth for lending her ear
whenever needed and showing me other points of view. Thank you, Mom and
Dad, for believing in me and for always being there unconditionally, ready with
help and guidance. Lastly, to my girlfriend Delphine, I could not have hoped
for someone kinder by my side, and I am grateful for your gentle support.

Pieter Maene
Leuven, October 2019

§ Abstract

Electronic devices have become indispensable parts of our homes and
businesses. They help us stay in touch with each other and events around
the world, as well as facilitate us by controlling our appliances and driving

complex manufacturing installations. Consequently, they interact with physical
processes, and while they can operate stand-alone, these increasingly capable
devices are commonly remotely accessible. Combined, these evolutions not
only lead to advanced automation, but also expose our homes and factories to
security risks. Indeed, attackers have exploited software vulnerabilities, causing
fridges to send out spam, the shutdown of multi-national companies, and even
the disruption of nuclear enrichment facilities.

Various defence strategies have been proposed in response, one of which is
trusted computing. The core concept behind it is to ensure that an attacker
cannot elicit undefined behaviour from the device. Due to the limitations of
software-based approaches, countermeasures that can protect against strong
adversaries have to be rooted in hardware, guaranteeing their functional integrity.
Crucially, the extraction of critical functionality into self-contained modules
enables many of the protection mechanisms introduced by trusted computing.

In this thesis, we present novel lightweight building blocks that contribute to the
realisation of this goal at different levels of the design hierarchy. First, various
hardware-based trusted computing mechanisms presented in literature are
surveyed, leading to definitions of common security properties and a comparison
of all considered designs. Since cryptographic primitives are at the core of
these solutions, often impacting performance, we also evaluated seven block
ciphers with respect to their area and latency. Our third contribution is a
key distribution service for Systems-on-Chip, allowing secure management of
symmetric device secrets through tight integration of efficient hardware and
software components. Finally, we discuss the design and evaluation of two
processor-based mechanisms, which rely on cryptographic units to protect
sensitive code and data.

iii

§ Samenvatting

Elektronische apparaten verbinden ons niet alleen met elkaar, maar
vereenvoudigen ook onze levens door zowel huishoudtoestellen als
complexe industriële installaties aan te sturen. Hoewel ze alleenstaand

kunnen werken, zijn deze steeds krachtigere apparaten doorgaans ook vanop
afstand bereikbaar. Deze evoluties hebben niet alleen gezorgd voor verregaande
automatisatie, maar maken onze woningen en fabrieken ook kwetsbaar voor
veiligheidsrisico’s. Zo hebben aanvallers zwakheden in software uitgebuit om
koelkasten spam te laten uitsturen, de werking van multinationals plat te leggen
en zelfs nucleaire verrijkingsprocessen te verstoren.

Daarop zijn verschillende verdedigingsstrategieën voorgesteld, waaronder
betrouwbare berekening, met als kernidee dat de aanvaller geen ongedefinieerd
gedrag mag kunnen uitlokken van het apparaat. De beperkingen van oplossingen
op basis van software vereisen dat tegenmaatregelen die beschermen tegen
sterke aanvallers, verankerd zijn in hardware, waar hun functionele integriteit
gegarandeerd is. Hierbij maakt het onderbrengen van kritieke functies in
autonome modules verscheidene van deze beveilingsmechanismes mogelijk.

In deze thesis presenteren we nieuwe goedkope bouwblokken die bijdragen aan
de realisatie van dit doel op verschillende niveaus van de ontwerphiërarchie.
We bouwen eerst op een overzicht en vergelijking van verscheidene hardware-
gebaseerde ontwerpen uit de literatuur om definities op te stellen van gedeelde
beveiligingseigenschappen. Gezien deze oplossingen steunen op cryptografische
primitieven, waar ze prestaties kritisch beïnvloeden, evalueren we de oppervlakte
en wachttijd van zeven blokcijfers. Onze derde bijdrage is een oplossing
voor sleutelverdeling op systemen-op-chip, die veilig beheer van symmetrische
apparaatgeheimen mogelijk maakt door middel van doorgedreven integratie
van efficiënte hardware- en softwarecomponenten. Tot slot bespreken we het
ontwerp en de evaluatie van twee processoraanpassingen die gebruik maken van
cryptografische eenheden om gevoelige code en gegevens te beschermen.

v

§ Contents

Abstract iii

Samenvatting v

Contents vii

List of Abbreviations xvi

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Problem Statement . 2

1.2 Background . 3

1.2.1 Computer Architecture 3

1.2.2 Attacker Model . 6

1.3 Outline . 7

1.4 Other Publications . 9

1.5 Conclusion . 11

vii

viii CONTENTS

2 Trusted Computing Background 13

2.1 Introduction . 14

2.2 Preliminaries . 15

2.3 Attacker Model . 16

2.4 Properties . 17

2.4.1 Security Properties . 17

2.4.2 Architectural Features 19

2.5 Architectures . 21

2.5.1 AEGIS . 21

2.5.2 Trusted Platform Module (TPM) 22

2.5.3 TrustZone . 24

2.5.4 Bastion . 27

2.5.5 SMART . 28

2.5.6 Sancus . 29

2.5.7 SecureBlue++ . 33

2.5.8 Software Guard Extensions (SGX) 34

2.5.9 Iso-X . 36

2.5.10 TrustLite . 37

2.5.11 TyTAN . 39

2.5.12 Sanctum . 40

2.5.13 TIMBER-V . 41

2.6 Comparison . 42

2.7 Conclusion . 46

3 Single-Cycle Implementations of Block Ciphers 47

3.1 Introduction . 48

3.2 Preliminaries . 49

CONTENTS ix

3.2.1 Block Cipher Structure 49

3.2.2 Logic Depth . 50

3.2.3 Fan-Out . 51

3.3 Synthesis Results . 51

3.3.1 AES . 51

3.3.2 KATAN . 53

3.3.3 PRESENT . 55

3.3.4 PRINCE . 56

3.3.5 RECTANGLE . 57

3.3.6 SIMON . 58

3.3.7 SPECK . 59

3.4 Comparison . 60

3.5 Conclusion . 63

4 Eleutheria: Lightweight Key Distribution Service 65

4.1 Introduction . 66

4.2 Problem Statement . 67

4.2.1 Symmetric Device Keys 67

4.2.2 System Model . 68

4.2.3 Attacker Model . 69

4.3 Design . 70

4.3.1 Infrastructure Provider 70

4.3.2 Software Provider . 71

4.3.3 Key Distribution Service 72

4.3.4 Key Derivation Mechanism 74

4.4 Implementation . 75

4.4.1 Background . 75

x CONTENTS

4.4.2 Infrastructure Provider 78

4.4.3 Software Provider . 79

4.4.4 Key Distribution Service 80

4.4.5 Key Derivation Mechanism 80

4.5 Evaluation . 84

4.5.1 Performance . 84

4.5.2 Area . 86

4.5.3 Security . 86

4.6 Related Work . 89

4.7 Conclusion . 89

5 Hardware-Based Memory Protection Mechanisms 91

5.1 Introduction . 92

5.2 Atlas: Transparent Memory Encryption 93

5.2.1 Architecture . 93

5.2.2 Implementation . 97

5.2.3 Evaluation . 102

5.2.4 Related Work . 106

5.2.5 Discussion . 108

5.3 Sancus 2.0: Confidential Loading of Modules 110

5.3.1 Design . 110

5.3.2 Implementation . 112

5.3.3 Evaluation . 114

5.4 Conclusion . 116

6 Conclusion 117

6.1 Contributions . 117

CONTENTS xi

6.2 Future Work . 119

6.2.1 Low-Latency Cryptography 119

6.2.2 Capability Machines . 119

6.2.3 Control Flow Integrity 120

6.2.4 Speculative Execution 121

6.2.5 Hybrid CPU-FPGA Platforms 122

6.3 Conclusion . 122

Bibliography 123

Curriculum Vitae 137

List of Publications 139

§ List of Abbreviations

AE Authenticated Encryption
AEAD Authenticated Encryption with Associated Data
AES Advanced Encryption Standard
AEX Asynchronous Enclave Exit
AIK Attestation Identity Key
ARC Address Range Comparator
ASIC Application-Specific Integrated Circuit
ASLR Address Space Layout Randomization

CA Certificate Authority
CAN Controller Area Network
CFA Control Flow Attestation
CFG Control Flow Graph
CFI Control Flow Integrity
CMP Compartment Metadata Page
CMV Physical Page Compartment Membership Vector
CPSR Current Program Status Register
CPT Compartment Page Table
CPU Central Processing Unit
CRL Certificate Revocation List
CT Compartment Table

DDoS Distributed DoS
DEP Data Execution Prevention
DMA Direct Memory Access
DoS Denial-of-Service
DPA Differential Power Analysis
DRAM Dynamic Random-Access Memory
DRoT Dynamic RoT

EA-MPU Execution-Aware MPU
xiii

xiv List of Abbreviations

ECB Enclave Control Block
ECC Elliptic Curve Cryptography
EID Enclave Identity
EK Endorsement Key
ELF Executable and Linkable Format
EM Execution Monitor
EPC Enclave Page Cache
EPCM Enclave Page Cache Map
EPID Enhanced Privacy Identifier
ETB Embedded Trace Buffer
EtM Encrypt-then-MAC

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HKDF HMAC-based Extract-and-Expand Key Derivation Function
HMAC Keyed-Hash Message Authentication Code
HSM Hardware Security Module

I/O Input/Output
IC Integrated Circuit
IDE Integrated Development Environment
IDT Interrupt Descriptor Table
IoT Internet of Things
IP Infrastructure Provider
IPC Inter-Process Communication
ISA Instruction Set Architecture
ISR Interrupt Service Routine
IU Integer Unit
IV Initialization Vector

KDF Key Derivation Function
KDM Key Derivation Mechanism
KDS Key Distribution Service

LFSR Linear Feedback Shift Register
LLC Last-Level Cache
LPC Low Pin Count
LRU Least Recently Used
LSB Least Significant Bit
LUT Look-Up Table

List of Abbreviations xv

MAC Message Authentication Code
MAL Memory Access Logic
MCU Memory Control Unit
MEE Memory Encryption Engine
MitM Man-in-the-Middle
MMIO Memory-Mapped IO
MMU Memory Management Unit
MPU Memory Protection Unit
MRID Memory Region ID

NoC Network-on-Chip
NS Non-Secure

OS Operating System

PAR Place and Route
PC Program Counter
PCR Platform Configuration Register
PL Programmable Logic
PLC Programmable Logic Controller
PMA Protected Module Architecture
PMR Protected Memory Region
PRM Processor Reserved Memory
PRNG Pseudo-Random Number Generator
PROM Programmable ROM
PS Processing System
PTBR Page Table Base Register
PTM Program Trace Macrocell
PTR Private and Authenticated Tamper-Resistant Environment

REE Rich Execution Environment
RNG Random Number Generator
ROM Read-Only Memory
ROP Return-Oriented Programming
RoT Root of Trust
RTM RoT for Measurement
RWP RAM Write Pointer

SE Secure Executable
SEID Secure Executable ID
SEM Security Enforcement Module
SEV Secure Encrypted Virtualization
SGX Software Guard Extensions

xvi LIST OF ABBREVIATIONS

SK Security Kernel
SM Software Module
SME Secure Memory Encryption
SoC System-on-Chip
SP Software Provider
SPID Secure Process ID
SPM Scratchpad Memory
SSBL Second Stage Boot Loader

TCB Trusted Computing Base
TCG Trusted Computing Group
TCP Transmission Control Protocol
TE Tamper-Evident Environment
TEE Trusted Execution Environment
TLB Translation Lookaside Buffer
TOCTOU Time-of-Check Time-of-Use
TP Trusted Partition
TPM Trusted Platform Module
TRNG True Random Number Generator
TXT Trusted Execution Technology

UDP User Datagram Protocol
UP Untrusted Partition

VPN Virtual Private Network

WSN Wireless Sensor Network

§ List of Figures

1.1 Memory Hierarchy . 4

1.2 Protection Rings . 5

2.1 Protected Module Architecture . 17

2.2 TrustZone . 25

2.3 System Model for Sancus . 30

2.4 Sancus Node . 32

3.1 Structure of Unrolled Block Ciphers 50

3.2 Critical Path of an AES Round . 53

3.3 Critical Path of a KATAN Round 54

3.4 Critical Path of a PRESENT Round 55

3.5 Critical Path of a PRINCE Round 57

3.6 Critical Path of a RECTANGLE Round 58

3.7 Critical Path of a SIMON Round 59

3.8 Critical Path of a SPECK Round 60

3.9 Comparison of Critical Path Latency on FPGA 63

4.1 System Model for Eleutheria . 69

4.2 Parties and Components in Eleutheria 70

xvii

xviii LIST OF FIGURES

4.3 Infrastructure Provider . 71

4.4 Software Provider . 72

4.5 Key Distribution Service . 73

4.6 Deployment, Attestation, and Key Request Interactions 76

4.7 SIGMA Protocol . 77

4.8 Key Derivation Mechanism . 81

4.9 Key Derivation Function . 82

4.10 CoreSight Components . 83

5.1 Code and Data Flow in Atlas . 96

5.2 Encryption Unit . 97

5.3 LRW Mode of Operation . 98

5.4 Critical Path of Atlas . 103

§ List of Tables

2.1 Comparison of Trusted Computing Architectures 43

3.1 Properties of Implemented Algorithms 52

3.2 Block Cipher Synthesis Results on FPGA 62

3.3 Block Cipher Synthesis Results on ASIC 62

4.1 Performance of Local and Remote Key Requests 85

4.2 Area Utilization of Eleutheria on FPGA 86

5.1 Area Utilization of Atlas on FPGA 105

5.2 Memory Access Rights . 111

5.3 Performance Comparison of Confidential Loading 115

xix

1 Introduction

Security and privacy increasingly gain importance as electronic devices
become more present in our daily lives. Attackers are always looking
for ways to exploit the software running on these devices in an attempt

to obtain sensitive information. All of our devices are also more and more
networked, with remote access growing the opportunity for attack considerably.
This might seem innocuous when it is just about fridges sending spam, but can
have significant ramifications when critical infrastructure is breached.

Discovered in 2010, Stuxnet is perhaps one of the most well-known worms, as
it was responsible for disrupting Iran’s nuclear program [1]. It contained a
sophisticated payload for a specific Siemens Programmable Logic Controller
(PLC) series, which were installed in a uranium enrichment facility and controlled
centrifuges. The attackers reprogrammed the PLCs in such a way that they
would vary the frequency of these centrifuges, driving down the yield of this
process. However, the malware would still report that everything was operating
as intended, hiding its manipulation and confusing the plant’s engineers.

More recently, a power grid operator in Ukraine was locked out of his computer
and saw his mouse move across the screen, flipping high-voltage breakers in
local substations [2]. The attackers also compromised two other distribution
centres, cutting power to several regions of the country. They even went as
far as to disable the backup power supplies for the control centres themselves,
leaving their operators in the dark.

Finally, the global operations of shipping giant Maersk ground to a halt as
ransomware spread through the company’s systems, encrypting their hard
drives [3]. With the global network offline, no new cargo could be accepted or
released at any of Maersk’s shipping terminals. It took the company several days
to restore basic functionality and employees could only resume work after two
weeks. NotPeya, as the malware was called, affected several other multinational
companies as well, causing an estimated ten billion dollar in damages.

1

2 INTRODUCTION

In each of these attacks, electronic devices were manipulated to make them
deviate from their normal, intended behaviour. This brings us to the subject of
trusted computing, which ensures that a device can be trusted if it cannot be
made to misbehave. Given the complexity of today’s software and the growing
sophistication of the attacks perpetrated against it, this is not straightforward to
attain. Therefore, trusted computing solutions build on Roots of Trust (RoTs),
inherently trusted components that enable this trust relationship. This thesis
evaluates the cryptographic primitives that are at their core, introduces novel
solutions that enable the use of these strong ciphers, and proposes protection
mechanisms that build on them.

1.1 Problem Statement

Attackers commonly target memory vulnerabilities to exploit software, abusing
this weakness to access its code or leak its secrets. The former are referred
to as code-reuse attacks, where execution is redirected to realise malicious
functionality without adding new code. These vulnerabilities can have far-
reaching effects, giving attackers a foothold onto the device, that could be
combined with other attack vectors and leveraged to gain privileged access or
compromise secrets. In both cases, the adversary manages to make the program
behave in ways that were not intended by its developers, either through the
introduction of new behaviour or by leaking sensitive information.

Modern embedded and mobile devices no longer consist of discrete Integrated
Circuits (ICs), but are instead built around a System-on-Chip (SoC). This single
chip combines a processor with additional on-chip blocks, such as a Graphics
Processing Unit (GPU), and peripheral connectivity in a single package, reducing
the area and power requirements. Its tight integration has also influenced the
hardware design process, as blocks from external vendors can now be combined
with custom hardware in the same package. This has simplified introducing
new hardware features, as all components are typically connected to a single
system bus, through which they can be accessed by software or communicate
with each other.

Today’s programs are complex, often comprising hundreds of thousands or even
millions of lines of code, which has made it increasingly difficult to guarantee that
they are free of exploitable bugs. This observation was first made by McCune
et al. in 2008 [4], leading to the concept of Protected Module Architectures
(PMAs). They proposed to extract a program’s critical functionality, such
as implementations of cryptographic algorithms and protocols. These smaller
modules are much more contained and can even be proven to be free of bugs.

BACKGROUND 3

Furthermore, isolation can protect these modules from other software running
on the system, exposing only their public interface. Finally, PMAs also make
it possible for third parties to obtain proof that the module’s code was not
tampered with through attestation.

These isolation and attestation mechanisms form the foundation of trusted
computing, which guarantee that software cannot be made to misbehave.
However, they require functionality offered by RoTs, which are inherently
trusted components that validate the trust assessment. If any of them were
to be compromised, the security of the system can no longer be guaranteed.
RoTs can be implemented in hardware and software, but the former is more
common, because the intrinsic immutability of hardware implies that their
functionality cannot be tampered with. While they are essential to trusted
computing architectures, RoTs themselves are also made up of multiple building
blocks. We first consider these cornerstones of trusted computing, before moving
up through the design hierarchy and introducing architectural security features,
building on novel RoTs.

1.2 Background

Having outlined the motivation for designing trusted computing architectures
in the previous section, we will now introduce related concepts that will return
throughout this thesis. First, Section 1.2.1 discusses fundamental notions from
computer architecture, such as the memory hierarchy and protection rings.
Second, security solutions always make assumptions about the capabilities of
the attacker they protect against, which we describe for trusted computing
architectures in Section 1.2.2.

1.2.1 Computer Architecture

Hennesy and Patterson note that the design of modern electronic devices has
become incredibly complex, making it hard to exactly define the term computer
architecture [5]. Therefore, an architect has to determine the computer’s
important attributes and realise a fast and energy-efficient design subject to cost,
power, and availability constraints. Trusted computing mechanisms have been
designed for a wide range of architectures, from lightweight microcontrollers
to high-end multi-core processors. Consequently, each of our solutions will
outline its required architectural features, and the following presents several
foundational concepts that are relevant to this thesis.

4 INTRODUCTION

R
eg
ist

er
s

Core

L1
C
ac
he

L2
C
ac
he

Processor
System-on-Chip Main Memory

Figure 1.1: The inverse relationship between memory capacity and response
times has resulted in a complex memory hierarchy, giving the processor access
to a large storage area, seemingly at the latency of its internal registers.

Today’s devices not only consist of hardware, but also feature system software,
which is an important part of their design and integral to their operation.
We therefore consider a system to comprise both the hardware and this basic
software layer. Returning to the description of an SoC (Section 1.1), the
hardware includes the processor, any on-chip components supporting the Central
Processing Unit (CPU), and the communication bus interconnecting all of these
components. Since main memory is not part of the SoC, the system boundary
is found at the interface to external peripherals. Due to the heterogeneity of
the platforms discussed in this thesis, we define the system software as any code
that is not part of an application.

A fundamental computer architecture concept is the memory hierarchy, which is
crucial to meet the performance requirements and power constraints of modern
processors (Figure 1.1). Registers are the fastest type of memory and sit closest
to the core’s computing units, but they are also expensive in terms of area and
power. Computers therefore rely on a large main memory, which is external
to the CPU and connected to the system bus. However, since its response is
much slower than that of the internal registers, CPUs also have one or more
levels of cache. These introduce smaller and faster internal storage, which retain
recently-accessed code and data. As registers, caches, and main memory are all
volatile, most devices also include persistent storage (e.g., flash).

While the previous discussion focused on the main memory, it generally does
not require all available addresses, especially not on 64-bit systems. Other
resources, like peripherals, can therefore also be assigned a segment through
which they are exposed to software. However, developers need to be aware
of what resource is mapped where, as their accesses could pass through the
cache, requiring manual flushing or marking these regions as non-cacheable, if
supported. Finally, some architectures feature fast on-chip Scratchpad Memory
(SPM) rather than caches, which is directly accessible from software instead.

BACKGROUND 5

Ring 0

Ring 1

Ring 2

Ring 3

Supervisor Mode

User Mode

Kernel

Device Drivers

Applications

Figure 1.2: Processors have different privilege levels at which software can
run, with associated capabilities. System software runs with more rights in
supervisor mode, while applications are more restricted in user mode.

Rather than allowing software to access memory and peripherals through their
physical addresses, computer architectures often rely on virtual addresses. Here,
each application runs within its own virtual address space, isolating it from all
other processes running on the system. When a virtual address is accessed, a
Memory Management Unit (MMU) inside the processor will translate it to the
corresponding physical one. This MMU is configured by the system software,
which can typically also set the different access rights for ranges of memory.
In contrast to the applications it manages, the system software therefore does
have direct access to the physical address space.

As evidenced by the operation of an MMU, processors need some way to limit
what software can or cannot do. To this end, most architectures implement
protection rings or privilege levels, which allow the processor to control what
operations are available. The number of levels and terminology varies across
architectures (Figure 1.2), but CPUs generally offer at least a supervisor mode
for system software and user mode for applications. Intel processors feature
four rings, with the lower rings being the more privileged ones. The system
software therefore runs in rings zero to two and applications are assigned to ring
three [6]. In contrast, Arm cores only have two exception levels separating the
system software from applications, respectively denoted by EL1 and EL0 [7].

Upon reset of the processor, a chain of software components is executed before
the applications become active, initializing the system and its peripherals.
Especially on more complex systems, it is common to have multiple of these so-
called boot loaders, with the later stages including richer and richer functionality.
This approach ensures that the boot process remains flexible, as the initial stage
has to be stored in Read-Only Memory (ROM). The final boot loader will start
the system software, which is in turn responsible for managing the applications.
Trusted computing architectures make trust assessments about the state of
these components, which is defined as their code and static data. This definition
results from the requirement that this assessment should be verifiable, and can
therefore only include elements that are known to the verifier.

6 INTRODUCTION

1.2.2 Attacker Model

When building security mechanisms, designers always make some assumptions
about the attacker’s capabilities, and their solution will only be secure as
long as the adversary stays within this model. In case of trusted computing
architectures, these follow from considering an attacker targeting applications
running on a remote system that he might have physical access to or even
manage. Since he has full control over the system’s configuration and the
software running there, trusted computing mechanisms therefore need to be
based on trusted hardware, which is significantly harder to tamper with than
code. Furthermore, having physical access to the device means that he could
directly connect to main memory and the bus interface that exposes it. Finally,
this also gives him the possibility to manipulate the device’s network channel.

All architectures discussed in this thesis include an attacker model in their
description that follows from these considerations. While each design might
introduce additional assertions to cover specific design decisions or account
for the protection mechanisms it introduces, the attacker models of trusted
computing solutions have several elements in common, which we will now list.

1. The attacker has access to all untrusted code, including large parts of
the system software. This is therefore a very privileged attacker who can
break traditional security assumptions (e.g., he can control the virtual
address map). He can also manipulate existing code or introduce new
software to the system.

2. It is assumed that the attacker controls the device’s network channels,
and can therefore intercept and modify messages. While he is generally
considered to have the ability to tamper with the security protocols
securing this channel, the adversary does follow the Dolev-Yao model [8].
This model states that the cryptographic primitives used in these protocols,
such as the encryption algorithms or hash functions, cannot be broken by
the attacker.

3. Denial-of-Service (DoS) attacks, which compromise device availability,
are also not considered. In fact, many trusted computing solutions even
introduce DoS vectors, as the processor will respond to security violations
and take action against the offending software, e.g., by resetting the device.
Additionally, these attacks are also out of scope at the network level.

4. We also exclude physical attacks on the device from the model. The
adversary therefore cannot access or tamper with the device’s internal
signals. Furthermore, this assumption also implies that he cannot read or
write data on the system bus directly or to main memory.

OUTLINE 7

Finally, the attacker is also assumed not to mount any side-channel attacks,
neither in hardware nor software. This class of attacks observes implementation-
specific metadata and uses it to infer confidential information, that would
otherwise have been protected. For example, if the secret were to determine
whether an expensive operation is performed or not, the attacker could measure
execution time or monitor the power drawn by the device to determine if it
was active, recovering the secret bit by bit [9]. At the hardware level, physical
effects are measured, such as power usage [10] or electromagnetic radiation [11],
while a software-based attacker observes effects of code execution, like memory
access latency [12].

Recently, microarchitectural attacks have been introduced, which exploit
fundamental design flaws of the computer architecture from software [13–16].
Both hardware and software implementations can be protected from these
types of attacks through various countermeasures, but microarchitectural
vulnerabilities require particular attention, as they should be taken into account
during the architecture’s design process. We therefore view side-channel attacks
as orthogonal to the issues addressed by trusted computing, as their respective
protection mechanisms are generally composable.

Given this attacker model, we can now also identify the extent of the system’s
trust boundary, which encloses all components that are security-critical, as they
will have direct access to sensitive data. In addition to any trusted hardware
introduced by the specific architecture, the core processor functionality, its
registers, and the cache hierarchy are typically included. In contrast to the
system boundary defined earlier, the main memory and system bus are also
within this boundary, unless there is a mechanism protecting the bus transactions
and memory contents.

1.3 Outline

This thesis presents different contributions that we made to the field of
lightweight trusted computing. Our work covers the design spectrum of
hardware-based trusted computing architectures, from basic cryptographic
building blocks (Chapters 3 and 4) to novel architectural protection mechanisms
(Chapter 5). We now give a short overview of each chapter, sketching the
structure of this text.

Chapter 1 – Introduction We first describe typical attack vectors that are
used to exploit applications, before considering the hardware-based protection
mechanisms that can protect against them. Next, an outline of this thesis

8 INTRODUCTION

is presented and summaries of our publications that are not included in full
conclude this chapter.

Chapter 2 – Trusted Computing Background For the past decade, both
academia and industry have actively contributed to the field of trusted
computing. In this chapter, we define the terminology that is used to describe
these architectures, identify a shared attacker model, and introduce the security
properties offered by them. Furthermore, we summarise thirteen existing
hardware-based architectures, that offer either or both isolation and attestation
mechanisms. Finally, the considered architectures are compared with respect to
the considered security properties as well as traditional architectural features.

Chapter 3 – Single-Cycle Implementations of Block Ciphers Cryptographic
primitives form a core building block of trusted computing architectures.
Symmetric ciphers are particularly important for the design and implementation
of lightweight architectures, as these algorithms can be implemented more
efficiently in hardware. We built hardware implementations of six lightweight
block ciphers and AES, in order to evaluate their latency and area requirements.
Most block ciphers have an iterated design and we fully unrolled their internal
structure to analyse single-cycle performance.

Chapter 4 – Eleutheria: Lightweight Key Distribution Service Part of the
design complexity when using symmetric cryptographic algorithms arises from
the fact that all communicating parties require access to a shared secret. This
key distribution problem is typically solved by running a protocol based on
asymmetric primitives first, which require significant hardware resources.

In this chapter, we present a key distribution mechanism which is rooted in
hardware and relies on a network service implemented in software, securing the
communication through asymmetric algorithms. Application-specific keys can
be requested remotely and are derived in hardware from a unique device key,
which is never extracted from the device or exposed to software.

Chapter 5 – Hardware-Based Memory Protection Mechanisms Applica-
tions often implement specific algorithms, which are valuable intellectual
property, or process sensitive data. This information should therefore be
secure from attackers, preventing them from obtaining the application’s binary
or retrieving its input and output.

OTHER PUBLICATIONS 9

To this end, we present two architectural extensions that introduce hardware-
based mechanisms protecting either or both code and data in untrusted main
memory. First, Atlas introduces an encryption unit in the memory hierarchy
that transparently decrypts or encrypts any code or data that is read or written,
including the application’s identity in the encryption context, so that no code
or data leaks to other software. Furthermore, the choice of cipher was driven by
the observations from Chapter 3, as the memory access latency impacts system
performances. Second, we designed an extension for Sancus enabling confidential
loading of modules. This additional functionality required little extra hardware,
as Sancus already implemented a flexible cryptographic primitive.

Chapter 6 – Conclusion We close this thesis with an overview of the presented
solutions, highlighting their contributions, but also considering their limitations.
Since our work focused on specific cryptographic primitives and trusted
computing features, we also discuss possible avenues for future research.

1.4 Other Publications

Aside from the work discussed in this thesis, we also co-authored other
publications. These papers are listed here in reverse chronological order, unless
there were multiple papers on the same topic. A summary of their contributions
is also included.

In Soteria: Offline Software Protection within Low-cost Embedded Devices [17],
we extend Sancus with a software-based solution to protect code confidentiality.
Application binaries are decrypted by a special loader module, whose identity
is included in the derivation of the encryption key. Since Sancus defines the
identity of a module as the combination of its memory layout and code, any
modifications to the loader module will result in the derivation of an incorrect
key and decryption will consequently fail. After the module has been loaded and
its plaintext code is stored in memory, Soteria relies on Sancus’ hardware-based
isolation mechanism to ensure that it does not leak.

J. Götzfried, T. Müller, R. de Clercq, P. Maene, F. Freiling and
I. Verbauwhede, “Soteria: Offline Software Protection within Low-cost
Embedded Devices”, in Proceedings of the 31st Conference on Computer
Security Applications, 2015

SOFIA: Software and Control Flow Integrity Architecture [18, 19] is an
architecture offering a strong Control Flow Integrity (CFI) mechanism. Control

10 INTRODUCTION

flow attacks manipulate the original execution order of an application in an
attempt to run arbitrary code. SOFIA’s protection mechanism is two-fold.
First, it encrypts the application’s binary in such a way that it is bound to its
control flow, preventing code injection and reuse attacks. Second, it introduces
an integrity mechanism that dynamically calculates a Message Authentication
Code (MAC) in the processor’s pipeline and prevents execution from continuing
if verification fails.

R. de Clercq, R. De Keulenaer, B. Coppens, B. Yang, K. De Bosschere,
B. De Sutter, P. Maene, B. Preneel and I. Verbauwhede, “SOFIA: Software
and Control Flow Integrity Architecture”, in Proceedings of the 19th
Conference on Design, Automation and Test, 2016

R. de Clercq, J. Götzfried, P. Maene, D. Übler and I. Verbauwhede,
“SOFIA: Software and Control Flow Integrity Architecture”, Computers
& Security, vol. 68, no. 7, 2017

In Hardware Acceleration of a Software-Based VPN [20], we present an
accelerator to improve the performance of Virtual Private Network (VPN)
applications, which provide an encrypted network tunnel. Specifically, our
architecture includes efficient hardware implementations of the Salsa20 stream
cipher and Poly1305 MAC function. These hardware blocks were tightly
integrated with SigmaVPN, a lightweight VPN application that runs on
Linux. Our co-design for the Xilinx Zynq-7010 FPGA improves TCP and
UDP bandwidth by a factor of 4.36 and 5.36 respectively.

F. Turan, R. de Clercq, P. Maene, O. Reparaz and I. Verbauwhede,
“Hardware Acceleration of a Software-Based VPN”, in Proceedings of the
26th Conference on Field Programmable Logic and Applications, 2016

SOFIA’s strong guarantees stem from tight integration with a processor’s
pipeline. However, modern SoC design typically integrates third-party building
blocks, so-called IP cores. In order to facilitate more straightforward adoption
of the concepts developed by SOFIA, but with weaker security guarantees, we
designed SCM: Secure Code Memory Architecture [21]. In this paper, we present
an IP core that connects to the SoC’s main memory bus and aliases part of
the system’s main memory. When the processor is executing from this aliased
range, the introduced hardware block will decrypt the code that is being read
and verify MACs that are interleaved with it. If this integrity verification fails,
the processor will be reset.

CONCLUSION 11

R. de Clercq, R. De Keulenaer, P. Maene, B. De Sutter, B. Preneel and
I. Verbauwhede, “SCM: Secure Code Memory Architecture”, in Proceedings
of the 12th Conference on Computer and Communications Security, 2017

Finally, we present a device tracking system based on Internet of Things (IoT)
technology in A Privacy-Preserving Device Tracking System Using a Low-
Power Wide-Area Network (LPWAN) [22]. Our design relies on the presence
of Bluetooth beacons, which continuously broadcast a unique identifier. Our
tracker will periodically scan for these broadcasts and store them in a local
buffer. At fixed intervals, this buffer will be encrypted and uploaded to a server
through LoRa, which is a low-power networking technology. This server also
hosts a list with the geographical coordinates of every beacon. The tracker’s
owner can link his device to a mobile application, which downloads and decrypts
the messages from the server. Finally, the tracker’s location history is displayed
by combining the identifiers from the decrypted messages with the geographical
coordinates of the beacons.

T. Ashur, J. Delvaux, S. Lee, P. Maene, E. Marin, S. Nikova, O. Reparaz, V.
Rožić, D. Singelée, B. Yang and B. Preneel, “A Privacy-Preserving Device
Tracking System Using a Low-Power Wide-Area Network (LPWAN)”, in
Proceedings of the 16th Conference on Cryptology and Network Security,
2017

1.5 Conclusion

Recent attacks have clearly shown the consequences of exploitable software
vulnerabilities on personal devices as well as the systems of large companies and
even critical utilities infrastructure. When applications are exploited, they act
in ways that the user does not expect nor as intended by the developer. The
goal of trusted computing is to address exactly this behaviour, by guaranteeing
that software cannot be made to misbehave.

The remainder of this thesis will focus on hardware-based trusted computing,
but any changes to the architecture also require modifications to the software it
executes. We will first provide more extensive background on trusted computing,
defining terminology and surveying existing hardware-based architectures for
isolation and attestation. We then discuss the design and implementation of such
architectures, starting at the bottom of their design hierarchy by analysing the
performance of block ciphers and designing a novel key distribution mechanism.
Finally, we close this thesis by introducing two architectural solutions protecting
the confidentiality of code and data.

2 Trusted Computing Background

Before detailing the design and implementation of cryptographic building
blocks and novel architectures in the next chapters, we must first
explain what is understood by trusted computing and define the related

terminology that will be used throughout this thesis. Trusted computing has
been an active field of research over the past ten years, and several architectures
have been proposed for devices ranging from lightweight embedded systems to
high-performance desktop and server processors.

This chapter gives an overview of all major trusted computing designs making
hardware changes to the underlying architecture from the academic community
as well as industry, and offering either or both isolation and attestation. The
former protects applications from other software, while the latter allows a third
party to get proof that the software was not tampered with. Architectures
which do not meet these requirements, being software-based designs or providing
different functionality, are not included.

P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. Freiling and I.
Verbauwhede, “Hardware-Based Trusted Computing Architectures for
Isolation and Attestation”, IEEE Transactions on Computers, vol. 67,
no. 3, 2017
Contribution:Main author together with Johannes Götzfried and Ruan
de Clercq. Responsible for paper structure, comparison, and sections
on AEGIS, Iso-X, Sancus, SecureBlue++, SMART, and TIMBER-V.

Content Source

13

14 TRUSTED COMPUTING BACKGROUND

2.1 Introduction

The goal of trusted computing is to develop technologies which give users
guarantees about the behaviour of the software running on their devices. More
specifically, a device can be trusted if it always behaves in the expected manner
for the intended purpose [24]. This means that even when an attacker gains
control of the system, he cannot make it misbehave. This is a complex concept,
covering many aspects, resulting in a wide range of solutions based on software,
hardware, or co-design of both. Industry has also been active in this field,
adding security mechanisms to their products, some of which can be found in
millions of devices.

After defining trusted computing, the difference between it and trustworthy
computing [25] should be pointed out. In trusted computing, users are asked to
trust a set of components, and the security of the system is no longer guaranteed
if any of its components are breached. Users are given no guarantees that the
trusted components will not breach their security policies. On the other hand,
trustworthy computing provides users with proof that its trusted components
will not violate security [26]. Its focus is more on improving software engineering
processes [27], rather than modifying the hardware architecture.

Although software-based trusted computing architectures with interesting results
have been proposed [28–32], they can typically only be used in limited settings,
nor are they able to give the same security guarantees as hardware-based
architectures. An important part of trusted computing is to protect against
attackers who have full control over the system, i.e., any application could have
been exploited, as well as the Operating System (OS). Many hardware-based
architectures shield applications from a malicious OS. No software-only solution
can provide these guarantees, as an attacker can always manipulate software if
the OS is not trusted. It is much harder for an attacker to modify hardware
functionality, to the extent that hardware is considered to be immutable.
Therefore, a user’s trust is said to be rooted in the hardware, which is also why
we only consider hardware-based architectures.

In the remainder of this chapter, we first define basic trusted computing
terminology (Section 2.2) and expand the general attacker model introduced in
Section 1.2.2 (Section 2.3). Next, we detail the trusted computing properties
and architectural features that were taken into account for the comparison in
Section 2.4. Section 2.5 then summarises the design of the selected hardware-
based architectures. Finally, we compare them with respect to the defined
properties and features in Section 2.6.

PRELIMINARIES 15

2.2 Preliminaries

This section introduces basic trusted computing terms which are most widely
used by the different architectures. We assume that the reader is familiar
with symmetric and asymmetric encryption algorithms, hash functions, and
MACs. Otherwise, an introduction can be found in the Handbook of Applied
Cryptography [33].

Protected Module Architectures (PMAs) Software has become incredibly
complex, making it almost impossible to prove that an application does not
contain bugs. Furthermore, attackers are always looking for vulnerabilities
they can exploit to gain access to a system. As introduced in Section 1.1,
McCune et al. therefore came up with the concept of Protected Module
Architectures (PMAs) [4], where security-critical components are separated into
smaller protected modules. Since they are much smaller, it is easier to verify
their correctness. These modules are then isolated (Section 2.4.1) from any
other software on the system, so that they cannot be tampered with. It has
been shown that PMAs can be implemented at any level of the architecture,
from the hardware to the OS kernel [34].

Throughout this chapter, we will adopt the terminology used by the original
authors when referring to a specific paper. Consequently, protected modules
will also be referred to as Software Modules (SMs), Secure Executables (SEs),
enclaves, secure tasks, or trustlets.

Trusted Computing Bases (TCBs) are the sets of hardware and software
components which are critical to their architecture’s security. The careful design
and implementation of these components are paramount to the overall security.
The components of the Trusted Computing Base (TCB) are designed so that,
when other parts of the system are exploited, they cannot make the device
misbehave. Ideally, a TCB should be as small as possible in order to guarantee
its correctness.

Measuring is used to verify the authenticity of software components. This is
done by calculating a hash or MAC of its code and data. Some designs also
include other identifying information, like the memory layout. The measurement
result can then be used to attest (Section 2.4.1) the component’s state. Since a
hash or MAC value for a given input is probabilistically unique, it also identifies
the state of the software component at that time.

Trust Chains are formed by verifying each component’s validity from the
bottom up. For software, this can be done by measuring each component in the
chain before its execution.

16 TRUSTED COMPUTING BACKGROUND

2.3 Attacker Model

The general attacker model outlined in Section 1.2.2 also applies to the trusted
computing architectures discussed in this chapter, but architectures often
introduce additional assumptions to account for design decisions or novel
protection mechanisms. We therefore repeat the attacker’s main capabilities
and provide additional detail related to the included designs.

1. The attacker is assumed to be in complete control of all software on every
device in the system, except for the software that is part of the TCB. This
means that he can tamper with the OS, or even deploy malicious software
components. Some architectures use software modules that are part of
the TCB, and it is assumed that the attacker cannot change these.

2. The communication channel to the device is considered to be controllable
by the adversary. He is therefore capable of sniffing and modifying network
traffic, or mounting Man-in-the-Middle (MitM) attacks on these channels.
The abilities listed here are important when considering attestation.

3. The Dolev-Yao model [8] is applied, where the attacker is assumed to be
unable to break cryptographic primitives, but can try and find weaknesses
at the protocol level.

4. None of the architectures are capable of providing availability guarantees,
and therefore cannot protect against DoS attacks.

5. Architectures which do not secure main memory consider physical attacks
on the hardware out of scope, as they do not include any mechanisms
preventing them. This means that the adversary does not have physical
access, cannot probe the memory, and cannot disconnect components.
However, architectures which do protect sensitive information when it
is stored in main memory, consider the attacker capable of performing
physical attacks on off-chip memory, but not on any hardware components
which are part of the TCB, such as the CPU. In addition, none of the
architectures include protection against hardware side-channel attacks,
which are therefore not considered here.

6. In the context of this chapter, software side-channel attacks are considered
to exist where untrusted software or malicious modules can extract secrets
by observing memory access patterns. Architectures without protection
against this therefore do not allow adversaries to monitor cache accesses or
to observe page fault addresses. Note that other categories of software side
channels exist, where the novel class of microarchitectural vulnerabilities
was mentioned explicitly in Section 1.2, but these are all out of scope.

PROPERTIES 17

SM1 SM2

DRoT DRoT

TCB

App1 App2

Remote Storage

Attestation Sealing

Measuring

Figure 2.1: In general, a Protected Module Architecture (PMA) runs multiple
Software Modules (SMs) side by side, along with one or more unprotected
applications. The Trusted Computing Base (TCB) ensures that the state of the
SMs is isolated from any other software running on the system (indicated by
the double border). The measurement of the SM establishes a Dynamic Root
of Trust (DRoT), and its result can attest the state of the module to a remote
verifier. By sealing data, the SM can send it securely to untrusted storage.

2.4 Properties

Our work discusses and compares the different architectures with respect to a set
of security properties (Section 2.4.1) and architectural features (Section 2.4.2).
The former are the result of security mechanisms which were added specifically
to provide users with strong guarantees about the software executing on their
system (Section 2.1). The latter are features commonly found in current
microcontroller and general-purpose architectures, but which require special
attention in the context of trusted computing. Figure 2.1 gives a schematic
overview of a PMA, also illustrating some of these security properties.

2.4.1 Security Properties

The following seven security properties were selected to facilitate this chapter’s
discussion, each of which is offered by at least one architecture described
in Section 2.5. Since we focus on architectures which provide isolation and
attestation, these were included first. All other properties are the result of
new functionality introduced by the discussed architectures, and were added to
enable a comparison between all designs. The first five are fundamental features
provided by the trusted computing architectures discussed in this chapter, while
the last two are also more widely used in security research.

18 TRUSTED COMPUTING BACKGROUND

Isolation denotes a hardware-based architectural mechanism that provides
access control for software and its associated data. By placing code and data
inside a protected module, no software outside it can read or write its runtime
state or modify its code. Execution of code inside such a module can only be
started from at least one predefined location. Such an entry point ensures that
attackers cannot reuse the module’s own code to extract secrets or implement
malicious behaviour, as is done in Return-Oriented Programming (ROP) [35].
Current architectures allow for one or more modules, and some even support
running them concurrently. Protected modules are used to store confidential
information like secret keys, as other software cannot access its state. Writes
into them are also prevented, protecting the integrity of their code and data.

Attestation is the process of proving to an authorised party that a specific entity
is in a certain state. In order to give strong security guarantees, an architecture
which supports attestation should guarantee integrity of the attested state as
well. Trusted computing architectures may provide local and remote attestation.
The former refers to one software module attesting its state to another running
on the same platform, while the latter attests to a remote party residing outside
the trusted system.

A common way to implement attestation is to measure (Section 2.2) modules
during their initialization, while preventing later modifications by means of
isolation. It can then be used to authenticate a challenge sent by the authorised
party, as the measurement uniquely identifies the module’s state. Since it
could only have resulted from measuring a specific software module in a certain
configuration, the authorised party knows it communicates with this module.

Sealing wraps confidential code or data in such a way that it can only be
unwrapped under certain circumstances. Code or data are wrapped by binding
it either to a specific device, a certain configuration of the device, the state of a
software module, or a combination of these. It can then only be unwrapped when
the binding conditions are met, e.g., on the same device or one which runs the
same configuration. Sealing is usually based on encryption, and relies on similar
mechanisms as software attestation, i.e., the key for encrypting confidential
code or data is typically derived from the software module measurement taken
during initialization.

Dynamic Roots of Trust (DRoTs) In order to keep the TCB (Section 2.2)
as small as possible, most trusted computing technologies build trust chains.
However, these chains always need to be anchored in a component that is
inherently trusted, which are referred to as Roots of Trust (RoTs). A Dynamic
RoT (DRoT) is established for a software module at runtime, measuring the
application’s state right before execution starts. It is typically combined
with isolation to protect against Time-of-Check Time-of-Use (TOCTOU)

PROPERTIES 19

vulnerabilities as well, where an attacker changes the module’s code after
it has been measured.

Code Confidentiality A trusted computing architecture which guarantees
code confidentiality ensures that sensitive code or static data cannot be obtained
by untrusted hardware, software, or any other unauthorised entity covered by
the attacker model. This property usually requires both isolation and encryption.
Isolation is used to protect against software attackers after modules have been
loaded. Encryption is needed to protect confidential information before loading,
and to prevent physical attacks. Sealing can be used to ensure that only a
certain software component can obtain some intellectual property.

Side-Channel Resistance A trusted computing architecture is called side-
channel resistant with respect to software attackers if no software module,
including privileged software like an OS, is able to deduce information about
the behaviour of other modules apart from their in- and output. In the context
of this chapter, particularly information flowing through untrusted channels,
such as caches, or revealed by page faults cannot leak to untrusted software. An
architecture with side-channel resistance should take care to flush caches during
context switches. Leakage due to page faults, for example, can be prevented by
giving each software module the ability to handle its own page faults.

As mentioned in Section 1.2.2, none of the architectures we consider, include
micro-architectural side channels in their attacker model and therefore do
not protect against them. These software-based attacks exploit fundamental
architectural flaws to extract secret information from other applications running
on the system, and PMAs have been shown to be vulnerable to them [15, 16].

Memory Protection specifically refers to protecting the integrity and
authenticity of data sent over system buses or stored in external memory
from physical attacks. We consider both passive (e.g., bus snooping) and active
(e.g., fault injection) attacks. First, this means that data has to be encrypted, to
prevent sensitive data from leaking. Second, it also has to be integrity-protected,
for example, using a MAC. Third, replay attacks, where previously valid memory
contents are restored, have to be prevented as well. These operations have to
be performed when data is sent to or fetched from external memory.

2.4.2 Architectural Features

Designers have to make numerous decisions when integrating the security
mechanisms needed for trusted computing in complex modern processor
architectures. We selected seven basic features they typically take into account.

20 TRUSTED COMPUTING BACKGROUND

The first, targeting a lightweight architecture or not, is special as it will also
influence the design of the other features.

LightweightWe define an architecture to be lightweight when it does not use an
MMU. Lightweight embedded systems have very simple memory hierarchies, and
therefore do not need complex memory management. Furthermore, they only run
a limited number of applications, which share the memory space cooperatively,
not requiring virtual addressing to map the memory (Section 1.2.1).

Coprocessor Many trusted computing architectures require security mechan-
isms to be implemented in hardware. In case of a coprocessor, this functionality
is added as a separate chip or module which interfaces with the main processor
through the bus. Alternatively, the functionality can be integrated inside the
processor. Trusted computing architectures that are integrated in a processor can
typically provide stronger security guarantees than coprocessor-based designs,
because data does not have to leave the CPU. In addition, some functionality
(e.g., isolation) cannot be implemented in a coprocessor, unless it is tightly
coupled to the CPU or can access its internal signals.

Hardware-Only TCB It is typically better for the TCB (Section 2.2) to rely
on hardware, as this provides stronger security guarantees, such as protection
from an untrusted OS. In this chapter, we only discuss architectures that have
a hardware-only TCB or architectures that have one consisting of hardware
and software components.

Preemption When preemption is supported, the system can suspend running
tasks at any time, without first obtaining permission from the task. This
makes it possible to handle interrupts, but also allows preemptive scheduling of
multiple protected modules. Preemption mainly impacts the context switching
logic, since the architecture now has to ensure that no sensitive information can
leak between modules, as this would violate the isolation primitive. Without
support for preemption, applications have to run cooperatively, i.e., they need
to call each other after finishing a task.

Dynamic Layout A static layout is often used when all software shares the
same address space, and no MMU is present to provide virtual memory for
different applications. It has the disadvantage that one trusted entity, e.g., the
hardware or software manufacturer or a system integrator, needs to compile
all software and fix the layout before deployment to the target device. With a
dynamic layout, however, applications can be loaded to locations that do not
need to be known at compile time.

Upgradeable TCB Architectures which have a HW-only TCB are not
upgradeable, because its components can no longer be changed after being
manufactured. However, some designs include trusted software components,

ARCHITECTURES 21

typically to implement functionality which would be too expensive in hardware.
These components are then protected by a hardware mechanism, such as
Programmable ROM (PROM). This not only results in more design flexibility,
but also enables upgrading the TCB at a later time, e.g., when a bug has been
discovered or to add new functionality.

Backwards CompatibilityWhen adding features, an important consideration
for industry is whether legacy code runs on the modified architecture without
any changes, possibly after recompilation. Since these applications do not use
the introduced protection mechanisms, they typically do not receive any of the
associated security guarantees.

2.5 Architectures

This section gives detailed descriptions of thirteen isolation and attestation
designs, making hardware modifications to their target platform. Architectures
which are implemented entirely in software or provide other functionality were
therefore not included. A wide range is covered, from lightweight designs for
the IoT to desktop and server architectures. The selection was not limited to
academic research, but also includes industry efforts. All architectures were
ordered chronologically by year, and then alphabetically.

2.5.1 AEGIS

Suh et al. designed AEGIS [36] in 2003 already, making it one of the oldest
trusted computing architectures. It provides programs with a Tamper-Evident
Environment (TE), where any memory tampering, either from software or
physical, is detected. Even stronger guarantees are provided by Private and
Authenticated Tamper-Resistant Environments (PTRs), which also protect the
confidentiality of code and data. The CPU itself is considered to be trusted,
placing external memory and peripherals outside of the TCB, where they
are vulnerable to software and hardware attacks. In a hardware-supported
implementation, the OS can be malicious, but when a Security Kernel (SK) is
used to implement AEGIS’ functionality, parts of the OS need to be trusted.

Since the system can also run legacy code, the protection mechanisms have to
be enabled by calling the enter_aegis instruction. This will calculate a hash
of the program and store it in a protected area. The program hash will also be
used later as an identifier. Each program also includes some code which will
measure any other code or data it depends on. Finally, it should also ensure

22 TRUSTED COMPUTING BACKGROUND

that it is running in the expected environment (e.g., the current CPU mode).
After enter_aegis has been called, the program is isolated, and any memory
tampering will be detected. Since the on-chip caches are considered trusted,
the hardware only needs to prevent applications from writing to locations they
do not have access to. This is done by tagging the cache entries with a Secure
Process ID (SPID), which is assigned when the program is started.

However, a more complex mechanism is needed to protect off-chip memory.
Whenever data is read into the cache, its integrity needs to be verified. When a
cache block is evicted, the corresponding leaf node of a hash tree is updated
with the new contents. Of course, this means that all internal nodes also have
to be updated. Since the depth of the tree increases with the memory size for a
given block size, this could result in a large number of additional transfers. The
internal nodes are therefore also cached in the L2 cache, performing updates
first in the cache, and not directly in memory. The authors distinguish between
non-blocking and blocking instructions. For the former, the integrity verification
can be delayed, as long as the CPU is eventually notified it was working with
tampered data. When the AEGIS mode is set to PTR, the CPU also needs to
guarantee confidentiality. This is done by encrypting the blocks with AES in
the CBC mode of operation, using 32-bit random Initialization Vectors (IVs) to
guarantee uniqueness of the ciphertexts. The architecture uses separate keys
for static and dynamic data. The former is used to decrypt the binary’s code
and data, while the latter protects any data generated at runtime.

The remote attestation mechanism hashes the provided data together with the
program digest, and asymmetrically signs the result with a private key specific
to the CPU. This binds the data to the code of the program, as well as the
specific processor it is executing on. In case AEGIS’ features were implemented
in a software SK, the hash of the kernel is also included in the attestation result.
This functionality is provided through the sign_msg instruction.

2.5.2 Trusted Platform Module (TPM)

The Trusted Platform Module (TPM) version 1.2 [37] was specified by the
Trusted Computing Group (TCG) in 2011. It is a coprocessor on the
motherboard, which is capable of storing keys and performing attestation.
It is a passive piece of hardware, meaning that software can interact with
the TPM, but needs to do so explicitly. To give a local or remote party
guarantees, any software that runs on the target device, i.e., the boot loader,
OS, and applications, needs to be measured successively by the TPM, and
is consequently part of the TCB. Code manipulation is only detected during
measurement, and all parts of the software are considered trusted after loading.

ARCHITECTURES 23

The TPM only provides limited protection against physical attacks, because
not only the CPU package, but the TPM chip and all connecting buses are
part of the TCB as well. For instance, a physical attacker can compromise
software integrity by tapping the Low Pin Count (LPC) bus between the TPM
and CPU [38].

The design principles published by the TCG in version 1.2 specify the minimum
functionality and cryptographic primitives that are required for TPMs, but a
TPM manufacturer is allowed to extend the hardware module with additional
functionality. Each TPM has to be equipped with a Random Number Generator
(RNG) as a randomness source and an RSA implementation with at least
2048-bit keys. The minimum requirement for software measurement is the
SHA-1 hash algorithm. At manufacturing time, the Endorsement Key (EK)
is generated and written to persistent memory within the TPM. The EK is
unique to every TPM chip, not known to the user, and serves as master key
for all operations provided by the TPM. In addition to the EK, Attestation
Identity Keys (AIKs) and storage keys can be generated on the fly and stored
in volatile memory within the TPM. AIKs are used for all operations directly
involving digital signatures, whereas the storage keys are used for encryption
and decryption of data. Finally, a TPM contains a certain number of Platform
Configuration Registers (PCRs), which are capable of storing successive hash
values for code or data that is sent to the TPM and are important for remote
attestation. The TCG also specified TPM version 2.0 [39] in 2014, supporting a
larger variety of cryptographic algorithms, multiple banks of PCRs, and three
hierarchies instead of only one. For simplicity, we focus on version 1.2 in the
following discussion.

With the minimum functionality required by the TCG, each TPM is able to
perform at least three different operations. First, it is able to bind code or data
to a given device by encrypting it with one of the storage keys. The encrypted
code or data can then only be decrypted on the same platform, because the
particular storage key cannot be extracted from the TPM’s volatile memory.

Second, a TPM is able to attest to another party that the given device is
currently running a certain software configuration (Section 2.4.1). To this end,
code or data sent to the TPM is hashed together with values of specific PCRs,
and the result is again stored in the same PCRs. This way, each software
component running on the device is able to successively extend a measurement
over all components running on the device. The PCRs are initially set to a fixed
value before starting the system, and because the hash function is irreversible,
it is not possible to set the PCRs to a user-defined value. The resulting hash
values from the PCRs can then be cryptographically signed by an AIK, and
this signature can later be verified by a second party. When this party receives
a correctly signed value, it can be sure that the system runs a certain software

24 TRUSTED COMPUTING BACKGROUND

configuration, because this signed message could not have been created without
going through the software measuring process.

Third, code or data can be sealed to a given device in a certain software
configuration (Section 2.4.1). In general, sealing works similar to binding, i.e.,
code or data is encrypted and decrypted, but it is additionally ensured that
sealed code or data is only decrypted if the platform configuration has not
changed in between. To check against changes of the platform configuration,
the PCR values are saved together with the sealed code or data and checked
against the current PCR values during unsealing.

Attestation and sealing only behave as intended if the platform configuration
is measured from the earliest boot step, up to the currently running software
component, because otherwise malicious software could potentially exclude
itself from the measurement. This restriction is the biggest disadvantage of the
standalone TPM over other solutions that support DRoTs (Section 2.4.1).

To overcome the restriction of all software having to be part of the TCB, Intel
introduced its Trusted Execution Technology (TXT) [40], which also uses the
TPM chip, but allows dynamically establishing a new RoT for software running
in a virtualised environment separate from the normal stack. TXT ensures that
the virtualised software has exclusive control over the device by suspending any
other running code, i.e., the OS and all applications. When switching to trusted
TXT software, the CPU essentially performs a warm reset and initialises a
certain subset of PCRs with a new value. The TXT software can then extend
this measurement and attest to a second party that it has not been modified
before being loaded. Since it monopolises all resources once it has been loaded,
the integrity of the TXT software is guaranteed over its entire runtime.

Although TXT can be used to overcome the restriction of all software having to
be part of the TCB, it still has some issues. Suspending all other applications
on the device for the TXT software to run negatively impacts performance, or
might even lead to losing interrupts depending on its size. Since the TXT code
has to run exclusively, it cannot easily use functionality of untrusted software
and needs to perform expensive context switches. Finally, all physical attacks
that succeed for a standalone TPM, e.g., LPC bus tapping, also succeed for
TXT. Fides [31], Flicker [4], and TrustVisor [41] are examples of architectures
which build on the functionality offered by TXT.

2.5.3 TrustZone

GlobalPlatform wrote an industry standard for security architectures called the
Trusted Execution Environment (TEE) [42, 43]. The TEE is a secure area of the

ARCHITECTURES 25

Rich OS

TEE Client API

A
pp

1

A
pp

2

A
pp

3
Monitor Trusted OS

TEE Internal API

Tr
us
te
d

A
pp

1

Tr
us
te
d

A
pp

2

Tr
us
te
d

A
pp

3

Normal World Secure World

Processor

Figure 2.2: TrustZone is a hardware-based security architecture by Arm that
creates two execution domains, the normal world and secure world. These
are also referred to as the Rich Execution Environment (REE) and Trusted
Execution Environment (TEE), respectively. Any resources assigned to the
secure world cannot be accessed from the normal world. Since both worlds
share the processor, the monitor performs the context switch between them.

main processor, and provides isolated execution, integrity of trusted applications,
as well as confidentiality of trusted application resources. The TEE is isolated
from the Rich Execution Environment (REE) where the untrusted OS runs. The
REE resources are accessible from the TEE, while the TEE resources are not
from the REE, unless explicitly allowed. Therefore, only trusted resources can
access other trusted resources. The standard does not specify how manufacturers
should implement it, with TrustZone being an implementation of this standard
by Arm.

TrustZone [44] (Figure 2.2) is a hardware-based security architecture for an
SoC that is currently used in a large number of smartphones. The TEE, also
called the secure world, provides protection for trusted hardware and software
resources. Hardware-based mechanisms ensure that resources in the REE’s
untrusted OS, or normal world, cannot access secure world resources. This is
done by two main hardware features. First, the SoC’s AXI bus ensures that
secure world resources cannot be accessed from normal world resources. Second,
a TrustZone-enabled processor core uses time-slicing to execute code in either
the secure or normal world.

To enforce isolation between trusted hardware resources on the bus, a control
signal known as the Non-Secure (NS) bit was added to the AXI specification.
This bit is used to communicate the security state of a master component to a
slave component. The bus or slave logic uses this bit to ensure that the security

26 TRUSTED COMPUTING BACKGROUND

separation is not violated. When an untrusted master attempts to access a
secure slave, the transaction should fail and an error may be raised.

A TrustZone core can switch between security states at runtime. When the
processor core is in the secure state, it generates AXI transactions with the
NS bit set to zero, allowing it to access resources in both security domains.
However, a processor core in the normal world can only access normal world
resources. The processor’s L1 and L2 caches use a bit to store the security
state of the transaction that accessed the memory. The cache controllers are
then assumed to be responsible for ensuring that only secure masters can access
memory that was fetched from a secure slave. Extending the cache removes the
need for a flush when performing a context switch between security domains,
and further allows software to efficiently communicate from the non-secure to
the secure world.

To perform a context switch to the other world, the processor first has to pass
through a new mode called monitor mode, which serves as a gatekeeper that
manages context switches between the two worlds. This is done by saving the
state of the current world and restoring the state of the world being switched to.
Monitor mode exists in the secure world, and both privileged and user mode
exist in each world. Normal world entry to monitor mode is only possible via an
interrupt, external abort, or explicit call of the smc instruction. Secure world
entry to monitor mode can additionally be invoked by writing into the Current
Program Status Register (CPSR). Arm recommends to execute monitor code
with interrupts disabled. The address mappings in the MMU can be configured
independently for each world. This allows the OS in each security domain to
enforce its own memory management. Inter-Process Communication (IPC) with
small messages can be done by placing the message inside registers and then
invoking smc. For larger messages, it is possible to use shared memory.

Interrupts can be serviced in either security domain. When a context switch is
required to handle an interrupt, the processor traps directly into monitor mode.
A different exception vector table is used to specify the interrupt service routine
addresses for normal world, secure world, and monitor mode respectively. Each
of the vector table base addresses can only be updated from its respective mode.
This enables secure interrupt sources that cannot be manipulated by normal
world software.

During the boot process, a chain of trust is formed by verifying the integrity of
the trusted Second Stage Boot Loader (SSBL) and trusted OS before execution.
The TrustZone processor starts in secure world when it is powered on. The
firmware of the first stage boot loader is implicitly trusted, and is typically
located in ROM. It initialises critical peripherals, such as memory controllers,
and further performs an integrity check of the SSBL, which is stored in flash.

ARCHITECTURES 27

If this check passes, the SSBL is executed. It in turn verifies the integrity of
the secure world OS and boots it, after which the normal world OS is started
without performing an integrity check. Some implementations of the secure OS
also verify the integrity of trusted applications before loading them. TrustZone
uses a signature scheme based on RSA. A vendor uses its private key to sign
the code. The firmware then uses the public key to verify the signature at
runtime. In order to support different vendors, the architecture supports the
use of several public keys.

Since any trusted component can violate the system’s security, it is important to
respect the principle of least privilege and restrict the access of each component
in the TCB. TrustZone does not adhere to this design principle, as applications
from different vendors run in the same secure world. Furthermore, when multiple
secure master devices from different vendors are placed on a TrustZone SoC,
least privilege is violated as every secure master has access to all memory.

2.5.4 Bastion

Bastion [45] is a combined hardware-software architecture, which relies on a
trusted hypervisor together with a modified processor to ensure confidentiality
and integrity for security-critical software modules. Physical attacks on all
hardware components but the CPU package are allowed, i.e., Bastion provides
memory protection. Only single-core processors are currently supported.

Since everything apart from the microprocessor and the hypervisor is considered
untrusted, including firmware and code needed during booting, Bastion first
protects the state of the hypervisor. Afterwards, the hypervisor is able to protect
any number of software modules. To this end, the Bastion hypervisor calls
secure_launch from its initialization routines, which computes a cryptographic
hash over the state, i.e., code and data, of the hypervisor and stores the result
in a CPU register. The secure_launch routine also generates a new key which
is used to encrypt and integrity-protect all data belonging to the hypervisor
with the help of an on-chip cryptographic engine. The hash value later serves as
the identity of the hypervisor and is, for example, needed to unseal permanently
stored data. The implementation of secure_launch, as well as the register
contents, cannot be modified from software.

After the hypervisor has been loaded, software modules can invoke a new
secure_launch hypercall for initialization, which activates runtime memory
protection for all module pages and computes a hash of the module’s initial
state, including the virtual memory layout, that serves as the module’s identity.
For instance, this identity is used to seal data that needs to be permanently
stored on disk.

28 TRUSTED COMPUTING BACKGROUND

A modified CPU ensures that the hypervisor is invoked for each Translation
Lookaside Buffer (TLB) miss. The hypervisor checks whether the virtual address
responsible for the access corresponds to the one associated with the physical
page and a specific software module. For these checks, modules are identified
by a unique identifier (usually eight to 20 bits), which is assigned during the
secure_launch call. All untrusted software not belonging to a specific module
is treated as a module with identifier zero, ensuring that untrusted software
cannot access code or data from security-critical modules.

To invoke a function of a secure module, a special call_module hypercall is
added, which takes the hash of the destination module and the entry point
as parameters, because direct transitions would trigger a memory violation.
Similarly, on returning, the return_module hypercall is needed. When a module
needs to be preempted, for example, due to a timer interrupt, the hypervisor
takes care of saving all state information, such as register contents, and wiping
sensitive data before calling the interrupt handler. When returning from the
interrupt handler, the hypervisor also takes care of restoring all state information
and handing back control to the secure module.

2.5.5 SMART

Eldefrawy et al. designed SMART [46] to establish a DRoT in remote
embedded devices (Section 2.4.1). The architecture is also minimal, requiring
only the smallest possible set of hardware changes in order to implement remote
attestation, which was later formalised by Francillon et al. [47]. It was one of
the first designs using hardware-software co-design to build a lightweight trust
architecture. Prototypes to demonstrate the feasibility were built on open-source
clones of the ATmega103 and MSP430. The attacker model specifically assumes
that adversaries do not tamper with ROM. Peripherals which can directly access
memory should be disabled while SMART is executing.

In general, SMART provides remote attestation of a memory range [a, b] specified
by the verifier. It then calculates a MAC over this memory region and sends the
result back. The verifier calculates the same MAC over the expected contents
and compares both. This process dynamically establishes a RoT. In addition, an
address x can be given, where execution will continue atomically after SMART
has completed. By choosing x = a, the verified code is started.

Support for SMART requires four features: attestation ROM, secure key storage,
MCU access controls, as well as reset and memory erasure. The ROM stores the
attestation code which is invoked when a verification is requested. This program
disables interrupts, measures the specified memory region by calculating a
SHA-1 HMAC [48], and reports the result. When x is set, interrupts remain

ARCHITECTURES 29

disabled and control jumps to that address, but otherwise they are re-enabled
and execution continues.

Secure key storage is added to the microcontroller for the symmetric key
used to calculate the HMAC, and the MCU access controls ensure that it is
only accessible when the CPU’s Program Counter (PC) is in the ROM region
containing the attestation code. In order to prevent code reuse attacks, the
MCU also enforces a single entry point into the ROM code, only allowing access
from the initial instruction, and disabling exits from any instruction other than
the last. When an invalid memory access is detected by either mechanism, the
processor is reset immediately.

The attestation code is carefully written to ensure it cleans up any sensitive data
after it has finished. However, when the processor is reset during its execution,
this cleanup might be skipped. Therefore, all memory is erased by the hardware
when the processor boots or after a reset.

SMART and TrustLite (Section 2.5.10) were later used to prototype a scalable
attestation mechanism for large swarms of small embedded devices [49].
Furthermore, Eldrefawy and Tsudik contributed to a formally verified remote
attestation scheme called VRASED [50]. While its design relies on similar
mechanisms as SMART, it is based on abstract models that enable formal
verification of its security guarantees. This is realised by first considering
different sub-properties in isolation before proving the end-to-end security
of their composition. These seven sub-properties are split into two groups,
covering key protection and safe execution of the attestation code. VRASED’s
implementation consists of a hardware module and software component, where
the former enforces memory access control and the latter produces a SHA-256
HMAC measurement. Finally, the authors prototyped their architecture on the
MSP430, which satisfies the required microcontroller and compiler axioms.

2.5.6 Sancus

Sancus [51] is a hardware-only PMA designed by Noorman et al. for lightweight
embedded devices, like wireless sensor nodes. In addition to isolating an
application’s code and sensitive data, it also has support for remote attestation.
It adds secure linking functionality as well, enabling applications to verify
modules they depend on. While a follow-up publication [52] introduced
additional functionality and improvements to the prototype implementation
(Section 5.3), this section details the original design.

The architecture was designed for small embedded devices, which are typically
deployed in large swarms. These nodes are managed by an Infrastructure

30 TRUSTED COMPUTING BACKGROUND

N1

N2

IP

SP1

SP2

...

SM1,1 SM2,1 · · ·

SM2,2 SMj,k · · ·

...
Figure 2.3: Sancus considers multiple nodes that are managed by a single
Infrastructure Provider (IP). Different Software Providers (SPs) want to run
their Software Modules (SMs) on one or more of these nodes.

Provider (IP), and they share a fixed key KN with it, which is etched into the
silicon. When Software Providers (SPs) want to load a protected application
onto a node, they have to go through the IP. Each SP is assigned a unique
public identifier, which is used to derive a key KN,SP = kdf(KN ,SP) for the SP.
The kdf is implemented in hardware to realise a zero-software TCB. Since the
IP manages the node key KN , it knows all other keys used in the system, and
SPs therefore have to trust it to behave as intended.

In Sancus’ system model (Figure 2.3), protected applications are called Software
Modules (SMs). Each Software Module (SM) consists of a text section, which
contains code and constants, and a protected data section storing sensitive
dynamic data. Additionally, an SM can include unprotected sections, which
makes it possible for developers to keep the size of the sensitive code as small
as possible. Each SM is also assigned an identity, consisting of the contents of
its code section, and its layout. The latter are the start and end addresses of its
protected code and data sections, making it possible for two modules where these
sections are identical to exist on the system at the same time. Similar to KN,SP,
the SM’s identity is used to derive a third-level key KN,SP,SM = kdf(KN,SP,SM).

When an SM uses functionality from another protected module, it can use caller
authentication to ensure that the other module was not tampered with. To
this end, SM1 stores a MAC with its own key KN,SP,SM1 of SM2’s identity in
an unprotected section. It can issue a special instruction at runtime to verify

ARCHITECTURES 31

the MAC. The hardware also enforces a single entry point. This single physical
entry point is not a limitation, as it can be multiplexed to multiple logical ones.

The memory access control mechanism is program counter-based, i.e., the access
rights depend on the current value of the processor’s program counter. The
protected text section is always readable, but only executable when the module
is running. The only exception is the entry point, which is always executable.
The text section has to be readable for the caller authentication to work, as it
is included in the MAC. Similarly, the protected data section is only read- and
writeable when the program counter is in the module’s text section.

These protection mechanisms are enabled by calling the special protect
instruction, which has the layout information and SP identity as parameters.
This instruction also derives the node key KN,SP,SM and stores it together
with the layout in a protected storage area (Figure 2.4), inaccessible from
software. Conversely, invoking unprotect will disable the isolation primitive.
Memory violations are handled by resetting the CPU, at the cost of availability,
which is excluded from the attacker model (Section 2.3). Three additional
new instructions are introduced for the remote attestation and secure linking
functionality respectively. First, MAC-seal can be used to calculate a MAC
with KN,SP,SM over a given memory range. Second, calling MAC-verify will
calculate the MAC of the specified module, with the current module’s key,
and verify that it matches the MAC stored in memory. Third, since the MAC
calculation is expensive, a module is assigned a monotonically increasing ID
by the CPU at load-time, which can be queried with get-id. This ID is used
to securely link to the same module at a later time, by storing it and checking
that it still matches the one returned by get-id.

A prototype was developed based on the openMSP430, an open-source
implementation of Texas Instruments’ MSP430 processor. The most important
changes are the addition of the on-chip protected storage area, the Memory
Access Logic (MAL) circuitry, and a hardware implementation of the HMAC
algorithm based on spongent [53], a lightweight hash function. The number of
SMs which can be loaded concurrently is fixed at synthesis time, and determines
the size of the protected storage area. The MAL circuit is fully combinational,
so it does not need additional cycles to perform its checks. Furthermore, it is
shown not to be on the processor’s critical path, meaning that it doesn’t impact
the clock frequency. In addition to the hardware changes, an LLVM-based
toolchain was built to compile SMs, which allows developers to easily use the
new functionality through code annotations, inserting stubs which handle stack
switching, secure linking, and entry point multiplexing. Evaluation of the
prototype showed that the main performance overhead is found in instructions
which use the hashing functionality, i.e., protect, MAC-seal, and MAC-verify.
The duration of the hash calculation depends on the size of the input data.

32 TRUSTED COMPUTING BACKGROUND

Unprotected

En
tr
y
Po

in
t

Code & Constants Unprotected

SM1 Text Section

Protected Data

SM1 Data Section

Unprotected

M
em

or
y

KN,SP,SM1 IDSM1Next ID

Caller ID

KN

SM1 Metadata

Layout Key ID

Protected
Storage
Area

Figure 2.4: Sancus introduces several new hardware registers, that are
inaccessible from software and only read or written by special instructions.
The layout, KN,SP,SM, and ID of each module are stored in these registers.

Soteria [17] is an extension of Sancus which takes advantage of the architecture’s
functionality to add code confidentiality. This is done by creating a loader
module SML, which has the module key KN,SPL,SML

. This loader module
atomically reads the encrypted binary from the node’s memory, and writes the
decrypted code back to memory, after which it calls protect on the decrypted
SM. Each module is assigned an identity S̃ME , which is used to derive the
encryption key ESME

= kdf(KN,SPL,SML
, S̃ME). Although the encryption

algorithm is implemented in software, it is not part of the TCB, because the key
derivation includes the module’s text section. Therefore, any changes to SML

would result in a different ESME
, which would be detected during authenticated

decryption. Due to the way the derivation of ESME
is implemented, SML

and SME mutually authenticate each other. Additionally, Sancus’ hardware is
modified to deny other SMs access to the text section of SME .

Following the software-based design presented by Soteria, hardware support
for code confidentiality was also added to Sancus 2.0 (Section 5.3), along with
other architectural and implementation improvements. The former includes
support for interrupts, while an example of the latter is the unification of all
cryptographic operations required by Sancus in a single hardware unit based
on SpongeWrap [54].

ARCHITECTURES 33

2.5.7 SecureBlue++

SecureBlue++ [55, 56] is an early PMA from IBM, which isolates Secure
Executables (SEs) from each other, and protects the confidentiality and integrity
of their code and data. The main architectural changes involve a Memory
Protection Unit (MPU), using different mechanisms at each level of the memory
hierarchy. It also protects against physical memory attacks, and prevents writes
to the SE’s code region, as well as execution from its data memory.

A SE binary consists of a cleartext section containing a loader, which copies the
cleartext integrity tags of the compiled binary into memory, and then calls the
new esm instruction to start decryption of the encrypted sections and jump to
the SE’s entry point. The loader is followed by system call pass-through buffers
and the executable key, which was used to encrypt the sections that are stored
after it, namely the metadata for the call to esm, and the application’s code
and data. This key is itself encrypted asymmetrically under a public key bound
to the CPU that the application will run on. The private key is installed in the
factory, and the manufacturer signs the public part to generate a certificate
asserting its validity.

The MPU protects an application’s code and data at all levels of the memory
hierarchy. Encryption is used to protect data in external memory, automatically
decrypting cache lines and verifying their integrity when they are read. Similarly,
evicted lines are encrypted on the fly, also updating the integrity protection
tree. A tree is used because replay protection requires a nonce, which in turn
needs to be stored and MACed. All integrity information is kept in a dedicated
memory region, but only the root node and its metadata require expensive
on-chip storage.

The caches store everything in plaintext, and therefore also need to enforce
access control. This is done by adding a label to each cache line with the ID of
the SE it belongs to. The CPU stores the current Secure Executable ID (SEID)
in a special register and compares it to the line’s label. Instead of storing the
SEID directly, a Memory Region ID (MRID) is used. This is an index into the
Protected Memory Region (PMR) table holding the metadata of a specific page,
like the owner’s SEID. This table also manages shared memory regions, adding
a second SEID for the first sharer. Any additional SEs requiring access are
given the same secret, which needs to be present at a specific memory location.

To avoid leaking the values stored in registers after a context switch,
SecureBlue++ stores the registers protected in the cache, meaning they would
also be encrypted automatically when evicted to memory. A new privileged
instruction, RestoreContext can be used by the OS to restore the registers
and wake the previously active SE, which is indicated in a special register.

34 TRUSTED COMPUTING BACKGROUND

Since the isolation mechanism prevents even the OS from accessing an SE’s data,
two approaches for handling system calls are presented. The first is modifying
libc to wrap the system calls, not requiring any hardware support. The second
is to change the behaviour of the system call instruction sc. Before transferring
control to the OS, the CPU checks whether it is in SE mode. In this case, the
call is redirected to a small wrapper inside the SE before invoking the sesc
instruction, which bypasses the security check and immediately calls the OS’s
system call handler.

2.5.8 Software Guard Extensions (SGX)

In 2013, Intel announced Software Guard Extensions (SGX) [57], which enables
establishing dynamic RoTs inside regular applications, without monopolising
the system like TXT (Section 2.5.2). SGX supports protecting an application’s
code as well as data [58], is able to guarantee integrity, and provides local
and remote attestation [59]. In addition, SGX includes physical attacks on
communication channels and main memory in the attacker model.

In SGX, the protected parts of an application are placed within so-called
enclaves. An enclave can be seen as a protected module within the address
space of a given process, and enclave accesses obey the same address translation
rules as those to process memory, i.e., the OS and the hypervisor are still in
charge of managing the page tables. This has the advantage that SGX is fully
compatible with existing memory layouts, usually configured and managed by
an MMU, and also works well in a multi-core environment. Although an enclave
resides in the process address space, there are certain restrictions in enclave
mode. For example, system calls and instructions that would cause a trap into
the OS or hypervisor, such as cpuid, are not allowed and it is necessary to leave
enclave mode before dispatching them. Furthermore, this mode can only be
entered from user mode, which essentially means enclaves can be used within
applications, but not the OS [60].

An SGX-enabled CPU ensures in hardware that non-enclave code, including
the OS and potentially the hypervisor, cannot access enclave pages. Specifically,
a region called the Processor Reserved Memory (PRM), which contains the
Enclave Page Cache (EPC) and the Enclave Page Cache Map (EPCM), is
protected against all non-enclave accesses by the CPU. The EPC stores enclave
pages, i.e., enclave code and data, while the EPCM stores state information
about the pages currently held within the EPC. This state information consists
of the enclave page access rights and the page’s virtual address when the enclave
was created, amongst others. For each (non-cached) access of an EPC page, the
current access rights and virtual address are checked against the state stored

ARCHITECTURES 35

within the EPCM, and if a mismatch is detected, access is denied. The caching
of state information is necessary, because all software, including at system level,
is considered untrusted, and therefore attacks such as enclave layout changes
through remapping have to be prevented directly in hardware. If the capacity
of the EPC is exceeded, enclave pages might be written out to a memory region
outside the PRM by the OS, but are then transparently encrypted by a hardware
Memory Encryption Engine (MEE) [61], which is inside the CPU package.

Before an enclave can be used, it has to be created and initialised by untrusted
software. The hardware ensures that an enclave’s pages can only be modified
until the initialization is finished. All page contents, including code and static
data, are measured during initialization. As this measurement depends on
all contents of the enclave, and later modifications are prevented, it can be
used as a basis for local or remote attestation. All operations involved in the
management of an enclave, e.g., enclave creation, initialization, and destruction,
are performed by system software, while entering and leaving the enclave is
done by the application software. The latter is implemented similarly to system
calls, i.e., an enclave has its own execution context and dedicated instructions
need to be called. SGX enclaves are again entered through an entry point, but
its predefined location can be varied for each enclave thread. Upon leaving
the enclave, the context of the current thread is saved within an EPC page
and all registers are cleared. The appropriate context is loaded again when
the enclave is entered. If an interrupt occurs during enclave execution, an
Asynchronous Enclave Exit (AEX) is performed by the CPU, which also saves
the current enclave execution context and ensures that no data leaks to the
untrusted system software handling the interrupt.

Within an enclave, other features are provided in addition to confidentiality and
integrity of code and data. One enclave can attest to another that it has been
loaded as intended by sending a report, which includes information about the
enclave (the measurement) or its author. This process is called local attestation.
With the help of a trusted Quoting Enclave provided by Intel, the report can be
wrapped into a quote, converting the local attestation to a remote attestation
by signing the quote with an asymmetric attestation key, which is part of Intel’s
Enhanced Privacy Identifier (EPID) group signature scheme [62]. The quote can
be verified by a remote party with the corresponding verification key provided
by Intel. Besides local and remote attestation, data produced within an enclave
can also be sealed to it and, e.g., written to memory outside the PRM. Sealed
data can serve as permanent storage and retains information during different
runs of an enclave. Local attestation, remote attestation, and sealing all rely
on the non-forgeability of the initial enclave measurement.

Intel uses dedicated enclaves for complex functionality which would be expensive
to implement in hardware, like the asymmetric cryptography needed for remote

36 TRUSTED COMPUTING BACKGROUND

attestation. It also provides a Launch Enclave required to start executing any
other enclave, a Provisioning Enclave to initially provision asymmetric keys for
attestation to end-user devices, and the previously mentioned Quoting Enclave
to cryptographically sign the attestation quotes. The downside of this approach
is that Intel has a de facto monopoly regarding enclave signing and remote
attestation, as they decide which enclaves are allowed to run and everybody
who wants to verify quotes needs to have an agreement with Intel.

More details about SGX can be found in an exhaustive summary by Costan [63].
Since its introduction, SGX has been used to secure different applications. For
instance, Open Whisper Systems relies on it to enable private contact discovery
for their encrypted messaging application Signal [64]. Haven [65] and VC3 [66]
are two academic solutions which use it in an untrusted cloud context. However,
neither solution used real hardware, but relied on an emulator instead. Finally,
AMD has also presented security extensions for their processors called Secure
Memory Encryption (SME) and Secure Encrypted Virtualization (SEV) [67].
The former adds memory encryption at page granularity to protect data in
memory, while the latter relies on this unit to isolate virtual machines from
each other as well as the hypervisor.

2.5.9 Iso-X

Iso-X [68] is an isolated execution architecture where memory can be assigned
dynamically to Untrusted and Trusted Partitions (UPs and TPs), which contain
compartments. These compartments are essentially protected modules, and a
developer can indicate which parts of his code should be compartmentalised.
The architecture also includes a remote attestation mechanism in hardware,
which is based on asymmetric signatures.

A static memory region is allocated and protected during boot to store hardware-
maintained management information. The Physical Page Compartment
Membership Vector (CMV) is a bit vector tracking whether a memory page was
already assigned to a compartment or not, while the Compartment Table
(CT) records the compartment’s characteristics, like its base address and
size. In addition to these static structures, each compartment is also given a
Compartment Page Table (CPT), which maps virtual to physical addresses,
since the OS’s page tables cannot be trusted. Finally, each compartment is
assigned a Compartment Metadata Page (CMP) as well, which keeps track of
any other data, like the compartment’s public key.

Six new instructions are added to the processor, which are called either by the OS
or applications to manage and use compartments. First, a new system call can
be invoked by an application when it wants to start a compartment. It looks for

ARCHITECTURES 37

an unused compartment identifier, and then executes the COMP_INIT instruction,
signalling the hardware to prepare its internal data structures. Similar to SGX
(Section 2.5.8), memory pages are only added to the compartment after its
initialization. This is done through the CPAGE_MAP instruction, which also adds
the page’s hash to the compartment’s measurement. Note that this also includes
the virtual page number and permission bits. Analogously, CPAGE_REVOKE
removes a page from the compartment, which is considered destroyed once no
more pages belong to it. Finally, a compartment can be started from its entry
point through COMP_ENTER.

COMP_ATTEST generates a certificate that can be used to prove the compartment’s
integrity to an external verifier. This certificate is signed with the CPU’s private
key, which is generated in the factory. Finally, COMP_RESUME restores the
compartment’s state after a context switch, copying CPU registers back and
returning to compartment mode.

Additionally, the authors present a secure swapping mechanism to support
memory management. Before giving the OS access to a page, COMP_SWAP_PREP
hashes it and overwrites the corresponding CPT entry with the result, also
resetting the valid bit. The page is then encrypted symmetrically, and the
corresponding CMV bit is cleared. Afterwards, the OS uses COMP_SWAP_RET to
copy the page back to memory, which not only decrypts it and verifies the hash,
but re-enables isolation as well.

2.5.10 TrustLite

TrustLite [69] is a generic PMA for low-cost embedded systems which was
developed by the Intel Collaborative Research Institute for Secure Computing.
A trustlet isolates software components, providing confidentiality and integrity
guarantees for both its code and data. The architecture provides OS-independent
isolation of trustlets, attestation of them, trusted inter-process communication,
secure peripherals, and supports interrupts. It was implemented as an extension
to the Intel Siskiyou Peak research platform. The attacker model from
Section 2.3 is used, with the assumption that the trustlets and bootstrapping
routine behave correctly.

When the TrustLite device is booted, the first software to execute is the Secure
Loader, which is stored in PROM as part of the SoC. The Secure Loader is
responsible for loading trustlets and their data regions into on-chip memory. It
also configures an MPU to enforce isolation of each trustlet’s memory regions,
which can include Memory-Mapped IO (MMIO) peripherals. The configured
regions are also recorded in a Trustlet Table for use by individual trustlets
or attestation routines. The untrusted software, such as the OS, is allowed

38 TRUSTED COMPUTING BACKGROUND

to execute after the Secure Loader has configured all trustlets. The Secure
Loader is only active during initialization, and the MPU is also used to protect
it at that time. As the initialization code configures the memory access control
regions on platform reset, there is no need to clear the main memory as in
SMART (Section 2.5.5).

The MPU uses registers to store multiple different protection regions for each
trustlet. The architecture uses program counter-based isolation. The memory
regions of a trustlet are only accessible when the PC is in its code region.
When the PC is outside of a specific trustlet, the regions specified in the MPU
are not accessible. The processor raises an exception on an access violation.
In addition, it invalidates currently executing instructions, and flushes the
processor’s pipeline stages.

To support interrupting an executing trustlet, the architecture needs to ensure
that no information leaks. It does this by storing the current state of the
processor on the stack of the interrupted trustlet, saving the stack pointer in
the trustlet table and clearing the general-purpose registers, after which the OS
stack pointer is restored, followed by execution of the Interrupt Service Routine
(ISR). A return from an interrupt is performed by jumping to the entry point,
and restoring the trustlet’s stack pointer in software.

Each trustlet uses an entry vector to specify the addresses which can be called
by other tasks or trustlets. The trustlet itself can execute its entire code section,
but other tasks or trustlets can only execute the addresses listed in the entry
vector. The entry vector should be carefully programmed to avoid information
leakage or other exploits.

Signalling and sending short messages are done by calling the entry point of
a trustlet and passing the arguments in CPU registers. Large messages can
be communicated by signalling with a pointer to a shared memory region,
which needs to be inside an MPU region. Protected communication between
trustlets is performed by means of a simple handshake protocol. The handshake
requires that the initiator verifies the platform state, and that each party attests
the other trustlet’s state by checking the correctness of the relevant entries in
the trustlet table and MPU registers. The initiator may additionally perform
an integrity check of the responder’s program code to ensure that it was not
maliciously modified. After attesting each other, subsequent messages can be
authenticated by means of a cryptographic session token.

ARCHITECTURES 39

2.5.11 TyTAN

TyTan [70] is an architecture for lightweight devices which provides isolation
between tasks, secure IPC with sender and receiver authentication, and has real-
time guarantees. Its TCB consists of both hardware and software components.

A core trusted hardware component of TyTAN is its Execution-Aware MPU
(EA-MPU), which enforces program counter-based isolation. The EA-MPU
ensures that each isolated task can only access its assigned memory regions. In
addition, these tasks can only be invoked at a dedicated entry point.

Several static secure software components are part of the TCB. The Secure
Boot task is invoked at boot, and is responsible for loading all other trusted
software components. Each of these components is isolated from the rest of
the system by the EA-MPU. The EA-MPU supports loading and unloading of
secure tasks at runtime by means of a driver. The RoT for Measurement (RTM)
task can attest other tasks. This task calculates a cryptographic hash of the
binary code of each created task, which serves as its identity idt. The Remote
Attest task uses a MAC to prove the authenticity of idt to a remote verifier.

Secure IPC is done by means of the IPC Proxy task. This task is responsible for
forwarding a message m from the sender S to the receiver R. For short messages,
the sender invokes the proxy with the receiver’s identity idR and message m as
parameters, which then copies m into R’s memory. Since the EA-MPU ensures
that only the proxy can write to R’s memory, this implicitly authenticates m
and idS . For large messages, the proxy sets up a shared memory region that is
accessible only by the communicating tasks.

The Secure Storage task seals data by storing it encrypted in non-secure memory.
It is encrypted with a task key that is derived from idt. Tasks communicate with
the secure storage via secure IPC. Finally, a trusted Interrupt Multiplexor (Int
Mux) task is used to securely save the context of an interrupted task to its stack
and clear the CPU registers before control is passed to the interrupt handler.
Different interrupt handlers can be specified in the Interrupt Descriptor Table
(IDT), which is protected by the EA-MPU.

TyTAN was implemented as an extension to Intel’s Siskiyou Peak architecture,
and uses the FreeRTOS real-time OS. The FreeRTOS preemptive scheduler was
modified to support secure tasks. All secure software tasks were designed to
be interruptible, or to have an upper bound on execution time. To support
dynamic loading of tasks, FreeRTOS was extended with an ELF loader.

40 TRUSTED COMPUTING BACKGROUND

2.5.12 Sanctum

Sanctum [71] combines minimal hardware modifications with a trusted software
component to offer an isolation primitive which is in many ways similar to SGX
(Section 2.5.8). Like SGX, Sanctum only allows enclaves to run at user level. In
contrast, it does not provide memory protection, as there is no MEE to encrypt
code or data before being written out to memory.

In Sanctum, each enclave controls and manages its own page tables and
handles its own page faults, whereas the former are managed by the OS or
hypervisor in SGX. Furthermore, Sanctum ensures that each enclave is assigned
a separate DRAM region corresponding to distinct sets in the shared Last-Level
Cache (LLC). These two measures allow Sanctum to protect enclaves against
software side-channel attacks where a malicious application or OS tries to learn
information from an enclave’s memory access pattern (Section 2.4.1). In SGX,
a potentially malicious OS can observe the accesses of any enclave at page
granularity by reading the page table’s dirty and accessed bits. Additionally,
enforcing distinct cache sets per enclave protects against cache timing attacks.

Instead of implementing trusted functionality in microcode like SGX does,
Sanctum uses a trusted software component called the security monitor. When
booting a Sanctum system, measurement code within ROM is executed and
calculates a hash of the security monitor, which is included in all further
measurements, before giving control to it. The security monitor then provides
an API for enclave management, e.g., for creating and destroying enclaves. It
also manages transitions into and out of enclaves, i.e., special monitor calls need
to be used to enter and exit an enclave. In case of an interrupt, the security
monitor takes care of saving the enclave’s current state. After handling the
interrupt, however, the enclave is entered at its entry point, and has to restore
its state on its own. The environment within an enclave is also restricted, so
that enclaves need to be exited for system calls and Input/Output (I/O).

Sanctum modifies the MMU in such a way that there are two Page Table Base
Registers (PTBRs), one for untrusted code and one for the currently running
enclave. Only the security monitor is able to change the contents of these
registers. Furthermore, the modified MMU ensures that only certain pages can
be referenced by enclave page tables. In more detail, metadata indicating valid
pages is saved during enclave creation, and checked against after each page table
walk. This metadata cannot be changed from software after enclave creation,
during which the security monitor checks for overlapping pages or other invalid
mappings, and writes it accordingly. Although the initial mappings are created
by the OS, and copied to the enclave’s page tables, the enclave is able to verify
them by inspecting its own page tables and aborting if necessary.

ARCHITECTURES 41

2.5.13 TIMBER-V

By combining tag-based memory isolation with an MPU, TIMBER-V [72]
realises a flexible and fine-grained lightweight isolation mechanism, which is
managed by a trusted software component. The latter also implements remote
attestation and sealing functionality, and is a trusted party in a shared memory
scheme which implicitly provides local attestation. The design follows the general
attacker model outlined in Section 2.3 and does not provide memory protection
nor side-channel attack countermeasures. Interestingly, it even features a very
specific CFI mechanism to protect calls from trusted to untrusted code. The
authors evaluate their design on a cycle-accurate RISC-V simulator, indicating
an average cycle overhead of 25.2%, which drops to 2.6% when tags are cached.

Together with the RISC-V’s supervisor and user modes, the tag-based isolation
mechanism of TIMBER-V provides four security domains, similar to TrustZone
(Section 2.5.3). All untrusted memory is N-tagged, with the OS running in
supervisor mode and applications at user level. On the trusted side, user-
level enclave memory should hold a TU tag, and code executing in trusted
supervisor mode should be TS-tagged. The processor switches the security
context transparently based on the tag value of the fetched instruction, where
an enclave’s entry points require a TC tag, meaning that multiple physical entry
points can be specified. In order to store these different tags, two metadata
bits are added to every memory word, which are set using special checked
instructions. These tag operations are subject to an update policy, preventing
privilege elevation. Since the tags only indicate the different security domains, an
MPU is used to isolate different processes within them, which can be configured
by the system software running in either world. This is enabled by adding two
flags to each slot. While the untrusted OS cannot manipulate slots marked
with the TS flag, TU slots are shared between both domains. The TU flag is
automatically cleared when the slot is overwritten by the untrusted OS and can
only be asserted by the trusted system software. This combined approach allows
interleaving of trusted and untrusted memory ranges, reducing fragmentation
and obviating the need for trusted dynamic memory management.

An important part of the TCB is a software-based trust manager called TagRoot,
which runs in trusted supervisor mode and manages enclaves and offers trusted
services. Crucial to security, it is assumed to be loaded through a secure boot
process, and protected by the isolation tags afterwards. Its enclave management
functionality is invoked by the untrusted OS to instantiate and load enclaves.
Similar to SGX (Section 2.5.8), the untrusted system software initializes enclaves
by informing TagRoot of the enclave’s memory regions and entry points, storing
the enclave’s configuration in an Enclave Control Block (ECB) allocated in
protected TS-tagged memory. During this process, the enclave is measured

42 TRUSTED COMPUTING BACKGROUND

by calculating a SHA-256 hash, where the finalised measurement is used as
the Enclave Identity (EID). The EID is used as part of an HMAC-based
key derivation together with an identifier and secret platform key, supporting
remote attestation and sealing functionality. Among other services, enclaves
can request generation of keys by issuing a system call, which is handled by
TagRoot. Although we will not discuss it in detail here, TagRoot is also central
to TIMBER-V’s preemption support and implements secure shared memory.
Since the latter mutually authenticates the involved enclaves based on their
EIDs, it also enables local attestation.

Since security domains are crossed transparently, the architecture does not
feature instructions to control the isolation mechanism. As mentioned, it does
provide checked variations of RISC-V’s load and store operations, which are
tag-aware and can both verify and manipulate the memory word’s tag bits. For
instance, swct has the same semantics as sw, but takes an expected and new
tag as additional arguments, trapping if the current tag does not match the
expected value, and updating it otherwise. Given that TIMBER-V uses two-bit
tags, which are encoded as immediates, the address offset parameter is reduced
to ten and eight bits respectively, necessitating code rewrites to address possible
overflows. Additionally, a special ltt instruction can be used to test whether
the current tag has a specific value.

2.6 Comparison

This section provides a detailed comparison of all architectures discussed in this
chapter. Table 2.1 compares all of them with respect to the security properties
and architectural features given in Section 2.4. In addition, it is indicated for
each architecture whether it was published by academic researchers, if its source
code is public, and what Instruction Set Architecture (ISA) it was based on.

Except for the TPM and SMART, which were specifically designed for
attestation, all architectures provide some isolation mechanism, which protects
applications from each other and even the OS. In general, lightweight
architectures include program counter-based access control in the memory
controller, verifying each access. A common approach is to use a set of boundary
registers which indicate the memory regions for a pre-defined number of protected
modules. Since they already include an MMU, complex architectures extend
it to include access control. At cache line or page granularity, the isolation is
much coarser here than it is for lightweight architectures, where each memory
access is checked.

COMPARISON 43

Ta
bl
e
2.
1:

O
ve
rv
ie
w

of
al
lh

ar
dw

ar
e-
ba

se
d
tr
us
te
d
co
m
pu

tin
g
ar
ch
ite

ct
ur
es

de
ta
ile

d
in

Se
ct
io
n
2.
5.

T
he

y
ar
e
co
m
pa

re
d

w
ith

re
sp
ec
t
to

th
e
se
cu

rit
y
pr
op

er
tie

s
an

d
ar
ch
ite

ct
ur
al

fe
at
ur
es

th
ey

su
pp

or
t.

W
e
al
so

lis
t
w
he

th
er

th
ey

ar
e
op

en
so
ur
ce
,w

er
e
de

ve
lo
pe

d
by

ac
ad

em
ia

or
in
du

st
ry
,a

nd
w
hi
ch

IS
A

w
as

ta
rg
et
ed
.

A
rc
hi
te
ct
ur
e

Se
cu
ri
ty

P
ro
pe

rt
ie
s

A
rc
hi
te
ct
ur
al

Fe
at
ur
es

O
th
er

Is
ol
at
io
n

A
tt
es
ta
tio
n

Se
al
in
g

D
yn
am

ic
R
oT

Co
de

Co
nfi
de
nt
ia
lit
y

Si
de
-C
ha
nn
el
R
es
ist
an
ce1

M
em

or
y
Pr
ot
ec
tio
n2

Li
gh
tw
ei
gh
t

Co
pr
oc
es
so
r

H
W
-O
nl
y
TC

B

Pr
ee
m
pt
io
n

D
yn
am

ic
La
yo
ut

U
pg
ra
de
ab
le
TC

B

Ba
ck
wa
rd
s
Co

m
pa
tib

ili
ty

O
pe
n
So
ur
ce

A
ca
de
m
ic

Ta
rg
et
IS
A

A
E
G
IS

[3
6]

#

#

#

#

#

–
T
P
M

[3
7]

#

#

–
G#

#

–

–
#

#

#
–

T
X
T

[4
0]

G#
#

#

#

#
#

x8
6_

64
T
ru
st
Z
on

e
[4
4]

#

#

#
#

#
#

#
#

#

#
#

A
rm

B
as
ti
on

[4
5]

#

#

#

#
#

#

U
ltr

aS
PA

R
C

SM
A
R
T

[4
6]

#

#

#
–
#

#

#
–

–
#

#

AV

R
/M

SP
43

0
Sa

nc
us

[5
1]

#

#

#

#

#
#

#

M
SP

43
0

So
te
ri
a
[1
7]

#

#

#

#
#

#

M
SP

43
0

Sa
nc
us

2.
0
[5
2]

#

#

#

G#
#

#

M
SP

43
0

Se
cu
re
B
lu
e+

+
[5
5]

#

#

#

#

#

#
#

PO
W

ER
SG

X
[5
7]

#

#

#
#

#
#

x8
6_

64
Is
o-
X

[6
8]

#

#
#

#

#
#

#

O
pe

nR
IS
C

T
ru
st
Li
te

[6
9]

#
#

#

#

#
#

#

Si
sk
iy
ou

Pe
ak

T
yT

A
N

[7
0]

#

#

#
#

#

Si
sk
iy
ou

Pe
ak

Sa
nc
tu
m

[7
1]

#
#

#
#

R
IS
C
-V

T
IM

B
E
R
-V

[7
2]

#
#

#

#
#

R
IS
C
-V

=

Ye
s;
G#

=
Pa

rt
ia
l;
#

=
N
o;

–
=

N
ot

A
pp

lic
ab

le
1 R

es
ist

an
ce

ag
ai
ns
t
so
ftw

ar
e
sid

e-
ch
an

ne
la

tt
ac
ks

ta
rg
et
in
g
m
em

or
y
ac
ce
ss

pa
tt
er
ns

on
ly
.

2 P
ro
te
ct
io
n
fr
om

ph
ys
ic
al

at
ta
ck
s,

bo
th

pa
ss
iv
e
(e
.g
.,
pr
ob

in
g)

an
d
ac
tiv

e
(e
.g
.,
fa
ul
t
in
je
ct
io
n)
.

44 TRUSTED COMPUTING BACKGROUND

It is interesting to see how different architectures implement remote attestation.
Some architectures add a simple attestation protocol in hardware, based on
symmetric primitives. These are cheaper than asymmetric algorithms in terms
of computation and resource requirements. For example, Sancus (Section 2.5.6)
uses an HMAC based on spongent. However, other designs instead opt to move
their attestation functionality to software, relying on hardware mechanisms to
protect it from the rest of the system. In this case, local attestation is used to
secure the on-chip communication with the application being attested. This
approach is especially attractive for complex protocols, like the one from SGX
(Section 2.5.8), which is based on a group signature scheme.

The same approach can be followed for other components of the TCB, especially
for features which are expensive to implement in hardware. It has the additional
advantage that the TCB can be upgraded, since it is partially implemented
in software. The only exception is SMART, where the SW is stored in non-
programmable ROM. In contrast, having a HW-only TCB implies that it cannot
be upgraded. This software will be part of the design’s TCB, though, requiring
users to trust that a potential attacker has no way of modifying its operation.
All architectures have at least part of their TCB implemented in hardware,
which is assumed to be immutable by attackers. Any software component which
is part of the TCB relies on these features. HW-only TCBs can generally give
much stronger guarantees, because no part of the architecture is vulnerable to
software-level attackers. However, if carefully designed and implemented, some
of its components can be moved to software, speeding up development and
increasing flexibility. TrustZone (Section 2.5.3) is the only architecture where a
large amount of software is part of the TCB, because its isolation mechanism
only supports two domains, and therefore includes the secure world OS.

All isolation architectures have similar attacker models (Section 2.3), and
consequently protect against the same types of vulnerabilities. There are
two high-level categories of software attacks: code injection and code reuse
attacks. The isolation mechanism protects against the former, since an attacker
outside the module can no longer modify its code. Furthermore, attestation
enables detection of any changes to the module at the time the measurement is
taken. An entry point prevents external adversaries from performing the latter
(Section 2.4.1). However, neither mechanism can secure against vulnerabilities
found inside the module itself. Software side channels are a third category, but
only Sanctum (Section 2.5.12) addresses a specific instance of this attack class.

The trust boundaries typically extend to the CPU package, but in some cases
external memories and peripherals are also included (Section 1.2.2). This is the
case for the TPM, which is a coprocessor connected to a shared system bus.
Any other components on the same bus are therefore part of the TCB. However,
when external memories and peripherals are not included in the TCB, there is

COMPARISON 45

also protection against physical memory attacks. For example, SecureBlue++
(Section 2.5.7) transparently encrypts and decrypts cache lines when they are
evicted or fetched from memory. Therefore, attackers who probe the memory or
snoop the bus cannot obtain sensitive information. The hardware also maintains
an integrity tree of all entries, defending against active memory attacks.

All discussed architectures modify the processor architecture itself, except
for the TPM (Section 2.5.2). SECA [73] is another instance where the
security mechanisms are integrated outside of the CPU package. Instead,
this architecture enforces configured security contexts at the bus level through
a Security Enforcement Module (SEM). This hardware component monitors
the bus traffic and interrupts the CPU when violations are detected. Different
contexts can be configured by a secure kernel running on the processor, and it
can update the currently active context at any time. For example, a security
context can specify access rights to a specific memory range to isolate it.

Sancus (Section 2.5.6) is an example of a cooperative architecture without
preemption (Section 2.4.2). Such designs often rely on static memory layouts
where all applications are stored in pre-defined memory locations, so that they
know where to call each other. Since only one application is running at the
same time, monopolising all resources, no software side channels exist in these
architectures (Section 2.4.1).

All included designs either give programmers the choice to integrate their
security mechanisms, or enable them transparently. Both approaches result
in fully backwards compatible architectures, and with dynamic loading, the
original binaries can even be used. However, legacy applications remain just as
vulnerable as before in most designs. TrustLite (Section 2.5.10) is one exception,
as its MPU always provides isolation transparently once it has been configured
by the Secure Loader, even for untrusted code.

The goal of isolation is to protect modules from any other software running
on the system. However, these components sometimes need to be able to
communicate with each other, or even with untrusted applications, like the
OS. This IPC is typically implemented in two ways. The fastest is to use
processor registers for passing smaller messages. Larger messages are sent
through shared memory regions. Some architectures even support secure shared
memory, where modules can selectively allow others to access a memory region
(e.g., SecureBlue++ and TIMBER-V).

46 TRUSTED COMPUTING BACKGROUND

2.7 Conclusion

The goal of trusted computing is to protect applications and users from
malicious software. It has increasingly gained interest in recent years, both from
academia and industry, resulting in a variety of new mechanisms. We presented
detailed descriptions of thirteen hardware-based architectures, focusing on
attestation and isolation designs, and compared them with respect to their
security properties and architectural features. Our comparison shows that
all architectures offer strong guarantees, but very few support all possible
trusted computing mechanisms. The main differences are the size of the TCB,
which sometimes contains software, and where the trust boundaries extend to.
Furthermore, not all architectures support certain architectural features.

This chapter shows there has been a lot of work in this area, but researchers do
not have widespread access to these technologies. Academic architectures are
rarely open sourced, making it harder to extend the work of other researchers.
However, this may be changing thanks to the the rising popularity of the open-
source RISC-V ISA. While mature isolation and attestation functionality is
available for both low- and high-end architectures, not all related issues have
been solved. For instance, possible avenues for future work include bringing these
solutions to multi-core embedded systems or studying their interaction with other
system components, like Direct Memory Access (DMA) controllers. Furthermore,
the general decision to not consider software side channels as part of the attacker
model has led to the compromise of trusted computing architectures, including
Sancus [16] and SGX [15]. Finally, while these two mechanisms significantly
reduce the attack surface, we noted that some vulnerabilities remain exploitable.
They therefore do not fully realise the goal of trusted computing, leading to the
development of additional solutions (e.g., CFI).

3 Single-Cycle Implementations of
Block Ciphers

Cryptographic primitives are at the core of all trusted computing
architectures discussed in Chapter 2. Ciphers are one type of primitive
which can be used to protect the confidentiality of data. Both symmetric

and asymmetric encryption algorithms exist, with the former relying on a single
secret that is shared among all parties and the latter using key pairs consisting
of a public and private key. While the private key should be stored securely,
the public key can be shared with anyone. However, as we already mentioned,
asymmetric algorithms have a higher cost, making them less suited for use in
resource-constrained devices.

Because of this, symmetric encryption algorithms are an important building
block for hardware-based trusted computing architectures. Block ciphers are
one instance of such algorithms, which work on fixed-length data elements and
typically have a round-based structure. This chapter gives synthesis results
for unrolled implementations, meaning that its rounds were synthesised as a
single combinational circuit, so that a data block is processed in one cycle. We
consider six families of lightweight ciphers, where the same approach is used for
all of them. Whenever possible, the results are grouped by block and key size
to make a fair comparison with regard to the security they offer.

P. Maene and I. Verbauwhede, “Single-Cycle Implementations of Block
Ciphers”, in Proceedings of the 4th Workshop on Lightweight Cryptography
for Security and Privacy, ser. Lecture Notes in Computer Science, 2015
Contribution: Main author.

Content Source

47

48 SINGLE-CYCLE IMPLEMENTATIONS OF BLOCK CIPHERS

3.1 Introduction

Software applications have always been vulnerable to attacks from malicious
actors. As introduced in Section 2.5.8, SGX automatically encrypts and
decrypts sensitive data when it leaves or enters an enclave, which requires
a fast cipher. Finding suitable low-latency cryptographic algorithms is one of
the biggest challenges when bringing such memory protection functionality to
area-constrained embedded systems.

Additionally, smaller silicon technology nodes make it possible to place more
and more transistors on a single die, and modern SoCs have become many-
core devices. High-bandwidth, packet-switched Networks-on-Chip (NoCs) have
replaced slower buses [75]. Protection of these networks is an open research
question. The underlying ideas of security mechanisms for traditional networks
can be used, but will require fast and efficient cryptographic primitives.

In both these applications, data should be processed as fast as possible and
it is not necessary that the cipher has high throughput. Additionally, design
constraints often limit the clock frequency of these circuits. Therefore, only
a limited number of cycles will be available to finish the encryption within a
given delay and in some cases a single-cycle implementation will be the only
alternative. One approach to achieve this, is by unrolling existing iterative
block ciphers. However, this results in long combinational paths, which have a
high associated delay. As will be shown in this chapter, they can only operate
at such low clock frequencies, the operating speed of the architectures they
are integrated with will be limited. Of course, introducing pipeline registers
would increase the throughput and maximum clock frequency, but at the cost of
additional latency. Another advantage of fully combinational implementations
is that they can be easily integrated with existing designs, because of the lack
of control logic.

The different algorithms discussed in this chapter are AES [76], KATAN [77],
PRESENT [78], PRINCE [79], RECTANGLE [80], SIMON [81] and SPECK [81].
These ciphers were chosen because they cover a wide range of algorithm types
and possible design choices. A similar analysis was done by Knežević et
al. in 2012 [82]. This chapter includes some of the same ciphers, but also
adds results for several recent designs that were introduced since. A short
summary of the best known cryptanalysis results is given for each algorithm,
showing their current security bounds. Section 3.2 first introduces some general
concepts and terminology. Synthesis results for FPGA and ASIC are given in
Section 3.3. Finally, Section 3.4 compares our results, followed by a conclusion
in Section 3.5.

PRELIMINARIES 49

3.2 Preliminaries

Before discussing the selected designs, we provide some background on the
structure of block ciphers and some common design strategies (Section 3.2.1).
Section 3.2.2 and 3.2.3 respectively define logic depth and fan-out, which are
two important circuit properties that influence its latency.

3.2.1 Block Cipher Structure

A block cipher (Definition 3.1 [33]) is a basic cryptographic building block
offering confidentiality of data. It is used in a wide variety of applications, from
protecting communication to generating pseudo-random numbers.

Definition 3.1. An n-bit block cipher is a function E : Vn×K → Vn, such that
for each key K ∈ K, E(P,K) is an invertible mapping (the encryption function
for K) from Vn to Vn, written EK(P). The inverse mapping is the decryption
function, denoted DK(C). C = EK(P) denotes that ciphertext C results from
encrypting plaintext P under K.

Algorithm designers typically use established design techniques when cre-
ating new algorithms. Most current block ciphers are iterated ciphers
(Definition 3.2 [33]). Feistel ciphers (Definition 3.3 [33]) are a special instance
with a particular structure.

Definition 3.2. An iterated block cipher is a block cipher involving the
sequential repetition of an internal function called the round function.
Parameters include the number of rounds r, the block bit-size n, and the bit-size
k of the input key K from which r subkeys Ki (round keys) are derived. For
invertibility (allowing unique decryption), for each value Ki the round function
is a bijection on the round input.

Definition 3.3. A Feistel cipher is an iterated cipher mapping a 2t-bit plaintext
(L0, R0), for t-bit blocks L0 and R0, to a ciphertext (Rr, Lr), through an r-round
process where r ≥ 1. For 1 ≤ i ≤ r, round i maps (Li−1, Ri−1) Ki−−→ (Li, Ri) as
follows: Li = Ri−1, Ri = Li−1 ⊕ f (Ri−1,Ki), where each subkey Ki is derived
from the cipher key K.

Hardware implementations of iterated block ciphers usually have logic for
a single round and a controller that manages the round function iterations.
Consequently, several clock cycles will be required before the result is ready.
It is important to note that the number of clock cycles needed to encrypt a

50 SINGLE-CYCLE IMPLEMENTATIONS OF BLOCK CIPHERS

key

pt

Key
Expansion

Round
Function

. . .

Key
Expansion

Round
Function

ct

Round 1 Round n

Figure 3.1: Structure of unrolled block ciphers (pt: plaintext, ct: ciphertext).

block is a property of the implementation. One way to reduce the number of
cycles is by unrolling the iterations and increasing the amount of combinational
logic (Section 3.2.2). When all rounds are fully unrolled, we obtain single-cycle
implementations with the basic structure shown in Figure 3.1.

It can be seen from Definition 3.2 that each round has two components: the key
expansion and round function. The former generates the subkeys Ki based on
the original key, a previous one or a combination of both. The latter transforms
the input data using the key. In general, the function is identical for each round,
but some algorithms introduce small variations (e.g. a different constant could
be added in each round). The total number of rounds depends on the algorithm
and can vary widely. An operation is sometimes applied to the plaintext before
using it as an input to the first round. The last round’s output can be similarly
modified before using it as the ciphertext.

3.2.2 Logic Depth

The logic depth [83] of a path is defined as the number of combinational gates
between input and output. Since each level of the path has a specific delay
associated with it, the logic depth will be linked to the latency of the circuit.
However, some operations will have a longer intrinsic delay than others, so that
a deep circuit of low-latency gates will have a lower delay than a shallow circuit
with high-latency gates. The logic depth is a property of the implementation,
which is influenced by the design.

Section 3.3 will give the logic depth of the critical path on FPGA for each
algorithm. The critical path of a circuit is the path for which it takes the longest
for the output to stabilise [84], i.e., the one with the longest delay.

SYNTHESIS RESULTS 51

3.2.3 Fan-Out

The fan-out denotes the number of load gates that are connected to the output
of the driving gate [84]. When the fan-out of a gate is large, it will deteriorate
performance because the load on that gate will be very high. This impacts
its dynamic performance and slows down the circuit. The fan-out of a gate is
influenced by the design of the algorithm and how it is implemented. Therefore,
a designer should be careful not to reuse a single intermediate result in a next
step too often. While the intermediates of such high-load gates can be buffered
on ASIC to reduce their negative effect on latency, they will typically increase
the critical path on FPGA.

3.3 Synthesis Results

We now discuss the design criteria and specifications of each block cipher, as
well as its most important results. The best cryptanalysis results known to us
are listed as well. An overview of the properties of all discussed algorithms is
given in Table 3.1. Table 3.2 and Table 3.3 give an overview of all FPGA and
ASIC results respectively. A diagram of the critical path for each cipher is also
drawn. Note that these figures do not show the algorithm’s full data flow, but
rather a simplified version for clarity.

The regular structure (Section 3.2.1) of block ciphers makes it possible to use a
generic approach for unrolling each algorithm. Only the encryption mode of
each cipher was implemented. The area cost of adding decryption will depend
on the design: this requires less overhead compared to encryption for some than
others. Both FPGA and ASIC results are listed, because although most real-
world applications will eventually be produced as ASIC, FPGAs are sometimes
introduced in products, e.g., because they can be upgraded in the field. They
are also heavily used in the development of new hardware.

The FPGA results were obtained after Place and Route (PAR) on a Xilinx
Virtex 6 device in Xilinx ISE. More specifically, the configuration of the Xilinx
ML605 development board was selected (xc6vlx240t-2ff1156). All syntheses
for ASIC were done with UMC’s 130 nm technology in Synopsys Design Vision.

3.3.1 AES

In 1998, Daemen and Rijmen submitted their Rijndael algorithm [76] to the
Advanced Encryption Standard (AES) competition, organised by NIST. Three

52 SINGLE-CYCLE IMPLEMENTATIONS OF BLOCK CIPHERS

Table 3.1: Properties of all implemented algorithms.

Cipher Key Size Block Size Rounds Type Characteristics
AES 128 128 10 SP Network 8-bit S-box

KATAN 80 32 254 Non-Linear Boolean Functions (AND and XOR)64

PRESENT 80 64 31 SP Network 4-bit S-box128
PRINCE 128 64 12 Unrolled 4-bit S-box, Matrix Layer
RECTANGLE 80 64 25 SP Network 4-bit S-box

SIMON 64 32 32 Feistel XOR and Left Cyclic Shift128 64 44

SPECK 64 32 22
XOR, Addition, and Cyclic Shift128 64 27

years later, the design won and it is now known as AES. The implementation
criteria for the AES contest were high throughput, low memory requirements, as
well as hardware and software suitability [85]. It is used for confidentiality in a
wide range of applications, such as the protection of Wi-Fi connections, to secure
web traffic, or hard drive encryption. The Rijndael family can accommodate
any block and key size from 128 to 256 bits, with steps of 32 bits. NIST fixed
the block size at 128 bits, but the key size can be chosen depending on the
required level of security (128, 192, or 256 bits) [86].

The algorithm has the following three basic operations: SubBytes, ShiftRows,
and MixColumns. SubBytes substitutes a state byte with the result of an
S-box look-up. ShiftRows cyclically shifts the state’s rows. MixColumns applies
an invertible linear transformation to each column. AES was not specifically
designed as a low-area or low-latency hardware cipher, but it is included here
as a reference because its algorithm is well-understood and generally known.

The best known shortcut attack that works on the full versions of AES is a
biclique attack from 2011 [87]. It breaks all 10 rounds of AES-128 with a time
complexity of 2126.18 and data complexity of 288. These numbers are still high
enough to have no practical value.

Our implementation for 128-bit keys uses 8,984 LUTs and has a 24.7 ns
combinational delay. On FPGA, logic is responsible for 21.94% of the delay
and routing for 78.06%. These ratios will be very different on ASIC, where
interconnects are more efficient in terms of delay and gates can be placed more
flexibly to minimise routing delay [88, 89]. The logic depth (Section 3.2.2) of
the critical path consists of 52 levels. The S-box look-up of each round accounts
for three levels, or 30 for our design (10 rounds). A diagram of the critical
path for one round is shown in Figure 3.2. The S-box look-up and finite field
multiplication are the most expensive components in terms of delay. However,

SYNTHESIS RESULTS 53

di−1
S � ×

di

ki−1
S

ki

RCi

Figure 3.2: Critical path diagram of one unrolled AES round (RCi: round
constant, �: circular shift, ×: finite field multiplier). The dashed part is the
key expansion, which does not impact the cipher’s latency.

note that the multiplication can be implemented efficiently and without a full
multiplier. Although the key expansion for each round is done in parallel with
the calculations of the round itself and therefore does not appear on the critical
path, it is shown to give an idea of its cost.

The big difference between the logic and routing delay has two causes. First,
the main operations on the critical path are look-ups in big 8-bit S-boxes, which
have long delays. They incur a total delay, i.e., including both logic and routing,
of 11.2 ns, or 45.24%. Second, the input signal to each round has a large fan-out,
slowing down the circuit. This is not caused by a design decision here, but
rather an effect of how the S-box was synthesised.

All S-boxes were implemented with 8-bit to 8-bit Look-Up Tables (LUTs). This
explains the large ASIC area, because LUTs do not map well to ASIC. Note
that implementations which rely on composite field arithmetic yield significantly
better area results, especially in ASIC [90, 91], but longer critical paths.

3.3.2 KATAN

De Cannière et al. designed KATAN and KTANTAN [77] to be used in
RFID tags. Their goal was to build an algorithm with an efficient hardware
implementation, while still achieving reasonable throughput. The family of
ciphers has a fixed key size of 80 bits, but the block size is a parameter (32,
48 or 64 bits). KATAN uses a Linear Feedback Shift Register (LFSR) for the
key expansion. Encryption is done by splitting the state into two parts of
different length and applying a non-linear function to each in every round of
the algorithm. The only difference between KATAN and KTANTAN is that
the latter has a hard-coded key.

Bogdanov and Rechberger [92] first broke the KTANTAN family of ciphers
with a meet-in-the-middle attack that has a time complexity of 275.170 and data

54 SINGLE-CYCLE IMPLEMENTATIONS OF BLOCK CIPHERS

di−1
� ‖

di

ctri

ki−1
� ‖

ki

Figure 3.3: Critical path diagram of one unrolled KATAN round (ctri: LFSR
round counter, �: regular shift). The dashed part is the key expansion, which
does not impact the cipher’s latency.

complexity of 3. So far, there are only known attacks against reduced-round
versions of KATAN, the best of which was found through multi-dimensional
meet-in-the-middle cryptanalysis by Rasoolzadeh and Raddum [93]. It breaks
206 out of 254 rounds of KATAN-32 with a time complexity of 279 and requires
three known plaintexts.

Two versions of KATAN were built: KATAN-32 and KATAN-64 use 32-bit and
64-bit blocks respectively. The former requires 1,064 LUTs and has a critical
path of 41.2 ns. Although it has a very small area, its practical use is limited by
the long delay, due to the large number of rounds. The results for the latter are
similar, with 2,550 LUTs and 47.3 ns. On FPGA, 91.0% of the delay is caused
by routing, and 9.0% by logic for both variations. The logic depth consists of
respectively 62 and 72 levels for the 32- and 64-bit states.

Figure 3.3 shows a diagram of the critical path. The signal runs in parallel
through the paths with the left shift, and XOR and AND gates respectively. Since
it does not cost much to implement a shift in hardware, only the latter will be
in the critical path. Both the key expansion and LFSR round counter (ctri,
which is not shown) can be calculated in parallel and are therefore not part
of the critical path. Although the round function has a small delay, the large
number of rounds explains why a combinational implementation of the overall
algorithm is slow.

The XOR gates have a nine to one delay ratio of routing to logic. In the Virtex
6 FPGA, they are implemented with 6-input LUTs, which have a constant
look-up time of 0.061 ns (the logic delay). The routing delay accounts for the
time needed to get the result to the next LUT. Contrary to the constant logic
delay, it varies slightly depending on the fan-out (Section 3.2.3) and placement
of the design.

SYNTHESIS RESULTS 55

di−1
S P

di

ki−1
S ‖

ki

ctri

Figure 3.4: Critical path diagram of one unrolled PRESENT round. The dashed
part is the key expansion, which does not impact the cipher’s latency.

3.3.3 PRESENT

Like KATAN (Section 3.3.2), PRESENT [78] was created as a lightweight block
cipher for constrained environments. They have very similar characteristics,
but PRESENT has a higher throughput with lower area. In each encryption
round, the state’s nibbles are run through a 4-bit S-box. This is followed by
a permutation layer which moves bits to different positions. The block size is
fixed at 64 bits, but both 80- and 128-bit keys can be used. The variation with
80-bit keys takes up 2,089 LUTs and has a 29.2 ns delay. The one with 128-bit
keys uses 2,203 LUTs and has a critical path of 32.6 ns. Increasing the key size
has a small impact on area and latency.

Full-round attacks exist on both the 80-bit and 128-bit variation, using biclique
cryptanalysis. The best result for PRESENT 64/80 was introduced by Faghihi
Sereshgi et al. [94] and has a time complexity of 279.34 and data complexity
of 222. PRESENT 64/128 was broken by Changhoon Lee [95] with a time
complexity of 2127.81 and data complexity of 219.

On FPGA, 9.0% of the delay is caused by logic and 91.0% by routing for both
key sizes. A diagram of the critical path for one round is shown in Figure 3.4.
In each round, it first passes through the XOR with the subkey, followed by the
S-box look-up and finally the permutation layer. The latter is a very cheap
operation in hardware, as it only requires reordering wires. The XOR gates
have the same characteristics that were mentioned earlier, but the smaller 4-bit
S-boxes have a logic and routing delay similar to other gates. The critical path
of the 80-bit variation has a logic depth of 48 levels, while the 128-bit version
comes in at 52 levels.

56 SINGLE-CYCLE IMPLEMENTATIONS OF BLOCK CIPHERS

3.3.4 PRINCE

PRINCE [79] is the first lightweight block cipher design that focuses on reducing
latency. Traditional block ciphers are iterated algorithms with almost identical
round functions (Section 3.2.1). This similarity is a big advantage to build
compact multi-cycle algorithms, but becomes problematic when the ciphertext
needs to be ready in a single cycle. By deciding on an unrolled structure from
the start, the design space greatly increases, as there is no need for each round
to be identical. An additional requirement for PRINCE was negligible overhead
for the decryption mode.

The algorithm has a symmetric design about a centre matrix multiplication.
Aside from the addition of the expanded key and round constants, the rounds
have two basic operations: a 4-bit S-box and matrix multiplication. The latter
is constructed so that every output bit is influenced by three input bits and is
implemented as an XOR of the selected bits. Three different matrices are used,
but only construction of the symmetric matrix M ′ is given in the original paper.
The matrix M is derived from M ′ by first shifting the input state similarly to
AES’ ShiftRows before the multiplication. Both the block and key size are fixed
to 64 and 128 bits respectively. The 128-bit key input is expanded to 192 bits,
so that three different 64-bit keys are available. k0 and k′0 are used for pre- and
post-whitening respectively, and k1 as the round subkey.

The key k0 and a round constant are added first. Then, there are five rounds in
which the S-box is applied to the state, followed by a multiplication with M ,
and again the addition of a round constant and the key k1 (Figure 3.5). The
centre part of the algorithm applies the S-box, multiplies the result with M ′,
and applies the inverse S-box. This is followed by five inverse rounds, where the
order of the operations is reversed, and the inverse S-box and M−1 are used.
The final step is again the addition of a round constant and key k′0.

Since its publication, the resistance of PRINCE against different attacks has
been investigated. The most recent ones are due to Morawiecki [96], Derbez
and Perrin [97], Canteaut et al. [98] and Zhao et al. [99]. The best known
attack so far is the one by Morawiecki [96]. His meet-in-the-middle approach
compromises 10 out of 12 rounds with an online time complexity of 268 and
data complexity of 257. When the reflection parameter α can be chosen, the
cipher core, i.e. the algorithm without the pre- and post-whitening keys, is fully
broken with a time and data complexity of 241 [100].

PRINCE only needs 1,244 LUTs and has a short critical path of 16.4 ns. It first
passes through the three initial XORs, which are combined in a single LUT. In
the five regular rounds that follow (Figure 3.5), the S-box look-up and matrix
multiplication are also synthesised to a single LUT, as well as the two remaining

SYNTHESIS RESULTS 57

di−1
S

di

k1

RCi

M-Layer

Figure 3.5: Critical path diagram of one regular PRINCE round (RCi: round
constant). The state is multiplied with a matrix in the M-Layer.

XORs. The signal then runs through another S-box look-up and the central
matrix multiplication. The remainder of the path is symmetric, due to the
cipher’s design. On FPGA, routing is responsible for 91.0% of the delay and
logic for 9.0%, which can again be explained by the general gate characteristics
given earlier. The logic depth of the critical path is 26 levels.

The absence of a complicated key expansion does not impact the critical path, as
it can be processed in parallel with the data processing. This was also observed
for the other algorithms, where the key expansion never shows up in the critical
path. However, it does lower the area requirements of the cipher.

3.3.5 RECTANGLE

Published in 2014, RECTANGLE [80] is the most recent cipher discussed here.
It was designed to have good hardware and software performance. The round
function is very simple: first, there is an XOR with the round subkey, followed
by the application of a 4-bit S-box substitution to the state’s columns and a
cyclic shift of its rows over different offsets. The key expansion also has these
two operations, where the S-box is only applied to the zeroth column of the key
state, as well as the addition of an LFSR-generated round constant. The block
size is fixed at 64 bits, but there are two possible key sizes (80 and 128 bits).

Since its introduction, few analyses have been published on RECTANGLE.
Currently, there is only one report about the variation with 80-bit keys by Shan
et al. [101]. Their differential attack breaks 19 out of 25 rounds with a time
complexity of 267.42 and data complexity of 262.

The variation with 80-bit keys takes up 1,682 LUTs and has a 19.4 ns delay,
while the one with 128-bit keys requires 1,730 LUTs and has a critical path
of 19.3 ns. Notice that the latencies for both key sizes are almost identical,
confirming that the key expansion is not part of the critical path. For each
round, the critical path runs through the XOR with the round key, S-box look-up
and circular shift (Figure 3.6). The key expansion can be done in parallel and
is only shown to give an idea of its cost. On FPGA, one LUT combines the

58 SINGLE-CYCLE IMPLEMENTATIONS OF BLOCK CIPHERS

di−1
S �

di

ki−1
S ‖ �

ki

RCi

Figure 3.6: Critical path diagram of one unrolled RECTANGLE round
(�: circular shift, RCi: round constant). The dashed part is the key expansion,
which does not impact the cipher’s latency.

XOR, S-box look-up, and shift. However, the synthesis cannot merge the three
operations in some cases, probably due to placement constraints. The final
component is the XOR with the last subkey (not shown on Figure 3.6). On
FPGA, 8.2% of the delay is caused by logic and 91.8% by routing, which is
expected given the general characteristics of the gates. The logic depth of the
critical path is 41 levels.

3.3.6 SIMON

The designers of SIMON and SPECK (Section 3.3.7) [81] focused on flexibility.
Most lightweight block ciphers have a small number of possible block and key
sizes. This can make it hard to find a suitable algorithm for a specific application.
In contrast, the parameters of SIMON and SPECK give rise to 10 variations.
The block size ranges from 32 to 128 bits and the key size from 64 to 256 bits.

SIMON is a Feistel cipher (Section 3.2.1) where the cipher’s state is split in half
and in each round, the upper part of the input is left unchanged and becomes
the lower part of the output. The round function is applied to the lower part
and assigned to the upper part of the output. SIMON’s round function is very
straightforward: it has just three cyclic shifts, three XOR gates, and one AND
gate. The key expansion is slightly more complicated, but uses similar building
blocks as the round function.

SIMON and SPECK have been analysed for mathematical weaknesses using a
variety of techniques [102], but none have broken the full cipher so far. Note
that some publications are limited to a set of specific parameter pairs. The best
result for SIMON 32/64 at this time is a linear super-trail attack by Ashur [103]
which breaks 24 out of 32 rounds with a time complexity of 263.57 and data
complexity of 231.57.

SYNTHESIS RESULTS 59

di−1
� ‖

di

ki−4
∼

ki

ki−1
� �

zi 3

ki−3

Figure 3.7: Critical path diagram of one unrolled SIMON round (∼: inverter,
�: circular shift, zi: bit from a predefined constant vector). The dashed part is
the key expansion, which does not impact the cipher’s latency.

We implemented two parameter pairs: one with 32-bit blocks and 64-bit keys
and one with 64-bit blocks and 128-bit keys. The former needs 960 LUTs and
has a critical path of 20.4 ns. The latter uses 2,688 LUTs and the output is
ready after 27.3 ns. The critical path runs through a circular shift, AND, and XOR
gate (Figure 3.7). Again, the key expansion is not part of the critical path, but
is only included in the diagram to show its cost. The XOR and AND operations
in each round are combined in a single LUT. On FPGA, 90.0% of the delay is
caused by routing and 10.0% by logic for both variations, which is the ratio we
have seen for the other designs as well. The logic depth of the smallest variation
consists of 34 levels and 46 levels for SIMON 64/128.

3.3.7 SPECK

SPECK was published together with SIMON (Section 3.3.6), and although both
perform well in general, SIMON was optimised for hardware implementations
and SPECK for software. The state is also split in half in SPECK’s design,
but it is not a Feistel cipher, so both halves change in each round. The round
function has even fewer operations than SIMON’s, but an important difference
is the use of one adder. Although trivial in software, this design decision has a
significant impact on hardware performance, as can be seen from the results.

The cryptanalysis overview by the authors of SIMON and SPECK [102] also
lists results for different variants of SPECK. The best known attack against
SPECK 32/64 breaks 15 out of 22 rounds with a time complexity of 261.41 and
data complexity of 229.41 [104].

60 SINGLE-CYCLE IMPLEMENTATIONS OF BLOCK CIPHERS

di−1
� ‖

di

+

ki−1
�

ki

+ li

li−1

� i

Figure 3.8: Critical path diagram of one unrolled SPECK round (�: circular
shift, i: round counter). The dashed part is the key expansion, which does not
impact the cipher’s latency.

Implementations were built for the same two parameter pairs as were used with
SIMON (Section 3.3.6). SPECK 32/64 requires 1,513 LUTs and has a 40.3 ns
delay. SPECK 64/128 uses 3,594 LUTs and has a critical path of 50.3 ns. The
components of the critical path differ between the rounds depending on the
possible optimizations after placement. In general, it runs through the circular
shift, adder chain, and finally the XOR gates (Figure 3.8). Comparing the delay
for both variations, we can clearly see the impact of the adder. On FPGA, logic
is responsible for 33.0% and the wiring for 67.0% for both variations. This is
due to the adders introducing longer logic delays than the basic gates that were
used in all other algorithms. The critical path of SPECK 32/64 has a logic
depth of 124 levels, while SPECK 64/128 comes in at 197 levels. The total delay
caused by the adders is 26.4 ns (65.53%) and 32.8 ns (65.28%) respectively.

3.4 Comparison

Table 3.2 summarises all FPGA results from the previous section, grouped by
block and key size. Looking at the ciphers with 32-bit blocks, SIMON 32/64
has the best performance both in terms of area and throughput. An important
disadvantage are the 64-bit keys, offering only very short-term protection against
small organizations [105]. While KATAN 32/80 uses stronger keys and has
similar area requirements, its large number of rounds results in high latency.

Among the algorithms with 64-bit blocks and 80-bit keys, RECTANGLE is the
smallest and has the shortest latency too. PRESENT has similar characteristics

COMPARISON 61

because they use the same techniques. The difference between the two is only
caused by their S-box design and permutation layer. Although KATAN’s area
is still quite small for these parameters, its latency is the second-highest of all
implementations. The reason for the higher throughput is the bigger block size.

Comparing the results for the last parameter pair (64-bit blocks, 128-bit keys),
PRINCE’s performance really stands out. It is by far the smallest in its
category and not even that far off SIMON 32/64. The latency is the lowest of all
implemented ciphers, which confirms its main design requirement. The numbers
for PRESENT and SIMON are similar, with PRESENT having a slightly smaller
footprint and SIMON being a bit faster. However, as the area of the latter
increases with the parameter size, the variations with small parameters are
most interesting. The circuit is compounded by a large number of additional
rounds when the size of the parameter goes up. SPECK’s results don’t make it
an attractive alternative. The critical path is particularly long because of the
adders in its design.

Looking at the different lightweight ciphers, the performance of AES is
surprisingly good. It has a very large area because of the big S-boxes (8-
bit to 8-bit), but its latency is competitive, given the small number of rounds
and efficient permutation layer. Combined with the 128-bit blocks, this results
in high throughput.

Most ASIC results are in line with the expectations from FPGA. The biggest
surprise is SPECK’s area being smaller than SIMON’s, both for 32- and 64-bit
blocks. A possible explanation for this difference is that the adders can be
mapped better on ASIC than FPGA. Also note that the latency for SPECK
64/128 is very high on ASIC.

It is now possible to make some observations on the design of lightweight ciphers.
Unrolling the rounds of an iterated cipher places all data operations of the
round function on the critical path. Therefore, when an algorithm has more
rounds, the critical path will often be longer as well (Figure 3.9). This is clear
from the results for KATAN, which has a very large number of rounds. It is well
known that regular arithmetic does not perform well in hardware, especially in
terms of latency. SPECK’s performance is a clear indication of this. Big S-boxes
are also expensive, and as can be seen from the AES implementation, they
have a large area requirement, especially in ASIC. Additionally, because they
don’t map well to the FPGA fabric, they have very long delays. The number of
S-boxes used in the round function is of less importance, as they are working
in parallel. Depending on the platform, using multiple-input gates could also
negatively impact the latency (e.g. a four-input XOR can be implemented in a
single LUT on FPGA, while it will result in a cascade of three XORs in ASIC).

62 SINGLE-CYCLE IMPLEMENTATIONS OF BLOCK CIPHERS

Table 3.2: Area, critical path latency, and throughput of the full cipher on
FPGA (italics: best result in a security class, bold: best result overall). All
results are given for an unrolled implementation on a Xilinx Virtex 6 device in
Xilinx ISE.

Cipher Area Latency Throughput
[LUTs] [ns] [Gbit/s]

32/64 SIMON 960 20.4 1.46
SPECK 1,513 40.3 0.74

32/80 KATAN 1,064 41.2 0.72

64/80
KATAN 2,550 47.3 1.26
PRESENT 2,089 29.2 2.04
RECTANGLE 1,682 19.4 3.08

64/128

PRESENT 2,203 32.6 1.83
PRINCE 1,244 16.4 3.64
RECTANGLE 1,730 19.3 3.08
SIMON 2,688 27.3 2.18
SPECK 3,594 50.3 1.19

128/128 AES 8,984 24.7 4.82

Table 3.3: Area, critical path latency, and throughput of the full cipher on ASIC
(italics: best result in a security class, bold: best result overall). All results are
given for an unrolled implementation and were obtained for UMC’s 130 nm
technology in Synopsys Design Vision.

Cipher Area Latency Throughput
[GE] [ns] [Gbit/s]

32/64 SIMON 8,432.00 29.6 1.00
SPECK 5,893.25 82.1 0.36

32/80 KATAN 11,939.50 61.2 0.49

64/80
KATAN 24,766.50 75.8 0.79
PRESENT 22,063.50 39.4 1.51
RECTANGLE 18,160.75 34.87 1.71

64/128

PRESENT 23,005.75 38.1 1.57
PRINCE 9,522.75 22.9 2.60
RECTANGLE 18,935.00 34.68 1.72
SIMON 23,584.00 41.7 1.43
SPECK 16,371.00 182.4 0.33

128/128 AES 126,571.00 61.6 1.93

CONCLUSION 63

10 44 254

50.3

16.4

AES

PRINCE

SPECK-32

RECTANGLE

SPECK-64

PRESENT-80

PRESENT-128

SIMON-32

SIMON-64

KATAN-32

KATAN-64

Rounds

La
te

nc
y

[n
s]

Figure 3.9: The critical path latency of unrolled block cipher implementations
on FPGA, in function of their number of rounds. In general, algorithms with
fewer rounds will have lower latency, as unrolling an iterated cipher will result
in the critical path running through the data operations.

Finally, recommendations for the design of low-latency algorithms follow from
these remarks. When focusing on low latency, having an unrolled design, like
PRINCE, gives significantly better results. Iterated SP networks also perform
well: the delay of small S-boxes is not very high and the permutation layer
can essentially be implemented for free. The number of rounds should be as
low as possible, while still maintaining an acceptable level of security. Small
S-boxes are an interesting component, as they have low latency as well as good
area performance. Lastly, the general design rule to use boolean operations in
hardware designs also applies here.

3.5 Conclusion

In this chapter, we have given synthesis results for unrolled implementations of
six families of lightweight block ciphers, along with AES for reference. It was
shown that PRINCE, the only cipher specifically designed to have low latency,
is the fastest of all implemented algorithms, and also has a very competitive
area. For smaller block sizes, which are useful for some applications, SIMON

64 SINGLE-CYCLE IMPLEMENTATIONS OF BLOCK CIPHERS

has the smallest area and offers good throughput. However, the latency of most
ciphers is too high to be useful in practice. For example, PRINCE runs at
61.039 MHz on the Virtex 6, which is fast compared to the other ciphers, but
is suitable only for small embedded applications. The attainable speed in a
microcontroller will be even lower once it is integrated with other components
that add to the critical path.

The search for new lightweight low-latency ciphers therefore remains an
important future research topic. Furthermore, ciphers are rarely used in isolation,
but rather as a building block in a certain mode of operation, and the design of
this mode will consequently impact the overall performance. In this context, it is
interesting to note that the currently-running NIST Lightweight Cryptography
competition required submissions to be either an Authenticated Encryption
with Associated Data (AEAD) primitive, which simultaneously encrypts and
authenticates messages, or a hash function.

4 Eleutheria: Lightweight Key
Distribution Service

Trusted computing architectures often rely on symmetric ciphers like
those discussed in Chapter 3 and therefore require shared secrets.
Consequently, many designs generate a unique key for each device

at manufacturing time, which is then fused into the hardware. However, one
important issue is how to manage and distribute this key, as symmetric secrets
need to be shared with all communicating parties. To this end, architectures
typically store a copy of these device keys with a remote party, where they
could be compromised, requiring all devices to be replaced.

We present an alternative hardware-based solution, where the device key is
never stored remotely. Instead, the device runs a network service that can be
used by SPs to request the derivation of an application-specific key. This key
derivation is performed in hardware, directly accessing the device-specific key,
which is never exposed to software. The derived key is transmitted securely
to the SP through asymmetric cryptographic algorithms that are implemented
in software. Combining hardware implementations of symmetric ciphers
for common operations with infrequent calls to software-based asymmetric
algorithms, enables high-performance secure applications on embedded devices.

P. Maene and I. Verbauwhede, Eleutheria: Lightweight Key Distribution
Service for Networked Embedded Devices
Contribution: Main author.

Content Source

65

66 ELEUTHERIA: LIGHTWEIGHT KEY DISTRIBUTION SERVICE

4.1 Introduction

With the advent of the IoT, previously unconnected devices are being given
network access. For example, Wireless Sensor Networks (WSNs) monitor
environmental parameters throughout large areas, relying on efficient networking
technologies to interconnect the nodes. Furthermore, modern cars feature tens
of microcontrollers which share information and drive actuators through a
Controller Area Network (CAN). However, networking such devices also exposes
them to remote attackers, no longer requiring physical access to the software
running on them. In August 2016, the Mirai malware infected millions of IoT
devices, like IP cameras, home routers, and printers, turning them into a botnet
to launch large-scale DDoS attacks [107]. Attackers have also managed to take
control of cars [108] and even disrupted industrial control systems (Chapter 1).

In response, researchers and industry have been working on security mechanisms
for lightweight devices, as detailed in Chapter 2. The protection offered by these
architectures is based on hardware implementations of one or more cryptographic
primitives. Designs for resource-constrained devices generally rely on symmetric
algorithms, as asymmetric cryptography is too expensive for regular operations
on resource-constrained platforms. However, this means that they need some
way to share a key with users of the platform. One approach is to program it
in hardware during manufacturing and share it with the device’s owner. As
mentioned, copies of these device keys are typically stored with a remote third
party, where they could be compromised by attackers.

In this chapter, we present Eleutheria (Ancient Greek for freedom), a hardware-
based key distribution service where no copies of the device key are stored
after it has been programmed into the device, simplifying key management
at the same time. Our solution consists of a software-based network service
receiving key requests and a hardware component which derives application-
specific keys, reducing the risk of compromise when fixed symmetric keys are
used in embedded devices. Eleutheria relies on infrequent use of asymmetric
cryptography implemented in software to simplify key management, allowing
application keys to be requested after deployment. The software component of
our service and the application for which the key is requested are included in
the key derivation, implicitly authenticating both. Attackers therefore cannot
modify either of them without changing the resulting key. This software
component can be verified during the initial key request through attestation.

First, we give a more detailed problem statement in Section 4.2 and discuss the
design of Eleutheria (Section 4.3). Next, Section 4.4 details our implementation
for the Zynq, followed by the evaluation in Section 4.5. Finally, we list related
work (Section 4.6) and conclude the chapter (Section 4.7).

PROBLEM STATEMENT 67

4.2 Problem Statement

As introduced in Chapter 2, security architectures for lightweight devices often
rely on symmetric cryptography to realise their functionality, because it is more
efficient and requires fewer resources than asymmetric algorithms. However,
this also means that the symmetric key generally needs to be shared with a
remote third party (Section 4.2.1). Next, Section 4.2.2 lists our assumptions
regarding all involved parties, followed by a description of the attacker model
we consider in Section 4.2.3.

4.2.1 Symmetric Device Keys

Since hardware implementations of asymmetric cryptographic algorithms are
still expensive in terms of efficiency and resources, most hardware-based security
architectures for embedded systems rely on symmetric ciphers. For example,
SMART (Section 2.5.5) is a lightweight remote attestation mechanism, allowing
an external third party to obtain evidence about the device state (Section 2.4.1).

During its attestation protocol, SMART calculates an HMAC in software
using the SHA-1 hash function, which is symmetrically keyed with K stored
in protected memory. This key should not leak, as this would compromise any
authenticity guarantees given by the attestation. On the device, this attestation
key is therefore protected by dedicated memory access control logic, ensuring
that it can only be read by the attestation routine. However, it still needs to
be known by the remote verifier to check the HMAC.

While the authors extensively consider the security of the on-device key storage,
they do not discuss the implications of the verifier having to store these keys too.
Of course, this is justified, as such devices are typically installed in locations
where adversaries have easy physical access, whereas the verifier can save the
keys on a server in a restricted location. However, if this server were to be
compromised, either by local or remote attackers, all keys stored there would
leak. This would require all devices to be replaced or reprogrammed, as the
protocol’s security hinges on the confidentiality of this shared secret. Particularly
in larger deployments, this could be a very expensive operation.

Recall that Sancus is a PMA for embedded devices (Section 2.5.6). Its
cryptographic unit is also based on the HMAC algorithm using the spongent
hash function. Recall that each node is again given a key KN , which is fixed in
hardware. Modules are assigned unique keys by calculating two subsequent key
derivations as defined by Equation 4.1.

68 ELEUTHERIA: LIGHTWEIGHT KEY DISTRIBUTION SERVICE

KN,SP = kdf(KN ,SP)

KN,SP,SM = kdf(KN,SP,SM)
(4.1)

Here, SP is the identity of the SP and SM the one of the software module.
Sancus’ system model assumes that all nodes are owned by a so-called IP. In
order to distribute keys to SPs, this IP again needs to extract the node keys
KN and store them in a database. Similarly to SMART, the security of all
nodes would be compromised if an adversary were to ever obtain this database.

SMART and Sancus are two examples of architectures where our solution
could improve the management and security of the key distribution. However,
Eleutheria is not limited to either, and could be applied to any hardware-based
security mechanism relying on a fixed symmetric secret which needs to be shared
with an external party (e.g., the CFI architecture SOFIA [18]).

4.2.2 System Model

The goal of Eleutheria is to increase the security of key distribution for embedded
devices relying on a fixed, unique key, also improving key management at the
same time. Similar to Sancus, we consider multiple SPs who want to run
applications on a distributed infrastructure (Figure 4.1). They use symmetric
cryptography to communicate confidentially with their deployed applications.
At a high level, there are therefore two parties involved in this scenario. First,
the SPs who want to run their applications on the provided nodes. Second, all
devices are owned and managed by an IP.

The IP installs the devices throughout an unrestricted area and connects them
to a network, enabling remote access. This is also the only way for SPs to
interact with the device, as they are never given physical access. Each device has
a fixed, unique key KD which is initialised during manufacturing. In contrast
to existing solutions, KD is never extracted. SPs require a unique key per
application to exchange secrets with it, which is derived from KD. Authorised
SPs can communicate directly with the devices to request application keys.
Finally, there should also be a communication channel between the SPs and IP.

We assume that the devices consist of typical modern SoCs featuring an
embedded processor, memory, and flash storage. They can range from
lightweight embedded systems with a low-frequency microcontroller, such as
a wireless sensor node, to more powerful platforms. Note that our proposed
solution is not specific to a single architecture and can be adapted to others.

PROBLEM STATEMENT 69

KD,0

App1

App2

Device0

KD,1

App2

App3

Device1

· · ·

IP

SP1 SP2 · · ·

Figure 4.1: The Infrastructure Provider (IP) deploys and manages all devices,
providing remote access to them. Each device has a fixed, unique key KD,
generated during manufacturing. The Software Providers (SPs) can have their
applications deployed by the IP and request a unique key to be derived for each.

4.2.3 Attacker Model

Eleutheria protects against an attacker who wants to learn confidential data
communicated between the SPs and the node, by compromising either the
fixed key KD or any derived application keys. The common model that was
identified in Section 1.2.2 is also applicable here, with this section reiterating
and expanding the relevant assumptions.

Regarding the cryptographic primitives, we assume the Dolev-Yao model, i.e.,
an attacker is allowed to perform protocol-level attacks but cannot break the
used algorithms [8]. At the system level, the adversary is therefore allowed to
attack secure channels established between the different parties, both actively
and passively. However, both the SPs and IPs are assumed to have access to a
limited amount of secure storage which cannot be breached by the attacker.

He also has full control over any software running on the node, but the
architecture should feature memory access control. Section 4.5.3 discusses
this limitation in more detail. Additionally, we assume that its processor does
not allow data execution, e.g., through separate code and data memory ranges
or Data Execution Prevention (DEP).

Finally, the attacker cannot tamper with the device’s hardware. For instance, he
is not allowed to attack the CPU physically, tap the bus, or dump the contents
of its volatile memory. We also consider side-channel attacks on the algorithm
implementations out of scope, in hardware or software, e.g., Differential Power
Analysis (DPA), fault attacks, or cache timing attacks. In addition, we do not
consider DoS attacks, neither at the network level nor locally.

70 ELEUTHERIA: LIGHTWEIGHT KEY DISTRIBUTION SERVICE

KDS
Device

Client
SP

CA
IPCSP

KD,App

PKSP

CSP

Figure 4.2: There are three parties in Eleutheria’s system model, each of
them using different components. The Infrastructure Provider (IP) issues
authorization certificates to Software Providers (SPs), which can then be used
to negotiate a secure channel with the Key Distribution Service (KDS) and
request the derivation of KD,App.

Although the IP is central to the system model, he is regarded as a third party
by the SP, and assumptions made about his behaviour should be specified. We
model the IP as honest-but-curious, following the specification without acting
maliciously, but he does try to learn as much information as possible. Similarly,
we assume that the generated device keys are discarded after programming
them into the hardware.

4.3 Design

Figure 4.2 shows the three parties involved in Eleutheria together with their
respective components. Next, Section 4.3.1 discusses how the IP authorises
SPs to request application keys. We then explain the preparation of binaries
for deployment, and how SPs communicate with the hardware-based Key
Distribution Service (KDS) running on the device (Section 4.3.2). The design
of its software and hardware components are detailed in Section 4.3.3 and
Section 4.3.4 respectively.

4.3.1 Infrastructure Provider

Aside from providing the device infrastructure, the IP also authorises SPs to
request keys. One approach would be to include SP identities directly in the
KDS deployed to each device. However, this would not scale to large device
swarms, as each device would have to be updated whenever privileges are added
or revoked. Rather, the IP acts as a Certificate Authority (CA) and generates
a certificate to give an SP access to the KDS. The certificate’s metadata can
include additional information to further restrict the grant’s validity. For
instance, the SP could be asked to include an application identifier in the
certificate requests, only allowing requests for that application, or access could

DESIGN 71

PKIP SKIP

IP

Figure 4.3: The Infrastructure Provider (IP) authorises Software Providers
(SPs) to request keys by creating certificates signed with SKIP. The public key
PKIP is included in the Key Distribution Service (KDS) running on the device.

be restricted to specific devices. Furthermore, if an SP were to be compromised,
its certificate can be revoked, ensuring that an attacker cannot impersonate the
SP and request its keys or deploy malicious applications.

In order to sign certificates, the IP has his own asymmetric key pair
(PKIP,SKIP). The private key SKIP should be stored securely (e.g., in an
HSM), while the public key PKIP is included in the KDS deployed to the
device. Since this is a long-term key, the devices would only need to be updated
infrequently. When an SP wants authorization to access the KDS, it sends its
public signature key PKSP to the IP (Section 4.3.2). The IP then creates the
certificate CSP for the received key and signs it with his private key SKIP. As
an attacker could send forged certificate requests, they should be authenticated
by the SP, e.g., by signing them with a different long-term key pair shared with
the IP. However, the communication between the IP and SP does not need to
be secure, as no secrets are exchanged. Alternatively, certificate requests could
also be sent out-of-band.

4.3.2 Software Provider

Requesting a unique key KD,App from the device, for instance to share
confidential information with the application, requires three steps. First, the
SP generates an asymmetric key pair (PKSP,SKSP), sending the public key to
the IP for certification. As discussed in Section 4.3.1, IP verifies the identity of
the SP and creates the certificate CSP. This certificate can be verified by the
KDS, authenticating the SP to the device. Second, the SP needs to sign his
application binary with the certified signature key. Third, he sets up a secure
session with the KDS to request the derivation of KD,App.

After receiving the certificate CSP from the IP, the SP uses his private key SKSP
to sign the application binary that will be deployed to the device. There are two
main design reasons for including this signature SIGSP(App) in the application’s
binary. First, the KDS will verify it before starting the key derivation when the

72 ELEUTHERIA: LIGHTWEIGHT KEY DISTRIBUTION SERVICE

PKSP SKSP

CSP

SP

Figure 4.4: The Software Provider (SP) generates an asymmetric key pair,
sending the public key PKSP to the Infrastructure Provider (IP), which then
creates the certificate CSP. This key pair is used to sign application binaries
and to authenticate SP to the Key Distribution Service (KDS).

SP requests a key. Receiving the application key attests the binary’s integrity
at the time of the derivation. Second, it allows multiple SPs to run the exact
same application, as the signature will be unique across providers, therefore
resulting in different binaries and unique keys KD,App (Section 4.3.4).

After deriving the application key, the device needs to send it back to the
provider. Since this key should be kept secret, they have to communicate over
a secure channel. At the start of a session, the KDS and SP therefore go
through a key exchange protocol to establish a session key that will be used to
protect the confidentiality and integrity of the channel. During this protocol,
both parties should mutually authenticate themselves. To this end, the SP will
send CSP to the KDS, which verifies it using PKIP. In addition, the device
is also provisioned with a key pair certified by the IP, as will be discussed in
Section 4.3.3. This device certificate CD is used during the key exchange to
authenticate the device to the SP.

4.3.3 Key Distribution Service

In order to enable SPs requesting application keys, all devices run a service
which can be connected to over the network. This Key Distribution Service
(KDS) is provisioned by the IP when setting up the infrastructure and the
SP can initially verify its integrity through remote attestation. Aside from
a software part, the KDS relies on two hardware components. First, each
device is assigned a unique key KD, generated during manufacturing and fixed
in hardware. This generated key is discarded afterwards and cannot be read
by the IP or SP. Second, the Key Derivation Mechanism (KDM) derives the
application key KD,App.

To keep the hardware cost low, the network service which handles remote key
requests from SPs was designed as a software component. As mentioned in

DESIGN 73

KD

KDM

PKD SKD

CD

Device

Figure 4.5: The Key Distribution Service (KDS) running on the device consists
of software (dashed) and hardware components. The former is responsible
for establishing secure sessions with Software Providers (SPs), while the Key
Derivation Mechanism (KDM) performs the actual key derivation in hardware.
The device key KD is generated by the manufacturer.

Section 4.3.2, a secure channel is established between the KDS and the SP. An
asymmetric key pair (PKD,SKD) is therefore generated by the IP for each device
before deployment. The public key is also certified by him, resulting in CD

which is used to authenticate the device to the SP in the key exchange protocol.
The KDS also verifies the certificate CSP, which authorises the SP to request
keys (Section 4.3.1), closing the connection upon failure. After completing the
protocol, during which PKSP was received as part of CSP, the KDS first checks
the signature SIGSP(App) of the application for which the key request was issued.
If the verification passes, the service invokes the hardware-based KDM to derive
KD,App. Otherwise, the connection to the SP is closed. Finally, the derived key
is securely transmitted back to the SP. This approach has the advantage that
only PKIP needs to be included in the KDS. SPs are authenticated through
their certificate, and PKSP, needed to verify SIGSP(App), is received as part of
the key exchange protocol.

Deployed applications should also have access to their key KD,App when
encrypting or decrypting data sent to or received from the SP. Rather than
calling the KDS as well, they invoke the hardware directly. The KDM ensures
that applications can only request their own key and not that of others. Note
that the binary’s signature is not verified before this derivation.

Once the device has been provisioned with its key pair (PKD,SKD) and the KDS,
the IP first connects to the device and requests an attestation key KD,KDS,SP.
After the device has been deployed, this key can be used to attest that the
original binary is still running. This only needs to be done when an SP initially
requests an application key, as any modifications afterwards would result in
a different KD,App. One possible approach would be for the IP to encrypt
KD,KDS,SP asymmetrically using PKSP. The SP’s identity is included in the
derivation of KD,KDS,SP, ensuring its uniqueness. Before requesting KD,App for
the first time, the SP runs a challenge-response protocol, sending a nonce to the

74 ELEUTHERIA: LIGHTWEIGHT KEY DISTRIBUTION SERVICE

device, which encrypts it using KD,KDS,SP and sends the ciphertext back [109].
Since the SP received KD,KDS,SP from the IP, it can also encrypt the nonce
and compare the result to the received ciphertext, asserting the integrity of
the KDS. The memory access control protects the KDS after this attestation
protocol has been completed, but before the SP’s key request is received.

4.3.4 Key Derivation Mechanism

The actual key derivation is done in hardware by the KDM, which itself performs
two main functions. First, it calculates KD,App from KD using a hardware
implementation of a Key Derivation Function (KDF). Second, its Execution
Monitor (EM) tracks which application is currently running on the processor
to restrict access to itself. Doing this in hardware ensures that KD can be
wired directly to the KDF, never exposing it to software. Furthermore, the
EM prevents software attackers from requesting unauthorised keys. To prevent
access glitches, it is important that the EM is started before the KDF.

Key derivation enables the computation of a set of new keys from older keys [110].
Different key derivation methods have been proposed, based on symmetric
encryption algorithms as well as one-way functions. The latter approach is used
in Eleutheria, relying on a hash function to derive unique application keys from
KD. In addition to the device key KD, the application binary and its signature
by the SP are included in the derivation, as well as the KDS binary:

KD,App = kdf(KD,App,SIGSP(App),KDS) (4.2)

The application itself and its signature are included to ensure that the derived
key is unique for each application. Even when identical binaries would be
deployed by different SPs, recall that adding the signature to the hash will
result in a unique key, because each binary was signed with a different key pair
(PKSP,SKSP). Furthermore, if an attacker tampers with the application, its
binary will change and KD,App will not be calculated correctly. Consequently,
the attacker would not be able to decrypt any secrets protected with this key,
nor could he send forged data to the SP, who would still be using the key from
the initial request. Recall that the application’s signature was verified at that
time, proving to the SP that it had not been tampered with. Similarly, the KDS
is included so that the derived key would change when an attacker tampers
with the service’s binary. The key derivation therefore implicitly authenticates
both the application and the KDS, requiring the original binaries to be running
on the device for the correct key to be derived.

To prevent an attacker from requesting keys for any application, it should
only be possible to derive KD,App when either the application or the KDS are

IMPLEMENTATION 75

running. Therefore, the EM should monitor that the processor is executing
code from their respective memory ranges. Consequently, when a malicious
application tries to request a key for any application other than itself, access to
the hardware should be denied. The KDS range is monitored separately so that
keys can be derived when requests from SPs are serviced.

4.4 Implementation

Eleutheria was prototyped as an IP core for Xilinx’s Zynq architecture, which
features an Arm Cortex-A9 processor combined with FPGA fabric, referred
to as the Processing System (PS) and Programmable Logic (PL) respectively.
All device code is running on the Arm and was implemented in C, while the
software components for the IP and SP were written Go.

Although we built an IP core prototype, our design can be trivially adapted
to integrate directly with the processor (e.g., Sancus’ modified openMSP430).
Compared to an instruction set extension, the hardware of our implementation is
more complex, in particular the EM. However, it is much easier for third parties
to integrate an IP core in an SoC than to modify the processor’s architecture.

This section first gives some background on the cryptographic protocols and
algorithms used in our prototype (Section 4.4.1). The software running at the
IP, SP, and on the device are discussed next in Sections 4.4.2, 4.4.3, and 4.4.4
respectively. Finally, the hardware implementation of the KDF and execution
monitor are detailed (Section 4.4.5). All interactions between the different
parties (Section 4.3) are again shown schematically in Figure 4.6.

4.4.1 Background

Throughout our design, software implementations of asymmetric cryptographic
algorithms and protocols are used. The SIGMA key exchange protocol was
selected to establish secure communication channels. Additionally, efficient
public-key algorithms based on Elliptic Curve Cryptography (ECC) were chosen,
as our solution is designed for lightweight devices. For the same reason, we rely
on a lightweight block cipher-based MAC algorithm. Eleutheria also features an
FPGA-based True Random Number Generator (TRNG) to generate high-quality
randomness, which is not readily available on many embedded platforms.

76 ELEUTHERIA: LIGHTWEIGHT KEY DISTRIBUTION SERVICE

KDS SP IP

PKD,SKD PKSP,SKSP PKIP,SKIP

Deployment

SIGNPKSP

CSP = SIGIP(PKSP)

Calculate
SIGSP(App)

{KDS,App,SIGSP(App)}

DERIVE KD,KDS,SP

KD,KDS,SP

EPKSP(KD,KDS,SP)

Attestation

ATTESTSP,Nonce

Derive
KD,KDS,SP

Q = EKD,KDS,SP(Nonce)

Verify Q

Key Request

DERIVE KD,App

Verify
SIGSP(App)

Derive KD,App

KD,App

Se
ct
io
n
4.
3.
1

Se
ct
io
n
4.
3.
2

Se
ct
io
n
4.
3.
3

Se
ct
io
n
4.
3.
4

Figure 4.6: Overview of the interactions between the parties involved in our
design during the deployment, attestation, and key request stages. Without loss
of generalization, only one application is deployed in this figure. Additionally,
the steps performed during the SIGMA key exchange protocol (Section 4.4.1)
have been left out.

IMPLEMENTATION 77

A B

gx

gy, B,SIGB(gx, gy),MACKm
(B)

A,SIGA(gy, gx),MACKm
(A)

Figure 4.7: Messages exchanged during the basic SIGMA protocol [111]. Here,
A and B are the participants’ identities, gx and gy are the Diffie-Hellman
exponentials, SIG is an asymmetric signature, and MACKm

is an authentication
tag with key Km.

SIGMA

The SIGMA family of protocols by Hugo Krawczyk [111] are authenticated Diffie-
Hellman key exchanges which provide perfect forward secrecy. The motivating
reason for their design was prevention of identity-misbinding attacks. Eleutheria
relies on the basic variant of the protocol without identity protection to exchange
session keys when establishing secure channels.

Note that this exchange involves several cryptographic mechanisms. Further-
more, rather than using the Diffie-Hellman value gxy directly, a keyKm is derived
from it to calculate MACs, along with a session key Ks. Curve25519 [112]
is used for the Diffie-Hellman exchange in our implementation because of its
performance as well as its short key sizes. The related Ed25519 digital signature
scheme [113] protects the exponentials from modification. LightMAC [114] is a
lightweight and efficient authentication primitive based on block cipher calls.
SHA-256 [115] handles deriving Km and Ks by hashing the concatenation of
gxy and a key identifier. Finally, certificates are used as the identities A and B,
again relying on Ed25519 for the authority signatures.

LightMAC

LightMAC [114] is a mode of operation for block ciphers to generate
authentication tags. This gives application designers a lot of flexibility, as
the cipher can be trivially changed depending on the constraints of the target
platform. At a high level, the message is split into blocks of size n− s, where
n is the cipher’s block size and s is the length of a counter. The value of the
counter is prepended to each message block before it is encrypted with the key
K1. After each block cipher call, the ciphertext is XORed with the previous

78 ELEUTHERIA: LIGHTWEIGHT KEY DISTRIBUTION SERVICE

one. After processing the last block, the result is encrypted using a second key
K2 and the resulting ciphertext is truncated to the desired tag length t.

Eleutheria’s implementation uses AES-128 [116], as it is well-established and
can be implemented efficiently in software. Considering that the transmitted
messages are reasonably short and that counter-message pairs need not be unique
across the key, a 16-bit counter is used. Therefore, 112 message bits can be
processed during each block cipher call, limiting the overhead. Straightforward
big-endian encoding is applied to the counter value before it is prepended. The
final ciphertext is not truncated, retaining the full 16-byte tag. SHA-256 is
again used to derive the two required keys K1 and K2 from a single 128-bit key.

True Random Number Generator

One approach to generating random numbers is the use of a Pseudo-Random
Number Generator (PRNG). As its name implies, this is a deterministic
algorithm which output can be predicted if the seed is known. Seeding a
PRNG in an embedded system is difficult due to the lack of entropy sources.
In contrast, TRNGs are typically based on physical noise and generate truly
unpredictable bit sequences. One class of TRNGs are based on sampling
ring oscillators, which have been shown to perform well on FPGA [117]. We
have included a basic ring oscillator-based TRNG in our design to generate
randomness for the cryptographic primitives.

4.4.2 Infrastructure Provider

As discussed in Section 4.3.1, the IP authorises SPs to request keys by creating
a certificate for the SP’s public key. To this end, we built a basic CA based on
fast and short Ed25519 signatures in Go, using Adam Langley’s open-source
implementation [118]. Before deploying devices, the IP first generates the
authority key pair (PKIP,SKIP). Since this is an Ed25519 key pair, the public
and private key are respectively 32 and 64 bytes long. Recall that this public
key is also included in the KDS so that it can verify the certificate’s signature
and the implied authorization grant.

After the SP has generated the key pair (PKSP,SKSP), the IP creates CSP by
signing the public key. Our prototype does not make use of certificate metadata
(e.g., expiration time or application identifiers), but any additional information
would also need to be included in the signature, if it were added. Finally, the
public key and signature are JSON-encoded, representing byte sequences with
hexadecimal characters, and sent to the SP.

IMPLEMENTATION 79

4.4.3 Software Provider

Before an application is deployed, the SP has to sign it with his private key
SKSP (Section 4.3.2). Currently, the KDS and any deployed applications are
compiled into a single bare-metal binary running on the Arm. This binary is
an ELF file with the KDS residing in the text section and all code of each
application assigned to specific sections. One of the tools provided by Xilinx for
their FPGAs is a software IDE. Its GCC-based toolchain for Arm processors
first compiles all source files to object files before linking them together in the
final binary. Since the linker modifies the compiled objects (e.g., to fix up
symbol addresses), application signatures can only be calculated after the link
step. However, they cannot be added to the final binary, as this would shift
its contents, breaking memory addressing. We therefore first generate a binary
object with a 64-byte section for each Ed25519 application signature. These
generated objects are then linked together with the original source objects into
a single bare-metal binary. Next, the contents of each application section are
read to calculate SIGSP(App). Finally, the allocated signature sections in the
ELF file are updated with SIGSP(App).

Another advantage of manipulating the ELF file is that the KDS source code can
use its symbols to avoid hard-coding memory addresses in C, which would have
to be changed whenever the source is updated. As specified in Section 4.3.3,
the KDS verifies SIGSP(App) in software, which requires the application and
its signature to be read from memory. Additionally, the key derivation includes
the memory contents of the application and the KDS.

Once its application is running on the device, the SP can connect to the KDS
running there, establish a secure session, and request the derivation of KD,App.
This client was also developed in Go, implementing the cryptographic primitives
discussed in Section 4.4.1. All messages exchanged between the client and server
are JSON-encoded. The KDS uses the device certificate CD as its identity, so
that the SP can verify whether it is connecting to a genuine device with the IP’s
public key PKIP. Similarly, the SP’s identity is its own certificate CSP, which
contains PKSP. This key is later used by the KDS to verify the application’s
signature. Any protocol errors cause the SP to close the connection to the KDS.

After going through the key exchange, the SP and KDS share a symmetric session
key Ks which is used to encrypt and authenticate messages sent between them.
We reused already implemented primitives to perform Authenticated Encryption
(AE), following the Encrypt-then-MAC (EtM) approach [119]. Messages are first
encrypted with AES-128 in counter mode [120], after which the ciphertext is
processed by LightMAC (Section 4.4.1) to calculate the authentication tag. Note
that unique keys should be derived for both operations, which are obtained by

80 ELEUTHERIA: LIGHTWEIGHT KEY DISTRIBUTION SERVICE

applying a software-based SHA-256 KDF to Ks, which results in an encryption
key Ks,e and MAC key Ks,m (Section 4.4.1).

4.4.4 Key Distribution Service

On the device side, a software service implements all mechanisms involving
asymmetric cryptography and the actual key derivation is calculated in hardware
(Section 4.4.5). Most of the service’s technical details are related to the key
exchange and secure session, which were discussed in the previous section.
However, they were implemented in C here, using open-source implementations
of AES [121], Curve25519 [122], Ed25519 [123], and SHA-256 [121]. The
randomness required to generate the session key pair (y, gy) is sourced from the
TRNG instantiated in the FPGA (Section 4.4.1). Note that Xilinx supports
TCP/IP communication on the Zynq through the lwIP library [124] with drivers
for its Ethernet subsystem.

The KDS first verifies SIGSP(App) (Section 4.3.3), reading the application’s
code and signature from memory. Next, it configures the KDM with the start
address and size of both the application and the KDS, triggering the derivation
of KD,App. Once the calculation has finished, the derived key is read from the
hardware and sent to the SP in an encrypted message. If an error occurs at any
point during this process, the device again closes the connection. Our prototype
also implements the proposed attestation mechanism, showing that it can be
realised without any additional hardware or software.

4.4.5 Key Derivation Mechanism

At the heart of our solution is the hardware responsible for the actual
key derivation (Figure 4.8). The KDM itself implements two main features
(Section 4.3.4). First, it calculates the key derivation by processing KD and the
memory contents of the application as well as the KDS. Second, it monitors
the processor’s execution to ensure that either the requesting application or the
KDS is currently running (Section 4.4.5).

Key Derivation Function

KD,App is derived by hashing the device key, the application, its signature, and
the KDS (Equation 4.2). The KDF in our prototype is based on spongent [125],
a lightweight hash function which can be efficiently implemented in hardware
(Figure 4.9). Furthermore, its design parameters can be tuned depending on

IMPLEMENTATION 81

DMA spongent

Memory KD

CoreSight

CPU

KDM

App Start
App Length
KDS Start
KDS Length

KD,App

Figure 4.8: The Key Distribution Service (KDS) writes the start address and
length of the application as well as itself to configuration registers. In addition
to KD, the Key Derivation Function (KDF) based on spongent processes the
memory contents received via DMA. The configuration values are also used to
setup CoreSight for execution monitoring.

the design’s optimization constraints (e.g., area or throughput). spongent
is a hash function based on a sponge construction. This is an iterated design
which absorbs the variable-length message at a rate of r bits. These message
blocks are processed by XORing them with the first r bits of the b-bit internal
state and then applying the permutation πb to the state. Its size b is the sum
of the rate r and the sponge’s capacity c, which is determined by the rate r
and the size n of the hash. After the absorption phase, the hash is obtained
by squeezing the sponge, repeatedly releasing the first r bits of the state and
permuting it until n bits have been output.

Since our prototype works with 128-bit keys, the spongent-128/256/128 variant
was selected, which has a 128-bit output. Furthermore, it was also chosen for
its 128-bit rate, which has much higher throughput than the 128/128/8 variant,
at the cost of larger area due to the increased state size. Its larger capacity also
results in better security.

The derivation is started when the source address and length of the application
and the KDS are written to the KDM’s memory-mapped configuration registers.
The signature SIGSP(App) resides next to the application in memory, so it
is not necessary to specify its address, adding its length to the application’s
instead. Before calculating the KDF, the KDM first starts the EM using the
configured source addresses and lengths (Section 4.4.5). Once it is running, the
device key KD, which is wired directly to the hash function, is the first block to
be absorbed by spongent. Next, the hardware writes the application’s source
address and length to the DMA configuration registers.

82 ELEUTHERIA: LIGHTWEIGHT KEY DISTRIBUTION SERVICE

πb

KD

b

r

c

DMA

πb

. . .
πb

KD,App

Absorb Squeeze

Figure 4.9: The b-bit state of sponge-based hash functions consists of the rate
r and capacity c, respectively determining the input size and security, and
is processed by the permutation πb. When the key derivation starts, KD is
initially absorbed by the sponge, followed by the Direct Memory Access (DMA)
stream, squeezing out KD,App once the last block has been received.

The KDM connects directly to an instance of Xilinx’s AXI DMA LogiCORE
IP block. The processor’s DDR is memory-mapped to the DMA through an
AXI interconnect with the AXI-Stream output of the DMA wired back to the
KDM. Since the DMA reads 32 bits at a time, four words are buffered before
spongent is called. Once the application and its signature have been processed,
the sequence is repeated with the source address and length of the KDS. Finally,
KD,App is squeezed from the sponge and stored in a memory-mapped register,
from where it can be read unless the EM signals that the KDM should be reset.

Execution Monitor

The final part of our implementation is an IP core-based monitor to observe
the execution status of the processor and prevent the key from being accessed
by unauthorised code. This is needed, as an attacker could otherwise request
the derivation of a key for arbitrary memory regions (Section 4.3.3). Although
execution monitoring is straightforward to implement when the KDM is tightly
integrated into the processor architecture, it is more complex from an external
IP core which does not have direct access to the CPU’s internals.

CoreSight [126] is Arm’s debug and trace technology for its processors. Several
additional components are added to the processor, enabling low-level debugging
of code and even SoC components, giving developers powerful tools going beyond
traditional software debuggers. Furthermore, in contrast to the latter, these
components do not interfere with program execution due to their hardware-based
nature. The Zynq’s Cortex-A9 includes the CoreSight debugging components
(Figure 4.10). First, the Program Trace Macrocell (PTM) traces the occurrence

IMPLEMENTATION 83

CPU PTM

Funnel

ETB
PS

KDM
PL

Figure 4.10: CoreSight is an on-chip debug and trace unit for Arm processors.
Two of its components are used to implement our Execution Monitor (EM).
The Program Trace Macrocell (PTM) can trigger tracing when the processor is
executing in certain memory regions. The Key Derivation Mechanism (KDM)
monitors the Embedded Trace Buffer (ETB) to verify whether tracing is active.

of certain types of instructions, referred to as waypoint instructions (e.g.,
branches), which are sufficient to later reconstruct the program’s control
flow [127]. Since developers are typically interested in tracing a specific
application, it is possible to trigger the PTM conditionally. While its event
system supports building complex conditions, Eleutheria only uses the Address
Range Comparators (ARCs). Second, the Embedded Trace Buffer (ETB) is
a small on-chip memory which can store the trace output. In the context of
CoreSight, the PTM is also referred to as a source and the ETB as a sink.

When the key derivation is started by writing to the KDM’s configuration
registers (Section 4.4.5), it will first set the ETB’s Trace Capture Enable bit
and then initialise the PTM to trace the specified application and KDS ranges.
This involves unlocking the PTM’s configuration registers and setting the
programming bit, after which these ranges are written to the first two ARCs.
Next, the ETMTECR1 register is set to include both range comparators in the
trace start/stop logic. Finally, the programming bit is cleared and the PTM
configuration is locked again. Once the PTM has been configured, the hardware
starts monitoring whether CoreSight is tracing, resetting the key derivation
immediately if it is not. Unfortunately, we could not find a status register
indicating whether tracing is currently active. Therefore, the EM continuously
reads the ETB’s RAM Write Pointer (RWP) register [128] and verifies whether
it advances to check for tracing activity. Since CoreSight only traces so-called
waypoint instructions, the EM allows for up to eight consecutive reads to return
the same value before stopping the derivation.

84 ELEUTHERIA: LIGHTWEIGHT KEY DISTRIBUTION SERVICE

However, these are not the only steps required to setup CoreSight. When the
KDS starts, it initialises the ETB and configures the funnel to source data from
the PTM and sink it into the ETB. Additionally, right before the key derivation
is started and after it has finished, the PTM hardware is respectively enabled
and disabled. The KDS also resets the PTM’s configuration when enabling it,
with all security-critical registers being written by the hardware as discussed
earlier. All configuration, both from hardware and software, is done through
CoreSight’s memory-mapped interface.

4.5 Evaluation

Having detailed the design and implementation of Eleutheria, we will now
discuss the performance of our FPGA-based prototype for different application
sizes (Section 4.5.1) and list area results (Section 4.5.2). Next, Section 4.5.3
will present an informal security argument for our solution.

4.5.1 Performance

We evaluated Eleutheria using Avnet’s ZedBoard as the device running the
KDS. This board features the XC7Z020 Zynq-7020 SoC, 512 MB of DRAM, and
a Gigabit Ethernet port as one of its I/O interfaces. The IP and SP software
components were installed on a machine connected to the same network as
the ZedBoard. All required key pairs and certificates were generated and
respectively included in the KDS or made available to the SP client.

This setup was used to benchmark the execution time required to handle local
and remote key requests for differently sized applications (Table 4.1). We wrote
a simple application which only invokes the KDM to retrieve its key KD,App.
Its ELF section measured 420 bytes and was padded with read-only data for the
different tests. The size of the KDS remained constant at 94.56 KB, including
the required cryptographic algorithms. For local key requests, the execution
times vary from 9.77 ms for 1 KB to 114.00 ms for 1 MB. When requested
remotely, a reply is received after 23.72 and 229.42 ms respectively. The initial
key request should attest the KDS, which adds on average 10.38 ms to these
times. This overhead is fixed because the KDS’s size does not change.

The execution time required to service a local key request was measured on
the Zynq’s Cortex-A9 processor, recording the time required by the application
to configure the KDM and to derive KD,App. As expected, its execution time
increases with the size of the application, as the KDF needs to process more data.

EVALUATION 85

Table 4.1: Execution time needed to service local and remote key requests for
differently sized applications, as well as the performance of retrieving an eight-
byte message when KD,App is used directly and for the SIGMA key exchange
with signature verification. All measurements were obtained for our basic
application padded with read-only data.

Size [KB] Local [ms] Remote [ms] KD,App [ms] SIGMA [ms]
1 9.77 23.72 10.73 13.78

256 35.75 74.88 36.72 39.13
512 61.84 126.54 62.85 64.67

1024 114.00 229.42 115.00 115.52

The performance of a remote request was evaluated on the second networked
machine, which connects to the KDS running on the Zynq to retrieve the
same key KD,App. Comparing these results to those obtained for the local
requests, we can remark two things. First, there is the overhead incurred by
the secure channel, taking 9.95 ms and 11.08 ms respectively on the device
and networked machine. However, while this cost is fixed, the difference with
the local requests continues to increase as the application grows. This can be
explained by the verification of SIGSP(App), which is done in software and
depends on the application size.

Since our scheme targets embedded devices where messages are typically very
short, we also evaluated the performance of an SP requesting an arbitrary
eight-byte value from the application. First, we used KD,App to encrypt the
message measuring the case where the SP has already retrieved the application
key. Second, when the established SIGMA session key is used to encrypt the
response directly, the execution time averaged 11.68 ms. Comparing this average
to the KD,App results in Table 4.1 shows that our design is slower than the
SIGMA key exchange for all but the smallest application in this benchmark.
However, as Eleutheria’s key derivation implicitly authenticates the application
binary, we should therefore also measure the performance when SIGSP(App) is
verified after completing the key exchange but before encrypting the value. In
this case, our design is on average 1.11 times faster (Table 4.1, SIGMA).

Considering that key requests will only be issued infrequently, even our prototype
implementation performs realistically. In particular, remote requests will only
occur after the application has been deployed, because the SP can save the
retrieved key. We have also shown that even the performance of the FPGA-
based prototype of our approach is comparable to traditional mechanisms giving
similar security guarantees. With respect to the latter, note that the current
FPGA implementation of the KDM only runs at 125 MHz, while the Cortex-A9

86 ELEUTHERIA: LIGHTWEIGHT KEY DISTRIBUTION SERVICE

Table 4.2: Area utilization of Eleutheria’s hardware components on a Xilinx
Zynq-7020 FPGA. The requirements for our EM and KDF are also listed.

LUTs Registers Slices
KDM 977 999 307
EM (CoreSight) 148 120 54
KDF (spongent) 341 400 112

TRNG 26 82 32

is clocked at 667.67 MHz. In an ASIC implementation, Eleutheria’s hardware
would also run at higher frequencies.

4.5.2 Area

Table 4.2 lists the required area for both the KDM and TRNG. Our
implementation of the former utilises 977 LUTs and 999 registers. As can
be seen, the CoreSight-based EM does not require a lot of custom hardware in
addition to the processor components. Furthermore, spongent is responsible
for a large part of the register usage. However, it is still very efficient compared
to other hash functions [125]. Note that the current KDF was optimised for
latency, as the 128/256/128 variant has a high rate but larger state. Finally,
the TRNG only requires 26 LUTs and 82 registers, demonstrating that high-
quality randomness sources can be added to embedded systems with very little
cost. Compared to X25519 implementations on the same platform [129, 130],
Eleutheria’s components occupy respectively 70.17% and 60.39% less slices.
The latter publication also lists results for an Ed25519 module, which requires
11,148 LUTs and 2,656 registers.

4.5.3 Security

The goal of our design is to improve the security and management of key
distribution for embedded architectures relying on symmetric device keys. The
former results from the fact that KD is no longer extracted from the hardware,
ensuring that it cannot leak if the IP is ever breached. Conversely, he is only
responsible for authorising SPs to issue key requests and for authenticating the
devices in his infrastructure. Therefore, SPs no longer need to trust the IP
with respect to the confidentiality of any data encrypted under an application
key KD,App, which is derived from KD. Managing the key distribution is also
simplified, as SPs only need to contact the IP once to request a certificate.

EVALUATION 87

When he has received the certificate, the SP can connect independently to the
KDS running on the device to retrieve application keys. Furthermore, the KDS
only needs to be provisioned with PKIP, allowing SPs to be added and removed
after deployment without any reconfiguration.

The security of Eleutheria can be analysed at the local level on the one hand and
at the network level on the other. Recall that the KDF implicitly authenticates
both the KDS and the application itself, meaning that an attacker cannot
tamper with either, as doing so would result in a different KD,App being derived.
Of course, this only holds if the SP initially received the key corresponding
to an unmodified binary, which is guaranteed by the KDS’s verification of the
application signature during the remote key request. This in turn hinges on the
SP remotely attesting whether the original KDS is still running on the device,
right before initially requesting KD,App (Section 4.3.3).

The KDM combines the KDF and EM in a single hardware component,
preventing an attacker from manipulating the connection between them. First,
including the application and KDS binaries in the KDF ensures that the full
memory ranges of both always have to be given. If an adversary were to invoke
the KDM with a shorter or longer range, the function would yield a worthless
key. Second, the EM restricts KDM access to the specified ranges, ensuring
that only the application or the KDS can retrieve KD,App. If they were not
tightly integrated, an attacker could pass different arguments to both. Finally,
KD,App is copied into memory, e.g., to encrypt some data with it or to send it
to the SP over the secure channel. Therefore, memory access control is required
to prevent an adversary from accessing this copy. Alternatively, Eleutheria
can be combined with a trusted computing architecture offering an isolation
mechanism (e.g., TrustZone [44] or Sancus [51]).

Given that it is crucial to our design’s security, we should also consider the
security of our CoreSight-based EM. Since it is only critical that tracing is active
in the specified memory regions, which is enforced in hardware, most of the
initial configuration can be done in software, allowing us to keep the hardware
simple without compromising security. First of all, if an attacker were to tamper
with the CoreSight initialisation code, the key would be derived incorrectly, as
this code is part of the KDS and included in the KDF calculation. Additionally,
tampering with it would likely break tracing, not giving the adversary any
advantage as the key would not be derived. He could also try and interrupt
the application or KDS, e.g., to program one of the free ARCs with his own
memory range, but this would also halt tracing. Furthermore, an attacker could
attempt to write the configuration registers through a debug interface. However,
this would still require these registers to be unlocked and the programming bit
to be set, which again causes tracing to stop [131]. Finally, an attacker could
invoke the KDM without initialising the PTM tracing and instead advance the

88 ELEUTHERIA: LIGHTWEIGHT KEY DISTRIBUTION SERVICE

RWP register manually, simulating trace activity. However, any writes to it are
ignored once the Trace Capture Enable bit has been set [128], which is done by
Eleutheria’s hardware. Consequently, the KDM monitors the state of this bit
and aborts if it is cleared during the key derivation.

At the network level, the key KD,App is sent over a secure channel, protecting
it from an attacker eavesdropping on the traffic between the device and SP.
However, when SKSP is compromised, the SP can be impersonated when
requesting KD,App. In this case, the SP should therefore have the IP revoke the
certificate, e.g., by including it in a Certificate Revocation List (CRL). Rather
than having the device download the CRL and perform the lookup locally, it
would be more resource-efficient if it were to send the SP’s certificate to the IP
for verification when it is received as part of the key exchange. Since the KDS
already includes PKIP, this communication with the IP can also be secured
using the same protocol and algorithms. Note that this involves setting up
a second encrypted channel during the session establishment, incurring the
associated performance overheads.

SKD is similarly vulnerable to extraction, and could be used to perform MitM
attacks. However, KD,App is only transferred when requested by the SP, and as
long as SKD was not obtained before such a request, the application key would
not leak. In case of such an attack, the compromised device should be replaced
and the certificate corresponding to SKD should again be listed on the CRL.
Since performance is of a lesser concern at the SP than on the device, both
having the SP download the CRL as well as using the approach described above
are feasible. Similar to the device, the SP can obtain a copy of PKIP, which
can be used to establish a secure channel to the IP. In order to improve the
performance of the overall key exchange, the SP could continue the protocol
while the verification is pending, i.e., send the third message from Figure 4.7,
closing the connection if CD is encountered on the CRL.

Related to this is the event where the IP would either retain the private key
SKD or create a new certificate CD. Both alternatives allow him to mount a
MitM attack in order to learn KD,App. SPs should therefore trust that the
IP will act as specified, and this also explains why he was modelled as honest
but curious. In this attacker model, the IP never learns KD,App and therefore
cannot decrypt any confidential data sent between the application running
on the device and its SP. If the adversary were to compromise SKIP, already
retrieved application keys would again remain secure, but the entire system
should be reprovisioned immediately as this allows him to execute the same
MitM attacks.

RELATED WORK 89

4.6 Related Work

Many software-based solutions exist where a central entity handles key
distribution or manages authentication credentials [132–134]. For instance,
the Taos OS [132] implements access control through an agent servicing
authentication requests. Among its components is a secure channel manager
which establishes secure connections to other nodes by participating in a key
exchange protocol. This secure channel manager caches these keys, periodically
flushing out old keys.

In the context of distributed wireless sensor networks, lightweight key
management schemes have been studied extensively [135]. This survey clearly
shows that a wide variety of schemes exists with very different approaches.
For instance, some approaches rely on a network-wide master key in order
to establish a pairwise link key between two nodes. A second example are
probabilistic approaches, where each node is randomly assigned a set of keys
from a large pool. In contrast to these schemes, Eleutheria does not perform
key establishment between two devices, but enables a remote party to exchange
a key with an application running on an embedded device, authenticating this
application at the same time.

Job Noorman describes a possible public-key protocol to be used with Sancus
in his dissertation [52]. Together with the module, the SP first sends its public
key to the device, which then generates a key pair (PKSM,SKSM) and sends
the public key to the SP. Data sent to the device can be encrypted using this
key PKSM, while its responses will be protected with PKSP. In contrast to
Eleutheria, his approach replaces the symmetric algorithms. Furthermore, the
IP cannot control which SPs are given access to the device, as their keys are not
certified. Soteria [17] adds support for code confidentiality to Sancus. A special
loader module was developed which decrypts the protected binary. Similar to
Eleutheria, the code of this module is implicitly authenticated, because the key
used to encrypt applications is derived from KN,SPL,SML

, which includes the
module’s code (Equation 4.1).

4.7 Conclusion

We presented the design and implementation of Eleutheria, a lightweight key
distribution service for devices featuring fixed symmetric keys. Rather than
extracting this secret and sharing it with external parties, our solution runs
a network service which can be queried for application-specific keys. In order
to issue such key requests, a certificate signed by the device owner is required,

90 ELEUTHERIA: LIGHTWEIGHT KEY DISTRIBUTION SERVICE

allowing him to grant or revoke authorization to do so. This service invokes
a custom hardware component performing key derivation, directly accessing
the device key. We built an IP core implementation for the Xilinx Zynq-7000
series SoC, which includes a CoreSight-based execution monitor to restrict
hardware accesses. The evaluation of our prototype shows that Eleutheria can
be implemented in real-world systems with low performance overhead and has
similar performance as traditional designs when messages are short.

5 Hardware-Based Memory
Protection Mechanisms

Eencryption algorithms and key distribution are essential components
to build hardware-based trusted computing architectures, and protect
critical information and intellectual property. The latter includes the

program’s code and static data that are deployed to the device. For instance, a
signal processing application running on a sensor node might include proprietary
algorithms with specifically tuned parameters.

In this chapter, we present two designs with novel roots of trust to protect
the confidentiality of code and data by adding new hardware functionality.
First, Atlas is a lightweight architecture that introduces transparent memory
encryption, building on the cipher implementations from Chapter 3. Second,
we extended Sancus (Section 2.5.6) to support loading encrypted binaries.

P. Maene, J. Götzfried, T. Müller, R. de Clercq, F. Freiling and
I. Verbauwhede, “Atlas: Application Confidentiality in Compromised
Embedded Systems”, IEEE Transactions on Dependable and Secure
Computing, vol. PP, no. 99, 2018
Contribution:Main author with Johannes Götzfried, jointly responsible
for design, contributed hardware implementation.

J. Noorman, J. Van Bulck, J. T. Mühlberg, F. Piessens, P. Maene,
B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller and F. Freiling,
“Sancus 2.0: A Low-Cost Security Architecture for IoT Devices”, ACM
Transactions on Privacy and Security, vol. 20, no. 3, 2017
Contribution: Co-author, introduced confidential loading.

Content Sources

91

92 HARDWARE-BASED MEMORY PROTECTION MECHANISMS

5.1 Introduction

Embedded systems are a core component of many products and they are
increasingly networked, driven by the development of the IoT. However, this
exposes them to a much larger attack surface, explaining the need for lightweight
security mechanisms to protect them. For instance, modern cars rely on
microcontrollers, interconnected by a CAN, for a variety of functions from
controlling the brakes and engine to on-board entertainment. Driven by the
increasing complexity of these devices, and in an effort to simplify architecture
design and save cost, manufacturers are integrating functionality onto a smaller
number of those microcontrollers [137]. This means that sensitive applications
now run alongside non-critical ones, increasing the need for security mechanisms
to protect confidentiality and integrity. Among others, the engine control
algorithms are important intellectual property, and its parameters ensure that
the car runs as designed.

However, OSs have been shown to be vulnerable in the past, leading to code and
data compromise in some cases. For instance, Dirty COW [138] is a privilege
escalation vulnerability based on a bug in the way Linux handled copy-on-write
memory, allowing an attacker to gain write access to otherwise read-only memory.
At a lower level, Google’s Project Zero discovered a vulnerability in the Wi-Fi
stack of Broadcom chips [139], enabling a remote adversary to execute arbitrary
code on its Arm Cortex R4 running the firmware. Furthermore, this exploit
eventually led to code execution in the kernel running on the host device’s main
processor [140]. These Wi-Fi chips run a very basic OS (HNDRTE), and while
the attackers did not compromise it directly, it also does not feature many
common security features, allowing memory allocation bugs to be exploited.
Therefore, lightweight protection mechanisms are necessary to ensure the
confidentiality of those algorithms, even when an attacker compromises the
system’s OS and can tamper with any software running on the device.

We present two architectures targeting embedded systems that were extended
with hardware-level confidentiality protection. First, Section 5.2 details the
design and implementation of Atlas, where a transparent encryption unit was
added to the memory hierarchy. This unit automatically encrypts and decrypts
code as well as data, including the identity of the currently running application in
its encryption algorithm. Second, we present an extension to Sancus that enables
loading encrypted applications. Because of the multi-functional cryptographic
building blocks already present, it was possible to introduce this feature with
very little additional area overhead.

ATLAS: TRANSPARENT MEMORY ENCRYPTION 93

5.2 Atlas: Transparent Memory Encryption

This section focuses on protecting the confidentiality of code and data against
system-level attackers through transparent memory encryption. Our solution is
designed to be complementary to traditional MPUs, which are configured by the
OS in order to isolate the memory regions of different applications. However,
when the OS has been exploited, security, and especially confidentiality of
code and data, can no longer be guaranteed. We ensure confidentiality even in
the event of a system compromise, which necessarily requires hardware-based
solutions. Once applications start using these hardware-assisted protection
mechanisms, there also needs to be a way for them to communicate reliably and
securely. In addition, compared to existing trusted computing mechanisms for
these lightweight processors, e.g., based on boundary registers [51], our solution
has lower area overhead, which is fixed for any number of applications.

Atlas is a hardware-based security mechanism protecting application confidenti-
ality against system-level attackers, with a fixed overhead that is independent
of the number of applications running on the system. Furthermore, Atlas
enables the use of shared memory as a lightweight and easy-to-use secure
communication channel, without the need for a dynamic key exchange. We
designed and implemented Atlas by extending the open source LEON3 processor,
including a host toolchain to compile C programs for our architecture. Our
FPGA-based evaluation shows that Atlas has 0.03% cycle overhead compared
to an unmodified binary for a real-world signing application, at the cost of a
four times slower maximal clock and 46.60% area increase.

5.2.1 Architecture

This section first presents our attacker model, followed by a discussion of
Atlas’ system model. We then detail the design of our architecture, giving an
overview of the changes that are made to the processor’s hardware. Finally, we
describe the software changes which are required to enable our application-based,
transparent memory encryption.

Attacker Model

In our model, we assume the attacker wants to extract confidential intellectual
property (e.g., proprietary algorithms) from the application’s code. Furthermore,
he is also looking to obtain confidential data processed by it, which was either
statically compiled or dynamically calculated at runtime. The assumptions

94 HARDWARE-BASED MEMORY PROTECTION MECHANISMS

outlined in Section 1.2.2 are again largely applicable here, except that our
solution does not take network-based attacks into account.

The attacker has system-level privileges, i.e., he can exploit any piece of software
running on the device, including the OS. As long as the OS has not been
compromised, an MPU ensures that applications only access their own memory.
When an attacker has obtained system-level privileges, though, he can read
from and write to any memory location. DoS attacks are considered to be out
of scope. Following the Dolev-Yao model [8], the cryptographic primitives used
in our scheme cannot be broken, but protocol-level attacks are allowed.

In contrast to the general attacker model (Section 1.2.2), our design allows
physical probing of main memory. However, we assume the attacker does not
have access to the CPU’s internal registers or caches, excluding invasive attacks
where the chip is decapsulated. This is a reasonable assumption, since such
attacks require a high level of technical skill, expensive equipment, and take a
long time to plan and execute. For example, Tarnovsky’s attack on the Infineon
SLE 66 microcontroller took six months from planning to execution [141].

System Model

Encrypting memory transparently under a single key is not sufficient to protect
against a system-level attacker, as such a design could not track ownership and
would return any requested data in plaintext. In order to uniquely identify
applications, we define two requirements for Atlas’s system model. First, all
calls to any confidential application have to pass through its entry point, and
applications therefore need to know each other’s location. Second, an application
should not be able to relocate itself to the entry point of another protected
application, as this would give it access to that application’s confidential code
and data.

The entry point corresponds to the first instruction being executed when an
application is called. Atlas satisfies the first constraint by creating a static
layout of all applications running on a single device. Since decryption will
fail when an attacker moves his application and because it is hard for him to
generate a correctly encrypted binary himself, the code encryption mitigates
the second issue. Note that applications are expected to yield control when
finished, as preemption is currently not supported.

In addition to the device key KD, the current implementation of Atlas also
uses a tweak key F (Section 5.2.2). Both keys are unique for each device, and
generated by the system integrator. They are hardwired in the silicon, e.g., by
blowing fuses of the manufactured device.

ATLAS: TRANSPARENT MEMORY ENCRYPTION 95

The secure shared memory feature relies on pre-shared secrets. Since a
confidential application’s static data is encrypted, the communication keys
can be stored securely in memory and decrypted when necessary. Generating
these keys, defining the regions where the applications can read and write
securely shared data, and updating the binary with these parameters are also
done by the integrator.

Architecture Design

Atlas’ encryption unit protects the confidentiality of applications sharing the
same address space. Once memory access control mechanisms relying on software
support have been compromised, applications can read from or write to any given
address. However, the entry point is used as a unique IV, binding dynamically
encrypted data to its application. While a system-level attacker has the ability
to read any location, he will be unable to recover the correct plaintext when
trying to access protected memory.

When the OS has been compromised, the MPU can no longer be trusted
to protect against an attacker modifying memory. As shown earlier, code
encryption prevents an attacker from relocating his code to another application’s
entry point. Although an adversary can now write to any memory location,
data encryption cannot be configured independently and thus, code needs to
be encrypted as well. This increases the attack complexity, as any instruction
manipulating memory needs to be encrypted. Since the attacker does not know
the encryption key, it is hard for him to obtain the instruction’s ciphertext.
Consequently, Atlas protects the confidentiality of code and data against all
software attacks, including relocation attacks.

Encryption Unit Properties The encryption unit is considered to have the
following properties: first, in order to ensure the confidentiality of different
applications, it is able to identify the application to which the current memory
bus request belongs. Second, as one of the design goals is to build a scalable
architecture, it has to be stateless. Finally, to support secure shared memory, it
should be possible to dynamically reconfigure the symmetric key used for data
encryption to one that is shared among the communicating applications. We
discuss the implementation of these properties in Section 5.2.2.

Hardware Architecture As shown in Figure 5.1, the encryption unit is inserted
between the cache and main memory. Once it is turned on, confidential
instructions are automatically decrypted when read, and data is decrypted

96 HARDWARE-BASED MEMORY PROTECTION MECHANISMS

CPU

Instruction Cache Data Cache

Encryption Unit

Memory

Figure 5.1: The memory hierarchy was modified to include an encryption unit.
Encryption and decryption take place right before code and data enter or leave
the cache, manipulating the values read from and written to memory before
they are communicated over the bus.

and encrypted transparently when entering or leaving the cache. Remember
that it is assumed to be impossible for attackers to read the processor’s caches
or internal registers (Section 5.2.1). To prevent leakage, our hardware and
toolchain respectively take care of flushing both caches, and clearing all registers
when the encryption unit mode is changed, e.g., when turning encryption on.

The encryption unit is controlled through custom instructions that were added
to the ISA. They are executed by the application itself and can be used to turn
encryption on or off, e.g., when it does not need confidentiality or in case it
wants to access unprotected memory. Additional instructions are available to
configure and use secure shared memory.

Software Architecture In order to decrypt encrypted code and dynamically
protect data, the currently executing application has to be identifiable. An entry
point is therefore created for each application, which is the very first instruction
that has to be called when execution of an application is started, and takes care
of setting the application’s identity and switching the encryption context. Since
all local and global functions are encrypted, as well as its static data, they will
not be decrypted correctly unless the application was called through its entry
point. During secure execution, an application can turn off data encryption, e.g.,
to write out a final result, but code encryption remains switched on until the
application exits. Furthermore, applications are able to call unprotected code,
but then any affected data will be processed in clear. Protected applications
therefore cannot rely on shared libraries to handle sensitive data, but have to
include the required functionality in their own binary, i.e., link against those
libraries statically.

Applications are not tied to a specific region, and their code and data can be
spread over the entire address space. In particular, the stack is shared between

ATLAS: TRANSPARENT MEMORY ENCRYPTION 97

KS Identifier

KD F

Encryption UnitICache

DCache
IU

CPU

Bus

Memory

Data
Address
Control

Figure 5.2: The encryption unit was added to the LEON3’s cache subsystem.
When encryption is turned off, the original instruction and data signals are sent
to the bus; otherwise, they are routed through the encryption unit. Note that
only the control signals related to the encryption unit are shown.

applications, and the registers of each application are saved to and restored from
this single stack. Due to encryption context switching, stack data, including
saved registers, is encrypted with a different IV for each application.

5.2.2 Implementation

We implemented Atlas by modifying the LEON3 processor from Gaisler, a
32-bit SPARCv8 architecture with a seven-stage pipeline. Furthermore, a
software toolchain was developed to provide the required functionality to compile
applications for our platform.

Hardware

The hardware implementation of Atlas consists of two main parts: first, a newly
designed encryption unit offering the properties described in Section 5.2.1, and
second, custom instructions were added to the Integer Unit (IU) to configure
and control memory encryption. Figure 5.2 shows our modifications to the
LEON3, which features separate set-associative instruction and data caches,
with the latter applying a write-through policy [142]. Since we did not consider
multi-core designs, the LEON3’s L2 cache was not enabled.

Encryption Unit So far, the encryption unit was described as a building block
which satisfies three properties: it can identify the currently running application,

98 HARDWARE-BASED MEMORY PROTECTION MECHANISMS

Identifier

Address

‖ ×

SIMON

Ciphertext

KD

KS

F Plaintext

Figure 5.3: The encryption unit uses SIMON 32/64 in the LRW tweakable
mode of operation. The tweak is a multiplication in the finite field GF(264) of
a tweak key F and IV, which is the concatenation of the application identifier
and the current memory address. The encryption key can be switched from the
fixed device key KD to a configurable pre-shared key KS when secure shared
memory is used.

encrypts data without storing state, and has a reconfigurable key (Section 5.2.1).
Our implementation stores the identifier of the active application in a dedicated
register, which can only be updated through a custom instruction. The device
key KD is always used, except when the encryption unit is configured to enable
secure shared memory. In that case, the unit switches to the secure shared
memory keyKS , which is stored in a dynamically configurable dedicated register.
Note that this key is only used to encrypt and decrypt shared data, with KD

still being used to decrypt protected code.

Figure 5.3 shows a diagram of the encryption unit. The LRW tweakable mode
of operation [143] is used to realise stateless encryption of a single 32-bit word.
The tweak ensures that every message is unique. In this mode, the ciphertext
C is calculated as follows:

C = EK(P ⊕X)⊕X

X = F ⊗ I

where P is the plaintext, X the tweak, EK encryption with key K
(Definition 3.1), F the tweak key, and I the IV. Atlas uses the concatenation of
the application identifier and the memory address that is being read from or
written to as the IV. Both values are 32-bit, so therefore the tweak key F also
has to be 64 bits long and the finite field used for the multiplication is GF(264).
X is then truncated to 32 bits before XORing it with the plaintext and output
of the cipher respectively.

ATLAS: TRANSPARENT MEMORY ENCRYPTION 99

Since any block cipher can be used in this mode of operation, the choice
of algorithm is determined by the word size of the CPU architecture. The
LEON3 is a 32-bit architecture where values are read from and written to
memory at word granularity. In order to reduce the complexity of the memory
controller, a 32-bit block cipher was selected. Additionally, a low-latency single-
cycle implementation was used to ensure that there is no additional cycle
overhead for memory accesses, and to keep the critical path as short as possible.
SIMON 32/64 was shown to be the fastest and smallest algorithm with 32-bit
blocks (Section 3.3). Recall that none of the alternatives with longer keys have
low latencies (e.g., KATAN supports 80-bit keys, but has a two times longer
critical path). Although 64-bit keys offer short term protection against small
organizations [144], we recommend using PRINCE (Section 3.3.4) in case of a
64-bit architecture. It has 64-bit blocks and 128-bit keys, and is the fastest
single-cycle cipher currently available, with very competitive area.

LRW is a tweakable mode of operation like XTS, which is now widely used to
encrypt block devices like hard disks [145, 146]. The reason for choosing LRW
over XTS was that the latter passes through the block cipher twice for each
block, which would result in a longer critical path. LRW has a known weakness
when the plaintext contains the tweak key F . Since the tweak key register
is not accessible directly from software, this is not an issue in our design. In
contrast to other modes of operation (e.g., CTR or CFB), LRW requires an
implementation of the cipher’s decryption function.

However, the memory is never read and written at the same time, enabling
the reuse of encryption components for decryption as an optimization. SIMON
is a Feistel cipher, where decryption is almost identical to encryption, except
that the inputs have to be swapped and the key schedule has to be reversed.
Furthermore, SIMON’s key expansion is linear, thus it can also be performed in
parallel to the round functions for decryption. Therefore, Atlas also includes
a decryption key consisting of the last four subkeys in order to initialise the
key expansion when decrypting. If SIMON were replaced with an encryption
algorithm where the key cannot be expanded in parallel to the round functions
when decrypting, either all subkeys should be fixed in hardware or they would
have to be computed before the round functions are applied. The former would
negatively impact the implementation’s area, while the latter would significantly
increase the critical path. In general, we suggest the use of a block cipher
where encryption and decryption share functionality, and where low-latency
single-cycle implementations can be built. Note that this does incur the area
and latency cost of additional multiplexers where signals are driven differently
when the unit is respectively encrypting or decrypting.

100 HARDWARE-BASED MEMORY PROTECTION MECHANISMS

Custom Instructions Atlas extends the LEON3’s IU with the following eight
new instructions to give software developers access to the new security features.

ENCENTER stores the current value of the program counter in the identifier
register and turns on encryption. It is the first instruction that has to be
called at the entry point of any confidential application.

ENCEXIT clears all registers of the encryption unit and turns off encryption.
It has to be invoked when there is an exit from a confidential application.

ENCPAUSE turns data encryption off without clearing any registers. An
application which wants to write to unprotected memory needs to call
this instruction first.

ENCRESUME turns data encryption on with the currently saved settings,
resuming confidential execution of the running confidential application.

ENCSHMON turns on shared memory encryption. This instruction switches
the data encryption key to KS and zeroes out the application identifier.

ENCSHMOFF turns off shared memory encryption without clearing KS and
resumes isolated execution by switching back to KD.

ENCSETKEY ENCSETEKEY and ENCSETDKEY are respectively used to set the
encryption and decryption key for the SIMON cipher used to secure shared
memory. The full 64-bit key is passed in two general-purpose registers.

To prevent data leakage, the hardware ensures that the instruction and data
cache are always flushed when encryption is enabled or disabled, i.e., when
ENCENTER and ENCEXIT are dispatched. The caches are not flushed during
ENCPAUSE, ENCRESUME, ENCSHMON, or ENCSHMOFF, as they are executed by
protected code which can be assumed to not leak confidential information.
Finally, this also means that except for ENCENTER, these instructions will always
be encrypted in the binary.

The SPARCv8 ISA defines three general formats that are used to encode
operations [147]. We identified an unused value of the second format’s op2
field for all instructions defined above except for ENCSETEKEY and ENCSETDKEY.
Since none of these have need of the imm22 field, we used its three LSBs to
represent the different encryption unit operations. Both ENCSETKEY variants
were encoded using SPARCv8’s third format, passing the two registers holding
the key in the source register operands rs1 and rs2. In order to disambiguate
setting the encryption and decryption key, we could employ the LSB of rd, as
neither operation has a return value. Finally, the LEON3’s decode stage was
updated to recognise these instructions and trigger the relevant functionality

ATLAS: TRANSPARENT MEMORY ENCRYPTION 101

in the encryption unit, replacing them with bubbles for the remaining original
pipeline stages.

Software

In order to use Atlas’ features, the new instructions need to be dispatched at
some point. To this end, we developed a toolchain to expose the functionality
to programmers as transparently as possible. With our toolchain, normal C
programs can be compiled and linked for the modified core, while the programmer
only needs to properly divide the functionality into confidential and unprotected
code. To this end, we use ELF rewriting with relocatable object files and
executables, i.e., no compiler patch is needed. Our tooling can therefore be
easily combined with other existing toolchains.

Confidential Applications Code and data of a confidential application are
transparently protected by the encryption unit. With our toolchain, the
programmer can define which files constitute such a confidential application. The
remaining functionality of all other source files is considered to be unprotected.
Each application can be written in standard C code, and programmers have the
ability to annotate their code with macros. These enable them to call into other
confidential applications without leaking any data but the supplied parameters.

Control Flow Rewriting After each confidential application has been compiled,
our toolchain parses all relocatable object files and identifies calls from
unprotected code to a confidential application or vice versa. These calls are then
rewritten to go through entry and exit routines, which switch the encryption
context. Identifiers for the target function as well as the originating function
and application are passed in registers, preserving the original control flow.

The context of a confidential application, i.e., all callee-saved registers, is saved
and cleared before the context switch, and restored afterwards. Caller-saved
registers which are not used for passing arguments are cleared to ensure that
no data leaks.

Encryption Since our toolchain supports standard C code, we also provide
built-in support for encrypting confidential applications. The code and static
data of each application are both placed in separate text and data sections,
except for the entry and exit stubs. After the linking step, our toolchain parses
the executable file to locate these sections, and encrypts them. Furthermore, it

102 HARDWARE-BASED MEMORY PROTECTION MECHANISMS

looks for all stubs belonging to the application in the main text section, and
encrypts those as well.

One implementation aspect we would like to discuss explicitly is the encryption
of the GCC integer library routines. On platforms where hardware support for
certain mathematical functionality is not available, the compiler automatically
inserts code implementing the missing operators. This only happens during the
final link stage, and these routines are therefore only inserted into the binary
once. Since this is done transparently to the programmer, they could be called
from confidential code as well. One solution would be to keep these functions in
unprotected code, and again perform the control flow rewriting outlined above.
However, this would incur the overhead of switching the encryption context on
every call and also mean that their parameters are passed in the clear. Our
toolchain therefore ensures that copies of these functions are added to each
protected application by partially linking its sources first. The compiled object
is then encrypted like any other code in the protected application.

Atlas Library While most of our software implementation is part of the
toolchain, we also provide a library for programmers. In addition to the
annotation macros, we include library functions for copying data between
confidential applications and unprotected code, as well as template functions
for opening and accessing secure shared memory sections between different
applications. Helper functions are included to set a shared precomputed key,
and to copy from and to these sections. Furthermore, we provide a generator
to create these routines for an arbitrary number of applications.

5.2.3 Evaluation

In this section, Atlas is first evaluated regarding performance and area on FPGA.
We obtained results for the Digilent Atlys and Xilinx ML605 development boards,
which have Xilinx Spartan 6 and Virtex 6 FPGAs respectively. The LEON3’s
default cache configuration for both these boards includes a 16 KB 2-way
instruction cache with 32-byte lines and a smaller 8 KB 2-way data cache using
16-byte lines, where both rely on the Least Recently Used (LRU) replacement
algorithm. Xilinx ISE 14.7 was used for synthesis, place, and route. Next, we
also informally argue the security of our design.

ATLAS: TRANSPARENT MEMORY ENCRYPTION 103

KS Identifier

KD F

Encryption UnitICache

DCache
IU

CPU

Bus

Figure 5.4: Synthesis of our prototype for two Xilinx FPGA boards confirms
that the critical path of the modified core runs through the encryption unit. In
detail, it starts from the cache’s memory instance, passes through the block
cipher implementation, and terminates at the bus.

Performance

Critical Path Since the memory hierarchy is part of a processor’s critical path,
and given that single-cycle implementations of encryption algorithms result in
long combinational circuits (Chapter 3), the maximum clock frequency of Atlas
is reduced compared to the original design. Our synthesis results confirm that
the critical path runs from the memory instance of the instruction or data cache,
respectively on the Atlys and ML605, through the block cipher implementation
of the encryption unit, to the buffer registers at the bus interface (Figure 5.4).

On the Atlys, the original design can run at a maximum frequency of 78.57
MHz, whereas Atlas can be clocked at 19.05 MHz. We saw similar results on
the ML605, where the original maximum frequency of 109.09 MHz was reduced
to 31.58 MHz. However, embedded systems are typically designed for low power
and therefore not clocked at the maximum possible frequency [148], so that the
actual overhead therefore depends on the application. If the maximum possible
frequency of a single-cycle design would not be sufficient, the cipher could be
serialised or pipelined to improve performance, trading latency for delay on
memory operations.

Microbenchmark Three microbenchmarks have been run on our evaluation
platform to measure the performance impact of our toolchain. The first is an
application which invokes a confidential one that simply returns. To show the
overhead between entering a confidential application and a regular call, we
compiled this application with a vanilla GCC toolchain as well as our modified
one. The former finishes in 87 cycles, while the latter executes in 227 cycles.
The secure context switch and cache flush, which ensure that no confidential
data will leak, are responsible for this overhead.

104 HARDWARE-BASED MEMORY PROTECTION MECHANISMS

Where the former benchmark measured the direct overhead of the context
switch, our second benchmark evaluates the penalty of restarting execution with
a flushed cache. To this end, we call 1,000 times into a confidential application
that reads 128 bytes of data, unrolling both operations to ensure instruction
cache utilization. This evaluation was run on an unmodified LEON3 with
the same architectural settings as Atlas, except for two additional hardware
breakpoints. Since the original GCC toolchain and processor source are used, the
overhead from the first benchmark is not incurred here. We ran the evaluation
binary first without any flushes, and then by setting up the debugger to break
when entering and leaving the confidential application, clearing the cache before
continuing. This configuration allows us to measure just the worst-case indirect
overhead of Atlas’ hardware-based cache flushes, revealing a 75% slowdown.

Third, we copied 1 KB of data from a confidential application to unprotected
memory. This requires encryption to be switched off and on repeatedly, as each
data element needs to be loaded into a register while encryption is enabled and
written back to memory after it has been disabled. This operation is 4.56 times
slower than memcpy, due to the encryption context being paused and resumed.

Macrobenchmark To demonstrate the overhead Atlas imposes on real-
world programs, we wrote an example signing application, which consists of
unprotected code and a confidential application with static encrypted data.
A message is passed from unprotected code to the confidential application,
where it is signed with an asymmetric private key stored securely in the static
data section. The signed message is then passed back to unprotected code,
where the signature is verified with the corresponding public key. In addition
to the overhead imposed by the confidential application call, the message and
signature respectively have to be copied from and to unprotected memory. The
TweetNaCl [85] library is used for the signature generation and verification.

We compiled this application with both an unmodified GCC toolchain and our
modified one. The combination of its write-through data cache and the write
strobe functionality of its bus, allows the LEON3 to transfer only the modified
bytes when partial writes are issued, breaking Atlas’ encryption which requires
the full word. Therefore, stb or sth cannot be used in our current prototype, and
the benchmark was run with data encryption disabled. Addressing this would
require modifying the cache architecture to always write all 32 bits, possibly
causing a cache line to be read if that data is not present. Section 5.2.5 further
discusses this point for architectures with different characteristics. However,
since all other modifications to the core remained in place (e.g., cache flushes)
and as the cipher implementation is fully unrolled, with the design clocked at
the same frequency, the performance results are not affected.

ATLAS: TRANSPARENT MEMORY ENCRYPTION 105

Table 5.1: Area in terms of registers, LUTs and occupied slices of an unmodified
LEON3, compared to our core on FPGA.

Unmodified Atlas Overhead
Digilent Atlys
Slices 2,496 3,659 46.59%
Registers 3,070 3,333 8.57%
LUTs 6,261 9,726 55.34%

Xilinx ML605
Slices 5,519 7,970 44.41%
Registers 11,021 12,046 9.30%
LUTs 13,070 18,482 41.40%

For both binaries, the execution time was measured with and without copying
to and from protected memory. The binary which has all Atlas features enabled
imposes an overall overhead of 0.03% compared to the GCC-compiled binary
without any secure copies. When secure copies are disabled in the binary
compiled with our toolchain, execution takes on average 449 cycles longer than
the 1,625,595 cycles of the reference binary. When compiled with GCC and
secure copies enabled, the overhead is equal to 0.02%. Recall that both caches
are flushed during the execution of ENCENTER and ENCEXIT, which contribute
significantly to the reported overhead. For comparison, when the toolchain-
compiled binary with secure copies enabled is executed on an Atlas core where
these flushes were removed, the overhead drops to 0.02%.

Area

The area usage of Atlas was measured after Xilinx ISE finished place and
route. An unmodified LEON3 synthesised with the same settings occupies 2,496
slices on the Atlys. Atlas occupies 3,659 slices, resulting in an overhead of
46.60% (Table 5.1). To reduce the number of required gates, the same cipher
core is reused for encryption and decryption (Section 5.2.2). Although SIMON
is the smallest cipher currently available, cryptographic primitives remain
expensive in terms of area, especially in case of single-cycle implementations.
As mentioned before, a serialised implementation could also further improve
the area requirements.

106 HARDWARE-BASED MEMORY PROTECTION MECHANISMS

Security

The goal of Atlas is to protect the confidentiality of code and data on embedded
systems, even when the device’s OS has been compromised. This is realised by
adding an encryption unit to the memory hierarchy, which transparently encrypts
any data leaving the processor and decrypts incoming transfers. The encryption
unit is controlled through a set of dedicated instructions (Section 5.2.2). As
discussed, ENCENTER is the first instruction of protected applications and the
only one which is stored in plain. When called, the current value of the program
counter is copied to the dedicated identifier register. Since this instruction has
to be executed for that register to be set, an attacker or malicious OS cannot
directly control its value. Consequently, this prevents the encryption unit from
being used as a decryption oracle. Furthermore, an attacker cannot replace the
code following ENCENTER, e.g., to read out secrets included in the binary, as
this requires knowledge of KD. Finally, note that cleartext code and data are
stored in the processor’s caches. Considering that an attacker cannot generate
correctly encrypted code, he would first have to turn encryption off if he were to
try and access cached code or data. However, recall that all caches are flushed
from hardware when ENCEXIT is executed (Section 5.2.1).

When the secure shared memory functionality is used, the encryption unit
operates differently. In particular, the application identifier is set to zero and
KS is used for encryption, which can be set dynamically. The security of
this mode hinges on the fact that each application accessing the secure shared
memory region includes KS as static data, which is encrypted using KD and
the application identifier. Therefore, the attacker is not able to learn this key,
as it is secured by the encryption unit.

Lastly, we also protect against some classes of physical attacks, specifically main
memory probing. This relies on the fact that the encryption unit is inserted
between the memory bus and caches (Figure 5.2). Code and data are therefore
only decrypted within the processor’s boundaries and there is no point where
a probing attacker can tap cleartext from the bus or read confidential data
directly from main memory.

5.2.4 Related Work

Many solutions guaranteeing code and data confidentiality have already been
proposed. This section first discusses software-based memory encryption
approaches, and then presents hardware-based architectures.

ATLAS: TRANSPARENT MEMORY ENCRYPTION 107

Software-Based Memory Encryption

Software-based memory encryption solutions [149] can be used to ensure
confidentiality of code and data. This has been done at different levels of the
memory hierarchy, from protecting only swap storage [150], to process memory
ranges [151, 152], and even the whole RAM [153, 154]. While software-based
memory encryption has the advantage of compatibility, it also negatively impacts
performance and, more importantly, can only prevent memory probing attacks.
Furthermore, it cannot protect applications from a system-level attacker.

CPU-based encryption is somewhat related to our work but only protects a
small fraction of sensitive data. Symmetric encryption schemes range from
register-based approaches as an OS patch [155, 156] to solutions relying on
hypervisors [157] and caches [158]. There even exist mechanisms to protect
asymmetric encryption algorithms, as it turned out that asymmetric keys can be
recovered from memory as well [159, 160]. In particular, RSA implementations
exist that are either register-based [161, 162] or rely on hardware transactional
memory [163]. However, all these solutions just keep the encryption key and
intermediate data out of memory, but not any other sensitive information,
because they only have limited secure storage available. In contrast, our
encryption unit is inserted directly in the memory hierarchy between the cache
and main memory, ensuring that confidential code or data is protected as soon
as it leaves the processor package.

As mentioned before, full-disk encryption [145, 146] uses cryptographic primitives
to protect data at rest, as it addresses a related problem. However, these
solutions deal with much larger storage sizes than Atlas and also have very
different latency requirements. Current solutions typically rely on the XTS mode
of operation [164, 165]. XTS is almost identical to LRW, its main differences
being that the tweak i is first encrypted and that the second multiplicand is equal
to αj , where j is the IV. In addition, if the last plaintext block is smaller than
the block size, it is padded with bits from the previous ciphertext. Finally, when
applied to standard sector-level disk encryption, data units typically correspond
to logical blocks [164]. Note that disk encryption solutions are length-preserving
and therefore do not authenticate the encrypted data, instead relying on the
fact that the ciphertext is not malleable [145]. Atlas was similarly designed to
transparently encrypt and decrypt memory, but does use application-specific
keys to prevent different applications from accessing unauthorised data.

108 HARDWARE-BASED MEMORY PROTECTION MECHANISMS

Hardware-Based Memory Encryption

Intel’s SGX, which was detailed in Section 2.5.8, provides a general hardware
base for strict isolation of applications on x86. Recall that the MEE dynamically
encrypts code and data leaving the cache to protect the confidentiality of
applications in untrusted memory. In contrast to Atlas, SGX uses multiple
configuration structures which are stored in memory, nor is its hardware overhead
considered lightweight.

Researchers at IBM also proposed an architecture called SecureBlue++
(Section 2.5.7), protecting the confidentiality and integrity of an application’s
cache lines when they are evicted to main memory. Although it guarantees
integrity in addition to confidentiality, an important difference compared to
Atlas is that its confidentiality protection functionality relies on hardware
implementations of several cryptographic primitives, thus drastically increasing
the memory controller’s complexity. As we have seen, binaries are encrypted
using a symmetric key, which is itself encrypted asymmetrically and decrypted
in hardware when entering the secure mode. While more flexible in terms of
key distribution compared to Atlas, this means that an expensive hardware
implementation of an asymmetric algorithm is required as well.

For embedded systems, many solutions build on the concept of PMAs.
Sancus [51] is a security architecture for lightweight devices, providing
isolation and attestation. Its memory access control mechanism consists of a
combinational circuit which checks the current memory address against a set
of boundary registers. Two pairs of registers are added, storing the start and
end addresses of the text and data section respectively. Access to the memory
regions specified by the registers is then restricted based on the current value of
the processor’s program counter. Soteria [17] further extends Sancus, protecting
intellectual property at load time through encryption and during runtime with
the help of Sancus’ dedicated memory access logic in hardware.

All these lightweight solutions have in common that they need to maintain
state per application. Furthermore, the overhead of Atlas in terms of LUTs
on similar FPGAs is comparable to the fixed LUT overhead of Sancus. Our
design requires significantly fewer registers, but has a greater impact on the
critical path, at least until ciphers with lower latency become available. Finally,
in contrast to Atlas, most solutions relying on PMAs cannot be used with more
complex memory hierarchies including caches.

ATLAS: TRANSPARENT MEMORY ENCRYPTION 109

5.2.5 Discussion

In this section, we first consider open issues of Atlas’ current prototype
implementation, focusing on unsupported SPARC features and function pointers.
Possible future improvements are identified next, including the impact of
alternative cache designs and ways to reduce the critical path overhead.

Limitations

Atlas does not support SPARC register windows, requiring flat compilation
of software. The reason is that overflowing or underflowing register windows
triggers an interrupt, which currently cannot be handled by Atlas. Enabling
interrupts in the current design would violate our security policy, as they
circumvent the encryption context switch.

Furthermore, function pointers cannot be used currently for calls between
applications. Since it is impossible to reliably determine the destination address
of calculated calls at compile or link time, our toolchain would not be able
to rewrite control flow to jump through the application’s entry point which
initialises the encryption unit. However, this could be addressed by making use
of binary translation techniques which do not rely on relocation information,
but rather insert code at indirect call sites to dynamically rewrite control flow
to the new location [166].

Future Work

Encrypting on word granularity leads to small block sizes of 32 bits, which
would change when porting our design to a 64-bit architecture, allowing stronger
algorithms to be used, such as PRINCE (Section 3.3.4). Alternatively, two words
could be encrypted simultaneously, but this would significantly complicate the
encryption unit’s design and impact performance, as reads would require both
words to be fetched. Similarly, writes might incur a read, because encryption
always needs to be performed with both words. Finally, the encryption unit
could operate on cache line granularity in systems with write-back caches,
as encryption and decryption would respectively take place when lines are
flushed and loaded. Since these lines consist of multiple words, it would be
straightforward to use ciphers with larger block and key sizes, nor would partial
word transactions have to be accounted for.

As mentioned, serialising the cipher would improve the clock frequency overhead
and further reduce the area requirements of Atlas. Alternatively, the encryption

110 HARDWARE-BASED MEMORY PROTECTION MECHANISMS

unit could be pipelined, resulting in a shorter critical path and higher throughput.
Both approaches would impose a cycle cost on each memory access, as the
processor would have to wait for the encryption unit. Therefore, finding a good
trade-off between both presents an interesting design challenge.

5.3 Sancus 2.0: Confidential Loading of Modules

Sancus (Section 2.5.6) is a lightweight PMA for networked embedded devices
featuring isolation and attestation. It was first published in 2013 [51],
but continuous contributions by different researchers resulted in a second
publication [52]. Originally, Sancus’ memory access logic allowed the text
section of an SM to be read from unprotected code or another SM. Furthermore,
modifying the memory access logic to prevent these accesses would only protect
a module’s code after it has been loaded. It could therefore still be read from
memory beforehand, comprising its confidentiality.

Addressing this limitation, Soteria (Section 2.5.6) extended Sancus to enable
loading of confidential code. While it required small hardware modifications,
Soteria mainly relied on a special loader module implemented in software. This
loader module decrypts the protected module, which is encrypted using AES-
CCM. However, given the low frequency of the microcontrollers targeted by
Sancus, this process is slow [17]. In order to speed up this operation, we added
hardware support for confidential loading of modules, which required little
additional resources due to the presence of a flexible cryptographic primitive.

This section first details how the original design of the protect instruction was
modified to support confidential loading (Section 5.3.1). Next, we discuss its
implementation in Section 5.3.2 and finally list evaluation results, comparing
the hardware-based implementation to Soteria (Section 5.3.3).

5.3.1 Design

While Section 2.5.6 summarises the design and implementation of Sancus, we
now provide additional technical detail to support our description of the
confidential loading functionality. One of Sancus’ core components is the
protected storage area, which consists of dedicated registers holding a module’s
metadata (Figure 2.4). These registers are initialised when the protect
instruction is called as follows:

protect layout, SP

SANCUS 2.0: CONFIDENTIAL LOADING OF MODULES 111

Table 5.2: In the original design, the combinational Memory Access Logic
(MAL) circuit enforces the following rights on every memory request for all
enabled Software Modules (SMs). Note that the entry point and text section
are readable from unprotected memory and other SMs.

From/To Entry Text Data Unprotected
Entry r-x r-x rw- rwx
Text r-x r-x rw- rwx
Unprotected
Other SM r-x r-- --- rwx

Recall that a module’s identity includes the start and end address of both its
text and data section, as well the contents of the text section and is used to
calculate KN,SP,SM from KSP. The latter is derived from the node key KN

and the SP’s identity, which is the second argument to protect. When this
instruction is issued, the processor’s hardware will (i) check that the layout
does not to overlap with existing modules, and register a new module by storing
its layout in the protected storage area; (ii) enable memory access control
(Table 5.2); (iii) derive the module key KN,SP,SM using the text section and
layout of the actually loaded module and store it in the protected storage area.

Execution of this instruction therefore requires a hardware implementation
of the KDF to calculate the module key. Furthermore, it is worth repeating
that Sancus’ attestation functionality uses a MAC function to calculate its
measurements, which should also be available as part of the processor.

Having detailed the original design of protect, we now discuss how it was
modified to support confidential loading of modules. The code of these modules
is stored encrypted in memory up until they are enabled, when it is decrypted
and protected by the processor. In order to ensure that an attacker cannot
obtain a copy of the plaintext binary, these operations should happen atomically.
Therefore, we now provide a second way to use the protect instruction:

protect layout, SP, MAC

In this form, protect behaves exactly the same as above except that, before
calculating the module key, the module’s text section is decrypted using KN,SP.
If the integrity check using the given MAC fails, the text section is cleared and
the protection disabled. It should also be mentioned that the integrity check
is not strictly necessary for confidential loading, since any subsequent remote
attestation will also verify the module’s integrity. However, it could be used as
a simple form of module authentication: by disabling the non-decrypting form

112 HARDWARE-BASED MEMORY PROTECTION MECHANISMS

of the protect instruction, only entities possessing a valid KN,SP can install
modules on the system.

The memory access logic was modified to deny other SMs access to the text
section. The design of the secure linking functionality (Section 2.5.6) was also
adapted to support confidential code. Previously, when SM1 wanted to securely
link to SM2, SP2 needed to send SM2 to SP1 so that it could calculate a MAC
with KN,SP1,SM1 . However, this is not possible for a module with confidential
code, as SM2 does not necessarily trust SM1. This was solved by replacing
the MAC with a hash of the module’s cleartext code, sent by SP1 to SP2. A
hash will not leak confidential information and it does reflect any changes to
the module’s functionality, still ensuring secure linking. Note that if SM2 also
wants to link to SM1, this method creates a circular dependency between their
identities. This in turn can be resolved by not including the other’s identity
in the text section but having the software provider securely send it after
deployment and storing it in the data section.

As explained, the original design requires a hardware implementation of two
cryptographic primitives: key derivation and MAC functions. Introducing
confidential loading means that we now also need implementations of a cipher
as well as a hash function to implement secure linking. Since Sancus is designed
for embedded systems, one of the main goals is to make the implementation of
these features as compact as possible. All required functionality can be realised
simultaneously by an AEAD primitive, significantly reducing the additional
area overhead (Section 5.3.3). Such an AEAD function returns a ciphertext
and authentication tag, given the following arguments:

(C, T) = AEAD(K,P,A)

In this equation, the inputs K, P , and A respectively denote the encryption key,
plaintext, and associated data. Finally, it is worth pointing out that the remote
attestation functionality can now also be extended to include confidential input
or output with the attestation request and measurement response respectively.

5.3.2 Implementation

The Sancus prototype is based on the openMSP430, which is an open-source
clone of a Texas Instruments microcontroller by the same name. This
is a straightforward processor in terms of architectural design, with three
basic pipeline stages (fetch, decode, and execute) and no caching. The
custom instructions introduced by Sancus were added to the core’s ISA and
additional hardware was included to support their operation, most notably the
cryptographic primitives, memory access logic, and protected storage area.

SANCUS 2.0: CONFIDENTIAL LOADING OF MODULES 113

The original Sancus implementation used the HKDF [110] mechanism as its
KDF, which itself relies on the HMAC [48] construction to perform extraction
or expansion from its input key material. As its name implies, an HMAC
requires a hash function, with Sancus selecting spongent. This is a lightweight
hash function that was designed specifically to have an efficient hardware
implementation. Furthermore, recall that Sancus’ attestation procedure
calculates a MAC tag, reusing this HMAC implementation.

However, these cryptographic primitives can also be implemented with an
AEAD algorithm, and they were replaced with a single instance of the
SpongeWrap [54] construction with spongent [53] as the underlying
sponge function. Given that keyed sponge functions are shown to be
pseudorandom functions [167], we can reuse SpongeWrap to calculate MACs,
and consequently for key derivation. Since its security relies on the soundness
of a sponge function, it can also be used as a hash function by calling
(−, H) = AEAD(−,−,M) and using the authentication tag as the digest.

Furthermore, we can implement SpongeWrap generically, because its security
is proportional to the capacity of the underlying sponge function and spongent’s
specification lists a range of capacities. In detail, our core can be synthesised
with a security parameter between 16 and 256 bits, although values less than 80
bits should be avoided. Given that this parameter influences the core’s area, it
offers a trade-off between cost and security. As we have seen (Section 2.5.6), all
module keys are stored in hardware, making the key size an important design
parameter regarding area.

A downside of SpongeWrap is that uniqueness of the associated data is
required for confidentiality, and no security guarantees can be given when a
nonce is reused. More specifically, if two ciphertext messages are captured
that are encrypted with the same key and associated data, part of the XOR
of the corresponding plaintext message may be leaked [54]. Therefore, the
user of this primitive should ensure that the associated data is unique for a
specific key, i.e., that it includes a nonce. Note that this is only necessary
when encrypting data and there is no nonce requirement for creating MACs.
In contrast, nonce-misuse resistant authenticated encryption algorithms, such
as APE [168], limit information leakage about the message when the nonce is
reused, but this comes at an additional implementation cost.

It is an SP’s responsibility that the nonce requirement is fulfilled by its modules.
In our prototypes, this is achieved by having SP send an initial counter value
as nonce in its first message to a newly deployed module. For subsequent
messages, modules can simply increment the counter and use that value as
the next nonce. Alternatively, if an SP never wants to send messages to a
module, the initial counter value can be included in the module’s text section.

114 HARDWARE-BASED MEMORY PROTECTION MECHANISMS

Because of this associated data uniqueness requirement, our implementation of
confidential loading is slightly different from its design (Section 5.3.1). Since
modules deployed on node N by SP are always encrypted using KN,SP, protect
takes an extra argument, nonce, to be able to fulfil the nonce requirement. This
argument is used as the associated data input for the decryption routine.

Since the original HKDF and HMAC implementations had already been
replaced by SpongeWrap when we started working on the confidential loading
functionality, its integration was straightforward. We modified the decoding
logic of protect to check for the new MAC and nonce arguments and trigger
decryption of the module’s code when they are set. This decryption is performed
by initialising SpongeWrap with KN,SP and the provided nonce. Next, the
hardware can read the module’s encrypted code from memory, because the
start and end address of its text section were also provided as part of the layout
argument. The hardware will then continuously read ciphertext from memory,
decrypt it, and write it back to the same location. Once all code has been
processed, the authentication tag is also read from memory and compared to
the one calculated by SpongeWrap. If this comparison fails, the text section
is cleared and protection is disabled.

Note that this means encrypted modules are being decrypted in-place, with
the ciphertext being overwritten by plaintext. Consequently, a developer of
an encrypted module should never call unprotect, which would disable the
isolation mechanism and expose the module’s code. While this was not done
in our design and implementation, having unprotect re-encrypt the module
before lifting the memory access control would be one possible solution, at the
cost of significantly increased execution time.

The secure linking design was also modified to require a hash rather than a
MAC with the key of SP2, so that SP1 does not have to send the source code
of a confidential module to SP2. Given the versatility of SpongeWrap, this
change simply involved calling AEAD without the key argument to change the
MAC used in the old design to a hash.

Finally, in addition to the hardware modifications, the software toolchain was
also updated to encrypt software modules. Given that our confidential loading
implementation reused existing cryptographic primitives, this mainly involved
extending Sancus’ custom linker to encrypt the text section of a module using
KN,SP. The nonce that was used for the encryption and the resulting MAC are
then stored in an additional public section that is added to the final binary.

SANCUS 2.0: CONFIDENTIAL LOADING OF MODULES 115

Table 5.3: Number of cycles needed for software- and hardware-based confidential
loading of modules with different sizes. The relative difference between both
implementations is shown as well.

Size [B] Software Hardware Difference
256 507,536 13,207 38.43x
512 951,464 25,111 37.89x
768 1,395,384 37,015 37.70x

1024 1,839,304 48,916 37.60x

5.3.3 Evaluation

We will now evaluate the performance and area requirements of confidential
loading by synthesising the modified softcore for FPGA. The former considers
a microbenchmark for differently sized modules and compares the results of our
design with Soteria’s software-based approach. Next, we list the area usage of
the original openMSP430 and compare the overhead of both Sancus versions.
Finally, we detail the security implications of the confidential loading support.

Performance

Since a module’s code has to be decrypted before it can be run, enabling
confidential loading will impact the performance of protect. In order to
evaluate this overhead, we measured the number of cycles needed to load
modules with different sizes and compare the results to Soteria’s software-based
approach (Table 5.3). On average, the hardware implementation is 37.91 times
faster. This can be explained by the performance advantage of an encryption
algorithm implemented in hardware, which has direct access to the device’s
memory, at the cost of flexibility and increased area and power requirements.

Area

We synthesised all designs again for a Digilent Atlys board with a Spartan 6
FPGA using Xilinx ISE, with the core running at 20 MHz. All implementations
used 128-bit keys, which determines the area requirements of the cryptographic
implementations and impacts the overhead of the protected storage area.

An unmodified openMSP430 microcontroller occupies 2,322 LUTs and 998
registers. The original Sancus implementation has a fixed overhead of 1,138
LUTs and 586 registers, with each SM incurring an additional 307 LUTs and

116 HARDWARE-BASED MEMORY PROTECTION MECHANISMS

213 registers. The updated version of Sancus, where SpongeWrap is used
for all cryptographic primitives and with support for confidential loading, has
a fixed overhead of 995 LUTs and 720 registers. In this revised design, every
additional module occupies another 366 LUTs and 212 registers.

Security

The security of confidential loading follows from two observations. First, before
protect is called, the module’s text section is encrypted using the SP’s key,
which the attacker does not have access to. Second, after the instruction is
finished, Sancus’ access rules will deny any access to the text section from
outside the module. Therefore, only API-level attacks would enable an attacker
to read the text section of modules that use confidential loading.

5.4 Conclusion

This chapter first presented Atlas, a scalable security architecture which provides
code and data confidentiality for applications through hardware-based memory
encryption. Atlas protects intellectual property against system-level attackers
in the event of a complete system compromise, using unique IVs for each
application. Furthermore, it has a zero-software TCB and also protects against
physical attacks on main memory. Our FPGA implementation based on the
SPARC LEON3 shows that an existing microcontroller can be extended to
include our proposed features with negligible cycle overhead, at the cost of a
reduced maximum clock frequency and increased area.

Next, we detailed the addition of confidential loading to Sancus, which was
enabled by the availability of a flexible cryptographic building block implemented
in hardware, SpongeWrap. Interestingly, this one AEAD primitive can be
reused for all cryptographic operations required by Sancus, supporting new
functionality without requiring the introduction of additional expensive hardware
blocks. Our evaluation indicates that the hardware-based design outperforms a
software-based implementation by an order of magnitude.

6 Conclusion

Closing this thesis, we first summarise the contributions of each chapter
in Section 6.1. Next, Section 6.2 lists possible avenues for future work in
the area of trusted computing architectures. We structure this discussion

similarly to this thesis itself, starting with cryptographic primitives and moving
up through the design hierarchy to the platform level. This section also covers
additional protection mechanisms and touches on a new class of side-channel
attacks that exploit fundamental functionality of modern processors.

6.1 Contributions

Chapter 1 showed the effects exploitable software vulnerabilities can have, where
we focused on attacks against large public and enterprise systems, but the same
holds for our personal devices. In each example, attackers managed to make
devices perform in ways that were not intended by their designers nor expected
by their users. We then detailed how this is addressed by trusted computing
architectures and discussed the RoTs that are at the core of these solutions.
Next, some basic computer architecture concepts were introduced and we
described the general attacker model of trusted computing solutions, followed
by the contributions this thesis made to the design and implementation of such
architectures. This chapter concluded with an overview of publications that
were not included in this text.

Next, we surveyed hardware-based trusted computing architectures in Chapter 2,
selecting designs that offer either or both isolation and attestation mechanisms.
This chapter defined basic trusted computing terminology and specified security
properties and architectural features that are commonly considered. Finally, we
presented summaries of thirteen architectures that fit our criteria and compared
them with respect to these properties and features.

117

118 CONCLUSION

Starting at the lowest level of the design hierarchy, Chapter 3 presented a
performance analysis of seven block ciphers when their structure is fully unrolled.
Since cryptographic primitives are a core building block of hardware-based RoTs,
the latency of their hardware implementations is an important factor. When
the algorithm is fully unrolled, it can be realised as a single combinational
circuit. However, given the complex structure of these ciphers, this results
in a high logic depth and longer delay, which will impact the clock frequency
of the overall architecture. Furthermore, this implementation approach also
increases the area requirements of the implementation, as many algorithms have
regular structures that allow for component reuse. Our analysis showed that
cryptographers are starting to optimise their designs for low latency and we
also gave recommendations on how to optimise for this.

Chapter 4 then introduced a lightweight key distribution mechanism, combining
a hardware-based KDF with infrequent asymmetric operations. This work
was driven by the observation that lightweight architectures typically rely on
hardware implementations of symmetric algorithms, where a unique key per
device is generated during production and fixed in hardware. However, a copy
of this key needs to be shared with at least one party, potentially exposing
it to compromise. Eleutheria derives an application-specific key in hardware,
which is securely sent back to its developer over a secure channel, relying on
limited use of asymmetric cryptography implemented in software. Furthermore,
the application’s binary is included in the KDF, attesting it at the same time.
We prototyped Eleutheria as an IP core for Arm processors, demonstrating
the design’s flexibility and showing that the performance of our prototype is
comparable to traditional approaches for protecting short messages.

Finally, we detailed two architectural mechanisms ensuring the confidentiality
of code and data. First, Atlas inserted a transparent encryption unit in the
memory hierarchy right before the cache. All code and data that is read or
written by the processor is respectively decrypted or encrypted. Including the
application identity in the encryption process ensures that other software cannot
access the encrypted information, protecting its confidentiality. The design
of the encryption unit was also extended to support secure shared memory
communication. We implemented Atlas on the LEON3 open-source processor,
where the selection of the encryption algorithm relied on the analysis from
Chapter 3. Second, we extended Sancus to support loading encrypted binaries.
The design and implementation of this functionality were possible with very
little overhead, due to the flexibility of Sancus’ custom instructions and the
availability of a versatile AEAD implementation in hardware.

FUTURE WORK 119

6.2 Future Work

This final section presents possible directions for future research related to
trusted computing. We first cover low-latency cryptography (Section 6.2.1),
followed by short descriptions of capability machines (Section 6.2.2) and CFI
(Section 6.2.3). Section 6.2.4 introduces microarchitectural side-channel attacks,
an inevitable result of the never-ending search for performance, often at the
expense of security. Finally, we discuss some security challenges of hybrid
CPU-FPGA platforms in Section 6.2.5.

6.2.1 Low-Latency Cryptography

Both the architectures that were surveyed in Chapter 2 and our own designs
show that many lightweight solutions rely on symmetric ciphers. However, we
have seen that these algorithms will often limit overall performance, as their
structures result in long critical paths, reducing the design’s clock frequency.
Widespread adoption of trusted computing technology therefore hinges in part
on the availability of compact and low-latency cryptographic building blocks.

Our analysis of PRINCE (Section 3.3.4) shows that cryptographers are becoming
aware of this constraint and starting to optimise for it. Building on PRINCE,
the QARMA block cipher family [169] was specifically designed to have a short
critical path, and intended for new security functionality in Arm processors [170].
We believe that continuing this trend will require collaboration between
cryptographers and hardware designers. In addition, this line of work might
also consider investigating fast hash functions or even asymmetric algorithms,
as well as the modes of operation for these primitives.

6.2.2 Capability Machines

The premise of PMAs is the isolation of sensitive application code, but this
also means that they only provide coarse-grained security, as modules typically
comprise larger functional blocks. While the isolation mechanism drastically
reduces the attack surface, internal vulnerabilities cannot be mitigated. On
the other hand, compartmentalised execution implements the principle of least
privilege, giving programs just the rights required for their operation. To this end,
programs are assigned capabilities, which are unforgeable tokens authorising
them to carry out operations within an address space [171]. Furthermore,
capabilities can be manipulated and delegated through controlled instructions.

120 CONCLUSION

The CHERI architecture [171, 172] is such a capability machine, enforcing fine-
grained memory access control and protection domains. Capabilities represent
permissions inside a memory range and are encoded by fat pointers, which are
loaded into a special register file and provided as arguments to new memory
operation instructions. This not only applies to data manipulation, but also
execution flow. Maintaining backwards compatibility, legacy instructions are
processed with respect to an implicit capability configurable by the program.
On top of this mechanism, object capabilities were realised through OS support,
enabling fine-grained compartmentalised execution, as protection domains are
crossed with each object invocation.

Although capabilities enable implementation of complex security policies, they
come with significant performance overhead. The authors of CHERI report
overheads between 5% and 20% for the memory capability mechanism, as well as
a longer critical path. This presents opportunities for further optimization, both
at the conceptual and implementation level. One possible avenue for future work,
which is also suggested by the authors of CHERI, is the composition of capability
mechanisms with trusted computing architectures. Their combination would
protect modules from memory vulnerabilities, while restricting the incurred
overhead. Finally, developers should still take care during implementation, as
errors could still lead to policy violations, e.g., when capabilities are leaked.

6.2.3 Control Flow Integrity

As introduced in Chapter 2, code-reuse attacks manage to make an application’s
control flow deviate from its intended path, realising new functionality without
introducing any code. This is done by chaining together so-called gadgets,
subroutines that end in a return or jump instruction. Since a module is isolated
from all other software running on the system, PMAs reduce the number of
gadgets that are available, but will not protect against them. Countermeasures
have therefore been proposed to prevent manipulation of the control flow, which
are referred to as Control Flow Integrity (CFI) solutions.

Software-based mitigations include Address Space Layout Randomization
(ASLR) [173], which was introduced by the Linux PaX project in July 2011,
and stack canaries [174, 175], but these have been evaded by more sophisticated
attackers. Whereas isolation and attestation mechanisms are well-studied
and have mature implementations, hardware-based CFI solutions have only
recently gained traction. We refer to the following survey by de Clercq and
Verbauwhede [176] for an overview of current hardware-based CFI designs.

One example of such an architecture is SOFIA [18, 19], which gives strong
security guarantees, preventing the effects of malicious memory operations by

FUTURE WORK 121

combining encryption and authentication primitives with the information from
a precise Control Flow Graph (CFG). However, this comes with significant
performance overhead, both in terms of cycles and maximum clock frequency.
The latter is mainly caused by the cryptographic algorithms that are on the
processor’s critical path, again showing the need for low-latency primitives.
Furthermore, static CFI policies like SOFIA’s do not consider the stack’s
runtime state and allow any valid backwards edge to be taken when returning.
Control-flow bending attacks exploit this limitation to redirect the execution
flow along allowed paths by manipulating non-control data [177], necessitating
additional countermeasures to fully mitigate memory corruption vulnerabilities.

Finally, C-FLAT [178] introduced Control Flow Attestation (CFA), which allows
a remote verifier to validate the control flow path that was taken at runtime.
Traditional attestation mechanisms statically prove application integrity before
it is executed in an isolated environment, ensuring that the attested binary
cannot be modified. We can draw a clear parallel between the attestation and
isolation mechanisms discussed in this thesis, and CFA and CFI respectively.
These four solutions all complement each other, so that improving each of them
individually is an interesting challenge in its own right, but integrating and
combining them presents unique directions for future work.

6.2.4 Speculative Execution

In early 2018, two vulnerabilities were introduced that exploit behaviour which
is fundamental to modern high-performance processors. In order to increase
performance, their designs have very deep microarchitectural pipelines. To
keep this pipeline filled and avoid bubbles, these processors speculate which
instruction path will be followed. If they guessed incorrectly, the work that was
done is rolled back and execution resumes.

However, the authors of SPECTRE [13] and Meltdown [14] discovered that
some effects of the speculative path remain, resulting in side channels
that can be exploited from software. Nemesis [16] and Foreshadow [15]
respectively demonstrated that SGX and Sancus are also vulnerable to such
microarchitectural side channels, showing that this novel class of attacks should
be taken into account when designing trusted computing mechanisms.

Given the complexity of modern processors, developing countermeasures for
these attacks should be done from the ground up. To this end, the impact
of pipelining and speculation on a shallow pipeline should be investigated
first, addressing the discovered vulnerabilities. Furthermore, these smaller
architectures can also be modelled, which enables methodological security
evaluations through formal verification.

122 CONCLUSION

6.2.5 Hybrid CPU-FPGA Platforms

Almost every FPGA vendor now offers an SoC product which combines a
hardcore with reprogrammable fabric, similar to the Xilinx Zynq board that was
used in Chapter 4. These give designers a powerful prototyping environment
for hardware-software co-design, as the hardwired processor and fabric are
interconnected, enabling fast and straightforward communication in both
directions. However, these devices are also used in production settings, targeting
applications that benefit from hardware-based acceleration.

The use of these hybrid CPU-FPGA platforms therefore also introduces security
challenges at different levels. First, most designs support direct access to the
processor’s main memory, without the access control rules software is subject to.
It is therefore possible to build malicious hardware blocks that leak confidential
code or data. Second, the components that are programmed into the FPGA
represent valuable intellectual property themselves. Their memory-mapped
interfaces are accessible to any software running on the system, whereas their
developer will want to ensure that it can only be queried by their applications.

Finally, cloud environments are challenging due to their multi-tenancy.
Currently, instances that include access to an FPGA are assigned to a single
customer. The cost of their resources therefore cannot be amortised, increasing
their price. Sharing of the fabric through partial reconfiguration is possible, but
brings us back to the second issue raised in the previous paragraph. Furthermore,
one could envision the cloud provider offering a central store listing third-party
accelerators compatible with their platform. Such a model raises complex
questions about the trust relationships between customers, third-party hardware
developers, and the cloud provider hosting the hybrid platform.

6.3 Conclusion

In this final chapter, brief summaries first highlighted the contributions of this
thesis. We then identified avenues to advance the goal of trusted computing and
prevent applications from misbehaving. Collaboration between cryptographers
and hardware designers could inspire new algorithmic techniques to further
reduce the latency of cryptographic primitives. Since no single solution is a
silver bullet, novel architectural mechanisms can further limit the attack surface.
Finally, evolving exploit strategies and growing platform complexity will continue
to drive the development of hardware-based protection mechanisms.

§ Bibliography

[1] K. Zetter, Countdown to Zero Day: Stuxnet and the Launch of the World’s
First Digital Weapon. Crown Publishing Group, 2014. «Cited on p. 1. »

[2] ——, “Inside the Cunning, Unprecedented Hack of Ukraine’s Power
Grid”, WIRED, 2016. «Cited on p. 1. »

[3] A. Greenberg, “The Untold Story of NotPetya, the Most Devastating
Cyberattack in History”, WIRED, 2018. «Cited on p. 1. »

[4] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter and H. Isozaki,
“Flicker: An Execution Infrastructure for TCB Minimization”, in
Proceedings of the 3rd Conference on Computer Systems, 2008.

«Cited on pp. 2, 15, 24. »

[5] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach, Sixth Edition. Morgan Kaufmann Publishers,
Inc., 2017. «Cited on p. 3. »

[6] Intel 64 and IA-32 Architectures Software Developer’s Manual, Combined
Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4, May 2019.

«Cited on p. 5. »

[7] ARM Architecture Reference Manual, ARMv8, for ARMv8-A Architec-
ture Profile, Apr. 2019. «Cited on p. 5. »

[8] D. Dolev and A. C. Yao, “On the Security of Public Key Protocols”,
Transactions on Information Theory, vol. 29, no. 2, 1983.

«Cited on pp. 6, 16, 69, 94. »

[9] P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”, in Proceedings of the 16th Conference on
Cryptology, 1996. «Cited on p. 7. »

[10] P. Kocher, J. Jaffe and B. Jun, “Differential Power Analysis”, in
Proceedings of the 19th Conference on Cryptology, 1999. «Cited on p. 7. »

123

124 BIBLIOGRAPHY

[11] K. Gandolfi, C. Mourtel and F. Olivier, “Electromagnetic Analysis:
Concrete Results”, in Proceedings of the 3rd Conference on Cryptographic
Hardware and Embedded Systems, 2001. «Cited on p. 7. »

[12] J. Bonneau and I. Mironov, “Cache-Collision Timing Attacks against
AES”, in Proceedings of the 8th Conference on Cryptographic Hardware
and Embedded Systems, 2006. «Cited on p. 7. »

[13] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz and Y. Yarom, “Spectre Attacks:
Exploiting Speculative Execution”, CoRR, vol. abs/1801.01203, 2018.

«Cited on pp. 7, 121. »

[14] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J.
Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom and M. Hamburg,
“Meltdown: Reading kernel memory from user space”, in Proceedings of
the 27th USENIX Symposium on Security, 2018. «Cited on pp. 7, 121. »

[15] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom and R. Strackx, “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-
of-Order Execution”, in Proceedings of the 27th USENIX Security
Symposium, 2018. «Cited on pp. 7, 19, 46, 121. »

[16] J. Van Bulck, F. Piessens and R. Strackx, “Nemesis: Studying
Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”,
in Proceedings of the 25th Conference on Computer and Communications
Security, 2018. «Cited on pp. 7, 19, 46, 121. »

[17] J. Götzfried, T. Müller, R. de Clercq, P. Maene, F. Freiling and I.
Verbauwhede, “Soteria: Offline Software Protection within Low-cost
Embedded Devices”, in Proceedings of the 31st Conference on Computer
Security Applications, 2015. «Cited on pp. 9, 32, 43, 89, 108, 110. »

[18] R. de Clercq, R. De Keulenaer, B. Coppens, B. Yang, K. De Bosschere, B.
De Sutter, P. Maene, B. Preneel and I. Verbauwhede, “SOFIA: Software
and Control Flow Integrity Architecture”, in Proceedings of the 19th
Conference on Design, Automation and Test, 2016.

«Cited on pp. 9, 10, 68, 120. »

[19] R. de Clercq, J. Götzfried, P. Maene, D. Übler and I. Verbauwhede,
“SOFIA: Software and Control Flow Integrity Architecture”, Computers
& Security, vol. 68, no. 7, 2017. «Cited on pp. 9, 10, 120. »

[20] F. Turan, R. de Clercq, P. Maene, O. Reparaz and I. Verbauwhede,
“Hardware Acceleration of a Software-Based VPN”, in Proceedings of the
26th Conference on Field Programmable Logic and Applications, 2016.

«Cited on p. 10. »

BIBLIOGRAPHY 125

[21] R. de Clercq, R. De Keulenaer, P. Maene, B. De Sutter, B. Preneel
and I. Verbauwhede, “SCM: Secure Code Memory Architecture”, in
Proceedings of the 12th Conference on Computer and Communications
Security, 2017. «Cited on pp. 10, 11. »

[22] T. Ashur, J. Delvaux, S. Lee, P. Maene, E. Marin, S. Nikova, O. Reparaz,
V. Rožić, D. Singelée, B. Yang and B. Preneel, “A Privacy-Preserving
Device Tracking System Using a Low-Power Wide-Area Network
(LPWAN)”, in Proceedings of the 16th Conference on Cryptology and
Network Security, 2017. «Cited on p. 11. »

[23] P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. Freiling and I.
Verbauwhede, “Hardware-Based Trusted Computing Architectures for
Isolation and Attestation”, IEEE Transactions on Computers, vol. 67,
no. 3, 2017. «Cited on p. 13. »

[24] A. Martin, The Ten Page Introduction to Trusted Computing, 2008.
«Cited on p. 14. »

[25] D. Gollmann, “Why Trust is Bad for Security”, Electronic Notes in
Theoretical Computer Science, vol. 157, no. 3, 2006. «Cited on p. 14. »

[26] C. Mundie, P. de Vries, P. Haynes and M. Corwine, “Trustworthy
Computing”, Microsoft, Tech. Rep., 2002. «Cited on p. 14. »

[27] S. Lipner, “The Trustworthy Computing Security Development Lifecycle”,
in Proceedings of the 20th Conference on Computer Security Applications,
2004. «Cited on p. 14. »

[28] A. Seshadri and A. Perrig, “SWATT: Software-Based Attestation for
Embedded Devices”, in Proceedings of the 25th IEEE Symposium on
Security and Privacy, 2004. «Cited on p. 14. »

[29] L. Martignoni, R. Paleari and D. Bruschi, “Conqueror: Tamper-Proof
Code Execution on Legacy Systems”, in Proceedings of the 7th Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment,
2010. «Cited on p. 14. »

[30] R. Jayaram Masti, C. Marforio and S. Capkun, “An Architecture for
Concurrent Execution of Secure Environments in Clouds”, in Proceedings
of the 20th Workshop on Cloud Computing Security Workshop, 2013.

«Cited on p. 14. »

[31] R. Strackx and F. Piessens, “Fides: Selectively Hardening Software
Application Components Against Kernel-level or Process-level Malware”,
in Proceedings of the 19th Conference on Computer and Communications
Security, 2012. «Cited on pp. 14, 24. »

126 BIBLIOGRAPHY

[32] N. Avonds, R. Strackx, P. Agten and F. Piessens, “Salus: Non-hierarchical
Memory Access Rights to Enforce the Principle of Least Privilege”,
in Proceedings of the 9th Conference on Security and Privacy in
Communication Networks, 2013. «Cited on p. 14. »

[33] A. J. Menezes, S. A. Vanstone and P. C. V. Oorschot, Handbook of Applied
Cryptography, First Edition. CRC Press, Inc., 1996. «Cited on pp. 15, 49. »

[34] R. Strackx, J. Noorman, I. Verbauwhede, B. Preneel and F. Piessens,
“Protected Software Module Architectures”, in Proceedings of the 13th
Conference on Information Security Solutions, 2013. «Cited on p. 15. »

[35] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86)”, in Proceedings of the 14th
Conference on Computer and Communications Security, 2007.

«Cited on p. 18. »

[36] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk and S. Devadas, “AEGIS:
Architecture for Tamper-evident and Tamper-resistant Processing”, in
Proceedings of the 17th Conference on Supercomputing, 2003.

«Cited on pp. 21, 43. »

[37] TPM Main: Part 1 Design Principles, Version 1.2, Revision 116, Trusted
Computing Group, 2011. «Cited on pp. 22, 43. »

[38] K. Kursawe, D. Schellekens and B. Preneel, “Analyzing Trusted Platform
Communication”, in ECRYPT Workshop, CRASH - CRyptographic
Advances in Secure Hardware, 2005. «Cited on p. 23. »

[39] Trusted Platform Module Library: Part 1: Architecture, Family 2.0, Level
00, Revision 01.16, Trusted Computing Group, 2014. «Cited on p. 23. »

[40] D. Grawrock, Dynamics of a Trusted Platform: A Building Block
Approach, First Edition. Intel Press, 2009. «Cited on pp. 24, 43. »

[41] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor and A. Perrig,
“TrustVisor: Efficient TCB Reduction and Attestation”, in Proceedings of
the 31st IEEE Symposium on Security and Privacy, 2010. «Cited on p. 24. »

[42] GlobalPlatform Device Technology TEE Client API Specification,
Revision 0.17, GlobalPlatform, 2010. «Cited on p. 24. »

[43] GlobalPlatform Device Technology TEE Internal API Specification,
Revision 1.0, GlobalPlatform, 2011. «Cited on p. 24. »

[44] Security Technology Building a Secure System Using TrustZone Techno-
logy, 2009. «Cited on pp. 25, 43, 87. »

[45] D. Champagne and R. B. Lee, “Scalable Architectural Support for
Trusted Software”, in Proceedings of the 16th Conference on High-
Performance Computer Architecture, 2010. «Cited on pp. 27, 43. »

BIBLIOGRAPHY 127

[46] K. Eldefrawy, A. Francillon, D. Perito and G. Tsudik, “SMART: Secure
and Minimal Architecture for (Establishing a Dynamic) Root of Trust”,
in Proceedings of the 19th Symposium on Network and Distributed System
Security, 2012. «Cited on pp. 28, 43. »

[47] A. Francillon, Q. Nguyen, K. B. Rasmussen and G. Tsudik, “A Minimalist
Approach to Remote Attestation”, in Proceedings of the 17th Conference
on Design, Automation and Test, 2014. «Cited on p. 28. »

[48] H. Krawczyk, M. Bellare and R. Canetti, “HMAC: Keyed-Hashing for
Message Authentication”, Standard, 1997. «Cited on pp. 28, 112. »

[49] N. Asokan, F. Brasser, A. Ibrahim, A. Sadeghi, M. Schunter, G. Tsudik
and C. Wachsmann, “SEDA: Scalable Embedded Device Attestation”, in
Proceedings of the 22nd Conference on Computer and Communications
Security, 2015. «Cited on p. 29. »

[50] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner and G.
Tsudik, “VRASED: A Verified Hardware/Software Co-Design for Remote
Attestation”, in Proceedings of the 28th USENIX Security Symposium,
2019. «Cited on p. 29. »

[51] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C.
Huygens, B. Preneel, I. Verbauwhede and F. Piessens, “Sancus: Low-cost
Trustworthy Extensible Networked Devices with a Zero-software Trusted
Computing Base”, in Proceedings of the 22nd USENIX Symposium on
Security, 2013. «Cited on pp. 29, 43, 87, 93, 108, 110. »

[52] J. Noorman, J. Van Bulck, J. T. Mühlberg, F. Piessens, P. Maene,
B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller and F. Freiling,
“Sancus 2.0: A Low-Cost Security Architecture for IoT Devices”, ACM
Transactions on Privacy and Security, vol. 20, no. 3, 2017.

«Cited on pp. 29, 43, 89, 91, 110. »

[53] A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varıcı and I.
Verbauwhede, “Spongent: A Lightweight Hash Function”, in Proceedings
of the 13th Workshop on Cryptographic Hardware and Embedded Systems,
2011. «Cited on pp. 31, 113. »

[54] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, “Duplexing the
Sponge: Single-pass Authenticated Encryption and Other Applications”,
in Proceedings of the 18th Workshop on Selected Areas in Cryptography,
2011. «Cited on pp. 32, 113. »

[55] P. Williams and R. Boivie, “CPU Support for Secure Executables”, in
Proceedings of the 4th Conference on Trust and Trustworthy Computing,
2011. «Cited on pp. 33, 43. »

[56] R. Boivie and P. Williams, “SecureBlue++: CPU Support for Secure
Executables”, IBM, Tech. Rep., 2013. «Cited on p. 33. »

128 BIBLIOGRAPHY

[57] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue and U. R. Savagaonkar, “Innovative Instructions and
Software Model for Isolated Execution”, in Proceedings of the 2nd
Workshop on Hardware and Architectural Support for Security and
Privacy, 2013. «Cited on pp. 34, 43. »

[58] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade and J. del Cuvillo, “Using
Innovative Instructions to Create Trustworthy Software Solutions”, in
Proceedings of the 2nd Workshop on Hardware and Architectural Support
for Security and Privacy, 2013. «Cited on p. 34. »

[59] I. Anati, S. Gueron, S. P. Johnson and V. R. Scarlata, “Innovative
Technology for CPU Based Attestation and Sealing”, in Proceedings of
the 2nd Workshop on Hardware and Architectural Support for Security
and Privacy, 2013. «Cited on p. 34. »

[60] “Intel Software Guard Extensions Programming Reference (329298-
002US)”, Intel, Tech. Rep., 2014. «Cited on p. 34. »

[61] S. Gueron, A Memory Encryption Engine Suitable for General Purpose
Processors, Cryptology ePrint Archive, Report 2016/204, 2016.

«Cited on p. 35. »

[62] S. P. Johnson, V. R. Scarlata, C. V. Rozas, E. Brickell and F. McKeen,
“Intel SGX: EPID Provisioning and Attestation Services”, Intel, Tech.
Rep., 2016. «Cited on p. 35. »

[63] V. Costan and S. Devadas, “Intel SGX Explained”, IACR Cryptology
ePrint Archive, vol. 2016, no. 086, 2016. «Cited on p. 36. »

[64] M. Marlinspike, Technology Preview: Private Contact Discovery for
Signal, 2017. [Online]. Available: https://signal.org/blog/private-
contact-discovery/. «Cited on p. 36. »

[65] A. Baumann, M. Peinado and G. Hunt, “Shielding Applications from
an Untrusted Cloud with Haven”, in Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation, 2014.

«Cited on p. 36. »

[66] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz and M. Russinovich, “VC3: Trustworthy Data Analytics in the Cloud
Using SGX”, in Proceedings of the 36th IEEE Symposium on Security
and Privacy, 2015. «Cited on p. 36. »

[67] D. Kaplan, J. Powell and T. Woller, “AMD Memory Encryption”, AMD,
Tech. Rep., 2016. «Cited on p. 36. »

[68] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh and
R. Riley, “Iso-X: A Flexible Architecture for Hardware-Managed Isolated
Execution”, in Proceedings of the 47th Symposium on Microarchitecture,
2014. «Cited on pp. 36, 43. »

https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/

BIBLIOGRAPHY 129

[69] P. Koeberl, S. Schulz, A. Sadeghi and V. Varadharajan, “TrustLite: A
Security Architecture for Tiny Embedded Devices”, in Proceedings of
the 9th Conference on Computer Systems, 2014. «Cited on pp. 37, 43. »

[70] F. Brasser, B. El Mahjoub, A. Sadeghi, C. Wachsmann and P. Koeberl,
“TyTAN: Tiny Trust Anchor for Tiny Devices”, in Proceedings of the
52nd Conference on Design Automation, 2015. «Cited on pp. 39, 43. »

[71] V. Costan, I. Lebedev and S. Devadas, “Sanctum: Minimal Hardware
Extensions for Strong Software Isolation”, IACR Cryptology ePrint
Archive, vol. 2015, no. 564, 2015. «Cited on pp. 40, 43. »

[72] S. Weiser, M. Werner, F. Brasser, M. Malenko and A. Sadeghi, “TIMBER-
V: Tag-Isolated Memory Bringing Fine-grained Enclaves to RISC-V”,
in Proceedings of the 26th Network and Distributed System Security
Symposium, 2019. «Cited on pp. 41, 43. »

[73] J. Coburn, S. Ravi, A. Raghunathan and S. Chakradhar, “SECA:
Security-enhanced Communication Architecture”, in Proceedings of the
8th Conference on Compilers, Architectures and Synthesis for Embedded
Systems, 2005. «Cited on p. 45. »

[74] P. Maene and I. Verbauwhede, “Single-Cycle Implementations of
Block Ciphers”, in Proceedings of the 4th Workshop on Lightweight
Cryptography for Security and Privacy, ser. Lecture Notes in Computer
Science, 2015. «Cited on p. 47. »

[75] W. Dally and B. Towles, “Route Packets, Not Wires: On-Chip
Interconnection Networks”, in Proceedings of the 38th Conference on
Design Automation, 2001. «Cited on p. 48. »

[76] J. Daemen and V. Rijmen, “The Rijndael Algorithm”, in The First
Advanced Encryption Standard Candidate Conference, 1998.

«Cited on pp. 48, 51. »

[77] C. De Cannière, O. Dunkelman and M. Knežević, “KATAN and
KTANTAN — A Family of Small and Efficient Hardware-Oriented
Block Ciphers”, in Proceedings of the 11th Workshop on Cryptographic
Hardware and Embedded Systems, 2009. «Cited on pp. 48, 53. »

[78] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
Robshaw, Y. Seurin and C. Vikkelsoe, “PRESENT: An Ultra-Lightweight
Block Cipher”, in Proceedings of the 9th Workshop on Cryptographic
Hardware and Embedded Systems, 2007. «Cited on pp. 48, 55. »

[79] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knežević, L. R.
Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts,
S. S. Thomsen and T. Yalçın, PRINCE: A Low-latency Block Cipher for
Pervasive Computing Applications, Cryptology ePrint Archive, Report
2012/529, 2012. «Cited on pp. 48, 56. »

130 BIBLIOGRAPHY

[80] W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang and I. Verbauwhede,
RECTANGLE: A Bit-slice Ultra-Lightweight Block Cipher Suitable for
Multiple Platforms, Cryptology ePrint Archive, Report 2014/084, 2014.

«Cited on pp. 48, 57. »

[81] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks and
L. Wingers, The SIMON and SPECK Families of Lightweight Block
Ciphers, Cryptology ePrint Archive, Report 2013/404, 2013.

«Cited on pp. 48, 58. »

[82] M. Knežević, V. Nikov and P. Rombouts, “Low-Latency Encryption – Is
“Lightweight = Light + Wait”?”, in Proceedings of the 14th Workshop on
Cryptographic Hardware and Embedded Systems, 2012. «Cited on p. 48. »

[83] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation. John Wiley & Sons, 2007. «Cited on p. 50. »

[84] J. M. Rabaey, A. Chandrakasan and B. Nikolic, Digital Integrated
Circuits: A Design Perspective, Second Edition. Prentice-Hall, Inc., 2003.

«Cited on pp. 50, 51. »

[85] D. J. Bernstein, Crypto Competitions — AES: the Advanced Encryption
Standard, 2014. [Online]. Available: http://competitions.cr.yp.to/
aes.html. «Cited on pp. 52, 104. »

[86] NIST, “Advanced Encryption Standard (AES)”, Standard, 2001.
«Cited on p. 52. »

[87] A. Bogdanov, D. Khovratovich and C. Rechberger, Biclique Cryptanalysis
of the Full AES, Cryptology ePrint Archive, Report 2011/449, 2011.

«Cited on p. 52. »

[88] S. D. Brown, R. J. Francis, J. Rose and Z. G. Vranesic, Field-
Programmable Gate Arrays. Springer Science+Business Media, 2012.

«Cited on p. 52. »

[89] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs”,
IEEE Transactions on CAD of Integrated Circuits and Systems, vol. 26,
no. 2, 2007. «Cited on p. 52. »

[90] A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R. Rao and P.
Rohatgi, “Efficient Rijndael Encryption Implementation with Composite
Field Arithmetic”, in Proceedings of the 3rd Workshop on Cryptographic
Hardware and Embedded Systems, 2001. «Cited on p. 53. »

[91] P. Hamalainen, T. Alho, M. Hannikainen and T. Hamalainen, “Design
and Implementation of Low-Area and Low-Power AES Encryption
Hardware Core”, in Proceedings of the 9th EUROMICRO Conference
on Digital System Design: Architectures, Methods and Tools, 2006.

«Cited on p. 53. »

http://competitions.cr.yp.to/aes.html
http://competitions.cr.yp.to/aes.html

BIBLIOGRAPHY 131

[92] A. Bogdanov and C. Rechberger, “A 3-Subset Meet-in-the-Middle
Attack: Cryptanalysis of the Lightweight Block Cipher KTANTAN”,
in Proceedings of the 18th Workshop on Selected Areas in Cryptography,
ser. Lecture Notes in Computer Science, 2011. «Cited on p. 53. »

[93] S. Rasoolzadeh and H. Raddum, “Improved Multi-Dimensional Meet-in-
the-Middle Cryptanalysis of KATAN”, Tatra Mountains Mathematical
Publications, vol. 67, no. 1, 2016. «Cited on p. 54. »

[94] M. H. Faghihi Sereshgi, M. Dakhilalian and M. Shakiba, “Biclique
cryptanalysis of MIBS-80 and PRESENT-80 block ciphers”, Security
and Communication Networks, vol. 9, no. 1, 2016. «Cited on p. 55. »

[95] C. Lee, “Biclique Cryptanalysis of PRESENT-80 and PRESENT-128”,
The Journal of Supercomputing, vol. 70, no. 1, 2014. «Cited on p. 55. »

[96] P. Morawiecki, Practical Attacks on the Round-reduced PRINCE,
Cryptology ePrint Archive, Report 2015/245, 2015. «Cited on p. 56. »

[97] P. Derbez and L. Perrin, Meet-in-the-Middle Attacks and Structural
Analysis of Round-Reduced PRINCE, Cryptology ePrint Archive, Report
2015/239, 2015. «Cited on p. 56. »

[98] A. Canteaut, T. Fuhr, H. Gilbert, M. Naya-Plasencia and J.-R. Reinhard,
Multiple Differential Cryptanalysis of Round-Reduced PRINCE (Full
Version), Cryptology ePrint Archive, Report 2014/089, 2014.

«Cited on p. 56. »

[99] G. Zhao, B. Sun, C. Li and J. Su, “Truncated Differential Cryptanalysis
of PRINCE”, Security and Communication Networks, vol. 8, no. 16, 2015.

«Cited on p. 56. »

[100] J. Jean, I. Nikolić, T. Peyrin, L. Wang and S. Wu, “Security Analysis of
PRINCE”, in Proceedings of the 22nd Symposium on the Foundations of
Software Engineering, 2014. «Cited on p. 56. »

[101] J. Shan, L. Hu, L. Song, S. Sun and X. Ma, Related-Key Differential
Attack on Round Reduced RECTANGLE-80, Cryptology ePrint Archive,
Report 2014/986, 2014. «Cited on p. 57. »

[102] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks and
L. Wingers, Notes on the Design and Analysis of SIMON and SPECK,
Cryptology ePrint Archive, Report 2017/560, 2017. «Cited on pp. 58, 59. »

[103] T. Ashur, Improved Linear Trails for the Block Cipher Simon, Cryptology
ePrint Archive, Report 2015/285, 2015. «Cited on p. 58. »

[104] L. Song, Z. Huang and Q. Yang, “Automatic Differential Analysis of ARX
Block Ciphers with Application to SPECK and LEA”, in Proceedings of
the 21st Conference on Information Security and Privacy, 2016.

«Cited on p. 59. »

132 BIBLIOGRAPHY

[105] D. Giry and J.-J. Quisquater, Keylength — ECRYPT II Report on Key
Sizes (2012), 2014. [Online]. Available: http://www.keylength.com/
en/3/. «Cited on p. 60. »

[106] P. Maene and I. Verbauwhede, Eleutheria: Lightweight Key Distribution
Service for Networked Embedded Devices. «Cited on p. 65. »

[107] L. Hay Newman, “The Botnet That Broke the Internet Isn’t Going
Away”, WIRED, 2016. «Cited on p. 66. »

[108] C. Miller and C. Valasek, “Remote Exploitation of an Unaltered
Passenger Vehicle”, Black Hat USA, 2015. «Cited on p. 66. »

[109] International Organization for Standardization, “Information Technology
– Security Techniques – Entity Authentication – Part 2: Mechanisms
Using Symmetric Encipherment Algorithms”, Standard, Dec. 2008.

«Cited on p. 74. »

[110] H. Krawczyk and P. Eronen, “HMAC-based Extract-and-Expand Key
Derivation Function (HKDF)”, Standard, 2010. «Cited on pp. 74, 112. »

[111] H. Krawczyk, “SIGMA: The “SIGn-and-MAc” Approach to Authentic-
ated Diffie-Hellman and Its Use in the IKE Protocols”, in Proceedings of
the 23rd Conference on Cryptology, 2003. «Cited on p. 77. »

[112] D. J. Bernstein, “Curve25519: New Diffie-Hellman Speed Records”, in
Proceedings of the 9th Conference on Theory and Practice in Public-Key
Cryptography, 2006. «Cited on p. 77. »

[113] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe and B.-Y. Yang, “High-
Speed High-Security Signatures”, Cryptographic Engineering, vol. 2, no. 2,
2012. «Cited on p. 77. »

[114] A. Luykx, B. Preneel, E. Tischhauser and K. Yasuda, “A MAC Mode
for Lightweight Block Ciphers”, in Proceedings of the 23rd Conference
on Fast Software Encryption, 2016. «Cited on p. 77. »

[115] National Institute of Standards and Technology, “Secure Hash Standard
(SHS)”, Standard, 2015. «Cited on p. 77. »

[116] ——, “Advanced Encryption Standard (AES)”, Standard, 2001.
«Cited on p. 78. »

[117] V. Rožić, B. Yang, W. Dehaene and I. Verbauwhede, “Highly Efficient
Entropy Extraction for True Random Number Generators on FPGAs”,
in Proceedings of the 52nd Conference on Design Automation, 2015.

«Cited on p. 78. »

[118] A. Langley, Ed25519 for Go, 2016. [Online]. Available: https://github.
com/agl/ed25519. «Cited on p. 78. »

http://www.keylength.com/en/3/
http://www.keylength.com/en/3/
https://github.com/agl/ed25519
https://github.com/agl/ed25519

BIBLIOGRAPHY 133

[119] H. Krawczyk, “The Order of Encryption and Authentication for
Protecting Communications (or: How Secure Is SSL?)”, in Proceedings
of the 21st Cryptology Conference, 2001. «Cited on p. 79. »

[120] National Institute of Standards and Technology, “Recommendation for
Block Cipher Modes of Operation”, Special Publication, 2001.

«Cited on p. 79. »

[121] B. Conte, Basic Implementations of Standard Cryptography Algorithms,
2015. [Online]. Available: https : / / github . com / b - con / crypto -
algorithms. «Cited on p. 80. »

[122] A. Langley, Implementations of a Fast Elliptic-Curve Diffie-Hellman
Primitive, 2015. [Online]. Available: https : / / github . com / agl /
curve25519-donna. «Cited on p. 80. »

[123] A. Moon, Implementations of a Fast Elliptic-Curve Digital Signature Al-
gorithm, 2015. [Online]. Available: https://github.com/floodyberry/
ed25519-donna. «Cited on p. 80. »

[124] A. Dunkels, “Design and Implementation of the lwIP TCP/IP Stack”,
Tech. Rep., 2001. «Cited on p. 80. »

[125] A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varıcı and
I. Verbauwhede, “spongent: The Design Space of Lightweight Crypto-
graphic Hashing”, 2011. «Cited on pp. 80, 86. »

[126] ARM CoreSight Architecture Specification, 2017. «Cited on p. 82. »

[127] CoreSight Program Flow Trace, 2011. «Cited on p. 83. »

[128] CoreSight Components, 2009. «Cited on pp. 83, 88. »

[129] P. Sasdrich and T. Güneysu, “Efficient Elliptic-curve Cryptography
using Curve25519 on Reconfigurable Devices”, in Proceedings of the 10th
Symposium on Applied Reconfigurable Computing, 2014. «Cited on p. 86. »

[130] F. Turan and I. Verbauwhede, “Compact and Flexible FPGA Imple-
mentation of Ed25519 and X25519”, ACM Transactions on Embedded
Computing Systems, vol. 18, no. 3, 2019. «Cited on p. 86. »

[131] CoreSight PTM-A9, 2011. «Cited on p. 87. »

[132] E. Wobber, M. Abadi, M. Burrows and B. Lampson, “Authentication in
the Taos Operating System”, ACM Transactions on Computer Systems,
vol. 12, no. 1, 1994. «Cited on p. 89. »

[133] B. C. Neuman and T. Ts’o, “Kerberos: An Authentication Service for
Computer Networks”, IEEE Communications Magazine, vol. 32, no. 9,
1994. «Cited on p. 89. »

[134] M. B. Jones, J. Bradley and N. Sakimura, “JSON Web Token (JWT)”,
Standard, 2015. «Cited on p. 89. »

https://github.com/b-con/crypto-algorithms
https://github.com/b-con/crypto-algorithms
https://github.com/agl/curve25519-donna
https://github.com/agl/curve25519-donna
https://github.com/floodyberry/ed25519-donna
https://github.com/floodyberry/ed25519-donna

134 BIBLIOGRAPHY

[135] M. A. Simplício Jr., P. S. Barreto, C. B. Margi and T. C. Carvalho, “A
Survey on Key Management Mechanisms for Distributed Wireless Sensor
Networks”, Computer Networks, vol. 54, no. 15, 2010. «Cited on p. 89. »

[136] P. Maene, J. Götzfried, T. Müller, R. de Clercq, F. Freiling and
I. Verbauwhede, “Atlas: Application Confidentiality in Compromised
Embedded Systems”, IEEE Transactions on Dependable and Secure
Computing, vol. PP, no. 99, 2018. «Cited on p. 91. »

[137] R. Obermaisser, P. Peti and F. Tagliabo, “An Integrated Architecture
for Future Car Generations”, Real-Time Systems, vol. 36, no. 1, 2007.

«Cited on p. 92. »

[138] P. Oester, Dirty COW (CVE-2016-5195), MITRE, 2016. «Cited on p. 92. »

[139] G. Beniamini, CVE-2017-6956, MITRE, 2017. «Cited on p. 92. »

[140] ——, CVE-2017-6975, MITRE, 2017. «Cited on p. 92. »

[141] C. Tarnovsky, “Deconstructing a “Secure” Processor”, Black Hat DC,
2010. «Cited on p. 94. »

[142] GRLIB IP Core User’s Manual, Version 2019.2, 2019. «Cited on p. 97. »

[143] M. Liskov, R. L. Rivest and D. Wagner, “Tweakable Block Ciphers”,
Journal of Cryptology, vol. 24, no. 3, 2011. «Cited on p. 98. »

[144] ECRYPT II, Yearly Report on Algorithms and Keysizes, 2012.
«Cited on p. 99. »

[145] C. Fruhwirth, “New Methods in Hard Disk Encryption”, Tech. Rep.,
2005. «Cited on pp. 99, 107. »

[146] N. Ferguson, AES-CBC+ Elephant Diffuser: A Disk Encryption
Algorithm for Windows Vista, 2006. «Cited on pp. 99, 107. »

[147] The SPARC Architecture Manual, Version 8, 1992. «Cited on p. 100. »

[148] A. P. Chandrakasan, S. Sheng and R. W. Brodersen, “Low-power CMOS
Digital Design”, IEICE Transactions on Electronics, vol. 75, no. 4, 1992.

«Cited on p. 103. »

[149] M. Henson and S. Taylor, “Memory Encryption: A Survey of Existing
Techniques”, ACM Computer Surveys, vol. 46, no. 4, 2013.

«Cited on p. 107. »

[150] N. Provos, “Encrypting Virtual Memory”, in Proceedings of the 9th
USENIX Symposium on Security, 2000. «Cited on p. 107. »

[151] G. Duc and R. Keryell, “CryptoPage: An Efficient Secure Architecture
with Memory Encryption, Integrity and Information Leakage Protection”,
in Proceedings of the 22nd Conference on Computer Security Applications,
2006. «Cited on p. 107. »

BIBLIOGRAPHY 135

[152] J. Götzfried, T. Müller, G. Drescher, S. Nürnberger and M. Backes,
“RamCrypt: Kernel-based Address Space Encryption for User-mode
Processes”, in Proceedings of the 11th Conference on Computer and
Communications Security, 2016. «Cited on p. 107. »

[153] P. Peterson, “Cryptkeeper: Improving Security with Encrypted RAM”,
in Proceedings of the 10th Conference on Technologies for Homeland
Security, 2010. «Cited on p. 107. »

[154] J. Götzfried, N. Dörr, R. Palutke and T. Müller, “HyperCrypt:
Hypervisor-based Encryption of Kernel and User Space”, in Proceedings
of 11th Conference on Availability, Reliability and Security, 2016.

«Cited on p. 107. »

[155] T. Müller, F. Freiling and A. Dewald, “TRESOR Runs Encryption
Securely Outside RAM”, in Proceedings of the 20th USENIX Symposium
on Security, 2011. «Cited on p. 107. »

[156] P. Simmons, “Security Through Amnesia: A Software-Based Solution
to the Cold Boot Attack on Disk Encryption”, Proceedings of the 27th
Conference on Computer Security Applications, 2011. «Cited on p. 107. »

[157] J. Götzfried and T. Müller, “Mutual Authentication and Trust
Bootstrapping towards Secure Disk Encryption”, Transactions on
Information and System Security, vol. 17, no. 2, 2014. «Cited on p. 107. »

[158] J. Pabel, Frozen Cache, 2009. [Online]. Available: https://frozencache.
blogspot.com. «Cited on p. 107. »

[159] N. Heninger and H. Shacham, “Reconstructing RSA Private Keys from
Random Key Bits”, in Proceedings of the 29th Conference on Cryptology,
2009. «Cited on p. 107. »

[160] T. P. Parker and S. Xu, “A Method for Safekeeping Cryptographic Keys
from Memory Disclosure Attacks”, in Proceedings of the 1st Conference
on Trusted Systems, 2009. «Cited on p. 107. »

[161] B. Garmany and T. Müller, “PRIME: private RSA Infrastructure for
Memory-Less Encryption”, in Proceedings of the 29th Conference on
Computer Security Applications, 2013. «Cited on p. 107. »

[162] L. Guan, J. Lin, B. Luo and J. Jing, “Copker: Computing with Private
Keys without RAM”, in Proceedings of the 21st Symposium on Network
and Distributed System Security, 2014. «Cited on p. 107. »

[163] L. Guan, J. Lin, B. Luo, J. Jing and J. Wang, “Protecting Private
Keys Against Memory Disclosure Attacks Using Hardware Transactional
Memory”, in Proceedings of the 36th Symposium on Security and Privacy,
2015. «Cited on p. 107. »

https://frozencache.blogspot.com
https://frozencache.blogspot.com

136 BIBLIOGRAPHY

[164] “IEEE Standard for Cryptographic Protection of Data on Block-Oriented
Storage Devices”, IEEE, Standard, 2008. «Cited on p. 107. »

[165] “Recommendation for Block Cipher Modes of Operation: The XTS-AES
Mode for Confidentiality on Storage Devices”, National Institute of
Standards and Technology, Special Publication, 2010. «Cited on p. 107. »

[166] M. Smithson, K. Anand, A. Kotha, K. Elwazeer, N. Giles and
R. Barua, “Binary rewriting without relocation information”, University
of Maryland, Tech. Rep., 2010. «Cited on p. 109. »

[167] E. Andreeva, J. Daemen, B. Mennink and G. Van Assche, “Security
of Keyed Sponge Constructions Using a Modular Proof Approach”, in
Proceedings of the 22nd Conference on Fast Software Encryption, 2015.

«Cited on p. 113. »

[168] E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, B. Mennink, N. Mouha
and K. Yasuda, “APE: Authenticated Permutation-Based Encryption
for Lightweight Cryptography”, in Proceedings of the 21st Workshop on
Fast Software Encryption, 2014. «Cited on p. 113. »

[169] R. Avanzi, “The QARMA Block Cipher Family”, IACR Transactions on
Symmetric Cryptology, vol. 2017, no. 1, 2017. «Cited on p. 119. »

[170] “Pointer Authentication on ARMv8.3”, Qualcomm Technologies, Tech.
Rep., 2017. «Cited on p. 119. »

[171] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson, B.
Davis, B. Laurie, P. G. Neumann, R. M. Norton and M. Roe, “The CHERI
Capability Model: Revisiting RISC in an Age of Risk”, in Proceedings of
the 41st Symposium on Computer Architecture, 2014.

«Cited on pp. 119, 120. »

[172] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore,
J. Anderson, D. Chisnall, N. H. Dave, B. Davis, K. Gudka, B. Laurie,
S. J. Murdoch, R. M. Norton, M. Roe, S. D. Son and M. Vadera,
“CHERI: A Hybrid Capability-System Architecture for Scalable Software
Compartmentalization”, in Proceedings of the 36th Symposium on
Security and Privacy, 2015. «Cited on p. 120. »

[173] PaX Team, “Address Space Layout Randomization”, Tech. Rep., 2003.
[Online]. Available: https://pax.grsecurity.net/docs/aslr.txt.

«Cited on p. 120. »

[174] A. Baratloo, N. Singh and T. K. Tsai, “Transparent Run-Time Defense
Against Stack-Smashing Attacks”, in Proceedings of the 6th USENIX
Technical Conference, 2000. «Cited on p. 120. »

[175] C. Cowan, “StackGuard: Automatic Adaptive Detection and Prevention
of Buffer-Overflow Attacks”, in Proceedings of the 7th USENIX Security
Symposium, 1998. «Cited on p. 120. »

https://pax.grsecurity.net/docs/aslr.txt

BIBLIOGRAPHY 137

[176] R. de Clercq and I. Verbauwhede, “A Survey of Hardware-based Control
Flow Integrity (CFI)”, CoRR, vol. abs/1706.07257, 2017.

«Cited on p. 120. »

[177] N. Carlini, A. Barresi, M. Payer, D. Wagner and T. R. Gross, “Control-
Flow Bending: On the Effectiveness of Control-Flow Integrity”, in
Proceedings of the 24th USENIX Security Symposium, 2015.

«Cited on p. 121. »

[178] T. Abera, N Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd,
A. Sadeghi and G. Tsudik, “C-FLAT: Control-Flow Attestation for
Embedded Systems Software”, in Proceedings of the 23rd Conference on
Computer and Communications Security, 2016. «Cited on p. 121. »

§ Curriculum Vitae

Pieter Maene was born on September 2nd, 1991 in Duffel, Belgium. He
obtained his Master’s degree in Electrical Engineering from KU Leuven
in July 2014, completing his thesis on the topic of online elections. He

also served on the board of the student organisation affiliated with the Faculty
of Engineering Science. In October 2014, he joined the COSIC research group
at the Department of Electrical Engineering of KU Leuven. From January 2016
onward, his research was funded by a Strategic Basic Research Grant from the
Research Foundation - Flanders. During his PhD, he collaborated closely with
the IT Security chair at FAU Erlangen-Nürnberg. From June to September
2018, he was a hardware security intern at Square in San Francisco.

139

§ List of Publications

Journals

[1] P. Maene, J. Götzfried, T. Müller, R. de Clercq, F. Freiling and
I. Verbauwhede, “Atlas: Application Confidentiality in Compromised
Embedded Systems”, IEEE Transactions on Dependable and Secure
Computing, vol. PP, no. 99, 2018.

[2] R. de Clercq, J. Götzfried, P. Maene, D. Übler and I. Verbauwhede,
“SOFIA: Software and Control Flow Integrity Architecture”, Computers
& Security, vol. 68, no. 7, 2017.

[3] J. Noorman, J. Van Bulck, J. T. Mühlberg, F. Piessens, P. Maene,
B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller and F. Freiling,
“Sancus 2.0: A Low-Cost Security Architecture for IoT Devices”, ACM
Transactions on Privacy and Security, vol. 20, no. 3, 2017.

[4] P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. Freiling and
I. Verbauwhede, “Hardware-Based Trusted Computing Architectures for
Isolation and Attestation”, IEEE Transactions on Computers, vol. 67,
no. 3, 2017.

International Conferences

[5] J. Hermans, R. Peeters, P. Maene, K. Grenman, K. Halunen and J. Häikiö,
“n-Auth: Mobile Authentication Done Right”, in Proceedings of the 33rd
Conference on Computer Security Applications, 2017.

141

142 LIST OF PUBLICATIONS

[6] T. Ashur, J. Delvaux, S. Lee, P. Maene, E. Marin, S. Nikova, O. Reparaz, V.
Rožić, D. Singelée, B. Yang and B. Preneel, “A Privacy-Preserving Device
Tracking System Using a Low-Power Wide-Area Network (LPWAN)”, in
Proceedings of the 16th Conference on Cryptology and Network Security,
2017.

[7] R. de Clercq, R. De Keulenaer, P. Maene, B. De Sutter, B. Preneel and
I. Verbauwhede, “SCM: Secure Code Memory Architecture”, in Proceedings
of the 12th Conference on Computer and Communications Security, 2017.

[8] F. Turan, R. de Clercq, P. Maene, O. Reparaz and I. Verbauwhede,
“Hardware Acceleration of a Software-Based VPN”, in Proceedings of the
26th Conference on Field Programmable Logic and Applications, 2016.

[9] R. de Clercq, R. De Keulenaer, B. Coppens, B. Yang, K. De Bosschere,
B. De Sutter, P. Maene, B. Preneel and I. Verbauwhede, “SOFIA: Software
and Control Flow Integrity Architecture”, in Proceedings of the 19th
Conference on Design, Automation and Test, 2016.

[10] J. Götzfried, T. Müller, R. de Clercq, P. Maene, F. Freiling and
I. Verbauwhede, “Soteria: Offline Software Protection within Low-cost
Embedded Devices”, in Proceedings of the 31st Conference on Computer
Security Applications, 2015.

[11] P. Maene and I. Verbauwhede, “Single-Cycle Implementations of Block
Ciphers”, in Proceedings of the 4th Workshop on Lightweight Cryptography
for Security and Privacy, ser. Lecture Notes in Computer Science, 2015.

Miscellaneous

[12] P. Maene, “Online verkiezingen in de praktijk: verbetering en toepassing
van het Helios verkiezingssysteem”, Bart Preneel (Promotor), Master’s
thesis, KU Leuven, 2014.

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF ELECTRICAL ENGINEERING

COMPUTER SECURITY AND INDUSTRIAL CRYPTOGRAPHY
Kasteelpark Arenberg 10 bus 2452

B-3001 Leuven
pieter.maene@esat.kuleuven.be

https://cosic.esat.kuleuven.be

	Abstract
	Samenvatting
	Contents
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Background
	Computer Architecture
	Attacker Model

	Outline
	Other Publications
	Conclusion

	Trusted Computing Background
	Introduction
	Preliminaries
	Attacker Model
	Properties
	Security Properties
	Architectural Features

	Architectures
	AEGIS
	TPM
	TrustZone
	Bastion
	SMART
	Sancus
	SecureBlue++
	SGX
	Iso-X
	TrustLite
	TyTAN
	Sanctum
	TIMBER-V

	Comparison
	Conclusion

	Single-Cycle Implementations of Block Ciphers
	Introduction
	Preliminaries
	Block Cipher Structure
	Logic Depth
	Fan-Out

	Synthesis Results
	AES
	KATAN
	PRESENT
	PRINCE
	RECTANGLE
	SIMON
	SPECK

	Comparison
	Conclusion

	Eleutheria: Lightweight Key Distribution Service
	Introduction
	Problem Statement
	Symmetric Device Keys
	System Model
	Attacker Model

	Design
	IP
	SP
	KDS
	KDM

	Implementation
	Background
	IP
	SP
	KDS
	KDM

	Evaluation
	Performance
	Area
	Security

	Related Work
	Conclusion

	Hardware-Based Memory Protection Mechanisms
	Introduction
	Atlas: Transparent Memory Encryption
	Architecture
	Implementation
	Evaluation
	Related Work
	Discussion

	Sancus 2.0: Confidential Loading of Modules
	Design
	Implementation
	Evaluation

	Conclusion

	Conclusion
	Contributions
	Future Work
	Low-Latency Cryptography
	Capability Machines
	CFI
	Speculative Execution
	Hybrid CPU-FPGA Platforms

	Conclusion

	Bibliography
	Curriculum Vitae
	List of Publications

