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Fluorescent proteins (FPs) and fluorescent protein-derived

biosensors are indispensable tools in life sciences. They make

it possible to probe the location, activity, or interaction of

molecules of interest from a subcellular to a multicellular scale.

The desire for high-resolution and multidimensional information

imposes continuously increasing demands on the performance

of the employed probes leading to a continued need for

optimization and integration of additional features, such as

phototransformable behavior. This review highlights the latest

advances in FP engineering, which increase throughput and

tailor the improvements directly to the envisioned experiments.

Additionally, we discuss recent alternative approaches to

introduce or alter phototransformable behavior and describe

selected applications of phototransformable behavior in

biosensors.
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Introduction
Fluorescent proteins (FPs) are one of the most successful

biotechnological toolsets available. These peculiar

proteins are indispensable in life sciences and are widely

used in imaging experiments ranging from single

molecules to entire organisms [1�,2]. Specialized FPs

displaying phototransformable behavior — that is

irreversible photoactivation (PA)/photoconversion (PC)

or reversible photoswitching (RS) (Figure 1) — allow

even more complex experiments including photochromic

Förster resonance energy transfer (FRET), lock in

detection, pulse-chase experiments, and super resolution

fluorescence microscopy [3,4]. Furthermore, the fusion of

FPs with other proteins and protein domains has led to an

impressive amount of genetically encoded biosensors,

capable of providing information on protein–protein

interactions, the presence or activity of specific molecules
www.sciencedirect.com 
and the spatio-temporal regulation of signaling in living

systems [5,6]. The biggest advantage offered by FPs and

their derived biosensors over organic dye molecules or

quantum dots is their inherent genetic encoded nature,

which allows for highly specific introduction into the

studied system using mostly basic molecular biology

and cloning techniques.

Though a significant amount of work has been devoted to

creating new and improved FPs, the increasing

experimental requirements for example advanced (super

resolution) imaging or biosensing experiments create a

continued need for improved or specifically tailored FPs.

Simultaneously, FP engineering strategies have also

evolved in past few years to accommodate this demand.

This review discusses a selection of recent exciting

developments related to (phototransformable) fluores-

cent protein optimization and usage.

Choosing and creating the best FPs
The ongoing interest in FP development has resulted in a

huge collection of FPs with varying color, brightness,

photostability and photochromic behavior. In addition

to the spectroscopic and photophysical properties, FP

development also influenced the overall biological

behavior, including oligomerization tendency, solubility,

folding and maturation efficiency, protein turnover, and

(mis)localization. However, because there are such a large

number of optimizable properties and many of these

cannot easily be optimized independently, there is no

single ‘perfect’ FP (Figure 2a). The most suitable

(combination of) FPs for an experiment will therefore

depend on the specific experimental demands and the

questions at hand. The sheer number of available FPs can

make it difficult to select the appropriate FP or FP

combination for a specific experiment. To facilitate this

choice, one could look into the available reviews or

comparison studies [7–11], or make use of the online

database available at www.fpbase.org, which lists the

most important characteristics of a large selection of

well-known and lesser-known FPs [12].

Commonly used FPs have typically undergone one or

more optimization attempts. Classically this entailed

creating mutants of a promising template, followed by

extensive screening of the mutant library expressed in

Escherichia coli. Interesting mutants were easily selected

based on their fluorescence brightness or color, and sub-

sequently characterized in depth (Figure 2b). This

strategy has been very widely used in the field. A recent

example is the creation of the bright red FP (RFP),

mRuby3, a marked improvement over its ancestor
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Glossary

AKAP: A kinase anchoring protein

AKAR: A kinase activity reporter

BiFC: bimolecular fluorescence complementation

bME: b-mercaptoethanol

CaMPARI: calcium-modulated photoactivatable ratiometric

integrator

Ex: excitation

GFP: green fluorescent protein

GR-GECO: green-to-red photoconvertible genetically encoded

calcium indicator for optimal imaging

FC: fluorescence complementation

FLINC: fluorescence fluctuation increase by contact

FP: fluorescent protein

FRET: Förster resonance energy transfer

mt-pcSOFI: multi-tau photochromic super resolution optical

fluctuation imaging

PA: photoactivation

PALM: photoactivated localization microscopy

PC: photoconversion

PKA: protein kinase A

refSOFI: reconstituted fluorescence-based super resolution optical

fluctuation imaging

RESOLFT: reversible saturable optical linear fluorescence transitions

RFP: red fluorescent protein

RS: reversible photoswitching

SOFI: super resolution optical fluctuation imaging

Figure 1
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mRuby2 in terms of brightness and photostability,

although it retained the sometimes unwanted photochro-

mic behavior [13�]. The same study also reported the

development of mClover3, a highly photostable variant of

the bright green FP (GFP) Clover, which is regarded as

one of the brightest monomeric GFPs [13�], together with

mNeonGreen [14]. Even though this strategy is concep-

tually straightforward, easy to perform, and has proven its

merit in the past, more advanced approaches are required

to push FP performance to new heights. Since the low-

hanging fruit has likely been picked, manual brightness

and/or color screening of randomized mutant libraries

may be insufficient to select the next generation of

improved FPs. Novel strategies should increase both

the throughput and the number of parameters screened

in order to retrieve those mutants that display the desired

properties.

The development of another RFP, mScarlet, already

improved upon this classical strategy [15��]. The muta-

genesis was performed on a synthetic consensus sequence

(mRed7), which incorporated information from multiple

RFPs to generate a fitter, monomeric scaffold. Initially,
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Figure 2
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Fluorescent protein optimization.

(a) Optimization of an FP often improves specific features (#6, 7 and 8), while its performance in other aspects decreases (#2, 4 and 5). (b)

General FP optimization scheme and ways to improve the different aspects discussed in this review. The process often involves repeated rounds

of generating diversity and screening/selecting interesting clones, illustrated by the dotted arrow.
the mutants were screened for longer excited state life-

times, as this is often related to an increased quantum

yield of fluorescence and therefore a direct indication of

an improved intrinsic brightness. In a next step, mutants

were screened for improved brightness and protein mat-

uration using mTurquoise2 as a co-translated reference to

compensate for differences in colony size and expression

levels. Similar to mRuby3, the resulting mScarlet exhibits

higher brightness compared to commonly used RFPs,

both intrinsically and in live-cell imaging. Additionally,

two mScarlet variants were characterized that trade

intrinsic brightness for faster maturation (mScarlet-I) or

improved photostability (mScarlet-H). Additional efforts

might help to rescue the intrinsic brightness of these

RFPs while retaining their remarkable properties.

Other interesting reports include the development of

mCarmine, a far-red FP with a 4–5-fold improved bright-

ness over its ancestor mNeptune684 [16�], and the

improvement of FusionRed resulting in FusionRed-M,

a variant with a twofold increased brightness [17�]. Both

optimization attempts introduced elements to automate

the screening and selection procedure. The develop-

ment of mCarmine made use of a screening platform that

automated image analysis and colony picking; while the

screening of the FusionRed mutants made use of a

microfluidic sorter. Especially the second approach

opens up a range of new possibilities as the microfluidic

sorter is compatible with a variety of prokaryotic and

eukaryotic cells and can be used with more complicated

screening schemes probing diverse photophysical

parameters.
www.sciencedirect.com 
While the optimization efforts discussed above were

mostly directed at maximizing the brightness of FPs,

several other reports also detail the targeted optimization

of other aspects. Gamillus, for example, was developed to

have very stable green fluorescence in solutions with pH

ranging from 4 to 9 and increased long term stability in

acidic or denaturing environments, an area where most

green and yellow FPs are lacking [18]. Another example is

Citrine2, which was mutated specifically to have twofold

increased photostability compared to mCitrine, although

it might also exhibit an increased oligomerization ten-

dency [19]. Ultra-stable GFP and monomeric ultra-stable

GFP were created with a high resistance to denaturation

in sodium dodecyl sulfate at elevated temperatures, par-

ticularly for experiments involving optical clearing steps

such as volumetric imaging of organs [20]. Several FPs

have been optimized recently for use in oxidizing

environments, such as the bacterial periplasm [21–23].

As a last example, BrUSLEE was created explicitly with a

very short excited state lifetime of approximately 0.8 ns,

while preserving 80% of the brightness of EGFP,

extending the capabilities of fluorescence lifetime

imaging microscopy [24]. Each of these examples tailored

the performance of an FP to the emerging experimental

needs of advanced and challenging imaging experiments

by optimizing one specific property.

New phototransformable FPs
Besides new and improved non-phototransformable FPs,

the selection of photochromic FPs has also been

expanded recently. The newly developed GMars variants

are green RSFPs derived from the green-to-red
Current Opinion in Biotechnology 2019, 58:183–191
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photoconvertible mMaple3 [25,26,27�]. Although the

GMars variants differ in only one amino acid, they have

very distinct properties. One example is GMars-Q, which

is particularly well-suited for long-term parallelized

reversible saturable optical linear fluorescence transitions

(RESOLFT) super resolution microscopy because of its

low residual off-state fluorescence and peculiar high

resistance to photoswitching fatigue, that is the photo-

bleaching that occurs upon repeated photoswitching [25].

Both beneficial properties can be assigned to efficient

shelving of GMars-Q proteins in dark states [28], which

unfortunately also introduces additional complexity in

the photophysical behavior and limits the amount of

detectable fluorescence after repeated photoswitching.

GMars-T as a second example was found to have

beneficial spectroscopic and photochromic properties

for multimodal super resolution imaging, realizing a

significant resolution improvement in both super

resolution optical fluctuation imaging (SOFI) and

RESOLFT experiments [26].

While there are several sets of reliable green RSFPs

available, there is a prohibitive scarcity of spectral varia-

tion. The usability of orange and red RSFPs in live-cell

imaging is mostly limited by their poor switching contrast

or unreliable chromophore maturation [29,30]. To address

this issue, new red RSFPs have recently been created and

shown to be compatible with RESOLFT super resolution

imaging. The three reported rsFusionReds exhibited

off-switching significantly faster than the previously

created mCherryRev1.4 and stable for 20–40 min

[31��]. Furthermore, it was shown that the return to the

fluorescent on-state did not require damaging UV-violet

light but could be efficiently induced by light of 488 nm

or even 510 nm, reducing potential phototoxic effects.

Extrinsic factors influence the
phototransformable behavior of FPs
Phototransformable behavior in FPs is mostly dependent

on the protein structure, which can be optimized through

mutagenesis and screening. However, it is not always

necessary to introduce mutations in a FP to induce

photochromic behavior, as was shown with the introduc-

tion of photoswitching in mCherry and mNeonGreen in

the presence of thiols [32]. Additionally, a recent study

using mCherry showed that this conventional FP can be

chemically caged using b-mercaptoethanol (bME),

quenching most of the red fluorescence [33��]. Uncaging

of mCherry, and recovery of its fluorescence, could be

accomplished through wash-out of the bME or by using

405 nm light as if it were a photoswitchable FP

(Figure 3a). A combination of bME washout and 405

nm irradiation induced photoactivation of the caged

mCherry molecules useful for single molecule localiza-

tion microscopy, with photon counts comparable to those

of established PCFPs mEos3.2 and mMaple3. Detailed

investigation of the underlying mechanism revealed that
Current Opinion in Biotechnology 2019, 58:183–191 
direct addition of bME to the chromophore and bME

induced reduction of the chromophore are responsible for

the caging. This direct interaction with the mCherry

chromophore is rather surprising, considering that the

b-can is believed to shield the chromophore from the

environment. Furthermore, the bME caging effect was

only seen in mCherry and closely related FPs, indicating

it is facilitated by mCherry-specific features. If these

features can be identified, through for instance mutagen-

esis studies, the caging could be enhanced, removed or

introduced in other non-phototransformable FPs.

The photoswitching kinetics of RSFPs are also signifi-

cantly affected by factors other than their amino acid

sequence. One such factor is protein flexibility, which is

determined by the protein structure but equally by

extrinsic elements. The latter is illustrated by the effect

of the medium viscosity [34] and the oligomerization state

[35] on the RSFP photoswitching rates. Another study

illustrated how binding of a specific nanobody (Enhancer

[36]) significantly increased off-switching rates, improved

resistance to photoswitching fatigue and reduced sponta-

neous on-state recovery of rsGreen1 and rsGreenF

(Figure 3b) [37,38]. Additional investigating suggested

that these EGFP derived RSFPs exist in two emissive

states, that each harbor their specific photoswitching

kinetics. Nanobody binding preferentially stabilizes

one of these states and thus alters the overall photochro-

mic characteristics of the rsGreens, which opens up

interesting new perspectives. The altered switching

kinetics can serve as a contrast mechanism in techniques

such as optical lock-in detection [39], t-RESOLFT [40]

or mt-pcSOFI [41], methods that are able to discriminate

fluorophores with distinct photochromic behavior. In a

similar fashion, the specific change in photoswitching

behavior upon binding of a partner molecule can provide

an interesting single-color ratiometric readout mechanism

for biosensors. These applications would facilitate addi-

tional multiplexing by freeing up a large part of the

spectrum. Additionally, similar strategies could conceiv-

ably alter the phototransformable properties of PAFPs

and PCFPs or of spectrally distinct RSFPs, adapting them

to the experimental needs. However, this would require

the identification of additional FP specific nanobodies or

binding peptides.

Phototransformable biosensors
Fluorescent protein-based biosensors are important

research tools that report on protein–protein interac-

tions, enzymatic activity, or the presence of specific

molecules or ions in living systems. The functionality

of these biosensors can be further expanded by the

introduction of a phototransformable aspect. This is

exemplified by GR-GECO, a photoconvertible Ca2+

sensor, which allows to specifically highlight cells of

interest during readout of the biosensor [42]. Another

example is the integrating genetically encoded Ca2+
www.sciencedirect.com
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Figure 3
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Extrinsic factors influence photochromic behavior of FPs.

Schematic representation and idealized photochromic behavior of FPs affected by extrinsic factors.

(a) Photochromic behavior introduced in mCherry through b-mercaptoethanol (bME) caging. Addition of bME quenches the red fluorescence

which can be recovered using 405 nm light and/or washout of the bME. PA: photoactivation, Ex: excitation.

(b) Photoswitching cycle # 1 and # 500 of rsGreen1 (left) and Enhancer nanobody bound rsGreen1 (right). Binding of the nanobody stabilizes the

photoswitching kinetics and contrast of the RSFPs. Ex: excitation, On: reversible on-switching, Off: reversible off-switching.
sensor: CaMPARI (calcium-modulated photoactivatable

ratiometric integrator) [43]. CaMPARI displays a high

photoconversion efficiency in the presence of Ca2+ com-

pared to very limited photoconversion in the absence of

Ca2+. The selective photoconversion of CaMPARI in

cells that experience high Ca2+ concentrations during

the exposure to photoconverting light has proven to be a

valuable tool in the study of active neuronal populations.

The performance of CaMPARI was recently improved

with the development of CaMPARI2, which exhibits

higher contrast and increased brightness [44�].

The introduction of phototransformable aspects in FP-

based biosensors also paves the way for super resolution

biosensor imaging. This enables resolving the nanoscale

compartmentalization of biochemical activity, which is

thought to play a crucial role in the regulation of cellular

signaling. One strategy to achieve this revolves around

bimolecular fluorescence complementation (BiFC) of

phototransformable FPs. In essence, two (or more)

fragments of the FP are brought together through the
www.sciencedirect.com 
interaction of their respective fusion partners and recon-

stitute to form a functional FP (Figure 4a). When the

reconstituted FP exhibits phototransformable behavior,

the formation of protein–protein interactions can be visu-

alized with subdiffraction microscopy techniques such as

SOFI [45�], RESOLFT [46�], and photoactivated locali-

zation microscopy (PALM) [47,48�]. A major limitation of

complementation-based approaches is their irreversible

nature, precluding the study of protein–protein interac-

tion dynamics [49,50]. Moreover, the creation of suitable

complementation fragments of (phototransformable) FPs

often involves additional optimization, using mutagenesis

and screening, to ensure reliable biological and photo-

physical behavior upon reconstitution [51].

A recent discovery introduced a new class of biosensors

that are able to visualize dynamic activities and

interactions in super resolution. The concept hinges on

the observation that the conventional RFP, TagRFP-T,

displays a large increase in fluorescence fluctuations when

it comes into close contact with the green RSFP Dronpa
Current Opinion in Biotechnology 2019, 58:183–191
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Figure 4
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Phototransformable biosensors.

Schematic representation and idealized behavior of

phototransformable biosensors. (a) The calcium-modulated

photoactivatable ratiometric integrator (CaMPARI) will only

photoconvert from the green to the red fluorescent state when

exposed to a combination of high Ca2+ concentration and 405 nm

light. (b) In reconstituted fluorescence-based SOFI (refSOFI) two non-

fluorescent parts of an RSFP reconstitute a functional fluorophore

upon interaction of their respective fusion partners (FC, fluorescence

complementation). The RSFP fluorescence fluctuations (‘blinking’) are

used to generate a super resolution image. RSFP complementation is

irreversible and not instantaneous. (c) In FLINC biosensors a

conformational change in the sensing domain brings Dronpa and

TagRFP-T into close contact, increasing the fluorescence intensity

fluctuations of TagRFP-T useful for generating a super resolution

image. The change in TagRFP-T fluorescence is reversible and

immediately responds to changes in the sensing domain. PC:

photoconversion, Ex: excitation.
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[52��] (Figure 4b). Because the FLINC (fluorescence

fluctuation increase by contact) effect is dependent on

the distance between TagRFP-T and Dronpa, any action

that brings both proteins in close contact can be visualized

using the super resolution technique SOFI. As a proof of

concept, an A kinase activity reporter (AKAR) biosensor

was created where the distance between TagRFP-T and

Dronpa was regulated by a molecular switch sensitive to

protein kinase A (PKA) phosphorylation. Using this

approach, PKA signaling microdomains could be visual-

ized in living cells and a role for A kinase anchoring

proteins (AKAPs) in structuring these domains was

revealed. Because FLINC in TagRFP-T is independent

of the Dronpa fluorescence, it is possible to employ a non-

fluorescent Dronpa variant, opening up the green portion

of the spectral range for multiplexing [52��]. Moreover, it

might be feasible to generate small peptides that elicit a

similar FLINC effect, which could lead to faster and

stronger modulation of the fluorescence fluctuations.

Being an entirely new biosensor readout type, additional

investigation is needed to probe the potential of FLINC

and to increase our understanding of the principles

behind the phenomenon. However, innovations like

these are crucial in moving biosensor imaging forward

into the high spatial and temporal resolution at which

cellular processes take place.

Conclusion and outlook
The studies discussed above illustrate the ongoing interest

in the optimization and usage of (phototransformable) FPs

and biosensors, and simultaneously highlight the diversity

present in terms of properties and applications. This variety

is actually even larger considering the recent development

of extrinsic chromophore-binding RSFPs [53], and the

introduction of phototransformable FPs in novel methods

such as cryogenic super resolution microscopy [54], optoa-

coustic imaging [55�] or optogenetics [56��]. The incredibly

broad range of applications making use of FPs and biosen-

sors creates an equally broad range of desired properties

exhibited by the probes, which establishes a continuous

need for optimization. Since the low-hanging fruit has most

likely been picked, future FP (biosensor) engineering will

require automation using robotics [57] and/or microfluidics

[58], and screening in host systems that more closely

resemble the final application to increase throughput and

match the improvements directly to the envisioned experi-

ments. Alternatively, smart selection of alternative tem-

plates and more rational approaches to create specifically

tailored probes for different applications can reduce the

need to screen huge libraries of mutants [59]. However, to

accomplish the latter, a better understanding of the

structure–function relationship is required. Time resolved

crystal structure determination studies [60,61�] and molec-

ular dynamics simulations [62] could prove very useful in

achieving this, as would more comprehensive mutational

studies of FPs displaying diverse photophysical and

biological behavior [63��]. Taking everything into
www.sciencedirect.com
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consideration, FPs and biosensors will continue playing a

crucial role in research. Moreover, it is likely they

will continue to surprise us in the future with new

functionalities and applications.
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