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Abstract

Hot water systems represent a substantial energy
draw for most residential buildings. For design
and operational optimization, they are usually either
modelled by domain experts or through black-box
models which makes use of sensor data. However,
given the wide variability in hot water systems, it is
impractical for a domain expert to individually model
every hot water system. Likewise, black-box systems
typically require an enormous amount of data to con-
verge to a usable model. This paper makes use of
transfer learning, a novel machine learning tool, to
completely automate the learning process while sub-
stantially accelerating the performance of compara-
ble black-box systems. Using real world data from
61 houses employing two different types of hot water
systems, the proposed system is shown to work on
both homogeneous and heterogeneous hot water sys-
tems. Convergence to a reliable model with transfer
learning is on the order of a few weeks, as opposed
to months or years without transfer. By presenting a
detailed account of how transfer learning can be used
in different contexts, we hope that it will become a
widely used tool in the building modelling and simu-
lation community.

Introduction

Hot water systems represent a substantial load in res-
idential energy consumption (Pérez-Lombard et al.
(2008)) and will also increasingly impact the elec-
tric grid with the electrification of heating systems
(Baruah et al. (2014)). More recently, researchers
have explored the possibility to use hot water sys-
tems as ubiquitous sources of flexibility. This flexi-
bility can be leveraged to either improve operational
efficiency (Kazmi et al. (2019)) or provide different
services to the electric grid (Liu et al. (2018)). Such
active control of hot water systems generally requires
a dynamics model describing the behaviour of the hot
water system. This model should include a charac-
terization of both the storage element (i.e. the hot
water vessel) and the heating element (e.g. an elec-
tric or gas boiler, a heat pump etc.), and can be used
with a number of optimization schemes such as model

predictive control and reinforcement learning based
control (Kazmi et al. (2019)).

In addition to active control, a detailed dynamics
model of the system can also enable simulation stud-
ies to study the effects of different variables on system
performance (Fischer et al. (2017)). Other applica-
tions include providing recommendations to the users
to improve some aspect of device or grid operational
efficiency, and diagnosing or predicting faults during
the operational phase (Chen and Lan (2009)).

A number of modelling techniques have been pro-
posed in literature that aim to capture the behaviour
of hot water systems. These include white-box mod-
elling methods which utilize a human modellers do-
main expertise to characterize the system dynamics of
the hot water system (Hensen and Lamberts (2012)).
At the other end of the spectrum, lie black-box mod-
elling techniques which remove the dependence on
the human domain expert by learning the systems
dynamics directly from sensor data. This can be
done both offline (i.e. when a model is learned prior
to operation) (Kazmi et al. (2016)) and online (i.e.
when a model is learned during operation). Some-
where between these two extremes lie grey-box mod-
elling methods which calibrate an existing model to
observed data (Afram and Janabi-Sharifi (2014)).

Most of these methods suffer from a number of sig-
nificant shortcomings. White-box methods are con-
strained by the expertise and availability of the hu-
man modeller. The sheer amount of hot water sys-
tems to be modelled makes it impractical to consider
every single device individually. Furthermore, since
these methods are typically employed in the design-
phase, they seldom reflect operational performance of
the modelled systems, often due to unexpected occu-
pant behaviour. Black-box methods, while avoiding
the costly dependence on human domain expertise,
rely on extensive sensing of the system to model the
system accurately. Where the data being gathered
fails to adequately capture the internal state of the
system, these methods break down. This is often
the case for hot water systems where only minimal
sensing is employed in the form of a solitary temper-
ature sensor. As the temperature distribution inside



the storage vessel is not uniform because of stratifica-
tion and other nonlinear dynamics, this sensory infor-
mation is often insufficient to learn an accurate dy-
namics model. Additionally, since they rely on gath-
ered data, black-box methods usually require large
amounts of training data to converge to a reliable
model of system dynamics (Kazmi et al. (2019)).

This paper presents a method which resolves these
issues by leveraging transfer learning, a relatively re-
cent development in machine learning (Pan et al.
(2010), Mehrkanoon et al. (2018)). At its heart, the
methodology provides a structured way of integrat-
ing information collected in a variety of settings to
extract useful knowledge. Being data-driven, it is not
limited to homogeneous devices, and can also accel-
erate learning in the context of heterogeneous devices
(i.e. devices with different thermophysical character-
istics). This paper presents the results of applying
transfer learning to hot water systems in two dif-
ferent housing projects comprising of recently reno-
vated net-zero energy buildings in The Netherlands.
By successfully learning a reliable system dynamics
model in an extremely limited time frame (on the or-
der of days to weeks for both the storage and the
heating element) the paper successfully demonstrates
few-shot learning. Learning an accurate dynamics
model quickly enables all the benefits of traditional
black-box systems in a much more practicable man-
ner. It is important to note that the methodology
described here is not limited to hot water systems,
and is generalizable to other types of energy systems.

Experimental setup

We consider two different housing projects in the
Netherlands in this case study. All the houses consid-
ered (in both projects) are net-zero energy buildings
and are insulated to a very high degree. Furthermore,
all the houses considered in both projects employ air-
source heat pumps which are used to provide both
hot water and space heating. The storage vessel in-
stalled in each house in both projects is likewise 200
litres. However, the hot water system is identical only
for houses belonging to the same project. There are
considerable differences in the make of the hot wa-
ter system across the two projects (for instance, the
vessel orientation and dynamics of the storage vessel,
as well as the way the heat pump interacts with it
differ considerably). In subsequent sections, we make
this distinction clear by referring to households (and
devices) belonging to the same project as homoge-
neous, and those belonging to different projects as
heterogeneous. This setting is summarized in Fig. 1.
As the paper focuses on data-driven modelling of the
hot water system, it is important to enumerate the
data streams it uses. These include:

1. Temperature measurement in the storage vessel:
for project A, this was at the halfway point in the
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Figure 1: Households considered in the different
projects

storage; for project B, it was at one third of the
storage vessel height

Hot water flow in litres from the storage vessel
Ambient temperature

Electricity consumed by the heat pump for hot
water production

Making use of this sensor data, the objective is to
learn an accurate system dynamics model for the hot
water system, which further comprises of a storage
model and a heating model. The purpose of the stor-
age model is to estimate the state of the vessel (i.e.
its state of charge) at any given instant. On the other
hand, the purpose of the heating model is to estimate
the amount of energy required by the heating element
(heat pump in this case) to reheat the storage vessel
from an initial to a final state of charge. Finally, it
is important to note here that while data from 53
houses was available for analysis in the first project,
there were only eight houses in the second project.

Methodology

This section presents a typical black-box learning
work flow and, using it as a benchmark, motivates
the need for a transfer learning framework to im-
prove the modelling process. It then presents two
different methods to use transfer to allow acceler-
ated learning in black-box settings. The modelling
technique used in all of these cases is a deep neu-
ral network implemented using Keras (Chollet et al.
(2015)), and its architecture is determined through
an extensive grid search over hyperparameters which
includes the number of layers, number of neurons in
each layer, choice of activation function, regulariza-
tion and learning rate (Goodfellow et al. (2016)).

Numerous metrics have been used in literature to
evaluate the performance of black-box systems. In
this paper, we focus on two such measures: the R?
metric (or the explained variance in observation data
by the fitted model) and the mean absolute error, or
MAE (which quantifies prediction error in absolute
terms in the measurement units). Additionally, spe-
cific thermodynamic tests were designed as general
purpose checks to ensure the generalization poten-
tial of model predictions to test a variety of different
situations which might arise in real-world situations.
These include tests for the following three thermody-
namic principles of heat pump operation, keeping all
other factors constant:



1. As ambient temperature (T,,;) increases, energy
consumption of the heat pump decreases (E)

2. As temperature difference between the start and
end of the reheat cycle (AT) increases, energy
consumption of the heat pump (E) increases

3. As the target temperature (Te,q) increases, en-
ergy consumption (E') increases

Benchmark black-box method

Typical black-box models learn system behaviour di-
rectly from time series data. Historically, this has
been in the form of using raw time series to predict
future system states. In this case, the only question to
consider is which sensor streams to include, and their
temporal extents (i.e. how much historic data should
be included) as input features. On the one hand, in-
creasing the temporal window allows the neural net-
work to detect longer term trends (i.e. low frequency
events). On the other hand, increasing the tempo-
ral window length can overwhelm the neural network
by providing it with unnecessary inputs. This latter
is especially a concern in low data availability set-
tings, where the dimensionality of the training vector
can far surpass the amount of training samples col-
lected. With powerful modelling techniques such as
deep learning, this opens the door to overfitting, a
commonly observed phenomenon in which the model
simply memorizes training data, rather than general-
izing to unseen test data. This also links with the
curse of dimensionality where increasing the input
feature vector considerably increases the exploration
required by the neural network to learn an accurate
representation of the hot water system Verleysen and
Francgois (2005). In the case considered in this pa-
per, the length of the window was chosen by evaluat-
ing model performance for different window lengths.
The best performance was observed with using an en-
tire historic day for all sensors under observation (al-
though the model improvements were marginal, when
compared with other comparable window lengths).

A taxonomy of transfer learning

While black-box learning in the manner presented
above is quite common in practice, it means learning
different models for each household under considera-
tion - an extremely data-inefficient practice. Trans-
fer learning offers three key benefits when compared
to traditional data-driven (i.e. black box) methods.
These include a higher initial performance, a higher
asymptotic performance and a faster rate of learning
(Torrey and Shavlik (2010)). This is highlighted in
Fig. 2. To achieve this, transfer learning leverages
two key concepts which may be shared: a domain
and a task (Pan et al. (2010)).

The domain D consists of a feature space X and a
marginal probability distribution P(X) over the fea-
ture space, where X = {z1,z9,....,2,} € X. Here
X includes the space of all possible feature vectors,
whereas x; is a particular feature vector correspond-
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Figure 2: A stylistic representation of modelling per-
formance with and without transfer learning, with in-
creasing amounts of training data (Torrey and Shavlik
(2010))

ing to some input, and X is a particular learning sam-
ple. Thus, in the context of learning a representation
for a hot water systems, an example of the input fea-
ture space X’ can be all possible combinations of the
sensor data (or features extracted from this sensor
data). The marginal distribution P(X) over this fea-
ture space quantifies the probability of observing a
specific feature vector, and depends also on the occu-
pant behaviour and ambient conditions.

Given a domain, D = {X, P(X)}, a task 7 consists
of a label space ) and a conditional probability distri-
bution P(Y|X), which is typically to be learned from
the training data in the form of pairs z; € X and
y; € Y. The task T is then given by {), P(Y|X)}.
In the hot water system context, ) is the set of all
possible labels which are the state of charge for the
storage element and the energy consumption of the
heat pump. The conditional distribution P(Y|X) is
the dynamics model that we are interested in learning
from historic behaviour, which is again influenced by
both user and environment.

Permutations of transfer learning

There are four possibilities in transfer learning set-
tings, given the domain and task definitions presented
above. We list them briefly in this section.

1. When the feature space is different between the
source and target domain, i.e. X; # X;. This can
happen when the instrumentation on the source
and target device are completely dissimilar. This
case is not considered further in this paper.

2. When the marginal probability distribution
differs between the source and target domain, i.e.
P(X;) # P(X:). This takes place when identical
(or homogeneous) hot water systems are operated
in different households, causing the different de-
vices (which share the same system dynamics) to
operate in different regions of the state-space.

3. When the label space differs across the source
and target domain, i.e. Vs # );. As we are in-
terested in uniform label spaces (i.e. the state of
charge for the vessel and an estimation of energy



consumption for the heat pump), this case is also
not considered further in the paper.

4. When the conditional probability distribu-
tion varies between the source and target task,
ie. P(Ys|Xs) # P(Y:|X:) . This implies different
device dynamics and is the case where heteroge-
neous devices are considered for the transfer task.

We refer to case 2 specifically as transductive
transfer and case 4 as inductive transfer, fol-
lowing the terminology introduced in (Pan et al.
(2010)). Transductive transfer learning refers to the
case where the source and target tasks are the same,
while the source and target domains are different. In-
ductive transfer learning, on the other hand, is the
case where the target task differs from the source task.
These two conditions are not mutually exclusive, and
it is possible for transfer learning to take place us-
ing samples drawn from instances where both domain
and task differ for the source and target, a case we
refer to as joint transductive-inductive transfer.

Ways of achieving transfer

While much research on transfer learning has focused
on computer vision and natural language processing
problems, the same ideas hold for modelling energy
systems. In general, two methods of achieving trans-
fer with neural networks have been investigated:

1. Feature sharing is the form of transfer learning
where source training data is directly used while
learning the target model to improve learning per-
formance. Both raw observations and extracted
features can be used for this purpose.

2. Parameter sharing usually involves the train-
ing of a model (a neural network) with a large
amount of source data. The weights (parameters)
of this neural network are then used as initializa-
tion for the target; these weights are then fine-
tuned using observed target data using backprop-
agation (the target data set is typically orders of
magnitude smaller than the source data set). The
fine-tuning is usually done with a much smaller
learning rate, and it is also possible to completely
freeze certain parts of the neural network to re-
tain the representations already learned by the
network (Yosinski et al. (2014)).

Sharing raw features is not guaranteed to work in
heterogeneous settings, and can sometimes even lead
to negative transfer. On the other hand, parame-
ter sharing can lead to overfitting if the fine-tuning
is not carried out properly. It is important to note
here that both the source and target can draw data
being collected by multiple agents, i.e. transfer can
take place both synchronously and asynchronously
depending on the nature of learning agents.

Towards few-shot learning

While transfer learning can improve performance of
black-box methods in general, the way the benchmark
black-box method is posed above is quite naive. The
most obvious flaw in the formulation is to neglect
the fact that the task is episodic. An episodic task
refers to a problem which has a clearly defined initial
and terminal state. Upon termination, the system
state is reset and previous states do not affect future
states. In other words, by defining a static temporal
window, the black box method formulated above is
forced to also consider data from previous episodes,
which detracts from the learning process.

The realization of the episodic nature of the task al-
lows for meaningful features to be extracted from the
time series. More specifically, five features are ex-
tracted from the raw time series data: (1) the mid-
point temperature in the storage vessel after a reheat
cycle (this is a proxy for the initial state), (2) time
elapsed since the last reheat cycle (episode duration),
(3) hot water consumption since the last reheat cycle
(human interaction during the episode)), (4) ambient
temperature conditions, and (5) the mid-point tem-
perature just before the reheat cycle (this is a proxy
for the terminal state of the vessel). The last two
features only influence the heat pump model, as the
storage vessel is contained in a conditioned space, and
thermodynamic losses remain relatively unaffected by
ambient conditions. Extracting these features leads
to a feature set whose dimensionality is roughly two
orders of magnitude lower than the one used for raw
time series learning, thereby circumventing the curse
of dimensionality. Feature extraction in this man-
ner also improves the interpretability of the learned
model, another common problem in black-box meth-
ods.

It is important to keep in mind what the neural net-
works are actually learning. The storage model learns
the temperature distribution in the vessel as a func-
tion of thermodynamic and mixing losses, given some
initial conditions. This temperature distribution is
then thresholded to obtain a state of charge (i.e.
the amount of hot water above a certain tempera-
ture threshold reflects the state of charge (SoC)). The
heating model, on the other hand, learns the amount
of energy which would be required to reheat the stor-
age vessel in a given state of charge and ambient con-
ditions.

Results

In this section, we present results from applying the
formulation presented above to the two different hot
water systems. First, we discuss the application of
the algorithm to the storage model, which is, in a way,
an easier learning problem because of an abundance
of data. The heating model is more difficult to learn
accurately because the training examples available for



Prediction [ *C]

B
E

50
Observation [ C] Observation [*C]

Figure 3: Storage vessel model accuracy with raw
time series learning for increasing amounts of data
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this are typically two orders of magnitude fewer than
for the storage model. This is because, in a day, there
are only a few (usually not more than two) reheat
cycles, but the temperature data is collected every 5
or 15 minutes.

Storage model

Benchmark black-box: Fig. 3 presents the result
of predicting the mid-point temperature in the stor-
age vessel with a deep neural network with three hid-
den layers (chosen through hyperparameter search)
trained on increasing amounts of gathered data in a
household (1 week and 32 weeks). While the per-
formance improves over time as more data becomes
available to the neural network, the predictive accu-
racy continues to be quite low, as evidenced by the
poor correlation between predicted and observed tem-
peratures (and the correspondingly low R? values).
One explanation for this poor performance was the
high dimensionality of the input feature data when
compared with the number of training examples.

Benchmark black-box with transfer learning:
The realization that all individual households are try-
ing to learn the same dynamics model (especially
within the same project) can be leveraged to apply
transfer learning to accelerate the modelling process.
In this case, the gathered features from individual
households are combined together to form a single
feature vector which is then used to learn the shared
dynamics model for all households. As seen in Fig. 4,
increasing the data weeks used for learning a model
improves its accuracy (or the variance it can explain
in the observed data) but only up to a certain ex-
tent before asymptoting. In this way, only one of the
three benefits of transfer learning, as shown in Fig.
2, i.e. improved initial performance, is realized. The
asymptotic performance remains largely unaffected.

Learning with extracted features: By reducing
the dimensionality of the input feature vector from
96 or 288 (depending on sampling rate) to 3 (i.e. ap-
plying the feature transformations as explained in the
previous section), the learning problem is simplified
considerably. This is reflected in the improved ac-
curacy of the learned storage model using extracted
features, as shown in Fig. 4. This feature transfor-
mation also considerably simplifies the calculation of
state of charge from the predicted temperature.

Demonstrating transfer: It is also instructive to
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Figure 4: Storage vessel model accuracy with raw time
series learning incorporating transfer learning data-
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Figure 5: Mean Absolute Error [°C] as a function of

increasing data collection (weeks) and agency (house-
holds)

summarize the effect of increasing agency and time
on the learning model accuracy. This is highlighted
in Fig. 5 where it is easy to see that increasing agency
and data collection have largely the same effect, i.e.
the initial performance of the system with transfer
learning is close to the asymptotic performance of
the learner without transfer. This means that gath-
ering data for months in a single household can be
replaced by collecting data in multiple households for
a very brief amount of time. Of course this result
holds only for homogeneous devices, but it can also
be extended to heterogeneous devices, as we show in
the next section. It is also fairly easy to see that while
transfer learning allows for a much improved initial
performance, the asymptotic performance is not too
different for both with and without transfer learning.

Heating model

Benchmark block-box: As mentioned previously,
the biggest challenge to model the heating element ac-
curately arises from the very limited training dataset
the learning algorithm has access to. Practically, this
means that the learning algorithm has ten or fewer
training examples after a week of interacting with the
system for a single household. For data-intensive al-
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gorithms like deep neural networks, this leads to se-
vere overfitting, especially when the deep neural net-
work is using the raw time series as its input feature
vector. In this case, the dimensionality of the input
feature vector is multiple orders of magnitude higher
than the number of examples available for learning.
This seldom, if ever, works well in practice. Indeed, in
this case the neural network failed to converge using
raw time series data alone, with or without transfer
learning.

Learning with extracted features: As before, to
model the heating element, the extracted input fea-
ture vector is fed to the neural network which pre-
dicts the energy required to reheat the storage vessel
given different ambient conditions. On average, this
energy is between one and two kWhs (however it can
vary considerably as a function of the vessels state
of charge and ambient conditions). Unlike the raw
learning case, the neural network successfully learns
to predict the heating elements behavior given ex-
tracted features. This prediction grows progressively
better as the agent observes more data, however the
learning rate is much higher than for the case of the
storage vessel.

Demonstrating transfer: The model improvement
effect holds also as the number of agents (i.e. house-
holds involved in the learning process) increases.
However, unlike the case of the storage element, the
heating model continues to improve until all the gath-
ered data has been used. In this case, transfer learn-
ing leads to both improved initial and asymptotic per-
formance (as highlighted earlier in Fig. 2). It is im-
portant to note that without transfer, a single house-
hold would never have access to almost 20 years of
operational data (which is the asymptotic amount of
data used in the transfer learning case). This infor-
mation is highlighted in Fig. 6 where it is easy to see
that the error rate continues to drop as we increase
the amount of data (either through observation pe-
riod or the number of households).

An interesting caveat arises here as, unlike for the
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Figure 7: Scatter plot between observed and predicted
electricity consumption for the heat pump as a func-
tion of increased data and agency: (top-left): 1 week
of data for 1 agent; (top-right) 32 weeks of data for
1 agent; (bottom-left): 1 week of data for 32 agents;
(bottom-right): 32 weeks of data for 32 agents

storage model, the model improves more significantly
for a longer data gathering period with fewer house-
holds than it does with additional households with
fewer data gathering (i.e. learning a model with data
collected for one household over 32 weeks results in
a better model than one learned with data collected
over 32 households for one week). This makes in-
tuitive sense and is because of better exploration of
ambient conditions over 32 weeks (i.e. the model ob-
serves heat pump performance under different condi-
tions) than is possible in only one week, even when
multiple households are observed. This effect is high-
lighted in Fig. 7. This means that regardless of the
amount of households involved in the initial transfer,
learning will always continue to improve for a while
as it takes stock of the effect of ambient conditions
on heat pump performance. This is unlike the case of
the storage vessel.

Induction

The heating model was eventually able to learn an
extremely accurate representation of the heat pump
(with a normally distributed relative mean error of
less than 10%). However, it took almost 20 years
of data to do so, implying that a more data-efficient
representation can further improve real world learn-
ing performance. In the case of the storage model,
this was not necessary as an accurate representation
was learned in a week of data collection for the case of
transductive transfer learning. This section considers
inductive transfer learning to further accelerate heat-
ing model improvements, which can be achieved by
making use of the data gathered in heterogeneous de-
vices (i.e. from devices belonging to different projects
in this case). In practice, inductive transfer learning
can be achieved in one of two ways (parameter shar-
ing or feature sharing), as explained earlier.

In this paper, the performance of both types of induc-
tion is compared. Project A is considered the source
(because of greater data availability), while Project B
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is treated as the target which can make use of transfer
learning to learn a reliable model quicker. From Fig.
8, it is obvious that parameter induction (i.e. initial-
izing the neural network with previously trained data)
outperforms naive feature induction. It is also impor-
tant to note that both parameter and feature sharing
perform substantially better than the model learned
using just the target data (i.e. project B). This effect
is especially pronounced in the early stages of data
collection.

In this case, the workflow for feature sharing is as
follows: the training data gathered from project A is
aggregated with training data from project B, all of
which is then used to train a single neural network.
The workflow for parameter sharing is more involved
as first a neural network is trained on the already
available data from project A. Then the weights of
this neural network are used as the initialization for
project B where observed data is used to fine-tune the
weights through backpropagation. Results of both
these methods are compared with a neural network
which is initialized randomly but then is trained using
only the target data (i.e. for project B). It is obvi-
ous that pre-training the neural network drastically
speeds up real world performance and reduces data
requirements by over an order of magnitude making it
realistic to model the heating element through sensor
data alone.

Thermodynamic validation: While the prediction
error with inductive transfer is much lower than the
benchmark, it is not obvious whether the neural net-
works learned using data alone can generalize to be-
yond the training and test set. This is especially a
concern because both training and test data are sam-
pled from real world behaviour of hot water systems,
which a controller is meant to affect. This controller
has the potential to drive the system to different, un-
seen parts of the state-space. As evident from Fig.
9, the model learned without induction has been able
to learn only two of the three fundamental properties
tested correctly after 32 weeks of data collection, even
when applying transductive transfer learning over two
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Figure 9: Results of learning with and without in-
duction learning for the heating model; results shown
here are to visualize the trends of the learned model
for (left) with induction for 2 agents after 4 weeks,
and (right) without induction with 2 agents after 32
weeks

households. The model is unable to generalize well on
arguably the most important property, i.e. a higher
temperature difference between start and end tem-
perature in the storage leads to higher energy con-
sumption. On the other hand, agents making use of
induction were able to learn (retain) all three proper-
ties correctly from the source task within four weeks
while simultaneously far outperforming the case with-
out transfer on the MAE and R? metrics. This case
is a successful example of applying both transduc-
tive and inductive transfer learning to help accelerate
model learning.

Discussion and Conclusion

This paper has presented results from using transfer
learning to accelerate the real world performance of
black-box systems. This is an important real world
challenge because residential energy systems, while
increasingly important from a demand side manage-
ment perspective, are prohibitively expensive to be
modelled by a human domain expert because of their
wide variability. Likewise, existing black-box systems
suffer from many shortcomings, and can take a long
time (during which observational data has to be gath-
ered) before converging to a reasonable model. This
limits their real-world applicability.

Several important conclusions can be drawn from this
work to improve on state-of-the-art in black-box mod-
elling. Primarily, the paper demonstrates that trans-
fer learning can improve the modelling accuracy of
black-box systems in both homogeneous and hetero-
geneous device contexts. It shows that, depending on
the quantity of observational data and homogeniety
of devices, transductive or inductive transfer learn-
ing might yield the greatest performance gains. Fur-
thermore, when applying inductive transfer, param-
eter sharing outperforms feature sharing for hetero-
geneous devices, while for homoegeneous devices fea-
ture sharing is arguably a better idea. Likewise, the



amount of data gathered also influences the gains pos-
sible with transfer learning: to illustrate this point,
the paper shows how the storage vessel model be-
haves very differently from the heat pump model.
The fundamental difference between the two models
is a reliance on ambient conditions which means that
longer observational periods help improve modelling
performance for the heat pump. This also means
that a model learned in a certain geographical loca-
tion may not be directly usable in a different loca-
tion, but might serve as a source model which could
be fine-tuned for improved performance. The paper
also demonstrates the importance of using multiple
metrics for evaluating modelling performance, rather
than relying on a single indicator, as this can yield
misleading results.

It is important to note here that the initial predictions
of the neural network before substantial amounts of
data have been gathered can be completely incorrect.
While transfer learning can address this to an ex-
tent, it is also possible to incorporate domain-specific
knowledge into the learning process. However, as this
detracts from the task-agnostic learning approach es-
poused in this paper, this was not considered in this
paper. Regardless of the transfer mechanism em-
ployed, the paper also highlights the importance of
extracting meaningful features to improve modelling
performance, and shows that a naive black-box for-
mulation is insufficient for hot water system mod-
elling. Another challenge with transfer learning is the
risk of negative transfer, which is an area of active re-
search. It is therefore important to stress here that
transfer learning, by itself, might not be the silver
bullet to solve all of black-box modelling challenges.

While the focus of this paper has been on modelling
hot water systems, the framework is generalizable to
other energy systems. While the heterogeneous sys-
tems considered in this research belonged to the same
family of devices (i.e. both were heat pump hot wa-
ter systems), it is a possible future research direction
to evaluate the framework for more diverse systems
(such as heat pumps and resistance heaters). Given
the potential gains and the limited cost of realizing
them, we believe transfer learning should be a fun-
damental part of every modeller’s repertoire. This
paper provides a useful starting point in this direc-
tion.
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