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Abstract—Embedded systems’ hardware can be impacted by
soft errors, which can cause data flow errors in the systems’
software. In this paper, we present a novel software-based
approach to counter data flow errors, called Selective Duplication
and Selective Comparison (SDSC). First, we validated our SDSC
technique by implementing it for six case studies and submitting
it to a fault injection campaign. Next, we measured its execution
time overhead. To put the measured results into perspective, we
compared them to those of two established techniques, called
Critical Block Duplication (CBD) and near Zero silent Data
Corruption (nZDC). The results show that our SDSC technique
has a higher error detection ratio with a lower silent data
corruption compared to both the CBD and nZDC techniques.
This does, however, come with a slightly higher execution time
overhead.

Index Terms—software reliability, fault tolerance, soft errors,
fault detection

I. INTRODUCTION

In recent years, embedded systems have been used more
and more in, amongst others, Internet-of-Things, Industry 4.0,
mechatronics, safety-critical and general purpose applica-
tions. This has been made possible due to technological ad-
vances in semiconductor industry such as, increasing comput-
ing capacity and lowering the required power supply. On the
opposite, a disadvantage of these technological trends is that
harsher working environments have been created for embedded
systems, which makes them more susceptible to external
disturbances [3], [17]. For example, the fact that embedded
systems are close to one another together with increased usage
of wireless communication could induce errors due to Electro-
Magnetic Interference (EMI) [2], electrical noise [4], high
energy particle radiation [7], temperature fluctuation [10], etc..
These disturbances can introduce erroneous bit-flips (i.e a
logical 0 changing to logical 1 or vice-versa) in the system’s
hardware.

Furthermore, bit-flips can have impact on the executing
software and can cause either Control Flow Errors (CFEs)
or Data Flow Errors (DFEs). A CFE is the corruption of the
execution order of instructions. A DFE is the corruption of
input, intermediate or output data. Both types of errors can
lead to improper handling of actuators, can cause the program
to hang or even to crash in some scenarios. This makes it

imperative to have a fault tolerant mechanism that counters
CFEs and DFEs. This paper focuses on the latter.

There are two types of fault tolerance techniques that
aim to protect processors from bit-flips: hardware-based and
software-based techniques. Hardware-based fault tolerant tech-
niques depend on duplicating or adding hardware modules.
They usually change the original processor architecture by
adding logic redundancy and majority voters [5]. Although
they are quite performant, they also exhibit a significant
increase in power consumption and extra design and manu-
facturing costs per system produced.

On the other hand, software-based fault tolerant techniques
are popular and well known to protect systems against bit-
flips by including extra code to the original program [6],
[11]. Software-based fault tolerant techniques can be imple-
mented with a limited increase in development time. Although
software-based mechanisms add fault-tolerance to the system,
they require extra execution time and extra memory due to
the execution of the extra code. In the interest of their cost
and flexibility, these software solutions are used in numerous
applications [9], [14], [16].

As mentioned before, this paper focuses on DFEs. To
counter DFEs, numerous software-based techniques have been
proposed and implemented for several years [6], [12], [18].
Duplication and comparison is the most used mechanism to
detect data flow errors. Based on the mechanisms involved in
each existing technique, these techniques are further divided
into two categories: full duplication and selective duplication.
In full duplication techniques, the entire code base is du-
plicated and their results are compared to report the errors.
With full duplication, maximum fault detection ratio with
more imposed overhead can be achieved. On the other hand,
in selective duplication techniques, only that part of a code
identified as the most vulnerable is duplicated and their results
are compared to report the errors. Decrease in overhead with
a reduced fault detection ratio can be achieved with selective
duplication [18]. To address the drawbacks from full and
selective duplication mechanisms, this paper proposes a novel
data flow error detection technique Selective Duplication and
Selective Comparison (SDSC).

The remainder of the paper is organized as follows. Sec-
tion II describes some related work. Section III discusses the



newly proposed SDSC technique. Section IV discusses the
experimental setup. Section V presents the results obtained
through experiments. Section VI describes our future work
plans and conclusions are drawn in Section VII.

II. RELATED WORK

This paper focuses on selective duplication mechanisms.
Most existing selective duplication techniques are based on
control flow graph (CFG) analysis to identify vulnerabilities
in the program. The CFG is a representation of a program and
its flow, in which the program is divided into a number of basic
blocks and edges. A basic block is a sequence of consecutive
instructions with exactly one entry and one exit point [20]. To
evaluate the capabilities of our newly proposed selective dupli-
cation mechanism, we performed fault injection experiments
and compared it with some established and recently proposed
techniques: Critical Block Duplication (CBD) [1] and near
Zero silent Data Corruption (nZDC) [6].

CBD proved to be the best technique for achieving a
better fault detection ratio among other existing selective code
duplication techniques [18], making it worthy of comparison
with our methodology. nZDC is another recently proposed
technique which produces less silent data corruption (SDC)
according to the Didehban et al. [6]. Furthermore, nZDC is a
hybrid technique to detect both CFEs and DFEs. For appro-
priate comparison with our DFE based SDSC, in this work,
we only considered DFE based mechanism involved in nZDC.

1) Critical Block Duplication: To implement the CBD
technique, critical basic blocks have to be identified in the
CFG [1]. Abdi et al. defines critical basic blocks as the basic
blocks with the highest number of fan-outs. This consideration
is based on their results being propagated to many parts of
program and its affect on other blocks [1]. Once those critical
basic blocks are identified, the instructions of critical basic
blocks are duplicated and comparison instructions are inserted
to compare the results of the original operations with their
duplicated instructions. Any mismatch between the results
indicates a DFE occurrence.

2) near Zero silent Data Corruption: nZDC introduces
the concept of checking load instructions to make sure store
instructions are executed fault free [6]. The main idea involved
in this technique is to load back the stored value from memory
and check that against the stored value [6]. Memory read
instructions are the most frequent unprotected instructions in
some existing techniques for data flow error detection [13],
[21]. If memory read instructions are corrupt, the program
execution can go wrong and compare instructions are unable to
detect any errors. In such a case, to protect those instructions,
Didehban et al. used load instruction duplication, both in
memory read instructions as well as logical and computational
instructions. An error is reported upon a mismatch between the
result comparisons.

III. SELECTIVE DUPLICATION AND SELECTIVE
COMPARISON

Our SDSC technique relies on selective duplication and
selective comparison mechanisms. As the name gives away,

we opt to duplicate a selective part of original program and
place the necessary comparison instructions in a few selected
basic blocks. Fig. 1 shows an example CFG, containing 5 basic
blocks, in the ARMv7-M assembly language.

A. Selective Duplication

In our selective duplication mechanism, we propose a new
strategy called Vulnerable Path Duplication (VPD). We define
the vulnerable path as the longest path in a CFG because
of the largest possibility of error occurrence in such a path.
Furthermore, blocks which are presented in that longest path
are more likely to be vulnerable ones. By protecting those
selective blocks, reduction in overhead, but still keeping high
fault detection ration, can be achieved.

An example for longest CFG path identification and du-
plication from CFG is shown in Fig. 1. Analyzing Fig. 1,
program execution through blocks 0, 1, 2 and 3 (highlighted in
red) form the longest path. These blocks will be duplicated to
detect data flow errors. In certain cases there could be multiple
longest paths in a CFG, where there are two or more paths with
exactly the same number of basic blocks in them. In such a
case, the longest path is chosen based on the higher number of
memory access instructions in the path. Suppose, in a few rare
case scenarios, that the number of memory access instructions
are also the same, then selection happens based on the highest
number of data processing instructions present in each of the
paths. In case that the number of data processing instructions
would also match, the choice of the longest path will depend
on the higher number of cumulative instructions. Choice of
path upon further equalities is subjective to the path that has
been identified first.

1f0  BX  lr

3

1f2  BX  lr

4

1c8  MOV   r3,r0

1ca  MOV   r3',r0'

1cc  CBZ   r0,1da

0

1ce  MOVS  r0,#0

1d0  MOVS r0',#0

1

1d2  SUBS  r2,r3,#1

1d4  SUBS  r2',r3',#1

1d6  ANDS  r3,r2

1d8  ANDS  r3',r2'

1da  ADD   r0,r0,#1

1dc  ADD   r0',r0',#1

1de  BNE   1ce

2

True

FalseTrue

False

Fig. 1. Illustration of selective duplication mechanism with sample CFG.



Duplication of branch instruction leads to wrong execution
order or program crash. Therefore, according to Fig. 1, al-
though block 3 is located in the longest path it is not dupli-
cated. The duplicated instructions are represented in bold italic
form as can be seen in Fig. 1.

Further, in duplicated instructions, the duplicated registers
are indicated with inverted comma (’), meaning that r0’, r2’,
and r3’ are the duplicate of registers r0, r2, and r3 from
the original instructions. Moreover, as given in Fig. 1, and
later also in Fig. 2, ADD, SUB, MOV, CBZ and CMP,
indicate assembly-level instructions for addition, subtraction,
move, compare and branch on zero, and compare operations,
respectively. Likewise, BX represents branch indirect, whereas
BNE represents a branch instruction which is not equal to a
condition.

B. Selective Comparison

Comparison is equally important as duplication to detect
data flow errors. A wide variety of possibilities to insert
comparison instructions exist. However, it is not easy to choose
a position to insert those instructions, because sometimes they
could lead to significant extra overhead. In SDSC, we only
compare the results of the original and duplicated instructions
present in the critical basic blocks. We define critical basic
blocks as those blocks with two or more incoming edges
in the previously defined vulnerable path of the CFG. These
critical basic blocks are more likely to be included in many
other execution paths throughout the target algorithm. If those
blocks are well protected, probability of the error propagation
to the other blocks can be reduced.

Fig. 2 depicts an example of how the critical blocks are
identified with the sample CFG. Analyzing Fig. 2, basic
block 2 is identified as a critical block as it has two incoming
edges and is also a part of the longest path in the CFG.
Inserting comparison instructions only in the critical blocks,
here the basic block 2, ensures a reduction in execution time
overhead. The comparison instructions are represented in bold.

IV. EXPERIMENTAL SETUP

We applied our SDSC protection mechanism to the six dif-
ferent case studies and executed them on an ARM Cortex-M3
driven microcontroller. This section describes the case studies
and fault injection process used to perform experiments.

A. Case Studies

We selected six different case studies to implement and
test both our proposed SDSC technique and the CBD and
nZDC techniques. These case studies are implementations of:
bubble sort (BS), cyclic redundancy check (CRC), selection
sort (SS), matrix multiplication (MM), Dijkstra (DIJ) and
insertion sort (IS) algorithms. Being highly used as validation
case studies in existing literature for data flow error detection
techniques, these case studies also have varying complexity
and CFGs as shown by Vankeirsbilck et al. [20]. This makes
them highly suitable for experiments to assure a thorough
evaluation of our SDSC technique. Table I indicates amounts

1fc  BX  lr

3

1fe  BX  lr

4

1c8  MOV   r3,r0

1ca  MOV   r3',r0'

1cc  CBZ   r0,1da

0

1ce  MOVS  r0,#0

1d0  MOVS r0',#0

1

1d2  SUBS  r2,r3,#1

1d4  SUBS  r2',r3',#1

1d6  CMP   r2,r2'

1d8  BNE   200

1da  ANDS  r3,r2

1dc  ANDS  r3',r2'

1de  CMP   r3,r3'

1f0  BNE   200

1f2  ADD   r0,r0,#1

1f4  ADD   r0',r0',#1

1f6  CMP   r0,r0'

1f8  BNE   200

1fa  BNE   1ce

2

True

FalseTrue

False

Fig. 2. Illustration of SDSC mechanism with sample CFG.

of original, duplicated and comparison instructions used for
the different case studies.

Different sorting algorithms were chosen for test and valida-
tion since these are often used in a variety of applications. For
example, to perform a big data analysis and interpretation, one
needs to rely on sorting of information to perform fast analy-
sis [9], [19], [22]. MM algorithm was considered because it is
used in various embedded domains such as image processing
and compression, robotics [8], [19]. The extensive application
based overview of CRC and its usage is well explained
by Guthaus et al. [9]. Further, DIJ algorithm calculates the
shortest path between different nodes, which is highly used
in routing applications [15], [20]. Among the six considered
case studies, CRC and DIJ are from the MiBench [9].

B. Fault Injection Process

To validate the implementations and to enable a thorough
DFE injection, we used our in-house developed fault injection
process. This process progressively steps through the target
algorithm and injects all possible faults for that location. The
used fault model for the evaluation is a single-bit bit-flip model
which is the most used fault model in this type of research and
supporting literature. Moreover, it is known that most systems
already have some countermeasures in place for their memory
like parity and ECC but not for processor registers. For this
reason we only inject bit-flips in processor registers.

In the DFE injection process, for each encountered instruc-
tion, we analyzed the instructions for registers they use. Then,



TABLE I
NUMBER OF ORIGINAL, DUPLICATED AND COMPARISON INSTRUCTIONS FOR EACH SELECTED CASE STUDY OF SDSC, CBD AND NZDC TECHNIQUES

SDSC CBD nZDC
Case study Original Duplicated Compare Duplicated Compare Duplicated Compare

instructions instructions instructions instructions instructions instructions instructions
BS 25 12 20 8 18 9 14

CRC 17 10 18 7 16 9 12
SS 50 35 54 27 68 34 48

MM 63 47 62 22 52 46 68
DIJ 87 62 110 41 92 58 80
IS 46 21 22 21 44 20 26

for each register, we independently inject a bit-flip for each
possible position. E.g. in a 32-bit architecture, we inject 32 bit-
flips per encountered register per instruction. Overall, 20000
DFEs were injected per each implemented case study of our
experiments.

Each of the injected DFEs can have one of the following
four effects:
Software Detected Fault (SDF): The injected fault is de-

tected by the duplication and comparison instructions
used in the implemented mechanism for data error de-
tection.

Hardware Detected Fault (HDF): The injected fault is de-
tected by the default hardware fault exception handler, in
this case the ARM Cortex processor family.

No Effect Fault (NEF): The injected fault is not detected
and it does not have an effect on the output of the
program.

Silent Data Corruption (SDC): The injected fault is not de-
tected by the implemented mechanism and it changes the
output of the program. As this is the most disastrous fault
we focus on the reduction of these type of faults in our
SDSC technique.

V. RESULTS AND DISCUSSION

This section reports and discusses the results of our ex-
periments which were conducted to evaluate the proposed
technique. To evaluate our SDSC, we compare it with existing
CBD and nZDC techniques. First, we compare the three
techniques based on the results of the fault injection campaign.
Next, we compare them based on their imposed execution time
overhead.

A. Fault Injection Results

Fig. 3 displays the results obtained from the fault injection
campaign. The obtained results are in the form of four different
fault categories: SDF, HDF, NEF and SDC. Analyzing Fig. 3,
the most interesting fault category for comparison is the one
of the faults detected by our SDSC technique in the form of
SDF. It is clear from the first fault category that SDSC displays
an increase in SDF for 5 out of 6 considered case studies
because of its accurate selective duplication and comparison
mechanism. In comparison with CBD and nZDC, the average
percentage of SDF in SDSC has increased by 13.6% and
50.5%, respectively. In Fig. 3, the nZDC technique shows a

low SDF ratio for the CRC technique. This is because the
comparison mechanism in nZDC is located only after store
and load instructions. In essence, CRC does not have store
instructions to place comparisons as a result very few number
of comparisons were inserted.

In addition to the SDF, the percentage of faults detected
in the HDF category is much lower among all case studies
using all techniques. In this category, faults are not detected
by neither our SDSC or CBD and nZDC, but detected by the
default hardware fault exception handlers. That is why this
category is less important in our comparison.

The third fault category is referred to as NEF. This category
indicates the faults which were undetected and did not have an
effect on the output of the program. Therefore, this category
can be omitted out of the comparison.

The final and most critical fault category is referred to as
SDC. It represents those faults that were not detected by the
implemented data error detection technique SDSC or CBD
and nZDC, and that were able to corrupt the output of the
case study. In this case, our SDSC shows a lower number
of undetected faults for most case studies in comparison
with CBD and nZDC. The average SDC with our SDSC is

SDSC CBD nZDC SDSC CBD nZDC SDSC CBD nZDC SDSC CBD nZDC SDSC CBD nZDC SDSC CBD nZDC SDSC CBD nZDC
0

20%

40%

60%

80%

100%
SDF HDF NEF SDC

BS CRC SS MM DIJ IS Avg.

Fig. 3. Fault injection results of SDSC, CBD and nZDC techniques.



only 2.3% whereas 5.3% and 7.1% with CBD and nZDC,
respectively. The decrease of SDC in our SDSC is mainly
because of the accurate selective protection of the code.

B. Execution Time Overhead

Erroneous bit-flip detection does not come cheap. Counter
measures do introduce execution time overhead. Execution
time overhead expresses the extra time it takes for the algo-
rithm to execute in an error free run. In this study, the intro-
duced execution time overhead (ETO) is calculated based on
the following two parameters; protected execution time (PET)
and unprotected execution time (UPET) as given in (1).

ETO =
PET − UPET

UPET
(1)

Fig. 4 shows the imposed execution time overhead of SDSC,
CBD and nZDC. Analyzing Fig. 4, it is clear that our SDSC
shows a slight increase in overhead for most case studies in
comparison with CBD and nZDC. In more detail, comparison
with CBD and nZDC, results show that average execution time
overhead of our SDSC is increased by 20.3%. This percentage
is quite small in comparison with the improvements achieved
through the two critical factors such as SDF and SDC.
Moreover, as microcontrollers are having evermore computing
capacity, impact of this execution time overhead will reduce.

VI. FUTURE WORK

In this paper, we have discussed and presented a technique
for data flow error detection. As aforementioned, there exist
numerous techniques for control flow error detection sepa-
rately. However, only very few techniques exist on the com-
bination of data flow and control error detection. We would
like to merge our SDSC technique with one of the recently
proposed better techniques for control flow error detection. In
addition, we would also like to validate our new experiments
with more case studies to confirm the effectiveness of this new
technique.

BS CRC SS MM DIJ IS Avg.
0

50%

100%

150%

200%

250%

300%
SDSC CBD nZDC

Fig. 4. Execution time overhead of SDSC, CBD and nZDC techniques.

VII. CONCLUSION

In this paper, we presented a new technique for data flow
error detection based on selective duplication and selective
comparison mechanisms. SDSC was implemented on six dif-
ferent case studies. Then fault injection experiments were
performed for those case studies. The performed experiments
measured two criteria, namely fault detection capabilities and
execution time overhead. The two measured criteria were then
used to evaluate our SDSC technique by comparing it with two
previous existing techniques namely CBD and nZDC.

The experimental results showed that SDSC detected the
most data flow errors for all considered case studies consis-
tently. In comparison with CBD and nZDC, the percentage of
software detected faults in our SDSC has improved by 13.6%
and 50.5%, respectively. In the same way, the undetected
data flow errors with our SDSC is reduced to only 2.3% but
with CBD and nZDC, it is quite high as 5.3% and 7.1%,
respectively. On the other hand, in our SDSC, the execution
time overhead has increased slightly which is quite small in
comparison with the improvements achieved through SDF and
SDC. As microcontrollers are executing faster and faster, we
expect that this overhead can be neglected in the near future.
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