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On closed queueing networks with mixed preemptive 
resume priority servers 

Abstract: 

This paper discusses a typical closed queueing network model in which multiple preemptive 
resume servers are present with different priority structures at each priority node. An 
algorithm is developed that is applicable for the three-node two-class model and results are 
compared to point estimates obtained from simulation. The algorithm is partly based on the 
Delay/MV A algorithm developed by Bondi and Chuang, because of the accuracy with which 
instant arrival queue lengths at fefs servers are calculated. Results are also compared with 
results obtained from the Shadow Approximation. 

o. Introduction 

Queueing networks are widely used in computer performance modelling. The most 
general solution method for such networks is global balance equation solving. For 
networks of reasonable size (even with only a few service centers and a few customer 
classes), this may result in one global balance equation per feasible state of the 
network, requiring an enormous effort to solve. A broad class of queueing networks 
however, the BCMP networks [Baske75], have characteristics that allow a more 
efficient solution approach. They obey local balance and exhibit product form 
solutions. For closed product form queueing networks, approximation algorithms 
such as MVA [Reise75] and Convolution [Buzen73] have been developed that give 
reasonably accurate solutions to the performance measures. 

BCMP type of networks are allowed to have different classes of customers with 
distinct routing and, under certain conditions, with distinct service time distributions. 
However, different priorities may not be assigned to these customer classes if the 
network is to retain a product form solution. 

Many real-life systems do have different priorities for the different customer classes. 
This may have various reasons, e.g. application of the SPT -rule for minimal average 
response times and maximal throughput. Only few exact results for these models are 
available, since they can only be obtained by solving the (often extensive and 
complex) set of global balance equations. Avi-Itzhak and Heyman [Avi-I73] derive 
exact results for homogeneous closed queueing networks with preemptive-resume 
priorities observed on all servers. Morris [Morri81] extends these results for non­
homogeneous two-node (tandem) models with preemptive-resume priorities on both 
nodes. The relaxation of the homogeneity assumption allows only two-station models 
to be solved. Morris also gives exact results for the case where priorities are reversed 
on both nodes. 



The case of reversed priorities has an interesting application in the context of batch 
processing in operating systems. As an example, batch jobs in MVS are executed in 
initiator address spaces [Sams092]. Such an initiator is defined to process certain job 
classes in a well-defined priority order. A job class may as well be executed by 
multiple initiators. As such, it is perfectly possible that a job class receives highest 
priority at one initiator, while it has lowest priority at another. Closed queueing 
networks with one FCFS node (representing the pre- and postprocessing by the Job 
Entry Subsystem JES) and multiple priority nodes (representing the initiator address 
spaces) with reversed priorities may thus be well-suited to analyze the performance of 
such a batch processing system. Other applications may easily be found in the domain 
of operating systems (e.g. transaction processing in CICS), as well as in the domain of 
Client/Server and Distributed Processing (e.g. application replication at different 
nodes in a LAN in order to spread the load). 

Strictly speaking, the model would have to be analyzed with non-preemptive servers 
and dynamic routing (ajob is picked by a free initiator). However, as a starting point, 
this paper will concentrate on the analysis of a two-class three-node model with one 
FCFS server and two preemptive-resume priority servers with reversed priorities. We 
will further restrict the analysis - for simplicity only - to models with exponential class 
service times. 

Although only few exact results are available for closed queueing networks with 
priorities, several approximations have been developed to analyze the performance of 
such networks. A brief overview of these approximations will be given in the next 
section. In the remainder of this paper, a clear definition of the model under 
investigation will be given, a possible solution algorithm will be discussed and the 
results will be compared to results of the application of another well-known 
approximation. Further solution approaches are discussed in less detail. 

1. Approximation algorithms for closed queueing networks with priorities 

Because of the complexity of these models and the lack of exact results, several 
approximations have been developed. Some of the approximations are based on the 
application of Norton's Theorem, a theorem that originates from electrical circuit 
theory. Chandy, Herzog and Woo [Chand75] prove that this theorem holds for, and 
gives exact results for, queueing networks that obey local balance. The analysis of 
such a network is greatly simplified by replacing part of it by a flow-equivalent 
service center. U sing local balance solutions for networks that do not obey local 
balance may however introduce large inaccuracies. Sauer and Chandy [Sauer75] 
approximate the priority model by first coalescing the classes of the original model 
into three classes : a designated class and two composite classes, one of a higher and 
one of a lower priority than the designated class. Then Norton's Theorem is applied 
to solve the reduced model. This approach was proven to give satisfying results, very 
close to the exact results for an extensive number of tests. 
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Reiser [Reise76] uses exact techniques to solve a central server model with two 
priority classes at the (preemptive-resume) cpu. The approximation lies in the fact 
that the low priority class is served by a server whose capacity is reduced by the 
utilization attained by high priority jobs. Errors are introduced by the ignorance of the 
nonhomogeneity of the lower class processing times at the priority server and by the 
separate evaluation of both classes. Hierarchical decomposition (Norton's Theorem) 
is applied where necessary. As such, the priority network is approximated by a 
network not involving priorities and thus retaining the product form of the system 
state probabilities. 

The idea of a separate server has been extended by Sevcik [Sevci77]. The Shadow 
Approximation provides in a 'shadow' server for the exclusive use of the low priority 
jobs. The service rate of the shadow server is slowed down to reflect the server 
utilization by high priority jobs. The model is evaluated as a multiple class model. 
High priority class utilization is determined by an efficient search method. The 
Shadow Approximation is therefore applicable to more general networks than those in 
[Reise76], e.g. in the case where different classes of jobs are allowed to have different 
priorities at different nodes. 

Kaufman [Kaufm84] describes the errors that are induced by using the Shadow 
Approximation. One such error occurs because the shadow server is exclusively used 
for low priority jobs, allowing them to start processing immediately upon arrival at 
this server. In the original network however, low priority jobs will often have to wait 
for the completion of high priority jobs present in the queue at the moment the low 
priority job arrives there. This delay error is eliminated by application of Kaufman's 
Effective Service Approximation. The residual errors can partly be explained by the 
variability of the effective low priority service time, and by the assumption of the 
Arrival Theorem, which does not apply for the low priority job class at fefs servers, 
resulting in the so-called synchronization error. 

Other approximations have been developed by adjusting the MV A algorithm to 
include the effect of priorities [Bryan83][Bryan84]. These algorithms have the 
advantage of being computationally more efficient than non-MY A based 
approximations. Bryant et al. [Bryan83] develop an MV A approximation for 
preemptive and non-preemptive priority models. The response time formulas at the 
heart of MV A are replaced by response time formulas obtained from exact analysis of 
M/MII PR and HOL queues. The authors show that this approximation has an 
accuracy of within 5 % tolerance error for a large set of networks with one priority 
server. Eager and Lipscomb [Eager88] present an Approximate MV A 
Approximation, which is computationally more efficient than MVA and gives 
approximate results for priority networks that are acceptably close to the exact 
solution. 

Bondi and Chuang [Bondi88] propose an MV A based approximation for a model with 
one preemptive server. The authors explicitly take into account that the Arrival 
Theorem is violated for the low priority class at the fefs servers. A low priority job 
finishing service at the preemptive server, finds all higher priority jobs at the fefs 
servers. These arrival instant queue lengths are calculated and used for the calculation 
of the low priority response time at the fcfs servers, as such reducing the 
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synchronization error. Results are substantially better than for the Shadow 
Approximation. This shows that the accuracy is highly determined by the arrival 
instant queue lengths at both priority and fefs servers, and by the accuracy with which 
the effective service times are predicted at the priority node. 

None of the algorithms however, has been tested for models with multiple priority 
nodes and different priority structures at each node. The Shadow Approximation 
allows the analysis of such models, but with sometimes large errors. This paper 
presents a solution that is partly based on the Delay/MV A algorithm developed by 
Bondi and Chuang. In the next section, the model will be described and the algorithm 
explained. Section 3 compares the results with results that have been obtained by 
application of the Shadow Approximation. Our algorithm is clearly more accurate for 
the tested set of network parameters. 

2. The model 

Figure 1 represents the model under investigation. It consists of two preemptive 
resume (pr) servers and one fcfs server (the central server). Priorities are reversed on 
both pr servers, giving highest priority to class 1 jobs at server 2 and highest priority 
to class 2 jobs at server 3. 

I Server 2 

I PR 1>2 

J Server 1 I -.. I FCFS I 

J Server 3 ~ I PR 2>1 

Figure 1 : basic central server priority model 

Let both class service times on all servers be exponentially distributed with mean sc,k 

where c is the class index and k is the server index. It is assumed that the service 
times at the fefs server (server 1) are class independent and equal to Sl' Let Nt (N2 ) 

be the class 1 (class 2) population and let qc,k(N) be the average number of class c 

jobs at server k assuming N = (Np N 2) jobs in the system. qc,k (N - ei ) then represents 

the average number of class c jobs at server k with one class i job removed from the 
system. 
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For the calculation of class response times at the priority servers, the exact MIMI! 
priority queueing formulas are used. Since class 1 receives pr priority at server 2, and 
class 2 receives pr priority at server 3, we can write the response time formulas for 
class 1 at server 2 and class 2 at server 3 as follows : 

RI,2 = SI,2 (1 + qI,2 OV - eI ») 

R2,3 = s2,3(1 +q2,3(N -e2 ») 

(2.1) 

(2.2) 

Class 1 and class 2 response times at servers 3 and 2 respectively may then be written 
as 

R2,2 = S2,2 (1 + Q2,2 (N - e2 ) )/(1- PI,2 (N - e2 ») + S!,2QI,2 (N - e2 ) 

RI,3 = SI,3 (1 + QI,3(N - el »)/(1- P2,3 (N - eI ») + s2,3Q2,3 (N - eI ) 

(2.3) 

(2.4) 

These formulas take into account the effective service time of the low-priority job at 
the pr server [Bondi88] and assume that the Arrival Theorem holds. 

As mentioned before, the synchronization error occurs at the fefs servers because all 
jobs of higher priority will be present there if a low-priority job arrives (violation of 
the Arrival Theorem). Therefore, the arrival instant queue length is not the 
equilibrium queue length. 

The algorithm described in [Bondi88] therefore has been adapted to suit for the cs 
model with two preemptive servers. At the moment a class 2 job finishes service at 
server 2 and arrives at server 1, no class 1 job is present at server 2. All class 1 jobs 
will be present at server 1 and server 3. The class 1 queue lengths at these servers are 
then calculated using the DelaylMV A algorithm described by Bondi and Chuang. 
Service time and visit ratio of class 1 jobs at server 2 are set equal to 0, whereas the 
service time of the class 2 jobs is set equal to the effective service time so as to reflect 
the effect of preemption on class 2 service times. The resulting (reduced) model 
consists of one preemptive server and two fcfs servers (figure 2) and can now be 
solved using the DelaylMVA algorithm. As such, the arrival instant queue length of 
class 1 jobs at server 1 is calculated and used subsequently in the calculation of the 
response time of class 2 jobs at server 1. 

Let Q; I be the number of class 1 jobs at server 1 upon arrival of a class 2 job, as 

calculated by DelaylMV A. Then the response time of class 2 jobs at server 1 will be 

(2.5) 
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Algorithm 1 : 

- Initialize: throughputs Xc 
average queue lengths qc,k 

high priority device utilizations Pc,k 

- For nl = 0 to Nl do 
For n2 = 0 to N2 do 

* if both nl and n2 > 0 then 

- End 

3. The results 

- assume S2,3 = 0 and V2,3 = 0 (low pr job at server 3) and St,3 = St,3/(1-P2,3); 

calculate arrival instant queue length of class 2 jobs at server 1 using 
Delay/MVA algorithm (Bondi) 

- assume s1,2= 0 (low pr job at server 3) and S2,2 = s2,2/(1-p1,2); 

calculate arrival instant queue length of class 2 jobs at server 1 using 
Delay/MV A algorithm (Bondi) 

* calculate device response times for each class according to formulas 
described above (2.1-2.6) 

* calculate total response time and throughput for each class 

* calculate high priority device utilizations Pc,k and equilibrium queue lengths qc,k 

The algorithm has been tested for a number of network parameters as given in 
[Bondi88]. The results are compared with the results obtained from simulation of 
these models using GPSSIH. Simulation does not provide exact results; it is therefore 
recommended to derive confidence intervals for the point estimates. If the system is 
regenerative l , such confidence intervals are estimated using the results of a number of 
independent 'tours' during one run. In our model, the order in which jobs are waiting 
at the fcfs server has an impact on the further evolution of the system. A regeneration 
point could possibly be defined by the order in which jobs are waiting at the fefs 
server, but this cannot be derived from the simulation. Therefore, it has been opted to 
run the simulation for a number of replications (50), giving independent and 
identically distributed class response time results for which 95% confidence intervals 
have been calculated. Throughputs are derived from the average class response times 
by application of Little's Law. 

Table 3.1 summarizes the data that are used for testing the algorithm. Table 3.2 
shows the throughputs compared to the throughput point estimates from the 
simulations and to the results that have been obtained by application of the Shadow 
Approximation. 

Algorithm 1 is for some models far more accurate than the Shadow Approximation : 
in 3 cases of 6, both class throughputs are within 5 % from the simulation results. 
Deviations of 10 % and more occur in 2 models for one class only and the maximum 
deviation is about 17 %. The Shadow Approximation shows only one model having 
both throughputs within 5 % of the simulation results. Deviations of 10 % and more 

1 A regenerative system contains regeneration points at which the system stochastically restarts. More 
about regenerative simulation may be found in [Crane74], [Laven75] and [Laven77]. 
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occur in 4 of the 6 cases and the maximum is even about 44 %. Algorithm 1 therefore 
performs overall slightly better than the Shadow Approximation. 

Server 1 Server 2 Server 3 
S V S V S V 

Modell class 1 0.01 21 0.036 10 0.036 10 
class 2 0.01 21 0.036 10 0.036 10 

Model 2 class 1 0.01 13 0.036 8 0.020 4 
class 2 0.01 3 0.036 1 0.020 1 

Model 3 class 1 0.01 3 0.036 1 0.020 1 
class 2 0.01 3 0.036 1 0.020 1 

Model 4 class 1 0.10 6 0.360 1 0.360 4 
class 2 0.10 6 0.360 1 0.360 4 

ModelS class 1 0.01 15 0.036 10 0.036 4 
class 2 0.01 20 0.036 5 0.036 14 

Model 6 class 1 0.01 13 0.036 8 0.036 4 
class 2 0.01 3 0.036 1 0.036 1 

Table 3.1 : test data 

Simulation Algorithm 1 Shadow 
R X 

Modell class 1 2.6162 ± 0.0036 1.1467 1.0974 -0.043 1.2810 +0.117 

class 2 2.6164 ±D.0030 1.1467 1.0974 -0.043 1.2810 +0.117 

Model 2 class 1 0.9885 ±0.0009 3.0348 3.1249 +0.030 3.1141 +0.026 

class 2 1.0362 ±D.0016 2.8953 2.5702 -0.112 2.8558 -0.014 

Model 3 class 1 0.1782 ±D.OOOI 16.8363 16.3562 -0.029 17.3898 +0.033 

class 2 0.3822 ±D.0005 7.8499 7.7169 -0.017 9.3062 +0.186 

Model 4 class 1 52.7845 ±D.3587 0.0568 0.0474 -0.165 0.0537 -0.055 

class 2 4.7424 +0.0079 0.6326 
, 

0.6457 +0.021 0.6407 -0.013 

ModelS class 1 2.3772 ±0.0038 1.2620 1.3153 +0.042 1.1193 -0.113 

class 2 2.6470 ±0.0038 1.1334 1.1276 -0.005 1.6364 +0.444 

Model 6 class 1 1.1980 ±0.0012 2.5042 2.5473 +0.017 2.7900 +0.114 

class 2 0.5441 ±D.0008 5.5137 5.1657 -0.063 5.3165 -0.036 

Table 3.2 : throughputs from simulation, algorithm 1 and shadow approximation 

Algorithm 1 ignores the origin of the job arriving at the fcfs server. However, a class 

1 job comes from server 2 with a probability of V1,2/h,2 + V1,3)' The number of class 

2 jobs it observes in this case is equal to the equilibrium queue length Q2,1 (N - e1 ). If 

the same job finished at server 3 - which has a probability of V1,3 / (V1,2 + V1,3) - then it 

would observe a class 2 queue length equal to Q; l' as calculated by Delay/MV A. 

Therefore, the class 1 response time at server 1 could be written as 

(3.1) 
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Similarly, a class 2 job may leave server 2 with probability V2,2/(V2,2 + V2,3) and find a 

class 1 queue length at server 1 equal to q; l' as calculated by Deiay/MV A, or leave 

server 3 with probability V2,3/(V2,2 +V2,3) and find a class 1 queue length at server 1 

equal to the equilibrium queue length ql,1 (N - e2 ). Class 2 response time at server 1 

could therefore be written as 

Replacing formulas (2.5) by (3.2) and (2.6) by (3.1) results in a slightly adapted 
algorithm (Algorithm 2), the results of which are given in table 3.3. In most of the 
cases, this algorithm is more accurate than Algorithm 1 and certainly more accurate 
than the Shadow Approximation. The maximum error is now reduced to 14.3 %, and 
this is the only case where the deviation from simulation exceeds 10 %. 

Simulatiou Algorithm 2 
Modell class 1 1.1467 1.0981 -0.042 

class 2 1.1467 1.0981 -0.042 

Model 2 class 1 3.0348 3.0907 +0.018 

class 2 2.8953 2.6849 -0.073 

Model 3 class 1 16.8363 16.3923 -0.019 

class 2 7.8499 7.8368 -0.026 

Model 4 class 1 0.0568 0.0487 -0.143 

class 2 0.6326 0.6438 +0.018 

ModelS class 1 1.2620 1.1568 -0.083 

class 2 1.1334 1.1309 -0.002 

Model 6 class 1 2.5042 2.5195 +0.006 

class 2 5.5137 5.2715 -0.044 

Table 3.3 : throughputs obtaiued from simulation and algorithm 2 

4. Arrival Theorem Assumption 

The main contribution of the Delay/MV A algorithm and our algorithms 1 and 2, is the 
explicit calculation. of instant arrival queue lengths at the fefs server(s) in order to 
reduce the synchronization error. This error occurs if the network is analyzed using 
Shadow Approximation, because it assumes that the Arrival Theorem applies for the 
low priority class although it does not. The Arrival Theorem [Sevci81] states that a 
job arriving at a server sees the equilibrium distribution of the network states if that 
job belongs to an open class. A job belonging to a closed class sees the equilibrium 
distribution of the network with one job of that class removed. 

It is clear that this Theorem does not hold for low priority class jobs in a priority 
network for the reason explained above (section 2). However, since in our model 
priorities are reversed on both priority servers, it might well be that the Arrival 
Theorem holds 'nearly': the effect of receiving highest priority on one server is 
compensated by the effect of receiving lowest priority on the other server. 
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If this is true, using the equilibrium queue lengths for class response time calculations 
at the fcfs server would result in reasonable approximations for the performance 
measures. The response time formulas at the fcfs server then reduce to the classical 
MV A expressions 

Rl,l =sl(1+Q\,I(N-e\)+q2,I(N-e1 )) 

R2,1 =sl(l+Q\,I(N -e2)+Q2,I(N -e2)) 

(4.1) 

(4.2) 

The algorithm therefore reduces to a simple MV A algorithm where class response 
times at the priority servers are calculated according to the priority formulas (2.1-2.4) 

and where class response times at the fcfs server are simply calculated using the 
normal MVA expressions (4.1-4.2) (showing obviously much similarity with The MVA 
Approximation [Bryan83] and [Bryan84], but extended for the case of multiple 
priority centers). The resulting algorithm is called here Algorithm 3. The results are 
summarized in table 4.1. 

Simulation Algorithm 3 
Modell class 1 1.1467 1.0993 -0.041 

class 2 1.1467 1.0993 -0.041 

Model 2 class 1 3.0348 3.1041 +0.023 

class 2 2.8953 2.5949 -0.104 

Model 3 class 1 16.8363 16.6934 -0.008 

class 2 7.8499 7.8557 +0.001 

Model 4 class 1 0.0568 0.0462 -0.187 

class 2 0.6326 0.6471 +0.023 

ModelS class 1 1.2620 1.1609 -0.080 

class 2 1.1334 1.1314 -0.002 

Model 6 class 1 2.5042 2.5170 +0.005 

class 2 5.5137 5.3001 -0.039 

Table 4.1 : throughputs obtained from simulation and algorithm 3 

The results do not differ significantly from the results obtained from Algorithm 2. 
This may lead us to a first simple conclusion that the synchronization error is not 
significant in this type of model, and that the Arrival Theorem 'nearly' holds for the 
low priority class(es). In that case, Algorithm 3 is much more performant than the 
other algorithms, since low class arrival instant queue lengths at the fcfs server do not 
have to be explicitly calculated. 

5. Example models with non-homogeneous service times 

The test models as evaluated in section 3 are restrictive in the sense that the service 
times at the pr servers are not class dependent, but server dependent. An additional 
set of models with non-homogeneous service times has been evaluated. The data are 
given in table 5.1, results are summarized in table 5.2 and 5.3. 
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Server 1 Server 2 Server 3 
N S V S V S V 

model 7 class 1 5 0.01 9 0.02 4 0.09 4 
class 2 5 0.01 3 0.15 1 0.04 1 

modelS class 1 6 0.01 7 om 4 0.02 2 
class 2 3 0.01 11 0.20 2 0.012 8 

model 9 class 1 10 0.01 6 0.005 4 0.01 1 
class 2 10 0.01 6 0.01 1 0.005 4 

model 10 class 1 8 0.005 3 0.01 1 0.03 1 
class 2 5 0.005 11 0.03 7 0.01 3 

model 11 class 1 10 0.1 3 0.1 1 0.2 1 
class 2 10 0.1 3 0.2 1 0.1 1 

Table 5.1 : additional test data 

Simulation Algorithm 1 Shadow 
R X 

Model 7 class 1 2.3173 ± 0.0031 2.1577 2.1145 -0.020 2.1632 +0.003 

class 2 0.9093 ±O.OOlO 5.4989 5.4963 -0.001 5.5040 +0.001 

ModelS class 1 0.5039 ±O.0002 11.9072 11.4648 -0.037 11.9398 +0.003 

class 2 2.5234 +0.0038 1.1889 1.1873 -0.001 1.2162 +0.023 

Model 9 class 1 1.2015 ±O.0005 8.3231 8.2434 -0.010 8.3333 +0.001 

class 2 1.2017 ±O.0004 8.3214 8.2434 -0.009 8.3333 +0.001 

Model 10 class 1 0.2685 ±O.OOOI 29.7994 29.7510 -0.002 29.8296 +0.001 

class 2 1.5050 +0.0013 3.3222 3.2584 -0.019 3.3310 +0.003 

Model 11 class 1 6.0310 ±O.0387 1.6581 1.6448 -0.008 1.6667 +0.005 

class 2 6.0046 ±O.0041 1.6654 1.6448 -0.012 1.6667 +0.001 

Table 5.2 : throughputs from simulation, algorithm 1 and shadow approximation 

Simulation Algorithm 2 Algorithm 3 
model 7 class 1 2.1577 2.1144 -0.020 2.1144 -0.020 

class 2 5.4989 5.4966 -0.001 5.4967 -0.001 

modelS class 1 11.9072 11.7061 -0.017 11.8955 -0.001 

class 2 1.1889 1.1877 -0.001 1.1819 -0.006 

model 9 class 1 8.3231 8.3149 -0.001 8.3333 +0.001 

class 2 8.3214 8.3149 -0.001 8.3333 +0.001 

model 10 class 1 29.7994 29.7489 -0.002 29.7434 -0.002 

class 2 3.3222 3.2581 -0.019 3.2577 -0.019 

model 11 class 1 1.6581 1.6551 -0.002 1.6666 +0.005 

class 2 1.6654 1.6551 -0.006 1.6666 +0.001 

Table 5.3 : throughputs from simulation, algorithm 2 and algorithm 3 

It is remarkable that, although the results of all 3 algorithms are very close to the 
simulation results, the Shadow Approximation totally outperforms the other 3 
algorithms for these data. In all models, the high priority service time is small 
compared to the low priority service time. Morris [Morri81] stated that this is a 
sufficient condition to be satisfied if the Shadow Approximation is to be a good 
approximation (within 2% errors), for the delay error is small in that case. This 
statement now seems also to be true in the type of model considered here_ It is 
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furthermore remarkable how both Algorithm 1 and 2 consistently (slightly) 
underestimate the throughput, while the Shadow Approximation overestimates it. 
Again, Algorithm 3 provides a faster way to obtain approximately the same accuracy 
as Algorithms 1 and 2 for this type of model. 

6. Conclusions and future research 

The research in this paper suggests that the case of closed queueing networks with 
multiple preemptive (or non-preemptive) nodes and different priority structures at 
each node presents a model with interesting applications in practice, which has 
received little attention in literature. The algorithm developed here solves the three­
node two-class preemptive model with reasonable accuracy, giving better results than 
the Shadow Approximation in some cases. The typical structure of this model 
however also suggests that the Arrival Theorem 'nearly' holds, which simplifies the 
solution procedure to a classical MV A solution, almost similar to The MV A 
Approximation proposed in [Bryan83] and [Bryan84]. For models with more than 
two priority servers and more than two priority classes, it will have to be determined 
to what degree the Arrival Theorem does or does not hold. This will largely depend 
on the priority structures at each of the priority nodes. Algorithm 2 will be the most 
general solution to such models in which the Arrival Theorem doesn't even hold 
nearly. Algorithm 3 provides a faster solution for these models with approximately 
the same accuracy. 

The next step in this research is to make the algorithm applicable for more general 
models with more than two priority nodes and more than two priority classes. The 
final objective is to provide a framework for determining optimal priority structures in 
batch and client/server environments. As such, the contribution of this paper may be 
viewed as a step towards the development of such a framework. 
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