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Insulinomas are neuroendocrine tumors arising from the pancreatic beta cells.

Currently, surgical resection is the therapy of choice, and therefore, preopera-

tive localization of insulinomas is essential. Nearly all insulinomas show over-

expression of the glucagon‐like peptide‐1 receptor (GLP‐1R), and therefore,

radiolabeled GLP‐1 peptide analog exendin‐4 can be used for diagnosis and

preoperative localization with nuclear imaging. Here, we present an overview

of the development and clinical implementation of exendin‐4–based tracers

for single‐photon emission computed tomography (SPECT) and positron emis-

sion tomography (PET) imaging of insulinomas, and we address the potential

use of this molecule for optical imaging. At last, we discuss the possibilities

and pitfalls of the use of exendin‐4–based tracers for therapeutic applications

such as peptide receptor radionuclide therapy (PRRT) or targeted photody-

namic therapy (tPDT), giving a future outlook on the use of exendin‐4 in

insulinoma theranostics.
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1 | CLINICAL CHARACTERISTICS
AND THERAPY OF INSULINOMA

Insulinoma is a subtype of pancreatic neuroendocrine
tumors (pNETs) that arises from the insulin‐producing
beta cells in the islets of Langerhans. Although the major-
ity of insulinomas are benign (90%), symptoms due to the
excessive insulin secretion by the tumor cells can be
severe and have a major impact on the patient's quality
- - - - - - - - - - - - - - - - - - - - - - - - - -
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of life. Symptoms include hypoglycemia, impaired con-
sciousness, disturbances of speech and vision, seizures,
and sensorimotor function impairment. Furthermore,
behavioral changes, personality changes, and weight gain
due to continuous eating may occur.1,2 Insulinoma is cur-
rently diagnosed biochemically by measuring plasma glu-
cose, insulin, C‐peptide, and proinsulin during a 12‐ to
72‐hour period of fasting, showing low glucose levels with
inappropriately high insulin levels. Treatment options
include surgical resection, radiofrequency ablation, alco-
hol ablation, embolization, chemotherapy, medication,
and peptide receptor radionuclide therapy (PRRT).3-7

Since surgical resection is the only curative treatment
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option for insulinoma, patients are eligible for surgery
once the clinical diagnosis has been made and the tumor
has been localized using preoperative imaging.

2 | PREOPERATIVE IMAGING OF
INSULINOMA

Preoperative imaging is essential to localize the lesion,
plan the surgical procedure (eg, enucleation of the lesion
or partial pancreatic resection), and determine whether
laparoscopic resection is feasible. Typically, the size of
insulinomas is small (82% < 2 cm and 47% < 1 cm).8 This
hampers detection by noninvasive imaging methods such
as ultrasound (US), computed tomography (CT), and
magnetic resonance imaging (MRI), which have mean
sensitivities of only 32.6%, 43.9%, and 53.3%, respec-
tively.3 Methods with higher sensitivity are angiography
with intraarterial calcium stimulation and venous sam-
pling (ASVS), with a sensitivity of 85%, and endoscopic
ultrasound (EUS), with a sensitivity of 74.8%. However,
shortcomings of these methods are their invasive nature,
with concomitant risk of complications, and that they are
operator dependent.3,9-12 Since the majority of neuroen-
docrine tumors (NETs) express somatostatin receptors
(SSTRs) at high levels, somatostatin receptor scintigraphy
(SRS) with the radiolabeled peptide octreotide (binding
SSTR subtypes 2 and 5) and its derivatives is a very effi-
cient detection method.13,14 In benign insulinoma how-
ever, the receptor density of SSTR subtypes 2 and 5 is
low, and therefore, sensitivity of SRS is relatively poor
(<50%).15,16 Recently, the use of SSTR positron emission
tomography (PET) tracers [Ga68]Ga‐DOTA‐TOC and
[Ga68]Ga‐DOTA‐TATE for detection of insulinomas
resulted in improved sensitivity of 87%,17,18 which is
mainly due to the better spatial resolution and sensitivity
of PET when compared with scintigraphy and due to bet-
ter affinity of the PET tracers for SSTRs. In contrast to
low SSTR expression, benign insulinomas do express high
levels of the glucagon‐like peptide‐1 receptor (GLP‐1R) in
nearly 100% of cases and are therefore suitable candidates
for single‐photon emission computed tomography
(SPECT) or PET imaging with glucagon‐like peptide‐1
(GLP‐1) analogs.19 Iodinated GLP‐1(7‐36) was the first
tracer to be investigated as a possible tool for insulinoma
detection targeting the GLP‐1R, and it showed specific
tumor targeting in preclinical models for insulinoma.20

However, low peptide stability of GLP‐1 in blood and
rapid deinodination limits clinical use, and therefore,
multiple radiolabeled tracers of the natural GLP‐1 analog
exendin‐4 have been developed. Exendin‐4 is isolated
from the saliva of the Gila monster (Heloderma
suspectum),21 and since the dipeptidyl peptidase‐IV enzy-
matic cleavage site is not present in this peptide, it is
resistant to degradation in serum, resulting in an
increased biological half‐life of ≥20 minutes compared
with GLP‐1 (≤2 min).22

In this review, we will give an overview of development
of exendin‐4–based tracers and their clinical implementa-
tion for insulinoma imaging.Wewill also address some pit-
falls of exendin‐4–based imaging. Furthermore, we will
discuss on the future outlook of the use of exendin‐4 in
insulinoma theranostics (for an overview, see Figure 1).

3 | IMAGING OF INSULINOMA
WITH EXENDIN ‐4–BASED TRACERS

3.1 | Tracer development and clinical
implementation

The first exendin‐4–based imaging tracer that was devel-
oped is the diethylenetriaminepentaacetic acid (DTPA)
conjugate [Lys40(Ahx‐DTPA‐[111In]In)NH2]‐exendin‐
4.23,24 This tracer showed high receptor affinity and
remarkably high tumor uptake (287 ± 62 %IA/g) in the
Rip1Tag2 mouse model24 (for an overview of exendin‐
based SPECT tracers and characteristics, see Tables 1 and
2). [Lys40(Ahx‐DOTA‐[111In]In)NH2]‐exendin‐4 was also
the first tracer to be used in clinical diagnosis of
insulinoma.25 In a prospective pilot study, whole‐body pla-
nar and SPECT/CT imaging with this tracer successfully
detected an insulinoma in all six patients that presented
with biochemically proven endogenous hyperinsulinemic
hypoglycemia, whereas it was missed in five out of six
patients with MRI and in two out of six patients with
endosonography. In a second prospective study including
30 patients, [Lys40(Ahx‐DTPA‐[111In]In)NH2]‐exendin‐4
SPECT/CT was proven to be a more sensitive method for
insulinoma detection than conventional imaging (CT or
MRI) (sensitivity of 95% vs. 47%, respectively).26

The use of indium‐111 has drawbacks since it is costly
and carries a relatively high radiation burden for the
patient. Technetium‐99m can be used to overcome these
drawbacks because of its low energy and shorter half‐life.
To this end, [Lys40(Ahx‐HYNIC‐[99mTc]Tc)NH2]‐
exendin‐4 was developed, and tumor and organ uptake in
the Rip1Tag2 mice was lower compared with [Lys40(Ahx‐
DTPA‐[111In]In)NH2]‐exendin‐4,

27 which could be
explained by less efficient internalization of the 99mTc‐
labeled tracer. Although the tumor uptake is lower, small
lesions (1.0‐3.2 mm in diameter) could still be detected
with SPECT. [Lys40(Ahx‐HYNIC‐[99mTc]Tc/EDDA)NH2]‐
exendin‐4 was injected in eight patients with clinical and
biochemical signs of insulinoma, and in all patients, focal
uptake of the tracer was found. In six out of eight patients,
surgical excision of the lesion was performed, and these
lesions were insulin‐producing G1 NETs as confirmed by



FIGURE 1 Exendin‐4 in theranostics of insulinoma. Exendin‐4 can be used for diagnosis of GLP‐1 receptor (GLP‐1R) expressing tumor

cells upon conjugation with 1) a radionuclide and preoperative SPECT or PET imaging or intraoperative detection with a gamma probe or

2) a fluorescent dye (FD) and intraoperative imaging with a near‐infrared (NIR) light camera. The same molecule can be used for therapy of

GLP‐1R expressing tumor cells upon conjugation with 1) a therapeutic radionuclide for peptide receptor radionuclide therapy (PRRT) and 2)

a photosensitizer (PS) for targeted photodynamic therapy (tPDT).
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histopathology.28 In a second study, 40 patients experienc-
ing episodes of hypoglycemia with no signs of an
insulinoma based on conventional imaging methods were
included. In 28 of these patients, the [Lys40(Ahx‐HYNIC‐
[99mTc]Tc/EDDA)NH2]‐exendin‐4 scan was positive, and
in 18 patients, the presence of an insulinoma was con-
firmed histopathologically. The other 10 patients could
not undergo surgery.29

PET imaging has a number of advantages over SPECT
imaging, such as higher sensitivity so that lower amounts
of a tracer molecule can be detected, better spatial resolu-
tion, and more accurate quantification. Therefore, multi-
ple exendin‐4–based PET tracers have been developed
(for an overview of developed PET tracers and their charac-
teristics, see Tables 3 and 4). Fluorine‐18 is a favorable
radionuclide for PET imaging because of the low positron
emission energy, which provides a short tissue range and
thus the potential for achieving a high resolution. As the
conditions typically required for 18F‐fluorination are very
harsh (eg, high temperatures and strong bases), prosthetic
groups that can be labeled and conjugated to functional
moieties of the exendin‐4 have been developed.30-35 Inter-
estingly, kidney uptake of these tracers is high at first, but
clearance from the kidneys is more rapid compared with
radiometal‐labeled exendin. To overcome the time‐con-
suming synthesis of prosthetic groups, other strategies
such as aluminum complexation were applied and showed
high tracer uptake by the tumor as well.36-38
The use of generator‐produced positron emitting gal-
lium‐68 makes tracers affordable, and it eliminates the
need for a cyclotron on site. Lys40(Ahx‐DOTA‐[68Ga]Ga)
NH2]‐exendin‐4 showed high tumor uptake (205 ± 59
%IA/g) 4 hours after injection in Rip1Tag2 mice.27 The
[68Ga]Ga‐DO3A‐VS‐Cys40‐exendin‐4 tracer could be
labeled with six times higher specific activity compared
with Lys40(Ahx‐DOTA‐[68Ga]Ga)NH2]‐exendin‐4,
thereby enabling injection of lower peptide dose, and this
tracer also showed good tumor uptake in INS‐1 xeno-
grafts.39 During the recent years, multiple case reports
have been published in which 68Ga‐labeled exendin‐4
tracers enabled successful detection of insulinomas with
PET/CT, while other imaging methods were negative11,40-
44 (for an overview of clinical PET tracers, see Table 4).
Antwi et al performed the first pilot study directly compar-
ing [111In]In‐DOTA‐exendin‐4 SPECT/CT with [68Ga]Ga‐
DOTA‐exendin‐4 for detection of insulinoma in five
patients. In the four patients that were operated on, better
spatial resolution and better tumor‐to‐background ratios
allowed for detection of four out of four lesions with
[68Ga]Ga‐DOTA‐exendin‐4, while [111In]In‐DOTA‐
exendin‐4 detected two out of four lesions.45 One patient
refused surgery, despite a positive [68Ga]Ga‐DOTA‐
exendin‐4 scan. In a prospective cohort study, 52 patients
with hyperinsulinemic hypoglycemia were included, and
various imaging modalities including [68Ga]Ga‐NOTA‐
exendin‐4 PET/CT were applied. Forty‐three patients that



TABLE 1 Overview of preclinical SPECT tracers and their characteristics

Author + Year Compound Tumor Model
Peptide
Dose

Activity
Dose Tumor Uptake Kidney Uptake

Indium‐111

Wild et al.
2006

[Lys40(Ahx‐[111In]In‐DTPA)
NH2]exendin‐4

RipTag2 and
C57BL/6J
RipTag2

10 ng
(BD)

50 pmol
(Im)

185‐370 kBq
(BD)

37 MBq (Im)

287 ± 62 %IA/g
(4 h)

209 ± 35 %IA/g
(4 h)

Wild et al.
2010

[Lys40(Ahx‐DTPA‐[111In]In)
NH2]exendin‐4

RipTag2 10 pmol 70‐110 kBq 213 ± 75 %IA/g
(4 h)

243 ± 17 %IA/g
(4 h)

Brom et al.
2012

[Lys40(Ahx‐[111In]In‐DTPA)
NH2]exendin‐3

INS‐1 20 pmol 370 kBq 25.0 ± 6.0 %ID/g
(30 min)

26.5 ± 8.9 %ID/g
(4 h)

150.7 ± 14.9
%ID/g (30
min)

188.8 ± 14.4 %ID/
g (4 h)

Brom et al.
2012

[Lys40(Ahx‐[111In]In‐DTPA)
NH2]exendin‐4

INS‐1 20 pmol 370 kBq 30.7 ± 6.1 %ID/g
(30 min)

41.9 ± 7.2 %ID/g
(4 h)

150.9 ± 9.6 %ID/
g (30 min)

173.6 ± 24.3 %ID/
g (4 h)

Brom et al.
2012

[Lys40(Ahx‐[111In]In‐DTPA)
NH2]exendin(9‐39)

INS‐1 20 pmol 370 kBq 3.2 ± 0.7 %ID/g
(30 min)

0.71 ± 0.2 %ID/g
(4 h)

65.7 ± 6.1 %ID/g
(30 min)

70.7 ± 4.0 %ID/g
(4 h)

Bauman et al.
2015

[Lys40‐(AHX‐DTPA‐[111In]In)
NH2]exendin‐4

RIN‐m5f 10 pmol,
52 ng

385 kBq 14.74 ± 5.91
%ID/g (1 h)

15.56 ± 5.32
%ID/g (4 h)

9.31 ± 2.35 %ID/
g (24 h)

3.47 ± 0.52 %ID/
g (48 h)

152.70 ± 24.86
%ID/g (1 h)

178.41 ± 33.66
%ID/g (4 h)

144.09 ± 20.94
%ID/g (24 h)

84.80 ± 19.26
%ID/g (48 h)

Kimura et al.
2017

[Lys12([111In]In‐BnDTPA)]
exendin‐9‐39

INS‐1 1.5 ng
790 ng

37 kBq/100
μL (BD)

19.9 MBq/220
μL (Im)

7.83 ± 1.86 %ID/
g (30 min)

1.87 ± 0.52 %ID/
g (4 h)

–

193.6 ± 15.1
%ID/g (30
min)

180.9 ± 52.7 %ID/
g (4 h)

–

Technetium‐99m

Wild et al.
2010

[Lys40(Ahx‐HYNIC‐[99mTc]Tc/
EDDA)NH2]exendin‐4

RipTag2 10 pmol
(BD)

–

70‐110 kBq
(BD)

37 MBq (Im)

67 ± 13 %IA/g
(30 min)

93.1 ± 19.9 %IA/
g (4 h)

–

63 ± 10 %IA/g
(30 min)

60 ± 12 %IA/g (4
h)

–

Medina‐
Garcia et al.
2015

[Lys27([99mTc]Tc‐EDDA/
HYNIC)]exendin(9‐39)

AR42J induced – 1.85 MBq 2.41 ± 0.38 %ID/
g (2 h)

95.01 ± 1.95
%ID/g (2 h)

Abbreviations: BD, biodistribution; Im, imaging; SPECT, single‐photon emission computed tomography.
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were operated on and had histopathologically proven
insulinoma were included for analysis. [68Ga]Ga‐NOTA‐
exendin‐4 PET/CT showed a very high sensitivity of
97.7%, in contrast to 74.4% for CT, 56% for MRI, 84% for
EUS, and 19.5% for [99mTc]Tc‐HYNIC‐TOC SPECT/CT.43
In a prospective crossover imaging study with GLP‐
1R PET/CT, GLP‐1R SPECT/CT, and 3T MRI, 52
patients with biochemically proven endogenous
hyperinsulinemic hypoglycemia were included. For each
patient, a [68Ga]Ga‐DOTA‐exendin‐4 PET/CT scan,



TABLE 2 Overview of clinical single‐photon emission computed tomography (SPECT) tracers and study outcomes

Author + Year Compound Patients
Peptide
Dose

Activity
Dose Results Adverse Events

Indium‐111

Christ et al. 2009 [Lys40(AHX‐
DOTA‐
[In111]In)
NH2]
exendin‐4

6 30 μg 82‐97
MBq

In all six patients, the insulinoma
was correctly localized.

‐ Decrease in blood glucose
levels 0.3‐2.4 mmol/L,
glucose infusion needed
in three patients

‐ Vomiting (n = 1)

Wild et al. 2011 [Lys40(AHX‐
DTPA‐
[In111]In)
NH2]
exendin‐4

11 10 ± 2
μg

108‐136
MBq

Uptake in four patients was
observed with malignant
insulinomas that were expressing
the GLP‐1R.

‐ Decrease in blood glucose
levels 1.1‐3.3 mmol/L in
GLP‐1R–positive patients,
0.5‐0.6 mmol/L in GLP‐
1R–negative patients

Christ et al. 2013 [Lys40(AHX‐
DTPA‐
[In111]In)
NH2]
exendin‐4

30 8‐14 μg 80‐128
MBq

95% (75‐100) sensitivity
20% (2‐64) specificity
83% (62‐94) positive predictive
value

‐ Decrease in blood glucose
levels 0‐2.6 mmol/L,
glucose infusion needed
in 20 patients

Antwi et al. 2015 [Nle14,
Lys40(Ahx‐
DOTA‐
[111In]In)
NH2]
exendin‐4]

5 10.5‐14.4
μg

79.2 ±
9.3
MBq
(66‐90
MBq)

In four out of five patients that had
surgery, an insulinoma was
found in two of four patients.

‐ Prophylactic glucose
infusion was given before
the injection

‐ Nausea (n = 2) and
vomiting (n = 2)

Antwi et al. 2018 [111In]In‐
DOTA‐
exendin‐4

52 11.0‐16.9
μg

87.5 ±
10.7
MBq
(52‐
111
MBq)

Sensitivity 68.5% (59.0‐77.0) ‐ No hypoglycemia due to
continuous infusion of
glucose

‐ Nausea (n = 27) and
vomiting (n = 23)

Fluorine‐18

Sowa‐
Staszczak et al. 2013

[Lys40(Ahx‐
HYNIC‐
[99mTc]Tc/
EDDA)
NH2]‐
exendin‐4

11 – 740 MBq
(mean)

Focal uptake in all eight cases with
suspicion of benign insulinomas
was observed. In six of the eight
patients, surgery was performed
and the presence of an
insulinoma was confirmed.

‐ Most patients with benign
insulinoma needed
glucose infusion

Sowa‐Staszczak
et al. 2016

[Lys40(Ahx‐
HYNIC‐
[99mTc]Tc/
EDDA)
NH2]‐
exendin‐4

40 – 740 MBq
(mean)

Uptake was seen in 28 patients. In
18 out of 28 cases, insulinomas
were identified
histopathologically.

‐ All patients with suspected
benign insulinoma
needed glucose infusion

660 JANSEN ET AL.
[111In]In‐DOTA‐exendin‐4 SPECT/CT scans (4 and 72
h), and an MRI scan were performed. In 38 out of 52
patients, histological confirmation could be obtained,
and this resulted in sensitivities of 94.6%, 68.5%, and
69.4% for [68Ga]Ga‐DOTA‐exendin‐4, [111In]In‐DOTA‐
exendin‐4, and MRI, respectively.46 Although spatial res-
olution of PET/CT is better compared with SPECT/CT,
small lesions can still be missed as is illustrated by the
only false‐negative PET/CT finding of a 5 × 5 × 10
mm insulinoma in this study.

High kidney accumulation of exendin‐4–based tracers
can complicate imaging applications, since the tail of the
pancreas is located close to the kidney. For both indium‐

111 and technetium‐99m exendin‐based tracers, tumor‐
to‐kidney ratios do increase over time, and therefore,
authors suggest that additional late scans should be made



TABLE 3 Overview of preclinical PET tracers and their characteristics

Author +
Year Compound

Tumor
Model

Peptide
Dose

Activity
Dose Tumor Uptake Kidney Uptake

Gallium‐68

Wild et al.
2010

[Lys40(Ahx‐DOTA‐[68Ga]Ga)
NH2]exendin‐4

RipTag2 10 pmol 70‐110 kBq 185 ± 33 %IA/g (30
min)

205 ± 59 %IA/g (4 h)

255 ± 14 %IA/g
202 ± 34 %IA/g

Selvaraju
et al. 2014

[68Ga]Ga‐DO3A‐VS‐Cys40‐
Exendin‐4

INS‐1
xenografts

2.5 μg/kg 0.6 ± 0.1
MBq

Tumor‐to‐muscle
ratio 44.8 (80 min)

–

Bauman
et al. 2015

[Lys40‐(AHX‐DFO‐[68Ga]Ga)
NH2]exendin‐4

RIN‐m5f
xenografts

10 pmol, 52
ng

385 kBq 32.48 ± 8.26 %ID/g (1
h)

141.51 ± 25.14
%ID/g (1 h)

Rylova et al.
2016

[Nle14,Lys40(Ahx‐DOTA‐
[68Ga]Ga)NH2]exendin‐4

INS‐1
xenografts

100 pmol
(BD)

100 pmol
(Im)

0.4‐0.9 MBq
(BD)

0.4‐0.9 MBq
(Im)

40.2 ± 8.2 %IA/g (1 h)
–

235.8 ± 17.0 %IA/g
(1 h)

–

Rylova et al.
2016

[Lys27(Ahx‐DOTA‐[68Ga]Ga]
exendin(9‐39)NH2

INS‐1
xenografts

100 pmol
(BD)

0.4‐0.9 MBq
(BD)

– 113.8 ± 23.8 %IA/g
(1 h)

Rylova et al.
2016

[Lys27(NODAGA‐[68Ga]Ga]
exendin(9‐39)NH2

INS‐1
xenografts

100 pmol
(BD)

0.4‐0.9 MBq
(BD)

0.7 ± 0.2 %IA/g (1 h) 101.0 ± 21.0 %IA/g
(1 h)

Rylova et al.
2016

[Lys40(NODAGA‐[68Ga]Ga)
NH2]exendin(9‐39)

INS‐1
xenografts

100 pmol
(BD)

100 pmol
(Im)

0.4‐0.9 MBq
(BD)

0.4‐0.9 MBq
(Im)

2.2 ± 0.2 %IA/g (1 h)
–

78.4 ± 8.5 %IA/g (1
h)

–

Läppchen
et al. 2017

[Nle14,Lys40(Ahx‐DOTA‐
[68Ga]Ga)NH2]exendin‐4

INS‐1
xenografts

10 pmol
(BD)

– 58.3 ± 15.6 %IA/g (1
h)

201.3 ± 30.6 %IA/g
(1 h)

Fluorine‐18

Kiesewetter
et al. 2012

[18F]FBEM‐[Cys40]exendin‐4 INS‐1
xenografts

0.5‐1 μg (BD)
0.5‐1 μg (Im)

3.44 ± 0.26
MBq (BD)

3.44 ± 0.26
MBq (Im)

–

25.25 ± 3.39 %ID/g (1
h)

Tumor‐to‐kidney
ratio 7.4 (2 h)

Tumor‐to‐kidney
ratio 4.94 (2 h)

Kiesewetter
et al. 2012

[18F]FBEM‐[Cys0]‐exendin‐4 INS‐1
xenografts

0.5‐1 μg (BD)
0.5‐1 μg (Im)

3.44 ± 0.26
MBq (BD)

3.44 ± 0.26
MBq (Im)

–

7.2 ± 1.26 %ID/g (1 h)
Tumor‐to‐kidney
ratio 0.48 (2 h)

Tumor‐to‐kidney
ratio 0.74 (2 h)

Kiesewetter
et al. 2012

[18F]AIF‐NOTA‐MAL‐Cys40‐
exendin‐4

INS‐1
xenografts

300 pmol
(BD)

300 pmol
(Im)

3.44 ± 0.26
MBq (BD)

3.44 ± 0.26
MBq (Im)

17.9 ± 1.4 %ID/g (1 h)
15.7 ± 1.4 %ID/g (30
min)

14.6 ± 1.3 %ID/g (1 h)

–

79.3 ± 3.7 %ID/g (30
min)

74.7 ± 6.2 %ID/g (1
h)

Wu et al.
2013

[18F]FB‐exendin‐4 RIN‐m5f
xenografts

40 μg (BD)
40 μg (Im)

3.7 MBq
(BD)

3.7 MBq (Im)

0.15 %ID/g (2 h)
–

0.27 %ID/g (2 h)
–

Yue et al.
2013

[18F]FPenM‐[cys40]‐exendin‐4 INS‐1
xenografts

–

–

3.7 MBq (Im)
3.7 MBq
(BD)

21.30 ± 4.55 %ID/g
(30 min)

20.32 ± 4.36 %ID/g (1
h)

–

33.21 ± 4.79 %ID/g (1
h)

34.41 ± 4.59 %ID/g
(30 min)

11.30 ± 2.41 %ID/g
(1 h)

33 %ID/g (30 min)
11 %ID/g (1 h)

Xu et al.
2014

[18F]FBEM‐Cys39‐exendin‐4 INS‐1
xenografts

106 pmol
(BD)

21 pmol (Im)

0.74 MBq
(BD)

3.7 MBq (Im)

12.85 ± 2.21 %ID/g
(30 min)

29.64 ± 3.47 %ID/g
(30 min)

(Continues)
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TABLE 3 (Continued)

Author +
Year Compound

Tumor
Model

Peptide
Dose

Activity
Dose Tumor Uptake Kidney Uptake

10.06 ± 1.93 %ID/g (2
h)

10.71 ± 1.46 %ID/g
(30 min)

9.19 ± 0.86 %ID/g (2
h)

12.43 ± 0.75 %ID/g
(2 h)

21.27 ± 4.10 %ID/g
(30 min)

11.62 ± 2.08 %ID/g
(2 h)

Xu et al.
2015

[18F]AIF‐NOTA‐MAL‐Cys39‐
exendin‐4

INS‐1
xenografts

128 pmol
(BD)

638 pmol
(Im)

0.74 MBq
(BD)

3.7 MBq (Im)

8.68 ± 0.46 %ID/g (30
min)

7.59 ± 0.60 %ID/g (1
h)

9.15 ± 1.6 %ID/g (30
min)

7.74 ± 0.87 %ID/g (1
h)

86.19 ± 4.87 %ID/g
(30 min)

95.91 ± 9.20 %ID/g
(1 h)

75.12 ± 4.35 %ID/g
(30 min)

85.32 ± 5.89 %ID/g
(1 h)

Dialer et al.
2018

[18F]F‐2 CHL‐GLP‐1R
xenografts

1.3 pmol, 5.9
ng (BD)

1.3 nmol
(Im)

200 kBq (BD)
13 MBq (Im)

15 ± 7 %ID/g (30 min)
14 ± 7 %ID/g (1 h)
13 ± 10 %ID/g (2 h)
SUVtumor of 2.2 (2 h)

33.3 ± 2.4 %ID/g
(30 min)

49 ± 18 %ID/g (1 h)
39 ± 12 %ID/g (2 h)
SUVkidneys of 4.1 (2
h)

Zirconium‐89

Bauman
et al. 2015

[Lys40‐(AHX‐DFO‐[89Zr]Zr)
NH2]exendin‐4

RIN‐m5f
xenografts

10 pmol, 52
ng

385 kBq 13.46 ± 0.79 %ID/g (1
h)

11.73 ± 3.17 %ID/g (4
h)

8.23 ± 1.61 %ID/g (24
h)

3.1 ± 0.17 %ID/g (48
h)

216.89 ± 56.22
%ID/g (1 h)

188.25 ± 52.22 %ID/
g (4 h)

169.12 ± 44.87 %ID/
g (24 h)

144.27 ± 1.68 %ID/g
(48 h)

Iodine‐125

Rylova et al.
2016

[[125I]I‐BH‐Lys27]exendin(9‐
39)NH2

INS‐1
xenografts

– 0.037 MBq
(BD)

42.5 ± 8.1 %IA/g (1 h)
19.8 ± 4.3 %IA/g (4 h)

12.1 ± 1.4 %IA/g (1
h)

4.2 ± 0.7 %IA/g (4
h)

Läppchen
et al. 2017

[Nle14,[125I]I‐Tyr40‐NH2]
exendin‐4

INS‐1
xenografts

0.5 pmol
(BD)

–

40 KBq (BD)
2.5‐3.0 MBq
(Im)

72.8 ± 12.2 %IA/g (1
h)

22.4 ± 2.9 %IA/g (4 h)
3.7 ± 2.5 %IA/g (24 h)

7.5 ± 0.7 %IA/g (1
h)

3.2 ± 0.3 %IA/g (4
h)

0.2 ± 0.0 %IA/g (24
h)

Läppchen
et al. 2017

[Nle14,[125I]I‐Tyr40‐NH2]
exendin(9‐39)

INS‐1
xenografts

0.5 pmol
(BD)

40 KBq (BD) 12.7 ± 4.1 %IA/g (1 h)
1.9 ± 0.5 %IA/g (4 h)

7.6 ± 1.2 %IA/g (1
h)

2.0 ± 0.3 %IA/g (4
h)

Abbreviations: BD, biodistribution; Im, imaging; PET, positron emission tomography.
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in case of negative scans early after injection,28,29,47,48 as
has been suggested for longer‐lived positron‐emitting
radionuclides such as zirconium‐89 as well.49 The use of
radioiodinated exendin‐based tracers should also be con-
sidered to reduce renal accumulation.50,51
3.2 | Imaging of benign versus malignant
insulinoma

Nearly all benign insulinomas express GLP‐1R whereas
expression of SSTR is low or not present. This while



TABLE 4 Overview of clinical positron emission tomography (PET) tracers and study outcomes

Author +
Year Compound Patients

Peptide
Dose

Activity
Dose Results Adverse Events

Gallium‐68

Eriksson
et al. 2014

[68Ga]Ga‐
DO3A‐VS‐
Cys40‐
Exendin‐4

1 0.17 μg/
kg

0.88
MBq/
kg

Detection of liver and lymph node
metastases

–

Antwi et al.
2015

[Nle14,
Lys40(Ahx‐
DOTA‐[68Ga]
Ga)NH2]
exendin‐4]

5 12.0‐
15.3
μg

79.8 ± 3.9
MBq
(76‐97
MBq)

In four out of 5 patients that had surgery, an
insulinoma was found in four of four
patients

‐ Prophylactic glucose
infusion was given
before the injection

‐ Nausea (n = 1)

Luo et al.
2015

[68Ga]Ga‐
NOTA‐
exendin‐4

1 – – Detection of insulinoma in the pancreas tail
(SUVmax of 20.7)

–

Cuthbertson
et al. 2015

[68Ga]Ga‐
NOTA‐
exendin‐4

1 – – Detection of insulinoma –

Luo et al.
2016

[68Ga]Ga‐
NOTA‐
exendin‐4

1 – 51.8 MBq Detection of insulinoma in the pancreas tail
(SUVmean of 20.0 and SUVmax of 52.9)

–

Luo et al.
2016

[68Ga]Ga‐
NOTA‐MAL‐
Cys40‐
exendin‐4

52 7‐25 μg 18.5‐185
MBq

In 43 of 52 patients, surgery was performed.
In 42 patients, an insulinoma was found
(sensitivity of 97.7%)

‐ No hypoglycemia was
observed because of
continuous infusion
of glucose

‐ Nausea (n = 2)
‐ Vomiting (n = 2)

Luo et al.
2017

[68Ga]Ga‐
exendin‐4

1 – – Detection of a lesion that was ablated with
ethanol ablation (SUVmean of 5.7 and
SUVmax of 10.8)

–

Bongetti
et al. 2018

[68Ga]Ga‐
DOTA‐
exendin‐4

1 – – The 68Ga‐DOTA‐exendin‐4 was suggestive of
nesidioblastosis; however, an insulinoma
as identified with SACST and EUS was
missed, noting that the insulinoma was
negative for GLP‐1R

–

Parihar et al.
2018

[68Ga]Ga‐
DOTA‐
exendin‐4

1 – – Detection of insulinoma (SUVmax of 21) –

Antwi et al.
2018

[68Ga]Ga‐
DOTA‐
exendin‐4

52 11.6‐
23.8
μg

82.4 ±
14.9
MBq
(43‐106
MBq)

Sensitivity 94.6% (88.6‐98.0) ‐ No hypoglycemia due
to continuous
infusion of glucose

‐ Nausea (n = 14) and
vomiting (n = 1)
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malignant insulinomas often lack expression of GLP‐1R
but have high expression of SSTR.16,52 This is reflected in
various clinical imaging studies with exendin‐4–based
tracers, where false‐negative cases were proven to be
malignant insulinomas.28,29,48,53 Interestingly, also differ-
ences in uptake between primary tumor and metasta-
ses28,29 and uptake of both tracers in one lesion43 were
observed, stressing the variability in molecular phenotype
of insulinomas, which should be taking into account when
selecting the appropriate tracer. To be able to detect both
benign and malignant lesions with one imaging proce-
dure, a hybrid Lys27([99mTc]Tc‐EDDA/HYNIC)‐
exendin9–39/[99mTc]Tc‐EDDA/HYNIC‐Tyr3‐octreotide
formulation was prepared for simultaneous imaging of
SSTR and GLP‐1R.54 Uptake of this tracer in SSTR and
GLP‐1R positive AR42J tumor xenografts was observed,
and specificity for both targets was confirmed with
blocking studies. In clinical practice, GLP‐1R and SSTR
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expression cannot be distinguished on the SPECT scan;
however, evidence of local invasiveness and lymph node
or liver metastases is indicative of malignant disease.55

Alternatively, octreotide and exendin‐4 in the hybrid
tracer could be labeled with different radionuclides,
enabling dual‐radioisotope imaging.

3.3 | Prevent GLP‐1R stimulation;
reduction of peptide dose and use of
receptor antagonists

Exendin‐4 is a GLP‐1R agonist and can therefore induce
hypoglycemia because of receptor stimulation. GLP‐1R
agonists can induce insulin secretion, but this is depen-
dent on elevated blood glucose levels, especially when
levels exceed euglycemic concentrations of glucose. The
effect of exendin‐4 is thus self‐regulating, and this lowers
the risk of hypoglycemic events.56 Other known side
effects that may occur are nausea and vomiting. It is
therefore important to minimize the peptide dose that is
injected into patients, and various efforts have been made
to increase specific activity. Christ et al first performed
clinical SPECT imaging using a peptide dose of 30 μg,
whereas in later clinical studies, doses of approximately
2 to 17 μg were used and also higher specific activities
were achieved.28,29,45-48,52 For PET imaging studies, pep-
tide doses of 7 to 25 μg were injected, in which a wide
range in peptide dose can be observed within and
between studies.40,41,43-46,53,57,58 Most studies using
SPECT tracers did not report side effects like hypoglyce-
mia, nausea, or vomiting.28,29,48,52 However, in two stud-
ies where a SPECT tracer was administered, a
substantial number of side effects (nausea and vomiting)
were observed.45,46 Clinical studies with exendin‐based
PET tracers led to only few cases of vomiting while more
cases of nausea were reported.40,41,43-46,53,57,58 Despite
that the effect of exendin‐4 is self‐limiting,56 there is still
a substantial risk of hypoglycemia because of insulin
release by functional insulinomas. In various studies,
hypoglycemia was countered by glucose infusion or
prevented by prophylactic glucose infusion. Blood glucose
monitoring of patients is therefore essential once the
tracer has been administered. The available data show
that the occurrence of side effects was lower in studies
with PET imaging compared with SPECT imaging, but
this can depend on factors such as peptide dose and glu-
cose infusion. For an overview of the clinical studies
and tracers, see Tables 2 and 4.

Furthermore, studies have compared the use of
exendin‐4 with the receptor antagonist, exendin(9‐39).
Waser and Reubi showed excellent binding affinities in a
Rip1Tag2 mouse model for both the agonist and antago-
nist.59 Interestingly, Brom et al found that receptor affinity
on INS‐1 cells was high for both the agonist and antagonist,
but the antagonist did not show internalization, and the
tumor uptake was low.60 The discrepancy between the
studies can be explained by the receptor density, where
the Rip1Tag2 mouse model has a higher number of recep-
tors that can be bound by the antagonist. The number of
bound receptors was not significantly different for the ago-
nist and antagonist in case of the INS‐1 cells.60 Further-
more, when comparing the number of receptors for INS‐1
cells and human insulinoma tissue, a substantial lower
receptor density for human functioning insulinomas can
be observed.16,60 In case of a lower number of receptors,
which is the situation in vivo, the agonist performs much
better than the antagonist. Therefore, only the agonist is
suitable for in vivo targeting of the GLP‐1R.

Finally, several studies report on the use of
radioiodinated antagonist‐based tracers. [125I]I‐BH‐

exendin(9‐39) exhibited high uptake inmurine pancreas,61

and the antagonist [Lys27(125I]I‐BH‐exendin(9‐39)NH2

demonstrated tumor uptake that was comparable with
the agonists but with a substantially reduced kidney
uptake.51 In contrast, the antagonist [Nle14,[125I]I‐Tyr40‐
NH2]exendin(9‐39) showed lower affinity and lower inter-
nalization than the more favorable agonist [Nle14,[125I]I‐
Tyr40‐NH2]exendin‐4.

50

3.4 | Fluorescence imaging for
intraoperative detection of insulinoma

Because of the large penetration depth of γ‐photons, whole‐
body imaging with SPECT and PET gives preoperative
information on tumor size and location. Intraoperatively,
gamma probes can be used for radioguided detection of
tumors, as has been proven successful for [111In]In‐DOTA‐
exendin‐4 for up to 14 days after tracer injection.47 Fluores-
cence imaging probes provide imageswith better spatial res-
olution, and could therefore be used for more precise
intraoperative delineation of the tumor, and fluorescence‐
guided surgery (FGS). Hypothetically, this will prevent
unnecessary damage of pancreatic tissue, reduce the time
that patients are under anesthesia, and related comorbidity.
Various fluorescent exendin tracers have been developed,62-
66 with the primary goal of pancreatic beta cell visualization
and quantification, although these are not used clinically so
far. For in vivo imaging, fluorophores in the far‐red wave-
length (800 nm) are most suitable, since there is reduced
autofluorescence of tissue at this wavelength, and because
there is higher tissue penetration of 800‐nm light. A fre-
quently used dye for fluorescence guiding purposes is
IRDye800CW, which has been conjugated to multiple
targeting moieties and is increasingly used for clinical FGS
in various solid tumor types.67-69 We have developed a clin-
ical grade exendin‐4‐IRDye800CW conjugate and shown
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feasibility of insulinoma targeting and imaging inmice with
subcutaneous GLP‐1R overexpressing Chinese hamster
lung cell tumors.70 We intent to start clinical trials in which
this tracer is employed for FGS of insulinoma. To combine
high resolution, high sensitivity, and deep tissue penetra-
tion, dual‐labeled targeting moieties with a radionuclide
and fluorophore have been developed for other theranostic
applications in oncology. One example is the carbonic
anhydrase IX targeting probe [111In]In‐DTPA‐G250‐
IRDye800CW for which fluorescence imaging was proven
to be safe and suitable for intraoperative guidance of renal
cell cancer resection in the clinic.69 To the best of our knowl-
edge, only Brand et al developed a dual‐labeled exendin‐4
tracer (fluorescein and 64Cu).71 With this tracer, small
insulinoma xenografts were visualized with PET, and with
fluorescence, individual pancreatic islets could be detected.
Especially when conjugated with far‐red fluorophores such
as IRDye800CW, similar dual‐modal tracers could be used
for preoperative detection and intraoperative surgical guid-
ance, ensuring complete resection of the insulinoma while
preserving healthy pancreatic tissue.

4 | THERAPY WITH EXENDIN ‐4–
BASED TRACERS

4.1 | Peptide receptor radionuclide
therapy

Importantly, since for benign insulinoma surgical resec-
tion remains the therapy of choice, only patients with
metastasized malignant insulinoma are eligible for (SSTR
directed) PRRT. However, some effort has also been
taken to develop exendin‐4–based tracers for PRRT. As
described above, 111In‐labeled exendin‐4 analogs are pre-
dominantly used for imaging of γ‐radiation, but indium‐

111 also emits low energy Auger electrons, which have
a tissue penetration of only 0.02μM to 10μM. They exert
their cytotoxic potential when in close proximity to the
DNA after internalization. Auger electron emitting
[Lys40(Ahx‐DTPA‐[111In]In)NH2‐exendin‐4 efficiently
repressed insulinoma growth in the Rip1Tag2 mouse
model, but administration of high doses resulted in signif-
icant renal radiation damage and chronic renal failure.72

Since all exendin‐4–based tracers show high kidney
uptake, kidney toxicity is a serious concern and precludes
PRRT from clinical application at the moment.

4.2 | Kidney dosimetry and methods to
reduce kidney uptake of exendin‐4–based
tracers

Some dosimetry studies have been performedwith exendin‐
4–based tracers. Absorbed kidney doses that were found in
case of exendin‐4–based imaging tracers ranged from 0.1
to 4.5 mGy/MBq; these data were mostly derived from ani-
mal studies.27,35,73,74 Furthermore, two studies investigated
the potential of PRRT with 177Lu‐labeled exendin‐4 using
dosimetric calculations either extrapolated from
biodistribution data of 177Lu‐labeled exendin‐4 in rats or
with a macro‐ and small‐scale‐dosimetry model75 applied
to 111In‐labeled exendin‐4 SPECT/CT scans in humans.73,76

Estimated activities that could be administered without
exceeding the maximum allowed absorbed kidney dose of
23 Gy were 3.8 GBq and 1.0 to 1.8 GBq, respectively. Con-
comitant absorbed insulinoma doses of 30 to 128 mGy/
MBqwere found, and these doses can lead to tumor shrink-
age as was seen for pancreatic NETs after 177Lu‐labeled
DOTATATE treatment.77 Furthermore, the dose to the
islets remained below 5 Gy, a dose which is considered a
low risk of developing diabetes.78 However, the absorbed
kidney doses would allow for only one therapeutic cycle,
in contrast to treatment with 177Lu‐labeled somatostatin
analogs in which two to six cycles of 7.4 GBq are possible.77

Higher injected doses and thus improved feasibility of PRRT
with 177Lu‐labeled exendin‐4 could be achieved by success-
fully lowering the renal accumulation.

Commonly used methods to reduce kidney uptake of
peptide‐based tracers are competitive inhibition of reab-
sorption by coinfusion of positively charged amino acids,
trypsinized albumin, or the plasma expander gelofusine.
Coinfusion of the combination of poly‐glutamic acid
and gelofusine has reduced renal uptake of 111In‐labeled
exendin‐4 by 48% in preclinical models.79 Poly‐glutamic
acid is however not clinically available while gelofusine
can be used in the clinical setting. In healthy volunteers,
coinfusion of gelofusine showed a reduction of 18% in
renal accumulation of 111In‐labeled exendin‐4, without
lowering tracer uptake in the pancreas.76 Dosimetric cal-
culations indicated that coinfusion with gelofusine
increased the estimated allowable injected dose of 177Lu‐
labeled exendin‐4 with more than 20%, which would lead
to higher absorbed insulinoma doses.

Other strategies to reduce renal uptake are introduc-
tion of a cleavable linker to allow renal excretion of the
radionuclides,80 inhibition of neutral endopeptidases to
increase metabolic stability of the peptide in the circula-
tion,79,81-84 and incorporation of highly lipophilic
groups34 (efficacies of these strategies are summarized in
Table 5). Furthermore, groups have conjugated exendin
to PEG,85-87 albumin,88 an albumin binding domain,89 a
nonglycosylated human Fc fragment,90 or nanoparti-
cles91-93 to increase circulation time. Since these strategies
potentially increase uptake of the exendin‐4 conjugates in
other organs such as the liver, biodistribution and
potency for imaging should be assessed for every
compound.



TABLE 5 Strategies to lower kidney uptake of exendin‐4–based

tracers and their efficacy as described in various studies

Strategy Outcome

Cleavable linker • No significant change in kidney
retention in comparison with [111In]
In‐Ex4NOD40. It was assumed that
the peptides were not cleaved before
reabsorption in vivo.80

Inhibition of neutral
endopeptidases

• Polygelines Haemaccel and
gelofusine both increased urinary
secretion of protein β2‐
microglobulin, most likely explained
by competitive inhibition of tubular
protein reabsorption.81

• Gelofusine and poly‐glutamic acid
(PGA) reduced kidney uptake by
18.7% and 29.4%, respectively.
Gelofusine and PGA combined
decreased kidney uptake by 47.9%.79

• Gelofusine, albumin fragments, and
lysine decreased renal uptake by
52%, 25%, and 15%, respectively.82

• Albumin‐derived peptide lowered
renal uptake by 26% while gelofusine
led to a reduction of 16%.84

Incorporation of highly
lipophilic groups

• Kidney uptake was considerably
lower compared with radiometal‐
labeled compounds and ranged from
30 to 50 %ID/g.34
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Clinical applicability of exendin‐4–based PRRT thus
depends on multiple factors. First, renal accumulation
should be largely reduced using improved or novel strat-
egies to allow for higher insulinoma doses and possibly
enable multiple therapy cycles. Another important factor
using exendin‐4 for PRRT is achieving a high specific
activity, which enables the injection of therapeutic activ-
ity doses while keeping peptide doses sufficiently low.
Low specific activities require the administration of
higher peptide doses and could increase the risk of side
effects. Preferably, peptide doses should be comparable
with doses applied in imaging; nevertheless, the risk of
side effects should be evaluated carefully.

4.3 | Photodynamic therapy

To avoid kidney toxicity, photodynamic therapy (PDT)
might be an alternative tumor‐ablative intervention. PDT
involves administration of a photosensitizer (PS), followed
by specific illumination of the tumor with light of a spe-
cific wavelength, often in the near infrared (NIR) range.94

The activated PS will be converted from the ground singlet
energy state into the excited singlet state. The PS can then
decay back to the ground state, thereby emitting
fluorescence, or it can undergo intersystem crossing and
go to an excited triplet state. In this state, it can react
directly with a substrate, which then reacts with oxygen
to produce oxygenated products, or it can react directly
with oxygen to form 1O2.

94 Products of these two reactions
are responsible for cell killing.95 A large number of PSs
have been developed and tested for treatment of cancer.96

First generation porphyrin‐based PSs were effectively used
for treatment of various cancers, such as melanoma97;
however, they were also taken up in normal tissue and
skin, leading to severe skin phototoxicity. Hypericin is a
second‐generation PS that was shown to effectively inter-
nalize and accumulate in RINm5F insulinoma cells, and
upon illumination, it induced apoptosis98; however, no
experiments in in vivo models have been described so far.

By conjugating a PS to a tumor targeting molecule, it is
possible to induce very specific cell death of target‐express-
ing cells, a concept referred to as targeted photodynamic
therapy (tPDT)99 (Figure 1). This strategywill decrease side
effects caused by accumulation of PSs in normal tissues.
The technique is increasingly applied in various types of
cancer, and a first clinical trial with cetuximab conjugated
to the PS IRDye700DX in head‐and‐neck cancer patients is
currently performed (ClinicalTrials.gov identifier
NCT02422979). IRDye700DX is a frequently used PS in
tPDT applications, mainly because of its high quantum
yield, favorable excitation characteristics, and hydrophilic-
ity of the molecule. Exendin‐based tPDT could be a future
application for ablation of small tumors in the pancreas,
thereby reducing morbidity caused by unneeded radical
resections. Furthermore, inoperable tumors that are in
the near vicinity of, eg, the pancreatic duct could be
removed without damaging these vital structures. These
procedures could be performed laparoscopically since
lasers for PDT are clinically available. We have developed
an exendin‐4‐IRDye700DX conjugate, which causes very
efficient and specific cell death of GLP‐1R expressing cells
in vitro and in vivo.100

5 | FUTURE OUTLOOK ON THE
USE OF EXENDIN ‐4 IN
INSULINOMA THERANOSTICS

SPECT and PET imaging with exendin‐4 analogs provide
means for delineation and localization of insulinoma
lesions. Compared with SPECT, PET imaging is preferable
because of increased spatial resolution and therefore better
tumor delineation. Currently, gallium‐68 is the most uni-
versally available and affordable positron emitter, offering
easy labeling via a chelator. The sensitivity of [68Ga]Ga‐
DOTA‐exendin‐4 PET/CT has proven to be superior to
the sensitivity of [111In]In‐DTPA‐exendin‐4 SPECT/CT or
MRI.46 When NODAGA is used instead of DOTA, a higher

http://ClinicalTrials.gov


FIGURE 2 Multimodal exendin for

theranostics of insulinoma. Radiolabeled

exendin‐4 can be used for SPECT or PET

imaging to locate the lesion (1), however

to detect the lesion intraoperatively a

gamma probe (2) and fluorescence

imaging (3) can be used. Furthermore the

lesion can then be treated with NIR light

to eradicate GLP‐1R expressing cells (4).

JANSEN ET AL. 667
specific activity can be obtained, allowing administration
of lower peptide doses and thus minimizing risk of side
effects due to receptor activation.101,102 Therefore, we are
currently performing a prospective multicenter study com-
paring [68Ga]Ga‐NODAGA‐exendin PET/CT with MRI
and [68Ga]Ga‐DOTA‐TATE PET/CT (ClinicalTrials.gov
identifier NCT03189953).101,102

Upon localization of an insulinoma, surgical resection
is the treatment of choice; however, this is not always
possible because of risk of complications or inoperability
of patients. Therefore, imaging methods could merge into
theranostics when exendin‐4 is also used as a tracer for
PRRT or tPDT. Currently, radiotoxicity in other tissues
that take up or excrete the exendin‐4–based tracers limits
application of PRRT.73 tPDT could be used for specific
elimination of tumor cells, without causing damage to
other tissues. Importantly, compared with benign
insulinomas, malignant insulinomas are known to have
increased expression of SSTR and limited expression of
GLP‐1R. Therefore, assessment of expression of these tar-
gets by nuclear imaging would be essential before apply-
ing tracer‐based therapy.

To conclude, because of superior sensitivity when
compared with conventional imaging methods, we
believe that exendin‐4–based PET/CT imaging should
be considered as a primary method in patients with bio-
chemical signs of insulinoma, enabling a one‐stop shop
procedure for detection and localization of insulinoma.
Surgery will remain the therapy of choice for benign
insulinoma, since high kidney uptake precludes the
use of exendin‐4–based tracers for PRRT. However,
exendin‐4–based tracers conjugated to fluorescent mole-
cules may enable FGS or specific elimination of
insulinomas with tPDT, without causing kidney damage
(Figure 2).
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