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Abstract

Temporal information extraction is and has been a crucial aspect of automatic
language understanding. With the increase in digitization of texts like news papers,
but also electronic health records, high quality extraction of temporal information
about the described events gives rise to many applications, like question answering,
summarization, temporal information retrieval, and automatic timeline visualization.

In this dissertation, we investigate and propose different machine learning approaches
for temporal information extraction from text. Our five main contributions show how
symbolic knowledge about temporal reasoning and statistical neural network based
approaches can be used and combined to improve temporal extraction, in terms of
prediction quality, and in terms of coverage.

First, we construct a document-level structured learning approach for temporal relation
extraction, incorporating hard and soft temporal constraints during training and
prediction. We show that the document-level constraints can help to improve the
quality of the model’s predictions, and enforce the predicted temporal relations to be
more consistent, important for timeline construction.

Secondly, we design a neural temporal relation extraction model, and investigate
how we can efficiently optimize its word representations using unlabeled textual data.
Multi-task learning is used as a way to train the representations on two objectives, the
supervised relation extraction objective based on the labeled data, and a skip-gram
objective based on raw text.
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iv ABSTRACT

Our third contribution is a literature survey on how temporal reasoning can be
successfully and efficiently integrated into temporal information extraction models.
The survey highlights multiple gaps in the literature, and provides interesting avenues
for future work.

Building on insights from temporal reasoning frameworks, as our fourth contribution,
we investigate the construction of timelines of events from text. A new method for
relative timeline construction from graphs of temporal relations is proposed. More
importantly, a new paradigm is introduced to extract timelines without the need for
intermediate temporal relation extraction.

Our last contribution extends the previous work with the extraction of implicit and
uncertain temporal information. An annotation scheme is proposed to annotate absolute
timelines that can be queried in a probabilistic way, based on the annotated uncertainty,
and a set of clinical records is annotated. Moreover, a model is put forward to extract
such timelines from text.

The main conclusion of this dissertation is the importance of good integration of
symbolic temporal reasoning, key to capturing rigid temporal structure, into statistical
(neural) models, crucial when dealing with the ambiguous nature and vagueness present
in language. The contributions in this thesis act as a case study and starting point for
future research into this integration.



Beknopte samenvatting

Temporele informatie-extractie is een cruciale component voor de automatische
verwerking van taal. Met de toename in digitalisering van teksten zoals nieuwsartikelen
maar ook elektronische patiëntendossiers geeft hoge kwaliteit extractie van temporele
informatie over de beschreven gebeurtenissen aanleiding tot veel praktische toepas-
singen: zoals het automatisch beantwoorden van inhoudelijke vragen over teksten,
het automatisch samenvatten ervan, zoeken op basis van temporele queries, en de
visualisatie van tekstgebaseerde tijdlijnen.

In deze dissertatie worden verschillende methoden van machinaal leren voor de
extractie van temporele informatie uit tekst voorgesteld en onderzocht. Onze vijf
hoofdcontributies demonstreren hoe symbolische kennis over het redeneren met tijd
en statistische neurale netwerken kunnen worden gebruikt en gecombineerd voor het
verbeteren van automatische temporele informatie-extractie.

Eerst construeren we een gestructureerde leermethode voor de extractie van temporele
relaties op documentniveau. Hierin integreren we harde (logische) en zachte
(statistische) temporele restricties tijdens de trainingsfase en de predictie van het
model. We laten zien dat deze restricties op documentniveau de kwaliteit van de
voorspellingen gedaan door het model verbeteren en dat ze forceren dat de voorspelde
temporele relaties consistenter zijn, een belangrijke eigenschap voor tijdlijnconstructie.

Ten tweede ontwerpen we een neuraal model voor temporele relatie-extractie en
onderzoeken hoe de woordrepresentaties van dit model efficiënt kunnen worden
geoptimaliseerd gebruik makende van ongelabelde tekst. Multi-task learning wordt
gebruikt als methode om de woordrepresentaties te trainen op twee objectieven: het
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vi BEKNOPTE SAMENVATTING

gesuperviseerde relatie-extractie objectief gebaseerd op gelabelde data, en een skip-
gram objectief gebaseerd op ongelabelde tekst.

Onze derde contributie is een literatuuronderzoek naar hoe temporeel redeneren
succesvol en efficiënt kan worden geïntegreerd in temporele informatie-extractie
modellen. Dit literatuuronderzoek brengt verscheidene gebreken in de bestaande
literatuur aan het licht en voorziet interessante richtingen voor verder toekomstig
onderzoek.

Bouwend op de inzichten uit de verschillende frameworks voor temporeel redeneren
onderzoeken we in onze vierde contributie de constructie van tijdlijnen van
gebeurtenissen uit de tekst. Een nieuwe methode wordt voorgesteld voor het opstellen
van relatieve tijdlijnen uit grafen van temporele relaties. Belangrijker nog is de
introductie van een nieuw paradigma voor de extractie van tijdlijnen waarvoor de
gebruikelijke tussenstap van temporele relatie-extractie niet langer noodzakelijk is.

Onze laatste contributie bouwt verder op de vorige met als extensie de extractie van
impliciete en onzekere temporele informatie. Een nieuw annotatieschema voor het
annoteren van absolute tijdlijnen met een probabilistische interpretatie gebaseerd op
de geannoteerde onzekerheid wordt beschreven. Vervolgens is dit schema toegepast
in de annotatie van een dataset van Amerikaanse klinische rapporten, gebruikt voor
de constructie en evaluatie van een extractie-model voor dergelijke probabilistische
tijdlijnen.

De hoofdconclusie van deze dissertatie is het belang van goede integratie van
symbolische methoden voor temporeel redeneren, aangewezen voor het beschrijven
van de sterke structuur van tijd, in statistische (neurale) modellen, cruciaal voor het
omgaan met de ambiguïteit en vaagheid in taal. De contributies in deze dissertatie
dienen als een case study en startpunt voor toekomstig onderzoek naar deze integratie.
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1
Introduction

Time is what keeps everything from
happening at once.

Ray Cummings

Time is a central concept of human perception and cognition. In our daily life, we
make many decisions based on time. Our awareness of time has blended into our
communication, and our language is filled with temporal cues. Two examples of
frequent temporal cues in language are verb tense (has vs. had), and word order
(he laughed and fell vs. he fell and laughed). In this dissertation, we investigate
how we can learn computer models to extract the temporal cues that we convey in
language, from textual documents. In other words, how can we learn models to
construct a timeline of events from a textual document? This research lies within the
broad research area of artificial intelligence (AI), and integrates three subareas: (1)
natural language processing (NLP), the study of processing of language using computer
models, (2) machine learning (ML), the study of building computer models that can
learn to perform certain tasks from a set of examples. And (3), temporal reasoning
(TR), the study on how to represent and reason with temporal information.

In this dissertation, we focus primarily, but not exclusively, on temporal information
extraction (TIE) in the clinical domain, using textual patient records for the majority
of the experiments. Being able to automatically construct high quality timelines from
clinical documents provides many real world applications, and plays an increasingly
important role with the increasing digitization of personal health records. Applications
include temporal question answering (QA), where doctors can ask temporal questions

1
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about events occurring in a collection of documents (Llorens et al., 2015; Höffner
et al., 2017; Meng et al., 2017; Sun et al., 2018; Pampari et al., 2018). For example,
“When was the last time that the patient received narcotics?”. Another application is
the (semi-)automatic selection of patients for clinical trials, which frequently involves
temporal constraints in their inclusion and exclusion criteria for participants (Raghavan
et al., 2014). For example, “patients with a distant history (greater than 6 months before
study entry) of venous thromboembolic disease are eligible”. Other applications include
the visualization of patient timelines (Jung et al., 2011), multi-document summarization
(Barzilay and McKeown, 2005; Ng et al., 2014), and it has important potential for
better prediction of treatment effects and early detection of diagnoses (Augusto, 2005;
Zhou and Hripcsak, 2007; Choi et al., 2016b,c).

In the remainder of this chapter we will draw the research context in which this work
was conducted, describe the problem statement and research questions, summarize the
contributions, and provide the outline of the thesis.

1.1 Research Context

The research in this dissertation was pursued in the context of the MARS project:
“MAchine Reading of patient RecordS” (KUL-C22/15/16), and the ACCUMULATE
project “Acquiring Crucial Medical information Using Language Technology” (IWT-
SBO 150056). Both projects focus on the extraction of important clinical information
from textual patient records, including temporal information.

1.2 Problem Statement and Contributions

We start this section by introducing Figure 1.1, which shows typical tasks in temporal
information extraction, and acts as a backbone for describing the research questions
and contributions made in this dissertation.

To build a timeline of events from text automatically, the first step is to extract the
events from the text that will be placed on the timeline. This phase is called event
extraction (a ⇒ b in Figure 1.1). Events are typically described as “situations that
happen or occur” (Pustejovsky et al., 2003b). Models for event extraction fall in the
category of sequence-labeling models, which are very frequently used in NLP, and
determine for each word in the text, whether it should be assigned the label event or
not based on the word itself and its context.

Once events have been extracted, time expressions, like dates (12/03/2006), times (9
am) or durations (for five hours), are detected. Time expressions, often abbreviated as
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Figure 1.1: Overview of different tasks of temporal information extraction, starting
from the extraction and normalization of events and temporal expressions from raw
text: (a⇒ b⇒ c). And successively, the construction of an event timeline, the focus
of this dissertation: either directly (c⇒ e or c⇒ f), or indirectly, by extracting a graph
of temporal relations as an intermediate step: (c⇒ d, followed by d⇒ e or d⇒ f).
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timex in the literature and the rest of this dissertation, refer directly to values on the
timeline, and function as reference points (or anchors) around which the events can
be positioned. Besides the detection of timexes, it is important to know what date or
time value is referred to by the time expression, which is not always evident (e.g. for
relative cases like last Sunday). The process of automatically determining the calendar
value for a timex is called timex normalization. Figure 1.1 shows an example of timex
extraction and normalization (b⇒ c).

Temporal Relation Extraction

The models proposed in this dissertation all start from text in which events and timex are
already extracted, and normalized: step (c) in the figure. From this input, the work in
this dissertation researches how to further construct the event timeline. The motivation
for this starting point is because existing models up to this point already have higher
accuracy (around 70-90%), compared to successive stages (around 50-70%).

An important and frequently explored next step towards building timelines is the
extraction of temporal relations, or temporal links (TLinks): (1) between the events
(EE-R), (2) between the temporal expressions and events (TE-R), and (3) between each
event and the document-creation time (DCT-R). The results of the TLink extraction,
shown in (d) in Figure 1.1, is a temporal graph with events, timex, and the DCT
as nodes (from now on referred to as temporal entities). The graph’s edges are the
TLinks among them. The types of TLinks are usually a (sub)set of Allen algebra
relations (Allen, 1983), which describe the relative positions that intervals can have
with regard to each other (e.g. before, during, simultaneously). Many existing TLink
extraction models iteratively predict a TLink between each pair of temporal entities,
based on the textual context. A problem with this approach is that TLinks are predicted
independently of each other. However, TLinks are not independent of each other. In
Figure 1.1d: The facts that (1) e1 lies before e2 and (2) e2 lies before the DCT restricts
the possibilities for the relation between e1 and the DCT: it must now be before the
DCT to stay temporally consistent. This dependence between TLinks has two sides:
on the one-hand we can infer relations from existing relations, but on the other hand, if
we predict a wrong relation this may propagate to the rest of the temporal graph. This
brings us to our first research question:

Q 1. How can we exploit the dependencies between temporal relations to improve
temporal relation extraction models?

C 1. To answer this question we propose and evaluate a structured perceptron model
for TLink extraction, enhanced with integer linear programming (ILP) to model
temporal inference. The model jointly predicts EE-R and TE-R, DCT-R,
constituting a new state of the art on the clinical THYME dataset at the time.
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C 2. Evaluating this model provides valuable insights on when and how to make
temporal inferences over the candidate relations both during training and
prediction and gives an in-depth assessment of the use of constraints and global
features.

Training machine learning models for TLink extraction requires a sufficient number of
texts with the correct temporal graphs as training examples. The manual annotation
of these graphs requires domain specialists, especially for clinical texts. Additionally,
for a text with n temporal entities, there are O(n2) potential relations, making this
task very time consuming, and costly. As a consequence, the existing datasets are
relatively small, with sizes ranging between 36 and 500 annotated documents. However,
raw unannotated text is widely available (even for the clinical domain). Recent
developments in NLP provide methods to exploit large collections of raw text to
construct word representations that capture a degree of syntactic and semantic similarity.
We believe parts of the information that is captured by these representation may be
useful to better extract TLinks (e.g. if one event is in future tense and another in past
tense, the first happened before the second). This brings us to our second research
question:

Q 2. How can we use raw text, in addition to our annotated texts, to improve word
representations of TLink extraction models?

C 3. To efficiently exploit the raw text, we proposed a TLink extraction model
which optimizes its word-level representations jointly on the TLink extraction
task, using annotated data, and on an auxiliary context prediction task, using
unannotated data. We show that this multi-task training setting results in better
representations for classification, and constitutes a new state of the art for
temporal relation extraction on the THYME dataset even without dedicated
clinical preprocessing.

Timeline Construction

Up til this point, the discussed research questions involved the extraction of temporal
relations, or temporal graphs. However, the final aim of temporal information extraction
is to construct a timeline of events from the text. There is a strong relation between
temporal graphs and the start and end points of events on a timeline. Formal theories
of temporal reasoning can connect these two perspectives, providing powerful and
flexible tools to handle temporal information. To obtain further insight into how
temporal reasoning can be integrated successfully in models for timeline construction,
we formulated the following literature-based research question:
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Q 3. How has temporal reasoning been successfully used in the research field of
temporal information extraction? And what are promising future directions for
further integration?

C 4. To address this literature-based research questions, we conducted a survey on
the various ways in which TR has been exploited in TIE models over the
past three decades: in annotation, preprocessing, training, prediction, and
evaluation. The survey includes a clear explanation of the theory on TR for
TIE required to comprehend the latest state-of-the-art TIE models. Moreover,
it provides a structured overview of the various ways in which TR has been
exploited in TIE models over the past three decades: in annotation, preprocessing,
training, prediction, and evaluation. Finally a distillation of the most important
conclusions and directions for future work are included.

Through temporal reasoning we can convert temporal relations between events to
statements about points on a timeline, and construct a timeline from automatically
extracted TLinks. Irrespective of the quality of TLink extraction models, for
long documents with many temporal entities the step of extracting TLinks can be
computationally very complex because of: (1) the squared relation between the number
of entities and the number of TLinks, and (2) the fact that this large number of TLinks
needs to be consistent in order to construct timelines from them. Because of these
disadvantages, we investigate if it is possible to directly position events on the timeline
in the correct order, without first extracting TLinks. As data annotation is expensive,
ideally, we would like to do this using existing datasets. This brings us to research
question three:

Q 4. How can we train models from annotated temporal graphs, that directly predict
timeline positions for events, without extracting TLinks as an intermediate step?

C 5. To answer this question, we developed a new method to construct a relative
time-line from a temporal graph (called TL2RTL: d⇒ e in Figure 1.1).

C 6. More importantly, we proposed two new models that, for the first time, directly
predict (relative) timelines - in linear complexity - without an intermediate TLink
extraction stage (S-TLM & C-TLM: c⇒ e in Figure 1.1).

C 7. To train the proposed models, we constructed three new loss functions based on
the mapping between Allen’s interval algebra and the end-point algebra to train
time-line models from TimeML-style temporal graphs.

A major aspect of temporal information extraction which has not yet been discussed up
to this point is temporal under-specification. Temporal under-specification indicates that
only partial information about event timing is available, and that pieces of information
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possibly have different levels of certainty. For example, in Figure 1.1, we do not
know if the episode of aphasia started on 11-02 or already before that date. Temporal
information that is explicitly mentioned through temporal expressions in the text is
generally considered more certain. This is what is annotated in most existing datasets,
and hence also extracted by the models trained on such data (including the models in
this thesis up to this point). Implicit information, often more uncertain in nature, is less
frequently annotated. However, uncertain information can still be crucial to make a
realistic more informative timeline. For example, although not explicitly mentioned
in the text, and not captured by the temporal graph, it is most likely that the episode
of aphasia happened fairly shortly before the CT scan, and not years in the past. To
address dealing with uncertain temporal information in the construction of timelines
from text we formulate our last research question:

Q 5. How can we annotate and extract complete absolute timelines, that capture
implicit and uncertain temporal information?

C 8. To include implicit information in our data, we propose a novel annotation
scheme for absolute timeline annotation, which deals with implicit information,
and under-specification by using absolute uncertainty bounds.

C 9. Using this scheme, we annotated a corpus of English patient records and analyzed
inter-annotator agreement, and the scheme’s relation to the TimeML-style
temporal graphs (focusing more on explicit information).

C 10. Finally, using the new annotations, we trained and evaluated a multi-regression
model to predict absolute timelines that can be queried in a probabilistic way,
based on the temporal uncertainty in the text.

1.3 Outline

The chapters in this dissertation follow the conducted research chronologically.

Chapter 2 starts with introducing the necessary background knowledge on fundamental
methods used in the rest of the dissertation.

Chapters 3 and 4 propose models for the task of temporal relation extraction, covering
research questions 1, and 2 respectively. Chapter 5 covers a literature survey on the use
of temporal reasoning in the research area of temporal information extraction to answer
research question 3. Chapter 6 addresses research question 4, and Chapter 7 addresses
research question 5. Both discuss the task of timeline construction, the first focusing on
relative timelines, and the second focusing on absolute timelines. Figure 1.1 contains
references to the chapters in which new methods have been proposed for a certain task.
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Chapter 3 introduces a structured perceptron model which incorporates document-
level temporal inference during training and prediction. The model is evaluated on a
benchmark corpus of American English clinical patient records in the domain of colon
cancer (the THYME corpus).

Chapter 4 presents a neural relation extraction model and investigates the joint training
of word representations on the temporal relation extraction task and a context prediction
task to better exploit unannotated raw textual data. The robustness of the joint training
setup is addressed, and the THYME corpus is used to evaluate the approach and to
analyze its errors.

In contrast to other chapters, Chapter 5 is a literature-based survey of the different uses
of temporal reasoning in the construction of temporal information extraction models.
It categorizes existing approaches for integrating temporal reasoning, focusing on
efficiency and expressivity, and highlights gaps in the literature that indicate promising
areas for future research towards more complete temporal information extraction.

Chapter 6 tackles the task of timeline prediction and offers novel approaches for indirect
timeline construction and direct timeline prediction, focusing on relative timelines,
which contain the order of the start and end points of the events. The chapter makes a
comparison of both methods on two English benchmark datasets in the news domain.

Chapter 7 provides a new scheme for absolute timeline annotation, dealing with
temporal uncertainty and implicit information. The scheme is used to annotate a corpus
of clinical intensive-care-unit reports. The newly created corpus is analyzed and a new
model for the prediction of probabilistic absolute timelines is proposed which is trained
on the annotations.

The content of the chapters was based on research published in (Chapters 3-6) or
submitted to (Chapter 7) well-known peer-reviewed international conferences or
journals. In the final chapter, Chapter 8, we conclude the dissertation and summarize
the most important findings and discuss limitations and promising future directions.



2
Fundamentals

In this Chapter we introduce four basic methods which are considered background
knowledge for the following chapters. We start by giving a short introduction of neural
networks, as all models in the thesis can be considered neural models (Chapters 3, 4,
6, 7). Afterwards, we introduce word embeddings, a technique to represent words in
neural models. Third, we discuss long short-term memory networks (LSTM), which
are a type of neural network that is able to remember information across a sequence
of inputs, and is used to encode sequences of words, or sentences. LSTM are used
in the proposed models in Chapters 4, 6, and 7. Finally, we discuss integer linear
programming (ILP), a method to formulate and solve certain constrained optimization
problems, which is used in the context of model prediction in Chapter 3, and discussed
further in Chapter 5.

2.1 Neural Networks

Artificial neural networks (ANN) are a subset of machine learning models that consist
of interconnected basic components, called artificial neurons, which are loosely inspired
by biological neurons in the brain.

A Single Neuron

Each neuron can take a number of weighted inputs X = x0, . . . , xN , with
corresponding weights W = w0, . . . , wN , an optional bias term β, and an activation

9
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Figure 2.1: A single artificial neuron, with three inputs x1, x2, x3, bias term β,
activation function fa and a predicted output value ŷ.

function fa. Together these characterize a forward prediction function F (X|W,β)
from inputs X to output ŷ. An example of a single neuron with three inputs is shown in
Figure 2.1. The forward pass for a single neuron takes the weighted sum of the inputs,
adds the bias term, and applies the activation function to calculate the predicted output.
This calculation is given by Equation 2.1.

F (X|W,β) = fa(
N∑
i

wixi + β) (2.1)

The activation function determines the type of relation between the inputs and the output.
There are different options for choosing activation function fa. A classical option is
the use of the logistic sigmoid function given by Equation 2.2, which projects values
from [−∞,∞] to the unit interval [0,1], and is sometimes used to output probabilities
for binary classification problems.

sigmoid(x) = 1
1 + e−x

(2.2)

Beside the sigmoid function, in this dissertation (Chapters 6 and 7) we also use the
ReLU activation function (Nair and Hinton, 2010), and softplus activation function
(Dugas et al., 2001), given by Equation 2.3 and 2.4 respectively. Both of these activation
functions project from [−∞,∞] to [0,∞] and are used to enforce that the output of
networks is positive.

ReLU(x) = max(x, 0) (2.3)

softplus(x) = ln(1 + ex) (2.4)

Multilayered Perceptrons

If we stack multiple neurons on top of each other from the same input, we call this a
perceptron. A single network where multiple perceptrons are chained to each other by
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Figure 2.2: An example of a multilayered perceptron, consisting of fours layers, each
with three nodes. Bias terms and activation functions are not shown.

connecting the output of each perceptron to the input of the next is called a multilayered
perceptron (MLP). Figure 2.2 shows a MLP with five layers. All but the last layer
contain three neurons each. The last 2-neuron layer is the output layer. The (four)
layers in-between the input and last layer are called hidden layers. If a network has
more than one hidden layer, it is called "deep". Calculating the forward pass F (X)
for such networks involves many matrix multiplications (one for each layer), which
can be efficiently parallelized on Graphical Processing Units (GPUs), greatly reducing
computation time. In the experiments in this dissertations we used GPUs to accelerate
our calculations.

Gradient-Based Training

Training a network corresponds to finding values for the network’s weights and biases
(collectively called the network’s parameters θ) such that its predictions lie as closely
as possible to the desired output. To measure the quality of a prediction ŷ, compared
to the desired output y the amount of error is calculated using a loss function L(y, ŷ).
The goal of training is to minimize loss L on the training data.

If the loss function L is differentiable with regard to the network’s parameters θ, which
is the case for the neural models used in this dissertation1, we can calculate how much
each parameter wi ∈ θ contributes to the total loss by calculating the parameter’s
gradient with regard to the loss, i.e., ∂L

∂wi
. Based on its gradient, each parameter is

updated with a certain learning rate. In this dissertation we used Adam (Kingma and
Ba, 2014) to determine the learning rates at training time.

1ReLU is not differentiable at x = 0, but this case is handled separately by setting its gradient to 0.
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2.2 Word Representations

Informative representation of words in natural language processing models is crucial,
as they are the input to the model, and words are often considered the basic components
of meaning, carrying important information.

One-Hot Representations

A classical method to represent words as vectors, which can serve as input to machine
learning models, is to use one-hot representations. For a vocabulary V of size |V |, each
word is assigned an index in the vocabulary. The word vector wi for the word at index i
in the vocabulary is defined as a vector of size |V |, filled completely with zeros, except
at position i, where the value is 1. An advantage of this way of representing words is
that each word can be clearly discriminated based on its vector. Typical downsides of
this approach are that the word vectors are usually very large (of vocabulary-size), and
that no background knowledge about the words is captured in their representation. In
Chapter 3 we used one-hot representation to represent words, and other features.

Word Embeddings

An alternative approach to one-hot vectors are word embeddings, which are typically
used to induce background knowledge into the word representations. In contrast to
one-hot encoded word vectors, word embeddings are dense (containing usually no
zeros), and are of low dimensionality (around 10-1000 dimensions), compared to one-
hot representations. Word embeddings project each word to a vector in a space IRN,
where vector dimension N is a hyperparameter. All word vectors are saved in a matrix
of size |V |, called the embedding matrix. The values of this matrix are parameters that
have to be learned (in contrast to one-hot vectors, where no learning is required). A
popular model to learn these weights is the skip-gram model (Mikolov et al., 2013),
where the parameters are trained on a word context prediction task, ensuring that words
that have similar contexts will get similar vectors. The underlying hypothesis is that
words that occur in the same contexts tend to have similar meanings (Harris, 1954).
Relying on this hypothesis words with similar meanings get similar vectors. The upside
of word embeddings can also be its downside, as the quality of the representations
depends fully on the values of the learned vectors. We use different variants of word
embeddings in chapters 4, 6, and 7.
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Figure 2.3: An example of a single LSTM processing a sequence of t time steps.

2.3 Long Short-Term Memory Networks

Text can be considered sequential data. Namely, as a sequence of words (or characters).
Specialized neural networks have been developed to process sequences, called recurrent
neural networks (RNN). In this section we introduce Long Short-Term Memory
Networks (LSTM), which have shown to perform well in the literature, and have
been used in the research conducted in this dissertation (Chapters 4, 6, and 7).

We read language (mostly) in sequence, remembering the important parts of what we
have read thus far. The LSTM architecture (Hochreiter and Schmidhuber, 1997) aims
to mimic this behaviour of selectively remembering important information about items
in the processed sequence. An example of an LSTM processing up to time step t is
shown in Figure 2.3. The memory of a single LSTM cell at each time step t of the
sequence is represented by a state vector Ct, and its output by an output vector ht.
Each cell has different gating mechanisms to decide what information from the cell
state to forget (forget gate), what to include in the memory from the current input (input
gate), and what information to output at the current time step (output gate).

Calculations for the forget gate activations ft, input gate activations it, output gate
activations ot, candidate cell C̃t, updated cell state Ct, and updated output ht are given
by Equations 2.5-2.10 respectively, where Wf ,Wi,Wo,WC̃ and bf , bi, bo, bC̃ are their
corresponding weight vectors and bias terms.

ft = sigmoid([Wf · [ht−1, xt]] + bf ) (2.5)

it = sigmoid([Wi · [ht−1, xt]] + bi) (2.6)

ot = sigmoid([Wo · [ht−1, xt]] + bo) (2.7)

C̃t = tanh(WC̃ · [ht−1, xt] + bC̃) (2.8)

Ct = ft ∗ Ct−1 + it ∗ C̃ (2.9)

ht = ot ∗ tanh(Ct) (2.10)

We discuss the equations one by one. First, C̃t, shown in Equation 2.8, calculates
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a newly proposed cell state, conditioned on the previous state’s output ht−1 and the
current input xt. To construct the new cell state Ct, shown in Equation 2.9, the previous
cell state Ct−1 and the newly proposed cell state C̃ are combined. What information
should be kept from the previous state Ct−1 is weighted per dimension by the output
of the forget gate, which assigns a value between 0 and 1 to each state dimension (by
means of its sigmoid activation in Equation 2.5). Similarly, the input gate it weights
each dimension of the newly proposed state vector C̃ to determine what information
should be kept. Given the newly calculated memory state Ct, an intermediate output
ht is calculated, where ot is a gate to determine which information is important to
output at this point in time. As calculation of the outputs ht, and cell state Ct are
differentiable, we can use standard gradient-based methods to learn parameter values
for the LSTM.

Bidirectional LSTM

An LSTM can only use the previous time steps to construct the output of the current
time step. This makes the processing of each word in a sequence oriented towards the
left context. However, the right context may be equally important. For this reason, bi-
directional LSTM are used (Bi-LSTM), which simply use two LSTMs, one processing
the sequence from left to right, and one from right to left. At each time step, the outputs
of both LSTMs are concatenated to obtain the overall output vector for that time step.
In this dissertation Bi-LSTMs are used to encode word sequences in Chapters 6, and 7.

2.4 Integer Linear Programming

Integer linear programming (ILP) is a powerful mathematical modeling tool. Some
computational problems can be modeled as integer linear programs, a class of
optimization problems. The benefit of doing so is that, although solving ILPs is
NP-complete (Karp, 1972), there exist optimization methods to solve them quite
efficiently (Gurobi Optimization, 2015).

An ILP consists of a number of integer variables x ∈ X , a number of constants
a ∈ A, an objective function O, and a set of constraints between the variables and
constants. Solving the ILP corresponds to finding integer values for X such that O is
maximal, without violation of the constraints. The objective and the constraints should
be linear in the variables (meaning addition and subtraction of variables is accepted,
but multiplication between variables is not). If these conditions are met, the problem
can be relaxed to a linear programming problem (where variables do not necessarily
have to be integers), and optimization can make use of the cutting planes method,
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which exploits the defined constraints to skip large sections of the possible values for
X , without skipping the exact optimal integer solution.

Most often in natural language processing a variant of ILP is used where all variables
are constrained to be either 1 or 0. The value of each binary decision variable is
used to decide on the assignment of a certain output label. In a machine learning
context this can be used to place constraints on the prediction of certain labels, or
label combinations. This technique is used in the next chapter (Chapter 3), where we
investigate how we can incorporate temporal reasoning, in the form of constraints, into
machine learning models, and force the prediction of consistent temporal graphs.





3
Structured Learning for Temporal Relation

Extraction from Clinical Records

This chapter was previously published as:

Artuur Leeuwenberg and Marie-Francine Moens. 2017. Structured Learning
for Temporal Relation Extraction from Clinical Records. In Proceedings of the
European Chapter of the Association for Computational Linguistics (EACL), pp.
1150-1158, Valencia, Spain. ACL.

In this chapter we investigate how we can exploit the dependencies between temporal
relations to improve temporal relation extraction models. We introduce a feature-based
structured perceptron (SP) model, which models both hard and soft temporal constraints
during training and prediction. The constraints can provide an informed reduction of the
output space, based on background knowledge about temporal reasoning, potentially
improving accuracy. Also, they can ensure that the predicted temporal graphs are more
consistent, making them more suitable for further timeline construction. To ensure the
efficiency of the complex inference, we formulate the prediction as an integer linear
program (ILP), for which efficient solvers exist.

We empirically evaluated different aspects of our model using a benchmark dataset
of clinical patient records, and our best setting obtained an improvement over the
state-of-the-art temporal relation extraction models at the time for this dataset.
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Figure 3.1: Fragment of a (partial) patient timeline.

3.1 Introduction

Temporal information is critical in many clinical areas (Combi and Shahar, 1997). A
big part of this temporal information is captured in the free text of patient records. The
current work aims to improve temporal information extraction from such clinical texts.
Extraction of temporal information from clinical text records can be used to construct a
timeline of the patient’s condition (such as in Figure 3.1).

Temporal information extraction can be divided into three sub-problems: (1) the
detection of events (Ee); (2) the detection of temporal expressions (Et); and (3) the
detection of temporal relations between them. In the clinical domain, events include
medical procedures, treatments, or symptoms (e.g., colonoscopy, smoking, CT-scan).
Temporal expressions include dates, days of the week, months, or relative expressions
like yesterday, last week, or post-operative. In this chapter, we focus on the last sub-
problem, extracting temporal relations (assuming events and temporal expressions are
given). As a small example of the task we aim to solve, given the following sentence:

In 1990 the patient was diagnosed and received surgery afterwards.

in which we assume that the events diagnosed and surgery, and the temporal expression
1990 are given, we wish to extract the following relations:

• CONTAINS(1990, diagnosed)

• CONTAINS(1990, surgery)

• BEFORE(diagnosed, surgery)

• BEFORE(diagnosed, d)

• BEFORE(surgery, d)
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, where d stands for the document creation time.

This chapter leads to the following contributions: First, we propose a scalable structured
learning model that jointly predicts temporal relations between events and temporal
expressions (TLINKS), and the relation between these events and the document creation
time (DCT-R). In contrast to existing approaches which detect relation instances
separately, our approach employs a structured perceptron (Collins, 2002) for global
learning with joint inference of the temporal relations on a document level. Second,
we ensure scalability by using integer linear programming (ILP) constraints with fast
solvers, loss augmented sub-sampling, and good initialization. Third, this study leads
to valuable insights on when and how to make inferences over the found candidate
relations both during training and prediction and gives an in-depth assessment of the
use of additional constraints and global features during inference. Finally, our best
system outperforms the state-of-the-art of both the CONTAINS TLINK task, and the
DCT-R task.

3.2 Related Work

There have been two shared tasks on the topic of temporal relation extraction in the
clinical domain: the I2B2 Temporal Challenge (Sun et al., 2013b), and more recently
the Clinical TempEval Shared Task with two iterations, one in 2015 and one in 2016
(Bethard et al., 2014, 2015, 2016). In the I2B2 Temporal Challenge eight types of
relations were initially annotated. However, due to low inter-annotator agreement these
were merged to three types of temporal relations, OVERLAP, BEFORE, and AFTER.
Good annotation of temporal relations is difficult, as annotators frequently miss relation
mentions. In the Clinical TempEval Shared tasks the THYME corpus is used (Styler IV
et al., 2014), with a different annotation scheme that aims at annotating those relations
that are most informative w.r.t. the timeline, and gives less priority to relations that
can be inferred from the others. This results in two categories of temporal relations:
The relation between each event and the document creation time (DCT-R), dividing
all events in four temporal buckets (BEFORE, BEFORE/OVERLAP,OVERLAP, AFTER).
These buckets are called narrative containers (Pustejovsky and Stubbs, 2011). And
second, relations between temporal entities that both occur in the text (TLINKS).
TLINKS may occur between events (Ee × Ee), and between events and temporal
expressions (Ee ×Et and Et ×Ee). The TLINK types (and their relative frequency in
the THYME corpus) are CONTAINS (64,42%), OVERLAP (15,19%), BEFORE (12,65%),
BEGINS-ON (6.15%), and ENDS-ON (1.59%). The relations AFTER, and DURING
are expressed in terms of their inverse, BEFORE, and CONTAINS respectively. In
our experiments, we use the THYME corpus for its relatively high inter-annotator
agreement (particularly for CONTAINS).



20 STRUCTURED LEARNING FOR TEMPORAL RELATION EXTRACTION

contains

contains
before after

A	colonoscopy	on	September	27,	2008	revealed	a	circumferential	lesion.

DCT

e1 e2t1

Figure 3.2: Example of inconsistent output labeling. Events are indicated in blue, and
temporal expressions in green. Temporal relations are indicated by directed edges.

To our knowledge, in all submissions (4 in 2015, and 10 in 2016) of Clinical TempEval
the task is approached as a classical entity-relation extraction problem, and the
predictions for both categories of relations are made independently from each other,
or in a one way dependency, where the containment classifier uses information about
the predicted document-time relation. Narrative containment, temporal order, and
document-time relation have very strong dependencies. Not modeling these may result
in inconsistent output labels, that do not result in a consistent timeline.

An example of inconsistent labeling is given in Figure 3.2. The example is inconsistent
when assigning the AFTER label for the relation between lesion and the document-time.
It is inconsistent because we can also infer that lesion occurs BEFORE the document-
time, as the colonoscopy event occurs before the document-time, and the lesion is
contained by the colonoscopy.

Temporal inference, in particular temporal closure, is frequently used to expand the
training data (Mani et al., 2006; Chambers and Jurafsky, 2008a; Lee et al., 2016;
Lin et al., 2016b), most of the times resulting in an increase in performance, and is
also taken into account when evaluating the predicted labels (Bethard et al., 2014;
UzZaman and Allen, 2011). Only very limited research regards the modeling of
temporal dependencies into the machine learning model. Chambers and Jurafsky
(2008a) and Do et al. (2012) modeled label dependencies when predicting TimeBank
TLINKS (Pustejovsky et al., 2003b). They trained local classifiers and used a set
of global temporal label constraints. Integer linear programming was employed
to maximize the score from the local classifiers, while satisfying the global label
constraints at prediction time. For both, this gave a significant increase in performance,
and resulted in consistent output labels.

Yoshikawa et al. (2009) modeled the label dependencies between TLINKS and DCT-R
with Markov Logic Networks (MLN), allowing for soft label constraints during training
and prediction. However, MLN can sometimes be sub-optimal for text mining tasks
w.r.t. time efficiency (Mojica and Ng, 2016). Quite recently, for a similar problem,
spatial relation extraction, Kordjamshidi et al. (2015) used an efficient combination
of a structured perceptron or structured support vector machine with integer linear
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programming. In their experiments, they compare a local learning model (LO), a local
learning model with global inference at prediction time (L+I), and a structured learning
model with and without inference during training (IBT+I, and IBT-I respectively). In
their experiments L+I gave better results than LO, but a more significant improvement
was made when using structured learning in contrast to local learning.

In this chapter, we aim to jointly predict TLINKS and DCT-R in a structured learning
model with inference during training and prediction, to assess inference with temporal
constraints of Chambers and Jurafsky (2008a) and Do et al. (2012) for the THYME
relations, and to experiment with both local, and document-level inference for temporal
information extraction in the clinical domain.

3.3 The Model

For jointly learning both tasks on a document level, we employ a structured perceptron
learning paradigm (Collins, 2002). The structured perceptron model uses a joint
feature function Φ(X,Y ) to represent a full input document X with a label assignment
Y . During training the model learns a weight vector λ to score how good the label
assignment is. Predicting label assignment Y for a document X corresponds to finding
the Y with the maximal score. In the following sub-sections we define the joint feature
function Φ, describe the prediction procedure of the model, and describe how we train
the model (i.e., learn a good λ).

3.3.1 Joint Features

To compose the joint feature function, we first define two local feature functions:
φtl : (x, y) → Rp assigns features for the local classifications regarding TLINKS
(with possible labels Ltl = {CONTAINS, BEFORE, OVERLAP, BEGINS-ON, ENDS-
ON, NO_LABEL}), and a second local feature function φdr : (x, y) → Rq, for local
features regarding document-time relation classification (with labels Ldr = {BEFORE,
BEFORE_OVERLAP, OVERLAP, AFTER}. The features used by these local feature
functions are given in Table 3.1.

From these, we define a joint feature function Φjoint : (X,Y ) → Rp+q, that
concatenates (⊕) the summed local feature vectors, creating the feature vector for
the global prediction task (predicting all labels in the document for both sub-tasks at
once). Φjoint is defined in Equation 3.1, where Ctl(X) and Cdr(X) are candidate
generation functions for the TLINK sub-task and DCT-R sub-task, respectively (further
explained in Section 3.3.2).
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Features φdr φtl

String features for tokens and POS of each entity X X
String features for tokens and POS in a window of size {3, 5}, left and right of each entity X X
Boolean features for entity attributes (event polarity, event modality, event degree, and type) X X
String feature for the token and POS of the closest verb X
String feature for the token and POS of the closest left and right entity X
String features for the token {1, 2, 3}-grams and POS {1, 2, 3}-grams in-between the two entities X
Dependency path between entities (consisting of POS and edge labels) X
Boolean feature on if the first argument occurs before the second (w.r.t. word order) X

Table 3.1: Features of the local feature functions of each sub-task, φtl for TLINKS,
and φdr for DCT-R.

Φjoint(X,Y ) =
∑

x∈Cdr(X)

∑
l∈Ldr

φdr(x, l) ⊕
∑

x∈Ctl(X)

∑
l∈Ltl

φtl(x, l) (3.1)

3.3.2 Local Candidate Generation

For each document X , we create local candidates for both sub-tasks. In this chapter,
we assume that event (Ee) and temporal expression (Et) annotations are provided in
the input. The DCT-R-candidates in document X are then given by Cdr(X), which
returns all events in the document, i.e., Ee(X). Ctl(X) returns all TLINK candidates,
i.e., Ee(X) ∪ Et(X)× Ee(X). In our experiments we usually restrict the number of
candidates generated by Ctl to gain training and prediction speed (without significant
loss in performance). This is explained further in Section 3.4.3.

3.3.3 Global Features

We also experiment with a set of global features, by which we mean features that are
expressed in terms of multiple local labels. The global features are specified in Table
3.2. Global features are defined by a feature function Φglobal(X,Y )→ Rr and have
their corresponding weights in weight vector λ. When using global features Φglobal is
concatenated with the joint feature function Φjoint to form the final feature function Φ,
as show in Equation 3.2.

Φ(X,Y ) = Φjoint(X,Y )⊕ Φglobal(X,Y ) (3.2)

When not using global features, we use only the joint features, shown in Equation 3.3.

Φ(X,Y ) = Φjoint(X,Y ) (3.3)
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Feature Description

Φsdr Bigram and trigram counts of subsequent DCT-R-labels in the document
Φdrtl Counts of DCT-R-label pairs of the entities of each TLINK

Table 3.2: Global (document-level) features.

3.3.4 Prediction

The model assigns a score to each input document X together with output labeling Y .
The score for (X,Y ) is defined as the dot product between the learned weight vector λ
and the outcome of the joint feature function Φ(X,Y ), as shown in Equation 3.4.

S(X,Y ) = λΦ(X,Y ) (3.4)

The prediction problem for an input document X is finding the label assignment Y that
maximizes the score S based on the weight vector λ, shown in Equation 3.5.

Ŷk = arg max
Y

S(X,Y ) (3.5)

We use integer linear programming (ILP) to solve the prediction problem in Equation
3.5. Each possible local decision is modeled with a binary decision variable. For each
local relation candidate input xi,j (for the relation between i and j) a binary decision
variable wli,j is used for each potential label l that could be assigned to xi,j , depending
on the sub-task. The objective of the integer linear program, given in Equation 3.6, is
to maximize the sum of the scores of local decisions. In all equations the constant d
refers to the document-creation time. The objective is maximized under two sets of
constraints, given in Equations 3.7 and 3.8, that express that each candidate is assigned
exactly one label, for each sub-task.

O = arg max
W

∑
xi,d∈Cdr(X)

∑
l∈Ldr

wli,d·S(xi,d, yli,d)+
∑

xi,j∈Ctl(X)

∑
l∈Ltl

wli,j ·S(xi,j , yli,j)

(3.6)

∀i :
∑
l∈Ldr

wli,d = 1 (3.7)

∀i,j :
∑
l∈Ltl

wli,j = 1 (3.8)

For solving the integer linear program we use Gurobi (Gurobi Optimization, 2015).
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Abbrev. Label Dependencies Constraints

CCtrans CONTAINSi,j ∧ CONTAINSj,k → CONTAINSi,k ∀i,j,k : wcontainsi,k − wcontainsi,j − wcontainsj,k ≥ −1
CBtrans BEFOREi,j ∧ BEFOREj,k → BEFOREi,k ∀i,j,k : wbeforei,k − wbeforei,j − wbeforej,k ≥ −1
CCBB CONTAINSi,j ∧ BEFOREi,d → BEFOREj,d ∀i,j : wbeforej,d − wcontainsi,j − wbeforei,d ≥ −1
CCAA CONTAINSi,j ∧ AFTERi,d → AFTERj,d ∀i,j : wafterj,d − wcontainsi,j − wafteri,d ≥ −1
CBBB BEFOREi,j ∧ BEFOREj,d → BEFOREi,d ∀i,j : wbeforei,d − wbeforei,j − wbeforej,d ≥ −1
CBAA BEFOREi,j ∧ AFTERi,d → AFTERj,d ∀i,j : wafterj,d − wbeforei,j − wafteri,d ≥ −1

Table 3.3: Temporal label dependencies expressed as integer linear programming
constraints. The variables i, j and k range over the corresponding TLINK arguments,
and constant d refers to the document-creation-time. CONTAINSi,j indicates that entity
i contains entity j.

Temporal Label Constraints

Because temporal relations are interdependent, we experimented with using additional
constraints on the output labeling. The additional temporal constraints we experiment
with are shown in Table 3.3. Constraints are expressed in terms of the binary decision
variables used in the integer linear program.

In Table 3.3, constraints CCtrans, and CBtrans model transitivity of CONTAINS, and
BEFORE respectively. Constraints CCBB , and CCAA model the consistency between
TLINK relation CONTAINS and DCT-R relations BEFORE, and AFTER respectively
(resolving the inconsistent example of CCBB in section 3.1, and Figure 3.2). Similarly,
CBBB , and CBAA model the consistency between TLINK relation BEFORE and DCT-R
relations BEFORE, and AFTER.

Constraints can be applied during training and prediction, as Equation 3.5 is to be
solved for both. If not mentioned otherwise, we use constraints both during training
and prediction.

3.3.5 Training

The training procedure for the averaged structured perceptron is given by Algorithm 1
for I iterations on a set of training documents T . Notice that the prediction problem
is also present during training, in line 6 of the algorithm. Weight vector λ is usually
initialized with ones and updated when the predicted label assignment Ŷk for input
document Xk is not completely correct. The structured perceptron training may suffer
from over-fitting. Averaging the weights over the training examples of each iteration is
a commonly used way to counteract this handicap (Collins, 2002; Freund and Schapire,
1999). In Algorithm 1, c is used to count the number of training updates, and λa as
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a cache for averaging the weights. We also employ local loss-augmented negative
sub-sampling and local pre-learning to address class-imbalance and training time.

Algorithm 1 Averaged Structured Perceptron
Require: λ, λa, c, I, T

1: c← 0
2: λ← 〈1, . . . , 1〉
3: λa ← 〈1, . . . , 1〉
4: for i in I do
5: for k in T do
6: Ŷk ← arg max

Y

λΦ(Xk, Y )

7: if Ŷk 6= Yk then
8: λ← λ+ Φ(Xk, Yk)− Φ(Xk, Ŷk)
9: λa ← λa + c · Φ(Xk, Yk)− c · Φ(Xk, Ŷk)

10: c← c+ 1
return λ− λa/c

Loss-augmented Negative Sub-sampling

For the TLINK sub-task, we have a very large negative class (NO_LABEL) and a
relatively small positive class (the other TLINK labels) of training examples. To speed
up training convergence (with around a factor 2) and address class imbalance at the
same time, we sub-sample negative examples during training. Within a document
X , for each positive local training example (xpositive, ypositive) we take 10 random
negative examples and add the negative example (xnegative, yno_label) with the highest
score for relation ypositive, i.e., S(xnegative, ypositive). This cutting plane optimization
gives preference to negative training examples that are more likely to be classified
wrongly, and thus can be learned from (in an online manner), and it provides only one
negative training example for each positive training example, balancing the TLINK
classes.

Local Initialization

To reduce training time (with a factor 2-3), we do not initialize λ with ones, but we
train a perceptron for both local sub-tasks, based on the same local features mentioned
in Table 3.1, and use the trained weights to initialize λ for those features. A similar
approach was used by Weiss et al. (2015) for dependency parsing. Details on the
training parameters of the perceptron are given in Section 3.4.3.



26 STRUCTURED LEARNING FOR TEMPORAL RELATION EXTRACTION

3.4 Experiments

We use our experiments to look at the effects of four modeling settings.

1. Document-level learning in contrast to pairwise entity-relation learning.

2. Joint learning of DCT-R and TLINKS.

3. Integrating temporal label constraints.

4. Using global structured features.

We will discuss our results in Section 3.4.4. But first, we describe how we evaluate
our system, and provide information on our baselines, and the preprocessing and
hyper-parameter settings used in the experiments.

3.4.1 Evaluation

We evaluate our method on the clinical notes test set of the THYME corpus (Styler IV
et al., 2014), also used in the Clinical TempEval 2016 Shared Task (Bethard et al.,
2016). Some statistics about the dataset can be found in Table 3.4. F-measure is used
as evaluation metric. For this we use the evaluation script from the Clinical TempEval
2016 Shared Task. TLINKS are evaluated under the temporal closure (UzZaman and
Allen, 2011).

Section Documents TLINKS EVENTS

Train 440 17.109 38.872
Test 151 8.903 18.989

Table 3.4: Dataset statistics for the THYME sections we used in our experiments.

3.4.2 Baselines

Our first baseline is a perceptron algorithm, trained for each local task using the same
local features as used to compose the joint feature function Φjoint of our structured
perceptron. We have two competitive state-of-the-art baselines, one for the DCT-R
sub-task, and one for the TLINK sub-task. A second baseline is the best performing
system of the Clinical TempEval 2016 on the DCT-R task (Khalifa et al., 2016).
They experiment with a feature rich support vector machine (SVM) and a sequential
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conditional random field (CRF) for the prediction of DCT-R and report the – to
our knowledge – highest performance on the DCT-R task. The competitive TLINK
baseline is the latest version of the cTAKES Temporal system (Lin et al., 2016b,a).
They employ two SVMS to predict TLINKS, one for TLINKS between events, and
one for TLINKS between events and temporal expressions and recently improved their
system by generating extra training data using extracted UMLS concepts. They report
the – to our knowledge – highest performance on CONTAINS TLINKS in the THYME
corpus.

3.4.3 Hyper-parameters and Preprocessing

In all experiments, we preprocess the text by using a very simple tokenization procedure
considering punctuation1 or newline tokens as individual tokens, and splitting on spaces.
For our part-of-speech (POS) features, and dependency parse path features, we rely
on the cTAKES POS tagger and cTAKES dependency parser respectively (Savova
et al., 2010). After POS tagging and parsing we lowercase the tokens. As mentioned
in Section 3.3.2, we restrict our TLINK candidate generation in two ways. First, both
entities should occur in a token window of 30, selected from {20, 25, 30, 35, 40} based
on development set performance. And second, both entities should occur in the same
paragraph (paragraphs are separated by two consecutive newlines). Our motivation for
not using sentence based candidate generation is that the clinical records contain many
ungrammatical phrases, bullet point enumerations, and tables that may result in missing
cross-sentence relation instances (Leeuwenberg and Moens, 2016). In all experiments,
we train the normal perceptron for 8 iterations, and the structured perceptron for 32
iterations, both selected from {1, 2, 4, 8, 16, 32, 64} based on best performance on the
development set. The baseline perceptron is also used for the initialization of the
structured perceptron. Moreover, we apply the transitive closure of CONTAINS and
BEFORE on the training data.

3.4.4 Results

Our experimental results on the THYME test set are reported in Table 3.5. In the table,
the abbreviation SP refers to the structured perceptron model described in Section 3.3
but without temporal label constraints or global features, i.e., the joint document-level
unconstrained structured perceptron, using local initialization, and loss-augmented
negative sub-sampling. We compare this model with a number of modified versions to
explore the effect of the modifications.

1, ./\"’=+-;:()!?<>%&$*|[]{}
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System F DCTR
B F DCTR

A F DCTR
O F DCTR

B/O F DCTR
ALL F TL

C F TL
B F TL

O F TL
BO F TL

EO F TL
ALL

Baseline: perceptron 77.6 74.4 76.9 52.8 75.9 45.6 14.7 7.3 6.0 2.4 36.4
Best TempEval’16: SVM+CRF - - - - 84.3 - - - - -
cTakes Temporal: 2×SVM - - - - - 59.4 - - - - -

SP 83.7 80.5 86.0 57.5 83.3 60.8 29.4 18.5 15.8 23.1 51.8
SPrandom sub-sampling 83.7 80.3 85.9 57.5 83.3 56.4 27.5 20.4 15.4 21.8 49.0
SPdisjoint 83.5 80.1 85.9 57.6 83.2 60.7 29.0 18.3 14.6 23.2 51.6
SPcc + C∗ 84.3 81.0 86.1 57.3 83.6 60.3 29.2 18.6 14.8 22.2 51.4
SPuc + C∗ 84.3 81.4 86.1 57.4 83.7 60.6 29.1 18.4 15.7 23.6 51.6
SP + Φsdr 856 830 86.7 56.9 84.6 60.8 29.1 18.2 15.9 22.2 51.8
SP + Φdrtl 838 811 85.5 56.4 83.1 60.5 28.6 17.6 14.7 21.7 51.4

Table 3.5: Results on the THYME test set, for TLink (tl) and DCT-R (dctr) labels:
before (b), after (a), overlap (o), before/overlap (b/o), contains (c), begins-on (bo),
ends-on (eo). SP refers to our structured perceptron model, without constraints or
global features, using local initialization and loss-augmented negative sub-sampling.
C∗ refers to using all constraints. Superscript CC and UC refer to using constraints at
training and prediction time, or only at prediction time respectively.

Document-Level Learning

When we compare the local perceptron baseline with any of the document-level
models (any SP variation), we can clearly see that learning the relations at a document-
level improves our model significantly2 (P<0.0001 for both DCT-R and TLINKS).
Furthermore, when comparing loss-augmented sub-sampling (SP) with random sub-
sampling of negative TLINKS (SPrandom sub-sampling) it can be seen that a good selection
of negative training instances is very important for learning a good model (again
P<0.0001), and resulted in our model to improve the state-of-the-art by 1.4 on the
CONTAINS TLINK task3.

Jointly Learning DCT-R and TLINKS

When comparing the disjoint model (SPdisjoint) with our joint model (SP) it can
be noticed that joint prediction gives only a very small improvement (P=0.0768 for
TLINKS, and P=0.0451 for DCT-R). However, joint learning on a document level
provides the flexibility to formulate constraints connecting the labels of both tasks,
such as the last four constraints in Table 3.3, resulting in a more consistent labeling
over both tasks. Similarly, in the joint learning setting, we can define global features
that connect both tasks (like Φdrtl).

2Significance is based on a paired t-test: pairing the F-scores of both systems per document.
3Only CONTAINS is generally reported for the THYME corpus, as the other TLINKS are less frequent,

and the inter-annotator agreement for them is very low. We included them just for completeness in our
experiments.
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Integrating Temporal Constraints

We experimented with integrating label constraints in two ways (1) both during training
and prediction (SPcc + C∗), or (2) only during prediction (SPuc + C∗). In general it
can be noticed that in our experiments using the temporal label constraints from Table
3.3 slightly increases DCT-R performance, but slightly decreases TLINK performance.
A reason for this can be that the model generally gives better predictions for DCT-R,
that might result in providing a better alternative to a constraint violating solution.
A difference in consistency of the annotation between both tasks could also be a
reason. Furthermore, we can see that integrating the constraints both during training
and prediction gives slightly lower performance compared only integrating them during
prediction.

Using Global Structured Features

We have two types of features, Φsdr, which is only based on DCT-R labels, and Φdrtl,
which is based on a combination of DCT-R and TLINK labels. When we add Φsdr
to our model, the overall F-measure on the DCT-R task improves with 1.3 points
(P<0.0001), improving the state-of-the-art by 0.3 points. A reason for this can be the
sequential dependency of DCT-R labels, also exploited by Khalifa et al. (2016) using
the sequential CRF. The second global feature, Φdrtl, in fact models the same type of
dependencies as the last four constraints in Table 3.3, relating the TLINK relations
with the DCT-R labels of each TLINK argument, however as a soft dependency and
not as a hard constraint. In our experiments, this feature did not improve either of the
two sub-tasks. It appears that training with cross-task constraints or global cross-task
features is not trivial, and further research is needed on how to exploit these cross-task
dependencies also during training. We assume that the lower-than-expected scores
when modeling cross-task dependencies may be related to sub-sampling the negative
TLINK training instances.

3.5 Conclusions

In this chapter, we proposed a structured perceptron model for learning temporal
relations between events and the document-creation time (DCT-R), and between
temporal entities in the text (TLINKS) in clinical records. Our model efficiently learns
and predicts at a document level, exploiting loss-augmented negative sub-sampling,
and uses global features allowing it to exploit relations between local output labels.
For construction of a consistent output labeling, needed for timeline construction, we
formulated a number of constraints, including those from Chambers et al. (2007) and
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Do et al. (2012), and assessed them during inference. Our best system4 outperforms
the state-of-the-art of both the CONTAINS TLINK task, and the DCT-R task.

A slightly extended version of the proposed model Leeuwenberg and Moens (2017a)
was used for participation in Clinical TempEval 2017, an international scientific shared
task on temporal information extraction from clinical texts, and was ranked 2nd (out of
10 participating systems) in the temporal relation extraction task (Bethard et al., 2017).

This shows that domain knowledge about time, represented as temporal reasoning rules,
can be used effectively to improve temporal relation extraction models.

4The code for this chapter is available at https://liir.cs.kuleuven.be/software_pages/.

https://liir.cs.kuleuven.be/software_pages/structured_learning_temporal_relation.php
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This chapter was previously published as:

Artuur Leeuwenberg and Marie-Francine Moens. 2018. Word-Level Loss
Extensions for Neural Temporal Relation Classification. In Proceedings of the
International Conference on Computational Linguistics (COLING), pp. 3436-
3447, Santa Fe, New-Mexico, USA. ACL.

Beside incorporating temporal knowledge in the form of temporal constraints, we can
also infuse knowledge about language, or about words. In this chapter, we investigate
how we can maximally exploit the available raw text, in addition to our annotated
texts, to improve word representations of TLink extraction models. In an earlier error
analysis of a state-of-the-art temporal relation extraction system we found that many
errors involve words that were unseen at training time (Leeuwenberg and Moens,
2016), indicating the importance of good word representations. Here, we propose a
neural temporal relation extraction model which optimizes word-level representations
jointly on the temporal relation extraction task, using annotated data, and on an auxiliary
context prediction task, using the more easily obtainable unannotated data. By modeling
this as a multi-task problem, we aim to balance the information needed for both tasks,
and prevent task-specific information loss. We analyze the effectiveness and robustness
of this approach, and obtain a further improvement over the state-of-the-art, even
without dedicated clinical preprocessing.
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4.1 Introduction

Word representations in the form of continuous vectors are often pre-trained on large
amounts of raw text to learn general word features, using unsupervised objectives.
These representations are then used in supervised models for various classification
tasks. However, such tasks sometimes require very specific features that may not have
been captured by the unsupervised objective. In other domains such as computer vision,
representations are often learned jointly from multiple resources for classification. In
this chapter, we explore the possibility to exploit learning signals from both settings
to construct better task-oriented word representations, and obtain a better relation
classification model.

The main task in this chapter is the extraction of narrative containment relations (CR)
from English clinical texts, as annotation of clinical data is costly and it is therefore
crucial to fully exploit both the labeled as well as the unlabeled data that is available.
The aim of CR extraction is to find if, given events A and B, event A is temporally
contained in event B (i.e., if event A happens within the time span of event B). An
example of such relation is given in Figure 4.1, where the model should predict all
containment edges given the entities (events and temporal expressions), by classifying
each pair of entities as containment or no containment. Temporal relation classification
in clinical text is a very important task in the secondary use of clinical data from
electronic health records. The patient timeline is crucial for making a good patient
prognosis and clinical decision support (Onisko et al., 2015). This task has already

contains
contains

contains

She'll	see	Dr.	Brown	today	to	discuss	postoperative	treatment.
e1 t1 e2 t2 e3

Figure 4.1: A sentence annotated with events (in blue), temporal expressions (in
green), and containment relations.

been addressed in three iterations of the Clinical TempEval Shared Task (Bethard et al.,
2016). Still there is a gap of more than 0.20 in F-measure between the state-of-the-art
CR extraction systems and the annotator-adjunctator agreement (indicating an upper
bound for performance). This shows that this task is very challenging.

Following the current trend in NLP, the recent state-of-the-art models for extraction of
CR are neural network models. These models all use pre-trained word embeddings as
word representations (Tourille et al., 2017a; Dligach et al., 2017; Lin et al., 2017).

Pre-training of the embeddings is done with an auxiliary task (a task where one is
not interested in the final predictions, but in the trained model components), like
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the skip-gram task (Mikolov et al., 2013). When used for classification tasks in
NLP, these pre-trained word representations are often either used as fixed inputs for the
classification model, or as initialization for the word representations of the classification
model (sometimes called fine-tuned embeddings).

A problem with pre-trained representations in classification models is that solving the
main task often requires different information than the auxiliary task. Training word
representations only on the auxiliary objective can result in loss of crucial information
for the task, and afterwards fine-tuning on the task loss does not influence words that
are not in the task’s training data.

In the current work, we propose a neural relation classification (RC) model that learns
its word representations jointly on the main task (supervised, on labeled data) and on
the auxiliary task (unsupervised, on unlabeled data) in a multi-task setting to overcome
this problem, and ensure that the embeddings contain valuable information for our
main task, while still leveraging the unlabeled data for more general feature learning.
As auxiliary task we implement a skip-gram (SG) architecture, similar to Mikolov
et al. (2013). Our proposed models use only unlabeled data and a general (news, out of
domain) part-of-speech (POS) tagger as external resources, in contrast to the current
state-of-the-art models, to ease extension to other languages for which specialized NLP
tools for clinical texts might not be available. The main contributions of this chapter
are that it:

• Shows that training the word-level representations jointly on its main task and an
auxiliary objective results in better representations for classification, compared
to using pre-trained variants.

• Shows that the method’s increased performance and hyper-parameters are robust
across different training set sizes, and that single-loss training settings act as
lower bounds on performance.

• Constitutes a new state of the art for temporal relation extraction on the THYME
dataset even without dedicated clinical preprocessing.

4.2 Related Work

The model we present draws inspiration from prior research on (temporal) relation
classification and neural multi-task learning.
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4.2.1 Clinical Temporal Relation Extraction

Temporal relation extraction from clinical texts is a widely studied area in NLP and has
been explored through various shared tasks, such as the i2b2 shared task on clinical
temporal information (Sun et al., 2013b), and three iterations of Clinical TempEval
(Bethard et al., 2015, 2016, 2017). Until recently, most of the top performing systems
employed manually constructed linguistic feature sets (Lin et al., 2016a; Lee et al.,
2016; Leeuwenberg and Moens, 2017b). In the last few years, there has been a shift
towards using neural models, using LSTM (Tourille et al., 2017a) and Convolutional
Neural Networks (CNN) models (Dligach et al., 2017; Lin et al., 2017) inspired by the
work on relation classification in other domains (Zeng et al., 2014; Zhang and Wang,
2015; Zhou et al., 2016; Nguyen and Grishman, 2015). The top results in clinical
temporal relation extraction are still achieved when enhancing the neural models with
dedicated clinical NLP tools for preprocessing the clinical texts, often using the English
cTAKES system (Savova et al., 2010), which contains tools for clinical POS tagging,
named entity recognition, and a dependency parser all trained on clinical data. The
main reason for using these dedicated clinical tools is that parsers trained on non-
clinical texts perform significantly worse on clinical data (Jiang et al., 2015). Dedicated
clinical NLP tools are not available for most languages though, and retraining NLP
tools on clinical data is quite resource intensive, because it requires extra annotation
effort. Additionally, clinical data is often difficult to obtain or share publicly for patient
privacy reasons. Hence, we keep resource intensive preprocessing to a minimum and
employ only a general news domain POS tagger (Toutanova et al., 2003), providing
important temporal relation extraction cues, such as tense shifts (Derczynski, 2017),
and for which training data are available for many languages (Petrov et al., 2012).

4.2.2 Multi-task Learning

Our proposed model training can be seen as multi-task learning (MTL), where the
aim is to improve model generalization by leveraging the information from training
signals of different related tasks (Caruana, 1998). In earlier work, MTL has shown
to be quite effective for different NLP tasks such as machine translation (Dong et al.,
2015), sentiment analysis (Peng and Dredze, 2015; Yu and Jiang, 2016), sentence level
name prediction (Cheng et al., 2015), semantic role labeling (Collobert and Weston,
2008), and many more. For example, Collobert and Weston (2008) used an auxiliary
unsupervised objective for semantic role labeling (SRL). They alternately trained
embeddings in a language model and a SRL model. In contrast to their work, we learn
both tasks truly jointly, and optimize a single semi-supervised objective. Typically in
neural MTL, one or more layers of the network are shared among different models.
Two issues in MTL are (1) how to determine if the tasks are related enough to benefit
from each other, and (2) what layers to share among the models. Baxter et al. (2000)
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theoretically argue that tasks are related when they share an inductive bias. In our
model, we expect that the skip-gram task (Mikolov et al., 2013) can act as a reasonable
word-level inductive bias for our task, as it has already shown its effectiveness in SRL
(Collobert and Weston, 2008) and sentiment analysis (Peng and Dredze, 2015) in MTL,
and for many NLP classification tasks when using them as pre-trained embeddings.
Hashimoto et al. (2017) showed that even when combining many tasks, considering the
task hierarchy (simpler tasks lower in the network) allows them to benefit from each
other. In most work on MTL the auxiliary tasks are supervised and specifically chosen
for their relatedness to the main task (Ruder, 2017), whereas in our model we chose the
unsupervised auxiliary skip-gram task, and share weights of the word embedding layer.
This results in a new joint relation classification objective that is semi-supervised on
the word-level and provides better generalization for the final classification model.

4.3 The Model

Our model consist of two components: (1) a relation classification component (RC),
and (2) a skip-gram component (SG). A high-level schematic overview of our model’s
training setting is shown in Figure 4.2.

Figure 4.2: High-level overview of our model training setting. Drc and Dsg indicate
the dataset for the relation classification and skip-gram components respectively, and
Lrc+sg(θ) the model’s combined loss.

4.3.1 Relation Classification (RC)

To classify relations we employ a long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) relation classification model (RC) (Zhang and Wang, 2015). We
frame the task as a sequence classification problem, taking as an input: the textual
candidate relation description, i.e., the arguments of the candidate relation (the entity
pair), and the context words surrounding the arguments, all read as a sequence from left
to right. A schematic overview of the RC model component is shown in Figure 4.3.

Generation of candidate entity pairs is described later on in section 4.4.4. The locations
of the arguments of each candidate relation are indicated by two types of features taken
from the literature: (1) position indicators, which are XML tags added to the original
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Figure 4.3: Schematic representation of the relation classification (RC) model
component. Arrows represent sets of fully connected weights. The dashed box indicates
a word input as shown in Figure 4.4.

Figure 4.4: Each word input xt of the RC model (at time step t) is a concatenation
of a token embedding, a POS embedding, and two positional features (one for each
argument).

input sequence indicating the start and end of the arguments (Zhang and Wang, 2015),
and (2) by position features, indicating the relative token-distance of each word to each
argument (Zeng et al., 2014). Each word’s total input xt at time step t ∈ 〈0, 1, ..., T 〉
consists of the two argument locating features, pfa1

t and pfa2
t , together with a word

embedding xtokent ·W token
em , and a POS embedding xpost ·W pos

em , where W token
em and

W pos
em are the embedding matrices for tokens and POS respectively, and xtokent and

xpost their one-hot representations. A schematic overview of the concatenated input xt
for each word to the LSTM unit is shown in Figure 4.4.

The predicted class probabilities p̂rc(x) are given by a softmax classifier placed on top
of the LSTM output h at the last time step T (in Eq. 4.1).1

p̂rc(x) = softmax(WphT + bp) (4.1)

The RC model’s loss function is the cross-entropy loss, as shown in Eq. 4.2. Drc

indicates the supervised relation classification dataset, and θrc is the collection of all
trainable parameters of the model.

Lrc(θrc) = −
|Drc|∑
i=1

yi log p̂rc(xi) (4.2)

1We also experimented with bidirectional LSTMs (Zhang et al., 2015) and adding attention (Zhou et al.,
2016). In our experiments, this did not result in significant improvements.
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4.3.2 Context Prediction (SG)

As the unsupervised auxiliary task, we implemented a feed-forward neural network for
a word context prediction task, known as the continuous skip-gram (SG), following
Mikolov et al. (2013). As input, the model takes a one-hot encoded input word wj ,
which is projected to a word embedding, from which the probability distribution y
over its surrounding context words wj−c, ..., wj−1, wj+1, ..., wj+c is predicted, given
a context window size c. The full model is given by Eq. 4.3.

p̂sg(wj) = softmax(Wpsg (wj ·W token
em ) + bpsg ) (4.3)

Like the RC model, we use the cross-entropy loss for our SG model, as shown in Eq.
4.4. Dsg indicates the unsupervised dataset, consisting of words and their contexts. θsg

is the collection of all trainable parameters of the model.

Lsg(θsg) = −
|Dsg|∑
i=1

yi log p̂sg(wi) (4.4)

Separate Left and Right Context (SGLR)

The skip-gram model is quite rough in its context description and does not take into
account word order very well. However, for temporal relations we expect word order
to be relevant. For this reason, we also experimented with a variation on the skip-gram
model, separating the left and right context, following the intuition of Ling et al. (2015).
The context separation is achieved by extending the context words by a ‘left’ or ‘right’
prefix depending on their location relative to the sampled word.

4.3.3 Combination (RC + SG)

We train our proposed model on a combination of both loss functions, each with their
own dataset Drc, and Dsg respectively. The combined loss, shown in Eq. 4.5, is a
weighted sum of their cross-entropy losses, where λsg determines the importance of
the SG loss.

Lrc+sg(θ) = Lrc(θrc) + λLsg(θsg) (4.5)

A crucial part of our model is that although both models sample different types
of inputs (the RC: sequences, the SG: single words) from different datasets, and
have different classification weights, the word embeddings are shared, i.e., W token

em

(θrc ∩ θsg = W token
em ), also illustrated in Figure 4.2. So only the word embeddings
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are directly influenced by both losses. All other weights (from RC or SG) are
only influenced indirectly, through the word embedding weights, as both models are
trained simultaneously. Søgaard and Goldberg (2016) showed that, for NLP, sharing
representations at the lower levels of the network is most effective: when lower level
features are shared, there is room for the model to learn task specific abstractions in
higher layers. For this reason we choose our model to share only the word embedding
layer, as schematically illustrated in Figure 4.5.

Figure 4.5: Schematic representation of how the SG model component extends the
RC model when using the combined loss on input word wj ∈ Dsg, and word wt at
time step t from input sequence xi ∈ Drc. The gray layer indicates the shared word
embedding parameters. The dashed box represents the total word input xt for RC, as
in Figure 4.3 and 4.4.

4.3.4 Training

We train all our models for at least 10 epochs, using Adam (Kingma and Ba, 2014)
stochastic gradient descent, with the default parameters from the original paper
(lr=0.001), and a batch size of 1024 on a Titan X GPU. As stopping criteria we
employ early stopping (Morgan and Bourlard, 1990) with a patience of 20 epochs,
based on F-measure on a small validation set of 3 documents (from Train). After each
epoch on the main task, we shuffle the data and start the next one. During training we
employ a dropout of 0.5 on the input, and on the second to last layer (Srivastava et al.,
2014).

For our semi-supervised setting, with the combined loss, we sample 1024 samples in
our batch for each task from the corresponding dataset, and do a single weight update
on the combined loss. A high-level schematic overview of our semi-supervised training
setting is shown in Figure 4.2.
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4.4 Experimental Setup

4.4.1 Datasets

We conduct our experiments on the THYME corpus (Styler IV et al., 2014), a
temporally annotated corpus of clinical notes in the colon cancer domain, also used in
the Clinical TempEval Shared Tasks (Bethard et al., 2015, 2016). We use the provided
Train, Dev and Test split so we can directly compare to other approaches from the
literature. The Train section consists of 195 documents, with 11,2k annotated candidate
relations, the Dev section of 98 documents and 6,2 annotated candidates, and the Test
section contains 100 documents and 5,9k candidates. We now refer to this dataset as
Drc.

As data for the SG(LR) loss, we use the raw THYME train texts, extended with a
MIMIC III (Johnson et al., 2016) section of 500 discharge summaries that contain the
terms ’colon’ and ’cancer’ at least twice. We refer to this dataset as Dsg and it is used
in all pre-training and joint training settings.

4.4.2 Training Settings

We compare five training settings for the model of which the first three settings act as
baselines to compare with our proposed models (settings 4 and 5):

1. RC (random initialization): Uses random word embedding initializations
(picked from [0.05, 0.05]) and trains on loss Lrc.

2. RC (SG initialization): Initializes the model with pre-trained SG embeddings,
and trains on Lrc.

3. RC (SG fixed): Initializes the model with pre-trained SG embeddings, and trains
the model on Lrc, while not updating the word embedding weights, keeping
them as fixed features.

4. RC + SG: Initializes the model with pre-trained SG embeddings, and trains on
Lrc+sg .

5. RC + SGLR: Initializes the model with pre-trained SG embeddings, and trains
on Lrc+sglr.
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4.4.3 Evaluation

As evaluation metrics we use precision, recall, and F-measure, calculated using the
evaluation script provided by the Clinical TempEval organizers2, which evaluates
the CR under the temporal closure (UzZaman et al., 2013), taking into account the
transitivity properties of the temporal relations.

4.4.4 Preprocessing and Hyper-parameters

As preprocessing of the corpus, we employ very simple tokenization: splitting the text
on spaces and considering punctuation3 and newlines as individual tokens. Additionally,
we lowercase the corpus, and conflate digits (1992→ 5555). To extract POS we use
the Stanford POS Tagger v3.7 (Toutanova et al., 2003), using the pre-trained (on WSJ)
caseless left-3-words model. Finally, all 1-time occurring tokens in the training dataset
are replaced by a <UNK>-token, to represent out-of-vocabulary words at test-time.

We employ the same candidate generation as Leeuwenberg and Moens (2017b),
considering all pairs of events (Event×Event, or EE) and events and temporal
expressions (Timex×Event, or TE) with a maximum token distance of 30 as candidate
relations to be classified (ignoring sentence boundaries, as relations also occur across
them). This candidate generation has a maximum recall of 0.87%, and gives a ratio
between the positive and negative class of 1:36, also indicating the task’s difficulty.

In our experiments, we tuned each model type within the same hyper-parameter search
space on the Dev set. The number of LSTM units was chosen from {25, 50, 100}, and
the word embedding dimension from {25, 50, 100}. This resulted in 100 LSTM units,
and a word embedding size of 25. The loss weights λsg and λsglr were chosen from
{0.01, 0.1, 1.0, 10, 100}, resulting in λsg=0.1 and λsglr=0.1. The context window size
of the skip-gram was set to 2, chosen from {2, 4, 8}. The context size for the RC, and
POS embedding dimension size were not tuned and set to 10 (left and right), and 40
respectively.

4.5 Results

4.5.1 Influence of Word-Level Loss

We looked at model performance when increasing the importance of the auxiliary
word-level loss (λsg and λsglr). The results when changing these hyper-parameters are

2https://github.com/bethard/anaforatools
3, ./\"’=+-;:()!?<>%&$*|[]{}
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shown in Figure 4.6.
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Figure 4.6: Precision (P), Recall (R) and
F-measure (F) on the THYME Dev set for
different values of λsg (◦) and λsglr (�).
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Figure 4.7: F-measure on the THYME
Dev set for different training settings, over
different training set sizes (in % of the full
train set).

When choosing λ = 0 (λsg or λsglr) for our model, we obtain the same model as
RC (SG init.), as the auxiliary objective has no influence. For very high values of
λ, we hypothesize that the models converge towards RC (SG fixed), because when
taking λ → ∞, the word embeddings are solely optimized for the auxiliary loss, as
the influence of the task loss is proportionally zero, i.e., limλ→∞

1
λ = 0. This property

is interesting, as it shows that these baseline models can act as lower bounds for our
model performance when choosing a bad λ value. This can be observed in Figure
4.6, where the F-measure is highest for a λ that balances both objectives, whereas for
extremes the F-measure decreases.

4.5.2 Comparison Across Training Set Size

We evaluated all model settings for different training set sizes. From Figure 4.7 we
can see that the worst model is the one with random word embedding initializations.
One improvement is to initialize the model with pre-trained SG embeddings. Fixing
the pre-trained embeddings or continued training on the main task objective does not
result in very different F-measure scores. However, continued training on the combined
objective does seem to give a significant increase in F-measure, consistent over different
training sizes for both the RC + SG as well as the RC + SGLR variant. Additionally, it
should be noticed that parameters are not returned on each dataset size, but obtained
from tuning on the full Dev set. Still the model ranking is consistent.
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4.5.3 Evaluation on Subsets of Relations

To get a more detailed insight in what each model learns relative to the others, we
evaluated our models on different subsets of the data. First, we split the containment
relations based on their argument types and separately evaluated the 3.3k EE relations
and the 2.7k TE relations. EE relations are generally found more difficult than TE
relations (Lin et al., 2016a,b; Dligach et al., 2017; Lin et al., 2017). In Table 4.1
we can see that also for our model, EE relations are harder to recognize than the TE
relations, as all models achieve higher scores for TE compared to EE relations. What is

Table 4.1: Evaluation on subsets of THYME Dev (in F-measure). The subsets of
Event×Event (EE) and Timex×Event (TE) relation pairs are of sizes 3.3k and 2.7k
respectively. The intervals 0-100, 100-500 and 500+ are subsets reflecting average
argument token frequency in the training data (of sizes 2.2k, 2.2k and 1.8k respectively).

Model EE TE 0-100 100-500 500+ All

RC (random initializations) 44.5 64.4 40.5 57.8 63.4 53.4
RC (SG initializations) 49.5 68.6 44.1 62.5 67.0 57.3
RC (SG fixed) 48.9 68.7 44.1 62.7 67.3 57.6

RC + SG 51.6 67.4 46.4 62.5 66.8 58.2
RC + SGLR 51.7 68.5 45.3 63.0 68.1 58.4

interesting to see is that when training with the combined loss (SG or SGLR) we obtain
a clear improvement on the more difficult EE relations, and perform slightly worse on
TE relations compared to using pre-trained embeddings (the three upper settings). The
reason could be that EE relations are more diverse in vocabulary, and are consequently
more influenced by the quality of the embeddings.

We also analyzed the models w.r.t. total frequency in the training data (Drc + Dsg)
and made three subsets based on the average word frequency of the argument tokens in
each relation. The three buckets of relations, 0-100, 100-500, and 500+, are of sizes
2.2k, 2.2k, and 1.8k respectively. What can be observed is that the RC+SG model
performs best for low-frequency words, and RC+SGLR performs best for the higher
frequency ranges. This can be explained by the fact that the SGLR separates left and
right context words, creating sparser and more precise contexts compared to SG. Sparse
context descriptions can hurt representations of low frequency words as there may
not be enough words that share contexts. But, for more frequent words, more precise
context descriptions as in SGLR help to prevents incorrect generalizations (such as
cases where word order matters). When evaluating on the full Dev set, both combined
loss settings outperform the baselines consistently.
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4.5.4 Comparison to the State of the Art

We also compared our proposed models to various state-of-the-art systems from the
literature:

The THYME system, by Lin et al. (2016b), consist of separate models for EE relations
and TE relations. They employ two feature rich support vector machines (SVM),
using POS and dependency parse features from the cTAKES clinical pipeline (Savova
et al., 2010) together with augmented training through extended UMLS entities. They
later replaced the TE component by a token-based CNN model which improved their
model (Lin et al., 2017; Dligach et al., 2017). Also replacing the EE component by
a CNN model decreased model performance, showing that the CNN was not able to
replace the feature rich SVM. Leeuwenberg and Moens (2017b) used a feature rich
structured perceptron, also using cTAKES POS and dependency parse features, jointly
learning different relation types on the document level. Tourille et al. (2017a) used
two bidirectional LSTM models, one for inter-sentence and one for intra-sentence
relations. They used fixed word embeddings pre-trained on the MIMIC III corpus, and
also incorporated character level information. To obtain their top results they added
ground truth event attribute features enhanced with entity information also obtained
from cTAKES.

As can be noticed, all state-of-the-art baselines used dedicated clinical NLP tools to
enhance their features in order to obtain their top results, in contrast to our model,
which uses only the Stanford POS Tagger (trained on news texts).

Table 4.2: THYME test set results, reporting precision (P), recall (R) and F-measure
(F), macro-averaged over three runs. The standard deviation for F is also given.

Model P R F

With specialized resources:
Best Clinical TempEval (2016) 58.8 55.9 57.3
Lin et al. (2016) 66.9 53.4 59.4
Leeuwenberg et al. (2017) - - 60.8
Tourille et al. (2017) 65.7 57.5 61.3
Lin et al. (2017) 66.2 58.5 62.1

No specialized resources:
RC (random initialization) 67.9 52.1 58.9±0.2

RC (SG initialization) 71.2 52.0 60.0±1.2

RC (SG fixed) 68.9 54.6 60.9±0.8

RC + SG 66.2 59.7 62.8±0.2

RC + SGLR 68.7 57.5 62.5±0.3
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Table 4.2 shows that initializing the model with the pre-trained embeddings gives a
significant 4 1.1 point increase in F-measure compared to random initialization, due
to an increase in precision. Fixing the embeddings gives slightly better performance
than using them as initialization, an increase of 0.9 point in F-measure, mostly due
to higher recall. When extending the loss with the SGLR loss, we gain4 1.6 in F-
measure compared to fixing the word embeddings, and also surpass the state of the
art by 0.4 even without specialized resources. If we train our model using the SG loss
extension we obtain the best results, and gain4 1.9 points in F-measure compared to
using pre-trained fixed word embeddings. This setting also exceeds the state of the art
(Lin et al., 2017) by 0.7 points in F-measure, due to a gain of 1.2 points in recall, again
without using any specialized clinical NLP tools for feature engineering, in contrast to
all state-of-the-art baselines.

4.5.5 Manual Error Analysis

Finally, we manually analyzed 50 false positives and 50 false negatives picked randomly
from the test set predictions for different settings.

From Table 4.3 we can see that all models have difficulties with distant relations that
cross sentence or clause boundaries (CCR). This could be because class imbalance
correlates with distance between the arguments of the temporal relations. Furthermore,
arguments that are frequent in the supervised data (> 250) are a dominant error
category. We suspect this is because frequent events often function both as container
and as contained, whereas infrequent events are less ambiguous in their argument
position. This hurts RC (SG fixed) most as its embeddings are not influenced by Drc.
Furthermore it can be noticed that RC+SG has less errors for infrequent arguments
(< 10) in the supervised data. This could be because it leverages the few available
instances from both the Drc and Dsg data better than the single-loss models.

Table 4.3: Error analysis on 50 FP and 50 FN (random from test) for different
settings. Clause boundaries are: newlines and sub-clause or sentence boundaries.
Error categories are not mutually exclusive.

Error Type RC + SG RC (SG fixed) RC (SG init.)

Cross-Clause Relations (CCR) 42 39 36
Infrequent Arguments (< 10) 11 15 26
Frequent Arguments (> 250) 37 50 40
Mistake in Ground-Truth 10 8 5
Other 21 15 28

4P < 0.0001 for a document-level pairwise t-test
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4.6 Conclusions

In this chapter, we proposed a neural relation classification model for the extraction of
narrative containment relations from clinical texts.5

The model trains word representations jointly on the supervised relation classification
task and an unsupervised auxiliary skip-gram objective (with separate datasets) through
weight sharing to more effectively exploit both the unlabeled and labeled data, as
annotated clinical data is costly to create. Our results show that this word-level joint
training results in significantly better generalizing classification models compared
to using pre-trained word embeddings (either as initialization or fixed embeddings).
Furthermore, we show that performance trends and good values for λ (balance between
tasks) are robust over different training set sizes, and that even for (badly tuned)
extreme values of λ the quality of the model’s embeddings is naturally lower-bounded
by their pre-trained variants. Additionally, our model sets a new state of the art for
temporal relation extraction on the THYME dataset, without using extra dedicated
clinical resources, in contrast to current state-of-the-art models.

As future work, it would be interesting to see how well the improvements caused by the
word-level joint training generalize to other NLP tasks that typically use pre-trained
word embeddings, and other sub-task of temporal information extraction.

5The code for this chapter is available at https://liir.cs.kuleuven.be/software_pages/.

https://liir.cs.kuleuven.be/software_pages/structured_learning_temporal_relation.php


5
A Survey on Temporal Reasoning for Temporal

Information Extraction

This chapter was previously published as:

Artuur Leeuwenberg and Marie-Francine Moens. 2019. A Survey on Temporal
Reasoning for Temporal Information Extraction from Text. In The Journal of
Artificial Intelligence Research (JAIR), pp. 341-380. AI Access.

From the previous two chapters we have observed how integration of domain
knowledge, either about the structure of time (Chapter 3) or about the structure of
language (Chapter 4), can improve temporal relation extraction models. To further
progress towards our final goal of building event timelines, we dive deeper into the
structure of time, and investigate how temporal reasoning can be used as a tool to
manipulate temporal information. For this, we conducted a literature survey on how
temporal reasoning has been used successfully used in the research field of temporal
information extraction, and provide a clear overview of existing approaches.

The survey explains the required theory on temporal reasoning, and discusses its role
in all steps of model construction: annotation, data preprocessing, model training,
prediction, and evaluation. Based on the presented overview, we detect gaps in the
literature, and highlight promising directions for future research.

46

https://www.jair.org/index.php/jair/index
https://www.jair.org/index.php/jair/index


INTRODUCTION 47

5.1 Introduction

The phenomenon of time has a major influence on how people perceive, and
communicate through language. Consequently, our language utterances are filled
with temporal cues on the events we communicate about. Temporal Information
Extraction (TIE) is the process of automatically extracting temporal cues from text,
with the final goal to construct a (possibly underspecified) timeline of events from
them, as shown in Figure 5.1.

violent demonstration speech timepolice shooting

On July 14, a violent demonstration erupted in Chicago after a police shooting. 

14072018

Figure 5.1: An example of temporal information extraction.

Temporal information extraction not only plays a major role in the general problem
of natural language understanding (NLU), but is also used in many applications, like
information retrieval (Campos et al., 2015), question answering (Llorens et al., 2015;
Höffner et al., 2017; Meng et al., 2017; Sun et al., 2018; Pampari et al., 2018), and multi-
document summarization (Barzilay and McKeown, 2005; Ng et al., 2014), and has
great potential in the clinical domain, for applications like patient timeline visualization
(Jung et al., 2011), forecasting treatment effects (Augusto, 2005; Zhou and Hripcsak,
2007; Choi et al., 2016a), better early detection of diagnoses (Choi et al., 2016b), or
patient selection for clinical trials (Raghavan et al., 2014). Because of the strong linear
structure of time itself, and the great variation in the types of temporal cues we can
express in language, a central challenge in temporal information extraction is how
to combine all these separate cues into a single coherent temporal ordering of the
described events. To obtain this temporal ordering from many different cues temporal
reasoning is of vital importance. We define Temporal Reasoning (TR) in the context
of TIE as the process of combining different (annotated or extracted) temporal cues to
derive additional temporal information about the text. TR is crucial for TIE and has
already been exploited widely in the research community in every step in the process
of TIE model construction: annotation, pre-processing, model training, inference, and
evaluation. Despite the importance of TIE for NLU and the crucial role of TR in TIE,
there has not yet been a survey covering the research in this area.
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5.1.1 Focus

For successful TR in practical settings two factors are very important: (1) The
expressiveness of the TR mechanism: How complete is the temporal knowledge that
the TR mechanism can infer from the temporal cues? And (2), the efficiency of TR:
What are the computational costs of TR to infer that new temporal knowledge. These
two points will get extra attention in this survey.

Although most research has focused on extraction models for certain types of temporal
cues, this survey focuses on the big picture of complete TIE, where the aim is to extract
all temporal cues from the text and combine them into a single coherent temporal view,
for which a good TR mechanism is crucial. To cover the evolution of TR approaches
for TIE in parallel with the popularization of using machine learning (ML) methods for
natural language processing (NLP), the focus of this survey lies on the research on TR
for TIE systems from the past three decades. We abstract from what linguistic features
are successful for TIE systems, as these are discussed in depth by Derczynski (2017),
and can be considered complementary to the focus of this survey.

5.1.2 Contributions

In the context of the interesting and important new developments in the past years this
survey provides the following contributions:

• A clear explanation introducing the theory and background on TR for TIE
required to comprehend the latest state-of-the-art TIE models.

• A structured overview of the various ways in which TR has been exploited in
TIE models over the past three decades: in annotation, pre-processing, training,
prediction, and evaluation.

• A distillation of the most important conclusions to successfully incorporate TR
in a TIE system.

• Directions for future work and on promising unexplored avenues in the research
area of TIE.

5.1.3 Structure

The survey is structured as follows: First, in section 5.2, we provide an exemplified
overview of what types of temporal information are present in natural language texts.
These include relative and absolute cues, definite and indefinite cues, implicitness of
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temporal information, world knowledge, and the role of under-specification, as these
aspects play an important role in temporal reasoning. In section 5.3, we introduce the
theory of temporal reasoning that is required to comprehend and assess the current
state-of-the-art models and methods, as discussed in the following sections. Section
5.4 describes the most widely used annotation schemes for temporal information, and
discusses how they relate to temporal reasoning frameworks. In section 5.5, we arrive
at the core of this survey, and provide a complete and comprehensive overview of
the literature on TR for TIE. Then, in section 5.6, we give suggestions on promising
directions and less explored areas based on the earlier sections. Lastly, in section 5.7,
we summarize the most important findings and conclusions of the survey.

5.2 Temporal Information in Language

In this section, we give a short (exemplified1) overview of different temporal cues that
can be expressed in language to show what types of temporal information the cues
can provide, i.e., in what way the cues may possibly constrain the position of event
intervals on the timeline. We focus less on the different ways temporal cues can be
expressed, i.e., linguistic variation, as this has no direct impact on TR.

It is important to study the types of temporal information that can be expressed by
temporal cues because the different cues need to be combined by a TR system in order
to build a complete temporal picture of the text, or construct a timeline.

5.2.1 Timeline Components Captured by Temporal Cues

Temporal cues can bound various components of the event timeline: full positions of
intervals, but also just the start, end, or duration of intervals.

For instance, in Example 1, the duration of the antibiotics administration is given
(10 days), and so is its start time (somewhere on the 2nd of June). While, for the
improvement of the respiratory status only the end time is mentioned explicitly (last
2-3 days of the antibiotics administration). This shows that for a fairly simple text
fragment, a TR system already needs to be able to combine temporal bounds on at least
three different components of the timeline.

Example 1. Antibiotics were started on 6/2 and continued for 10 days.
Respiratory status improved up til the last 2-3 days.

1Examples from the New York Times, and the clinical i2b2 corpus (Sun et al., 2013a).
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5.2.2 Relative and Absolute Cues

As shown in the previous example, temporal cues can provide absolute references to
the timeline, by referring to absolute intervals, like dates or times, or absolute durations,
like a certain number of hours. In Example 2, the duration of the third set (28 minutes)
is an absolute cue. However, additionally quite often the temporal cues provide relative
information. In the example, there are three explicit relative cues: (1) the duration of
the first two sets are less than 1 hour, (2) the third set started after the first two, And
(3) the whole situation took place in the past, i.e., before the speech time (ST) of the
sentence, indicated by the past tense of the verbs. The ideal TR system should be able
to resolve combinations of absolute and relative cues.

Example 2. After the grueling duels of the first two sets, which each had
taken nearly an hour, Nadal won the third set in 28 minutes.

5.2.3 Definite and Indefinite Cues

Quantification of timeline components can be definite, referring to clear quantities, or
indefinite, using vague quantification. In Example 3, the duration of the patient being
HIV positive is definite (2 years). Whereas the duration of the left upper quadrant pain
is, although explicit, quantified vaguely (long-standing), and hence indefinite.

Example 3. The patient is a 27-year-old woman who is HIV positive for
two years. She presented with left upper quadrant pain
which is a long-standing complaint.

5.2.4 Implicitness and World Knowledge

A significant part of the temporal information conveyed in text is implicit. Event
durations, and event position are often implicit, or considered common world
knowledge. In Example 4, although not mentioned explicitly the charges have been
made before the judge’s question. Also, the man’s answer probably lasted only a few
seconds, and happened clearly after the judge’s question. Whereas, if we would have
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replaced answered with trembled, this would probably have lasted longer, and was
possibly already going on during the judge’s question.

Example 4. Wearing a black scarf, slim-fitting navy suit and tortoiseshell
glasses, he said little and answered, “I do, your honor”,
when the judge asked if he understood the charges.

5.2.5 Underspecification

A major aspect of temporal information extraction is underspecification. Almost in all
cases, temporal cues do not provide a fully specified timeline (full absolute positioning
of events on the calendar), leaving open multiple temporal interpretations. As can be
seen in all previous examples 1-4, it was never mentioned, for example, in what year
the events took place, allowing multiple valid timeline interpretations, something that
temporal reasoning systems should be able to deal with appropriately.

5.3 Frameworks for Temporal Reasoning

In the previous section we observed that language can contain many different types of
temporal information. To combine all these different types of temporal information
into a coherent temporal view, or timeline, we require temporal reasoning. To reason
with different types of temporal information about events, several frameworks have
been developed. The temporal interpretation of an event is generally considered as
an interval on the timeline. The span of the interval corresponds to the time that the
event takes place. Consequently, TR often addresses reasoning with intervals. As a
reference, Fisher et al. (2005) provide an overview of general TR, but do not discuss
TIE systems in detail. Here, we review the TR frameworks that have been used for
TIE, as a back-bone for section 5.5, where the integration of TR in TIE systems will be
discussed.

5.3.1 Allen Interval Relations

One of the most popular TR frameworks used in TIE was proposed by Allen (1983).
He proposed a set of thirteen mutually exclusive basic interval relations that could
be assigned to any pair of definite intervals. These relations and the corresponding
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x precedes y y
x

y preceded by x

x meets y
x

y y met by x

x overlaps y
x

y y overlapped by x

x ends y
x
y y ended by x

x during y
x
y y contains x

x starts y
x
y y started by x

x equals y
x
y

Figure 5.2: Allen’s thirteen basic interval relations.

operations are known as Allen’s interval algebra. All thirteen basic relations and their
visualizations are shown in Figure 5.2. As can be seen, the thirteen basic relations are
six pairs of converse relation pairs, and the equals relation, which is symmetric. From
these basic relations that can only represent relations between definite intervals, where
relative positions of start and end-points are known, indefinite interval relations can
be constructed, where the start or end of the intervals might be incomplete. In Allen’s
algebra each indefinite relation (called a general Allen relation) is represented as a
disjunctive set of basic relations. The set representation of a general Allen relation
between two events contains all basic relations that are possible between the events,
given the (incomplete) information about their starts and endings.

Example 5. y started sometime during x
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x
y

?

Figure 5.3: Visualization of Example 5 with the general Allen relation: x {contains,
overlaps, ended by} y.

For example, the sentence of Example 5 could be represented by Figure 5.3. Only
relative information about the start of y is known, namely that it lies within the
boundaries of x. However, there is no information given about the end of y, making it
impossible to assign a basic Allen relation, as the intervals are indefinite. The correct
general Allen relation is: x {contains, overlaps, ended by} y, and indicates that any of
these three basic relations in the set, contains, overlap, or ended by, could apply to the
situation. The full set of Allen interval relations is the power set of the basic relations,
resulting in 213 = 8192 relations. Notice that when no information about the relation
between two intervals (or events) x and y is given, any basic relation is possible. So, in
that case the general Allen relation between x and y would be represented by the set
containing all basic relations. In other words, the less we know, the more is possible,
so the bigger the representation.

Temporal Closure

To infer new relations from a set of general Allen relations relating different events, a
composition table is used. The table contains transitivity rules for all basic relations,
i.e., it shows for any pair of connected relations r1(x, y) and r2(y, z), what relation r3(x,
z) could be inferred. An example for the transitivity for the precedes relation is given in
Figure 5.4. Using this principle, a temporal closure (called ‘Propagate’ in the original
paper) can be calculated, adding new relations to the existing set. Computing the
full closure, which includes all possible inferences that can be made, is NP-complete,
making it highly intractable (Vilain et al., 1990). Often, in practice, only a subset of
the transitivity rules is used.

y
precedes

x z
precedes

precedes

Figure 5.4: An example of an inferable precedes relation (dashed) through transitivity:
x precedes z is inferred from the fact that x precedes y and y precedes z.
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Temporal Consistency

An important task in TR is checking temporal consistency for a set of relations, as a
timeline can only be constructed from a consistent set of relations. In Allen’s algebra,
temporal consistency can be calculated by checking if, when going through all possible
chains of inference, the intersection of all inferable relations for each pair is not empty.
In other words, an assignment of general Allen relations is consistent if at least one
basic Allen relation can be assigned to each pair of intervals, after closure.

y
{precedes}

x z
{precedes}

{contains, overlap, ended by}

Figure 5.5: An example of an inconsistent assignment of Allen relations.

An example of an inconsistent assignment of relations is shown in Figure 5.5. The
example is inconsistent because from the fact that x precedes y and y precedes z it can
be inferred that x {precedes} z. And, when taking the intersection for pair (x,z) of the
inferred relation x {precedes} z and the already assigned relation x {contains, overlap,
ended by} z we end up with the empty set. This indicates there are no possible basic
relations for pair (x,z). From this we can conclude that the example is not consistent.
Calculating temporal consistency is, like the temporal closure, NP complete when
using the full Allen algebra (Vilain et al., 1990) as it requires temporal closure. This
high computational complexity is not very practical in real applications. For this reason,
more efficient solutions have been proposed, which we will cover in the next section.

5.3.2 Subfragments of the Full Allen Algebra and Point
Temporal Algebra

Because of the high complexity of calculating temporal closure and consistency for
the full Allen algebra, many different more tractable sub-fragments of Allen’s interval
algebra have been proposed (Vilain et al., 1990; Freksa, 1992a; Nebel and Bürckert,
1995; Ligozat, 1996; Krokhin et al., 2003). Some also focus on integrating quantitative
reasoning (Dechter et al., 1991; Meiri, 1996; Dechter and Cohen, 2003) or uncertainty
(Schockaert and De Cock, 2008). Although most current research in TIE systems has
focused on using Allen relations, representing mostly relative interval cues, the ability
to combine quantitative temporal cues and being able to deal with uncertainty is very
important, as the variance of cues in language is vast, as seen in the previous section.
And all cues need to be taken into account to construct a fully coherent temporal view
from the text. We will not discuss all the sub-fragments and extensions in this survey
as the vast majority of these extensions have not been used in current TIE systems.
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Rather, we provide a theoretical back-bone on which many of these sub-fragments are
built. We also use this back-bone to define a categorization of TR-expressiveness in
which we will later classify the different TR approaches used for current TIE systems.

A major insight on which many efficient TR algorithms are built is the fact that the
basic Allen interval relations can be expressed as sets of point-relations in the point
temporal algebra. From this perspective, each pair of intervals (x,y) can be seen as
a set of four points: the starts of both intervals x−, and y−, and their endings: x+,
and y+. In the point temporal algebra, there are three point-wise relations that can
occur between each of these points: <, =, and >. These point-relations can be used to
express each basic Allen relation as a conjunctive set of point relations on the start and
endings of the intervals. For example, x {equals} y can be expressed by the conjunctive
set {x− = y−, x+ = y+}, i.e., iff the start and endings of intervals x and y are equal,
then x and y are also equal. As another example, x{precedes}y can be expressed as
{x+ < y−}, i.e., iff the end of x lies before the start of y then interval x lies before
interval y. In general, because the four points describe starts and endings of intervals,
it is always the case that each interval’s start x− lies before its end x+. Based on their

Figure 5.6: The lattice showing the relation between point algebra and the basic Allen
interval relations, and the conceptual neighborhood between interval relations (Freksa,
1992a).

point algebraic representations, Allen’s basic interval relations can be ordered in a very
informative lattice (Freksa, 1992a), as shown in Figure 5.6.

From this lattice we can read several things:
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1. How to convert a basic Allen interval relation to a set of point algebraic
constraints: start from a basic interval relation box in the lattice, and then
take the union of all point-algebraic constraints on the corresponding outsides of
the rectangle.

2. How to construct a (general) Allen relation from a set of point-algebraic
constraints: start from the point-algebraic constraints on the outside of the
rectangle, and take the intersection of the interval relations that are covered by
the area inside the rectangle corresponding to the point-algebraic constraints.

3. How to determine the conceptual neighborhood between two basic Allen interval
relations: count how many boxes have to be crossed to get from one basic interval
relation to the other (i.e., how much do the end-points need to shift to change
from one interval relation to the other).

For example, if we have a cue saying that the start of event y happens somewhere during
event x, i.e., {x− < y−, x+ > y−} (as in Example 5), we can read from the lattice
what relations are covered by the overlapping area of these constraints: {contains,
overlaps, ended by}, from which we can conclude that the corresponding general Allen
relation is x {contains, overlaps, ended by} y.

Using this link between interval and point relations TR about intervals can be done
in the point algebra, which is much more efficient, as it has only three basic relation
types, resulting in a much smaller composition table. Additionally, expressing interval
relations by conjunctive sets of point relations, instead of disjunctive sets of basic
interval relations, ensures that when we have little temporal knowledge, the set
representation is smaller, instead of bigger (as with general Allen relations). These two
components contribute to the fact that TR in temporal point algebra fragments has only
polynomial complexity instead of the NP-completeness of the full Allen algebra (Vilain
et al., 1990). This gained efficiency and flexibility in representation are very important
when considering practical TIE systems. Even more when combining temporal cues
from different documents, or different sources for which complex temporal resolution
of the different cues is required to obtain a coherent timeline.

As mentioned in the beginning, we cannot express each general Allen relation as sets
of point-algebraic constraints, but only a fragment of them. Point algebra can only
express interval relations that can be represented as a conjunction of point-algebraic
constraints. For example, the general Allen relation x {precedes, preceded by} y cannot
be expressed as conjunction of point-algebraic constraints. We can see this from the
lattice, as we cannot capture these two interval relations in a single rectangle, without
including other basic relations as well.
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I
II

III
IV

× →Rb Rb R∗

 

× →Rb Rb Rb

 

× →Rc Rc R∗

 

× →R∗ R∗ R∗

Figure 5.7: Onion diagram showing four classes of temporal reasoning rules, indicating
expressiveness of the temporal reasoning. Rb stands for any basic Allen relation, Rc
stands for any Allen relation that can be expressed as conjunction of point-algebraic
constraints, and R∗ can be any Allen relation. Layer III is the most expressive class
that still operates in polynomial time, which is important for practical systems.

Expressiveness of temporal reasoning

Later on, in section 5.5, we review the currently existing TR-based TIE systems and
categorize them in various ways in order to compare them. To categorize the TIE
models with regard to the expressiveness of their TR component we construct four
classes based on the part of the transitivity table that is used for TR. This categorization
is shown in Figure 5.7: The most inner layer covers rules that only use basic Allen
relations (Rb) in the condition and conclusion of the rules. The second layer covers
TR rules that have only basic relations in their condition, but can have general Allen
relations (R∗) in the conclusion. The third layer covers the sub-fragment that is
translatable to point algebra, covering all rules that have relations in the condition of the
rule that can be expressed as conjunction of point-algebraic constraints (Rc). Finally,
the outer layer is the full Allen algebra, covering the full transitivity table. Outer layers
include inner layers in terms of rule sets, and are more expressive, but TR can be more
computationally complex (depending on the implementation).

Layer I type reasoning is used quite commonly, as most systems build on basic Allen
relations, layer II is more expressive but used less, as it involves reasoning with sets
of basic relations instead of only basic relations. For practical TIE systems, layer
III is very important for three reasons: (1) It is the most expressive fragment that
can be implemented in polynomial time; (2) The full fragment can be mapped to
point-algebraic constraints and back, introducing flexibility with regard to combining
different types of temporal cues; and (3) It covers all basic Allen relations, which is
beneficial as these are often available in the annotated data. Before examining the TR
used in TIE systems (section 5.5), we discuss the annotation of temporal information.
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afterincludes
includes

beforebefore

identical

On	July	14,	a	violent	demonstration	erupted	in	Chicago	after	a	police	shooting.

document-creation-time

e1 e3e2t1:	14/07/18

Figure 5.8: An example of TimeML-style annotation: Events in blue, a (normalized)
temporal expression in green, the document-creation-time in red, and arrows indicating
the temporal links (TLinks) among them.

5.4 Annotation of Temporal Information

The annotation scheme for temporal annotation in text steers the types of temporal
cues that can be extracted by TIE systems, and therefore also how TR can be exploited.
The most widely used scheme is TimeML (Pustejovsky et al., 2003a), which is an ISO-
standard for annotating temporal information in text (Pustejovsky et al., 2010). Most
temporal corpora have been annotated with TimeML, or a very similar (sub)scheme
(Pustejovsky et al., 2003b; Sun et al., 2013a; Cassidy et al., 2014; Styler IV et al.,
2014). And TimeML has been used in TempEval, a series of shared tasks on evaluating
temporal information extraction that resulted in many of the existing TIE systems
(Verhagen et al., 2007, 2010; UzZaman et al., 2013; Minard et al., 2015; Llorens et al.,
2015). We will discuss the shared consequences for TR of the TimeML scheme. In
TimeML the core concepts are event expressions and temporal expressions. Event
expressions refer to events in the real world, and can be of different types, like states
(e.g., bankrupt), actions (e.g., sailing), occurrences (e.g., meeting), reporting events
(e.g., said) among other types. Temporal expressions (timex) refer to calendar dates
(e.g., 21st of August, 2018), times (e.g., 1 o’clock), definite durations (e.g., two hours),
or sets of times (e.g., 3 times a week). The function of these timex expressions is to
anchor events to the calendar timeline. In TimeML, events and timex expressions are
temporally connected through temporal links (TLinks). TLinks can have thirteen types
that almost (but not exactly) follow Allen’s basic interval relations. An example of a
TimeML-annotated sentence in shown in Figure 5.8. The TLink types are shown in
Table 5.1. TLinks can be annotated between three categories of candidate pairs:

1. Between events (EE-R).

2. Between temporal expressions and events (TE-R)

3. Between each event and the document-creation-time (DCT-R).
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Table 5.1: Temporal link (TLink) types from TimeML and their corresponding basic
Allen interval relations.

TimeML TLink Basic Allen Relation
BEFORE precedes
AFTER preceded by
INCLUDES contains
IS INCLUDED during
IMMEDIATELY BEFORE meets
IMMEDIATELY AFTER met by
BEGINS starts
BEGUN BY started by
ENDS ends
ENDED BY ended by
DURING during | equals
DURING_INV contains | equals
- overlap
- overlapped by
SIMULTANEOUS equals
IDENTICAL equals

As can be seen in the Table most TLinks match with a basic Allen relation. However,
Allen’s overlap, and overlapped by relations are not represented (UzZaman and Allen,
2011), and the temporal interpretation of DURING and DURING_INV relations seem
similar to IS INCLUDED and INCLUDES, but are not clearly defined (Chambers et al.,
2007; Derczynski et al., 2013; Derczynski, 2016), and are also sometimes interpreted
as SIMULTANEOUS (UzZaman et al., 2013). The difference between SIMULTANEOUS
and IDENTICAL is that SIMULTANEOUS can apply to two different events happening at
the same time, whereas IDENTICAL means two event mentions refer to the exact same
event (event co-reference).

In terms of expressiveness, TimeML models a small subset of the full Allen algebra (213

relations), and sticks to modeling the basic Allen relations. This is because temporal
annotation is a complex task for annotators, and annotation complexity needs to be
taken into account to obtain high-quality annotations with reasonable inter-annotator
agreement.

Nevertheless, the expressiveness of TimeML is expanded by also including timex
annotations as calendar anchors. Because timexes of types date and time can be
temporally interpreted as absolute intervals with clear positions on the calendar that
carry a clear temporal ordering with respect to each other (e.g., 1990 is always before
1991). And similarly, timex with type duration can be interpreted as quantified
interval durations that come with an implicit order on durations (e.g., 1 hour is always
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shorter than 2 hours). Hence, there is a fourth category of temporal links that can be
automatically derived from timex annotations:

4 TLinks between temporal expressions (TT-R).

While using timexes as calendar anchors to increase the amount of temporal information
captured, the expressivity of TimeML is limited by the expressivity of basic Allen
relations. As shown in sections 5.2 and 5.3, the temporal information that can be
expressed in language not always concerns definite intervals, for which basic Allen
relations are ideal. Underspecification of an event’s duration or ending in the text could
potentially cause disagreement between annotators, as no basic Allen relation would
be suitable. However, including general Allen relations into the annotation scheme, to
model temporal uncertainty, could make the annotation task very complex.

As in the construction of many TimeML corpora annotators are not forced to annotate all
candidate pairs, this regularly results in sparse TLink annotations. Sparse annotations
can (1) make extraction difficult because of class imbalance, and (2) cause problems in
evaluation because extraction systems can get penalized for predicting relations that
the annotator may have missed. An attempt to address sparse temporal graphs is the
TimeBank Dense corpus by Cassidy et al. (2014), who explicitly asked annotators to
annotate relations between all events, within a certain token window. Whenever no
basic Allen relation could be assigned, annotators are asked to assign the label vague.
Although vague does not tell a lot about the degree of temporal uncertainty, and could
in fact be replaced with the general Allen relation including all basic relations in terms
of reasoning, it does make very clear what pairs have clear orderings, and what pairs do
not. An interesting unexplored avenue might be to annotate the vague relations in the
TimeBank Dense with their general Allen relations to obtain an even more complete
temporal graph.

Ning et al. (2018c) recently addressed the issue of temporal uncertainty as well,
and also pose the question whether all events can actually be related to each other
temporally. They propose a multi-axis annotation scheme where they first separate
events that are anchorable on the timeline, from other events (negated events, opinions,
intentions). They assume that if two events are on the same axis, they can be temporally
related. In a second step, they ask annotators to annotate temporal point-wise relations
(before, after, equals, and vague) between the starting points of the anchorable events,
instead of the conventional interval relations, obtaining high inter-annotator agreement
even on crowd-sourced annotations. They found when also asking annotators to
annotate relations between end-points this was found much more difficult by the
annotators. This is possibly explained by the difference in interpretation of event
durations between annotators, as these are often not explicitly mentioned in the text,
and assume background knowledge shared by the readers and writers. This scheme is
interesting as it annotates a different set of relations than the ones used by TimeML.
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We can see the relation between the two clearly from the lattice in Figure 5.6, as
the relations between start points can be separated by the right y-axis of the lattice
(x− < y−, x− < y−, x− > y−). This shows that if a TR component would be able to
deal with both interval and point-relations, data from both schemes could be combined
this way to learn or evaluate TIE systems, which could be very useful.

Although Ning et al. (2018c) do not describe duration annotations, TimeML includes
duration annotations. In TimeML, cues on duration need to be explicitly mentioned
by a timex in the text in order to be annotated. The fact that a long meeting takes
longer than a short meeting is not annotated as long and short are not timex expressions.
Also background knowledge about typical event duration, in case the duration is not
mentioned explicitely by a timex, is not annotated by TimeML. Pan et al. (2006a,b,
2011) proposed an annotations scheme fully dedicated to annotating event durations.
They asked annotators to provide quantified bounds on the durations of the events
mentioned in the texts (like 1-10 minutes, or 1-2 days). This annotation is done on the
event level and does not explicitely annotate timex expressions. This way annotators
are free to use any cues they can find in the text, or their background knowledge2.

Another recent scheme including event durations was proposed by Reimers et al. (2016,
2018). They classify events into two coarse duration types: one-day and multi-day
events. Similarly to TimeML they annotate timex expressions and link events to these
timex expressions when possible. However, when this is not possible, annotators are
asked to directly provide calendar bounds on when each event happened (like after
1992, and before 2000). This way, the events can also be temporally related to calendar
anchors that do not occur directly in the text as timex expressions, in contrast to the
schemes mentioned earlier. Because this scheme annotates on the event level, and not
on the event-pair level, its annotation time is linear. Also, when all events are linked
to absolute calendar dates many TLinks can be automatically inferred, by exploiting
the order on calendar days. This way a lot of temporal information can be captured by
relatively little annotation. Although minor limitations of this scheme are the coarse
granularity of the durations, and the fact that now relative ordering statements between
events cannot be annotated directly, we believe the direction of annotating on the event
level, and allowing non-explicit timeline anchors to be very promising.

We can see that in Allen algebra (and also in point-algebra) it is not possible to directly
include quantitative statements about interval durations, even though people clearly
express duration information, and have access to it through background knowledge
to make temporal inferences. This makes it difficult to combine the duration datasets
with the currently interval-based reasoning methods. Combining relative position
information, and quantitative duration information during reasoning has - to our

2To obtain this background knowledge on event durations automatically, instead of having to annotate it
explicitly, there has been work on extracting typical event durations from the web using lexico-syntactic
patterns (Kozareva and Hovy, 2011; Williams and Katz, 2012).
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knowledge - not been done in the TIE systems in the literature and could be very
interesting for future research.

5.5 Temporal Reasoning for Temporal Information
Extraction

In this section we will review the development of TIE systems, focusing on approaches
that use some form of TR. We do not discuss extraction of events as generally this
does not impact TR directly. Extensive research was done on event extraction and
timex extraction resulting in strong extraction systems for these tasks (Strötgen and
Gertz, 2010; Chang and Manning, 2012; Derczynski et al., 2012; Lee et al., 2014;
Strötgen and Gertz, 2015; Miller et al., 2015; Bethard and Parker, 2016; Strötgen and
Gertz, 2016; Derczynski et al., 2016; Laparra et al., 2018b,a; Olex et al., 2018). The
normalization of timex, determining the calendar value of relative temporal expressions
(e.g., last year→ 2018), does involve TR. Almost all state-of-the-art systems resolve
timex normalization successfully using hand-crafted rules based on lexical patterns
(Mani and Wilson, 2000; Negri and Marseglia, 2004; Verhagen and Pustejovsky, 2008;
Strötgen and Gertz, 2010; Kolomiyets and Moens, 2010; Chang and Manning, 2012;
Llorens et al., 2012; Lin et al., 2013; Filannino et al., 2013; Sun et al., 2015; Mirza,
2015; Strötgen and Gertz, 2016; Derczynski et al., 2016; Real et al., 2018; Olex et al.,
2018). We would like to highlight the scheme by Bethard and Parker (2016) for its
explicit use of a more general TR method, called SCATE (Semantically Compositional
Annotation Scheme for Temporal Expressions), in which the temporal value (interval
or duration) of a timex is composed from the individual words of the timex through
interval operations. How the words are to be composed is annotated in the corpus
through links, which can also be predicted by a relation extraction model (Laparra
et al., 2018b,a; Olex et al., 2018).

For the rest of this section we focus on the task of ordering events, which builds on top
of event and timex extraction and normalization, and often involves extensive TR, as
information on multiple events and temporal expressions has to be combined. For this
task the state-of-the-art event ordering systems still perform below application level
(Bethard et al., 2015, 2016, 2017; Ning et al., 2018a; Meng and Rumshisky, 2018). We
will discuss the different ways in which TR can be exploited in the different steps of
TIE model construction, shown in Figure 5.9, starting with annotation.
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Data Preprocessing Model Training Prediction Model EvaluationDataset Annotation

Figure 5.9: Steps for constructing temporal information extraction models. During
each step temporal reasoning can be exploited.

5.5.1 Temporal Reasoning for Dataset Annotation (TR-DA)

A widely recognized problem in temporal annotation, is the fact that because of the
complex nature of temporal information, annotators tend to miss temporal cues in the
text, especially when annotating TLinks between pairs of events (Mani et al., 2006).
Verhagen (2005), and Setzer et al. (2005) argue that when annotating temporal relations,
not all event-pairs are equally useful to annotate, as some can be deduced from the
already annotated TLinks. To save annotation effort they suggest to incorporate TR
in the annotation tool, and only ask annotators to label event pairs for which it is
not yet possible to infer a relation from the annotations already present. Another
motivation to exploit TR during annotation is that annotators sometimes provide
temporally inconsistent labelings, which makes it harder to train TIE systems (Gennari
and Vittorini, 2016, 2017). Verhagen et al. (2006) used TR with basic Allen relations
in their TANGO toolkit. Also, in the construction of the TimeBank-Dense (Cassidy
et al., 2014), where annotators are forced to annotate temporal links between all entity
pairs within a certain window, after each annotation a temporal closure is calculated.
This way, the annotated corpus obtained interesting properties: (1) its graphs are
strongly connected, (2) the resulting corpus is consistent, and (3) all required edges
are labeled. As not all events can be related through basic Allen relations, the authors
introduced a vague relation type for when two events are difficult to relate. These works
show that TR can be very beneficial during data annotation, making the use of TR for
dataset annotation a very interesting direction of research needed to construct better
application-level TIE systems. Also the combination of TR with active learning (Settles,
2012) as a way to collect informative training examples might be very interesting, as
temporal annotation is generally considered difficult and consequently time consuming
(Boguraev and Ando, 2007; Tissot et al., 2015; Derczynski, 2016; Gennari and Vittorini,
2017).

5.5.2 Temporal Reasoning for Data Preprocessing (TR-DP)

Once a dataset has been annotated, a commonly used method is to expand the training
data, as annotators frequently miss TLinks. This can be done by applying a transitive
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closure to infer new TLink annotations based on the ones already present. The firstly
used algorithm to calculate a temporal closure for this purpose is called SputLink
(Verhagen, 2004). SputLink is based on a subset of Allen’s interval algebra and uses
a composition table of 745 axioms (or transitivity rules) to infer new relations. It
was used already in one of the first machine learning approaches to temporal relation
extraction by Mani et al. (2006). In their experiments, using SputLink increases the
number of TLinks by a factor 11. The effect of temporal closure on performance for
models that use no TR during prediction is ambivalent. There have been cases where
temporal closure increases performance (Mani et al., 2006, 2007), but also where it
does not (Chambers and Jurafsky, 2008b), or even decreases performance (Tatu and
Srikanth, 2008). When using a model that exploits TR during prediction it has been
shown that data expansion through a temporal closure can be very beneficial (Chambers
and Jurafsky, 2008a). Models that use TR during prediction will be described in the
next section.

5.5.3 Temporal Reasoning for Training or Prediction (TR-TP)

To enhance temporal relation extraction models, TR can be integrated during training,
and during prediction. Since training and prediction are so closely related, and often
prediction is a sub-procedure of training, we discuss the integration of TR in training
and prediction together in a single section.

There are various reasons why integration of TR during training and prediction can
improve TIE models: (1) ensure temporal consistency among the predicted relations,
and (2) to constrain the output space and improve prediction accuracy.

Predicting consistent temporal information is very important for real applications, as
it is not possible to construct a proper timeline from a set of inconsistent TLinks. To
ensure consistency of TLinks, the expressiveness of TR is crucial. Computational
efficiency of TR is also very important for real applications, especially when the
TR needs to be performed for each prediction. So, the ideal TR method for a TIE
application has a good trade-off between expressiveness and computational efficiency.
Many methods have been explored for incorporating TR during model training and
prediction, which we discuss one by one.

Best-First (BF) or Natural Reading Order (NRO) Greedy Inference

One of the first approaches to incorporate TR during prediction was proposed by
Bramsen et al. (2006a). They addressed the task of temporally ordering text segments
in clinical narratives by first detecting segment boundaries, and afterwards classifying
each pair of segments into one of three temporal relations: BEFORE, AFTER, or
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INCOMPARABLE. To ensure that the finally predicted temporal graph for each document
is consistent, they employ a best-first (BF) greedy strategy: (1) All segment pairs are
sorted by model confidence (based on the score predicted by a pairwise relation
classifier), (2) In order of high-to-low confidence, relations are added one-by-one.
After adding each relation a temporal closure is applied to expand the graph, until all
pairs are connected.

A slight alteration is to order the relations not by model confidence in step 1, but by
natural reading order (NRO). Afterwards, in step 2, the same strategy is applied as
with BF: adding relations one-by-one followed by a transitive closure. Regarding
performance, both NRO and BF outperform the baseline models that use no TR during
prediction at all, and BF obtains the best results (Bramsen et al., 2006b).

Post-Hoc (P-HOC) Conflict Resolution

Many approaches first use greedy prediction to predict a temporal graph, and resolve
conflicts post-hoc. These approaches involve the removal of conflict-causing edges,
based on model confidence (Verhagen and Pustejovsky, 2008; Tatu and Srikanth, 2008;
Cheng et al., 2013; Sun, 2014; Meng et al., 2017). Verhagen and Pustejovsky (2008)
used different models to predict different parts of the temporal graph, and assign
different confidences per model to remove the least confident conflict-causing TLinks.
Cheng et al. (2013) resolve conflicts by removing the least confident conflict-causing
edge for each within-sentence triangle of relations. Meng et al. (2017) remove conflict-
causing TLinks such that the sum of their confidences is as low as possible. Although
most works using post-hoc conflict resolution report a positive impact of the resolution,
they have not been compared to each other in a quantitative manner. This could be an
interesting comparison for future research.

Sieve-Level Inference (SLI) and Stacked Inference (SI)

A popular method for TIE is the sieve-based method (Chambers et al., 2014), as it is a
flexible way to incorporate both rule-based and machine learning components. The
idea of the sieve-based approach is that TLinks are extracted in different consecutive
phases by different model components (or sieves). Each sieve extracts TLinks, using
the original input text, and the outputs from earlier sieves. TR is incorporated into
sieve-based TIE systems by taking a transitive closure on the extracted TLinks after
applying each sieve. This way later sieves are prevented from assigning TLinks that
are inconsistent with those extracted by earlier sieves. Another way to look at this is
that the closure in fact makes the output space smaller after each sieve. Typically the
sieves are ordered by precision, making the sieve-level inference (SLI) similar to the
greedy BF approach, except relations that are not added one-by-one, but in groups,
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i.e., sieve-by-sieve. Very similar approaches have been adopted by Mirza and Tonelli
(2016) and McDowell et al. (2017). Mirza and Tonelli (2016) separately evaluated the
effect of this reasoning approach, and report an increase in recall contributing to an
increase in performance when including the sieve-closure.

Another approach that exploits TR in multiple prediction stages is the stacked inference
(SI) approach of Laokulrat et al. (2014, 2015). In the first stage their model predicts
TLinks using pairwise local logistic regression classifiers, as many approaches do.
However, on top of that they apply a transitive closure. Then, in a second stage, they
learn a new TLink classification model that additionally takes the predicted relations
from stage 1, and their corresponding probabilities as input features. An example of
a stage 2 feature used to predict a TLink for some given entity pair is the set of all
phase-1 TLink-paths connecting the two events. This way their model can learn to
predict TLinks in context of other TLinks, resulting in a learned inference procedure.

A recent similar SI approach was used by Meng and Rumshisky (2018), inspired by
neural Turing machines (Graves et al., 2014). Instead of using a pre-trained pairwise
logistic regression model as local pairwise model in stage 1, like Laokulrat et al. (2015),
Meng and Rumshisky (2018) employ a Long Short-Term Neural (LSTM) network
classifier (Hochreiter and Schmidhuber, 1997). In the second stage, to classify the
TLink relation for a candidate pair, they use the surrounding TLink predictions from
the pre-trained model as input features in their final model. Another difference with
Laokulrat et al. (2015) is that Meng and Rumshisky (2018) train their two stages jointly.

So for both Laokulrat et al. (2015) and Meng and Rumshisky (2018), the second
phase uses no explicit knowledge about temporal reasoning (like reasoning rules). The
label-label associations are learned from the data. An advantage of this is that the
model can explicitly learn to correct mistakes of the local pairwise model from stage 1,
which improves model performance. A disadvantage is that there are no guarantees on
consistency.

Random Restart Hill Climbing (RRHC)

A less conventional TR approach was used by McClosky and Manning (2012), who
addressed the task of temporal knowledge base population (KBP) slot filling (Ji et al.,
2010). Here the focus lies on finding the temporal bounds of a certain subset of events
called fluents, which are semantic relations between entities that hold for a certain
period of time, like attends-school, or has-parent. Their aim was to find the bounds
of such events by detecting the following four types of TLinks (called meta-relations
in the original paper) between the events and time expressions: BEGUN BY, ENDED
BY, DURING (called START, END, and START AND END in the original paper), and a
class UNRELATED. They employ local pairwise classifiers to obtain scores for each
relation type, that are combined in a joint inference to obtain a globally consistent
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prediction using random restart hill climbing (RRHC). They define a global scoring
function to score each set of predictions, which takes into account temporal consistency,
and also the local scores from the pairwise classifiers. They find good scoring solution
by iterating through all TE pairs, and at each pair adding the TLink that results in the
setting with the highest score. Since this procedure depends on the initial order through
which they randomly restart this procedure ten times, and pick the setting that gives the
highest score from the ten final settings. This approach has not yet been evaluated in a
more elaborate TIE setting, using a wider range of event types and temporal relation
types.

Integer Linear Programming (ILP)

Another, more widely used, method to combine locally predicted TLink scores into
a consistent temporal graph is integer linear programming (ILP). This technique was
first exploited for TR by Bramsen et al. (2006b). They experiment with two greedy
inference strategies: (1) following reading order, and (2) by in order of confidence,
as described in the previous section. They also experimented with exact inference
using integer linear programming (ILP). To formulate the problem as an integer linear
program, it should be represented as a linear objective possibly extended with a set
of linear constraints. Solving an ILP is in principle NP-complete, however there exist
many efficient (often approximate) solvers (Berkelaar et al., 2004; Makhorin, 2008; Gu
et al., 2012). Bramsen et al. (2006b) formulate the objective as the sum of all scores of
the pairwise classifiers (for BEFORE, AFTER, and INCOMPARABLE). Additionally, they
model three constraints:

1. Each segment pair is assigned only one label. (mutual exclusivity)

2. The BEFORE and AFTER relations follow transitivity. (transitivity)

3. Each segment is connected through at least one edge other than INCOMPARABLE.
(connectivity)

Their experimental results show that using ILP performs better than greedy approaches
like BF and NRO. Similar results were obtained as well by Mirroshandel and Ghassem-
Sani (2012).

Chambers and Jurafsky (2008a) use a similar approach using TimeML-style data,
predicting the same TLink types as Bramsen et al. (2006b), and also modeling
transitivity through ILP inference, but considering TLinks between events (EE-R)
instead of between text segments.

They also show that using TR during prediction is more effective on densely connected
temporal graphs. To obtain a densely connected temporal graph from the initially
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sparsely annotated annotations, they apply an extensive temporal closure to infer new
EE-R. To compute the closure, they also exploit other TLink types (e.g., INCLUDES,
and SIMULTANEOUS) and also the other relation categories: TE-R, DCT-R, and TT-R,
later also used by others Tatu and Srikanth (2008); Denis and Muller (2011); Laokulrat
et al. (2015); Ning et al. (2018a). The importance of densely connected graphs for
TR-MI was also recognized by later research (Denis and Muller, 2011; Do et al., 2012;
Leeuwenberg and Moens, 2017b).

Both Bramsen et al. (2006b), and Chambers and Jurafsky (2008a) only used two
TimeML relations in their joint inference, working on a restricted problem setting,
compared to using all twelve TLink types. When taking into account all twelve TLink
types TR becomes much more computationally complex. This complexity problem
is addressed by Denis and Muller (2011). In contrast to earlier approaches, they
propose to formulate TR-based prediction using point-algebra instead of Allen algebra,
exploiting the mapping proposed by Vilain et al. (1990), shown earlier in the lattice
of Figure 5.6. This is done by translating the TLinks between intervals into relations
between start and end points (>, <, and =). Their ILP objective maximizes the score
from local pairwise classifiers, similar to Bramsen et al. (2006b), except that the ILP
decision variables correspond to decisions about the translated point-wise relations,
resulting in four times less variables. Because there are also fewer point-wise relation
types (three) compared to interval relation types (twelve), they need a factor fifty fewer
constraints to model the same reasoning fragment. After solving the ILP, the resulting
point-wise decisions are translated back to TimeML interval relations. This shows
that exploiting the connection between interval and point space greatly increases the
computational efficiency of TR-based prediction with ILP. We argue that this method
is very important for practical TIE systems. Compared to earlier ILP formulations,
computational efficiency is gained, while at the same time expressiveness is increased.
The full conjunctive sub-fragment discussed in section 5.3 is covered instead of just
covering a handful of basic transitivity rules as is often done. Interestingly, more
recently Kerr et al. (2014) used a quite large set of transitivity rules, using ILP to
construct an ensemble from many local pairwise TLink extraction models, showing
clear improvements. Although they used a large set of transitivity rules, they did not
exploit the efficient point-algebraic formulation by Denis and Muller (2011).

A second modification to save computation has to do with temporal reasoning on
sub-groups of events, instead of all events in the document. The intuition is that
people describe events in time frames, also called narrative containers (Pustejovsky
and Stubbs, 2011), which has been adopted in later annotation works, and their
corresponding systems (Styler IV et al., 2014; Bethard et al., 2015, 2016, 2017). This
intuition of narrative containers is similar to the segments of Bramsen et al. (2006b),
that correspond to larger phrases instead of individual events. Denis and Muller (2011)
obtain these sub-graphs from ground-truth structures of connected events, and through
events that correspond to the same temporal expression, and show how this can be used
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for more efficient TR.

Markov Logic Networks (MLN)

Another important method that has been proposed for TR-based prediction are Markov
Logic Networks (MLN) (Richardson and Domingos, 2006). These were first explored
for TIE by Yoshikawa et al. (2009), and later also by Ling and Weld (2010), and Ha
et al. (2010). An major difference between MLN and the inference methods mentioned
earlier, is that instead of combining locally trained models in a global inference setting,
MLN also exploit the temporal constraints during training. Also, the weights for TR
constraints can be learned, allowing the model to also learn soft correlations between
TLinks, instead of hard rules.

To set up a MLN for a discriminative prediction problem, like predicting TLinks
between events, one has to: (1) define a set of hidden first-order predicates that are
observable during training that you want to predict (e.g., TLinks between different
events), (2) define a set of observed predicates, available at both training and test-time
(e.g., event features), and (3) define association rules among the predicates, which
will get assigned a weight (e.g., feature-label associations, and label-label associations,
like transitivity of certain TLinks). And (4), once the MLN is defined, a training and
inference regime has to be determined to estimate probabilities for the hidden predicates
and the association rules. This last step is often provided by MLN interpreters (Niu
et al., 2011). Yoshikawa et al. (2009) model different transitivity rules connecting
the EE-R, TE-R, and DCT-R TLinks, and show that using MLN to incorporate TR
outperforms local models that use no TR during prediction. MLN have been less
popular in more recent works for scalability reasons (Leeuwenberg and Moens, 2017b;
Mojica and Ng, 2016). MLN constraints are soft (predicate assignments can become
less likely, but not impossible), in contrast to approaches that model hard constraints,
like ILP, that allow cutting off large areas from the search space to find solutions
efficiently.

Structured Perceptron with Integer Linear Programming (SP+ILP)

Another approach to exploit TR in both training and prediction was proposed by Abend
et al. (2015), in the domain of cooking recipes. They learn a global model formulating
TIE as a structured learning problem. For this they combine an averaged structured
perceptron (Freund and Schapire, 1999) with ILP inference. Abend et al. (2015)
focused only on precedence relations between events, which was sufficient for cooking
recipes. Similar approaches but for more extensive TimeML-based relations were
proposed by Leeuwenberg and Moens (2017b) in the clinical domain, and by Ning
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et al. (2017)3 in the news domain. In these structured learning approaches, a scoring
function is learned that scores groups of TLink assignments rather than single TLink
assignments, as local models do. Model inference then corresponds to finding the
assignment of TLinks with the highest overall score by the model. The naive inference
method is to enumerate all possible TLinks assignments for a document, and pick the
assignment with the highest score, which is usually highly computationally intractable.
To formulate a more efficient inference procedure ILP is used to constrain the search
space, similar to the approaches mentioned in the previous section. During training of
the structured perceptron, the same ILP-style inference is used.

There are a few differences between the three SP+ILP approaches: Abend et al. (2015)
focused on precedence relations between the events only. For this reason, their objective
was to find a single chain of relations in which each event is visited only once, whereas
the other two works use a more extensive rule set, making inference more complex.
Also, Leeuwenberg and Moens (2017b) besides hard-coded transitivity rules, also
exploited soft learned label-label constraints. And, Ning et al. (2017) used an even
more extensive transitivity table for TR, including more expressive rules that infer also
some general Allen relations (disjunctions of TLinks), resulting in more expressive TR
(class II). Similar to most approaches all works prune the total set of TLink candidate
pairs to reduce computational complexity, and in all cases it was reported that TR
during both training and prediction generally performs better compared to combining
local classifiers with ILP.

Direct Timeline Models (DTLM)

Recently, a new type of approach to temporal event ordering was proposed by
Leeuwenberg and Moens (2018a) (discussed in detail in Chapter 6). Instead of
predicting TLinks among events and temporal expressions, their model directly predicts
the start and end points of events. An advantage of this approach is that it is fast, as
predicting start and end points for each event is linear in the number of events, in
contrast to predicting a set of TLinks, which is quadratic or requires pruning. To train
their model they exploit TR to convert TLinks to sets of point-algebraic constraints.
The loss function to train the model represents the distance that start and end points
of events still need to shift to make all annotated temporal order relations valid on the
predicted timeline. Another advantage of this approach is that its predicted timelines
are consistent by definition. The main limitation of the approach is that there is no
probabilistic interpretation of confidence for predictions, which is mentioned as future
work.

3Which was later extended to deal with sparse annotations (Ning et al., 2018d), jointly reason with causal
relations (Ning et al., 2018a), and to include statistical knowledge from other resources (Ning et al., 2018b).
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5.5.4 Temporal Reasoning during Model Evaluation (TR-ME)

Initially, temporal information extraction systems were evaluated using either accuracy
or F1-measure of extracted TLinks. Setzer et al. (2003) proposed to exploit TR to
address a problem of straightforward calculation of accuracy or F1-measure:

• The same temporal situation can be represented using different TLinks (e.g., A
BEFORE B represents the same situation as B AFTER A with different labels).

To counter this problem they proposed to apply a temporal closure using all TLink
types before evaluating F1-measure. However, this way, all TLinks are weighted
equally, predicted and inferred TLinks. Tannier et al. (2008) addressed this problem by
evaluating only with regard to core relations. From a set of TLinks, the core relations
can be obtained by removing relations one-by-one, for as long as the inferable set of
relations does not change (i.e., no information is lost). A problem with this approach
however is that when comparing only core relations, not all inference information is
captured, as already pointed out by Tannier et al. (2008) and Tannier and Muller (2011).

UzZaman and Allen (2011) have proposed a metric that deals with this issue, called
temporal-awareness. They calculate a harmonic mean of precision and recall, i.e., an
F-score. A crucial difference with Setzer et al. (2003), and Tannier et al. (2008) is that
to calculate their precision and recall they do not modify the original relations, but
rather change the criterion on whether a relation is correctly classified with regard to
the reference or not, using TR. Their precision metric is calculated as the percentage of
system relations that can be verified from the reference relations using TR. Recall is
calculated as the percentage of reference relations that can be verified from the system
relations, using TR. To perform TR, they exploit TimeGraph (Miller and Schubert,
1990), an efficient TR algorithm based on the mapping between intervals and point
algebra mentioned in Figure 5.6. TimeGraph conducts TR in the non-disjunctive sub-
fragment of Allen’s algebra, i.e., expressivity class III. The temporal-awareness is now
used widely for evaluating TIE systems.

5.5.5 Overview of TR in TIE

There are some striking differences between the usage of TR in the different phases
of model construction. During annotation, TR has shown positive results, and can
help to reduce annotation work, and ensure consistency in the annotations. However,
exploiting TR is not yet common practice in corpus construction.

In Table 5.2, we construct an overview of - to our knowledge - all TIE systems
described in the literature that employ some form of interval or point-based reasoning
for event ordering in the past three decades. We can see in the overview that in
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earlier approaches fewer TLink categories have been used for TR, focusing mostly on
precedence relations (PR) between event-event pairs (EE-R). In later approaches more
relation types are predicted, like temporal inclusion (IR), temporal equivalence (ER),
and overlap relations (OR). This shows that the research focus in the community slowly
grows in the direction of the challenge of full TIE, where all temporal cues from the
text are extracted and combined at the same time, making TR an increasingly important
aspect of TIE systems.

If we look at the use of TR to expand the training data (TR-DE) we observe mixed
effects. Approaches that report high improvements above 10% improvement (Mani
et al., 2006, 2007; Tatu and Srikanth, 2008) do so while splitting the training and test
set on the relation instance level after TR. When splitting on the document-level, which
is more realistic setting, the improvements are much smaller or even negative (Mani
et al., 2007; Tatu and Srikanth, 2008; Nikfarjam et al., 2013; Mirza, 2014).

TR-based prediction approaches (TR-TP) are reported to outperform those that do
not exploit TR, where ILP based approaches generally outperform greedy approaches
(Bramsen et al., 2006b; Denis and Muller, 2011; Mirroshandel and Ghassem-Sani,
2012). A trend also seen in the table, is that more systems exploit TR not only during
prediction (NRO, BF, ILP, SLI, RRHC), but also during training (SI, MLN, SP+ILP,
DTLM), as this has shown to improve performance even further (Leeuwenberg and
Moens, 2017b; Ning et al., 2017), stressing the importance of integration of TR in TIE
models.

The expressivity of the TR-based prediction approaches (in column TR-TP) mostly
concerns basic Allen relations (class I). Ning et al. (2017, 2018a) extend this to
transitivity rules with disjunctions of Allen relations in the conclusion (class II), but
they still perform reasoning with the interval-level transitivity table. The vast majority
of TR approaches that go beyond Allen’s composition table of basic relations (from
class I or II to class III) in TR expressiveness almost all perform reasoning in point
algebra to remain tractable. This is observed in all areas of TIE: data expansion
(Verhagen, 2005), training and prediction (Denis and Muller, 2011; Leeuwenberg
and Moens, 2018a), and for evaluation (UzZaman and Allen, 2011). This indicates
the importance of exploiting the point-interval mapping when considering practical
systems, where expressivity and efficiency are both important.

It can be seen that during evaluation the expressivity of TR is frequently of class
III. This is because the temporal awareness metric by (UzZaman and Allen, 2011)
was adopted in the TempEval challenges (UzZaman et al., 2013; Minard et al., 2015;
Bethard et al., 2016, 2017), and hence became a standard evaluation metric to use.
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Table 5.2: Overview of event ordering TIE systems using interval or point-based TR. The first column
shows the reference, the second the types of temporal interval relations that are predicted: precedence
relations (PR: precedes, preceded by, meets, met by) inclusion relations (IR: during, contains, starts, started
by, ends, ended by), overlap relations (OR: overlap, overlapped by) or equivalence relations (ER: equals).
The next three columns indicate whether TR was used for data expansion (TR-DE), during training or
prediction (TR-TP), or during model evaluation (TR-ME), where roman numerals indicate the expressivity
class from section 5.3. The last column shows among what types of entities the relations are predicted
(from section 5.4), where † indicates if ground truth relations were used in TR that were not predicted. If a
reference directly evaluated absence of TR, for each experiment (separated by /), we report baseline score(s),
and the change in score due to TR. Scores and improvements are incomparable across references, as datasets,
tasks, and evaluation metrics vary.
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5.6 Future Directions and Discussion

In this section we discuss the results from the survey and aim to point out areas that
have been relatively unexplored or that we believe are promising for future work.

In the previous section, we observed that TR during prediction improves over using
no TR, global methods outperform local greedy methods, and integrating TR in both
prediction and training can improve model performance even further.

Efficiency of TR has not been compared explicitly across models in the existing TIE
literature. However, it is used as motivation for many works to choose for a certain
method. In general, greedy methods and sieve-based methods (BF, NRO, SI), which
look for local optimal solutions, are faster than global methods like ILP, MLN, and
RRHC, possibly at the cost of performance. There has been some work on comparing
efficiency of ILP-style inference and MLN, which suggests that ILP is more efficient
for currently existing solvers (Mojica and Ng, 2016). Also, SP+ILP methods are
generally slower in training time than ILP-based methods, as their more complex
inference procedure is also performed during training, however as seen in Table 5.2, it
also often provides further improvements. To choose the degree of TR may depend on
your dataset as well, as predicting densely connected graphs generally benefits more
from TR. As mentioned in section 5.3, irrespective of the degree of TR, point-based
TR methods are generally faster than equally expressive interval-based TR methods.

In this light, we observe that more recent works focus more on annotating and predicting
relations between start and end points of events, rather than relations between events or
intervals (Reimers et al., 2016, 2018; Ning et al., 2018c,e; Leeuwenberg and Moens,
2018a). We believe this is a promising and important change in perspective also
with regard to TR. To increase expressivity of a TR component up to class III while
remaining tractable reasoning in point-algebra is crucial. Additionally, representing the
temporality of events by their start and end points provides flexibility when combining
different annotation schemes, as most schemes can be converted to point-algebra.

Also, this flexibility could be very beneficial when incorporating other types of
reasoning. Many questions that involves temporality can not be solved using TR alone,
but require other types of semantic reasoning about events and entities (Höffner et al.,
2017; Pampari et al., 2018; Suster and Daelemans, 2018), including (but not limited
to) co-reference (Do et al., 2012), spatial reasoning, which has strong similarities with
temporal reasoning (Guesgen, 1989; Mukerjee and Joe, 1990; Freksa, 1992b; Walsh,
2003), and causal reasoning and extraction (Bethard et al., 2008; Mirza and Tonelli,
2014; Mirza, 2014; Mirza and Tonelli, 2016; Mostafazadeh et al., 2016; Dunietz et al.,
2017; Ning et al., 2018a).

To incorporate these different types of information into single TIE models we believe
neural networks could be a suitable model class, as they are very flexible in combining
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multiple tasks, and incorporating background knowledge like typical event orders
(Chklovski and Pantel, 2004; Pichotta and Mooney, 2016), durations (Vempala et al.,
2018), or times of the day (Noro et al., 2006). Currently, many neural TIE approaches
follow the pairwise TLink classification paradigm, and are based on LSTM (Tourille
et al., 2017b; Cheng and Miyao, 2017; Leeuwenberg and Moens, 2018b; Meng et al.,
2017; Choubey and Huang, 2017; Lin et al., 2018, 2019), convolutional neural networks
(CNN) (Dligach et al., 2017; Lin et al., 2017), tree-based LSTM networks (Galvan et al.,
2018), and attention networks (Liu et al., 2019). However, currently the exploitation of
TR for neural TIE has been very limited in neural TIE systems leaving room for future
research.

Another area we would like to address is the challenging area of cross-document TIE.
For TR in cross-document TIE temporal cues from multiple documents need to be
combined, stressing the importance of computational efficiency. Cross-document TIE
has not been discussed elaborately in this survey as the amount of TR in this research
area has been very limited, possibly for this very reason of computational efficiency.
Barzilay and McKeown (2005) were one of the first to dive into this area of research,
and used iconicity, the heuristic that in narrative texts events are often mentioned in
chronological order, to temporally order sentences in a multi-document summarization
task. There has been work on generating course grained entity-focused timelines from
multiple news articles as a means to do multi-document summarization (Yan et al., 2011;
Zhao et al., 2013; Lin et al., 2014; Wang et al., 2015; Althoff et al., 2015). However,
the focus of most of the research in this area lies mainly on the informativeness of
sentences for the summary, and less on the temporal aspect. In most cases, TIE is
very limited, and it is simply assumed that all events mentioned in each text occur
at the document-creation time, leaving many opportunities for TIE and TR. Besides
computational efficiency, a challenge in a cross-document TIE setting is that event
mentions of the same event should be linked across documents, called cross-document
event co-reference. Event co-reference is strongly connected to TIE as a single event
can only occur at a single time. Do et al. (2012) modeled this principle connecting
TIE and event co-reference in their TR-based prediction using ILP. However, this was
in a within-document setting. This could be a good starting point for cross-document
ILP formulations. Minard et al. (2015) provided a setup for evaluating this problem
in a shared task. However, TR has not yet been explored by the participants of this
shared task. Also the ECB+ corpus (Cybulska and Vossen, 2014), which contains
event co-reference and temporal information annotations across documents could be
an interesting resource.

With regard to general TIE, considering both cross-document but also within-document
relations, we can observe from the overview in the previous section that the state-
of-the-art systems using TR focus mainly on ordering events, and anchoring events
to temporal expressions, using TimeML-style data. Since TimeML only annotates
duration cues that are definite, quantified and explicit it does not contain implicit or
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background event duration information, nor explicit indefinite quantification (long
meeting). There have been TIE systems that also use implicit duration information
(Pan et al., 2006b; Reimers et al., 2018). However, these systems do not exploit TR,
nor TimeML-style annotations, leaving a gap in the literature: systems that are able
to combine different data sources, like TimeML and event duration annotations (Pan
et al., 2011; Reimers et al., 2016). Combining different types of information and
learning from different data sources presents new challenges for TR. For the TR aspect
it might be interesting to explore temporal constraint networks, that are able to deal
with quantification (Dechter and Cohen, 2003). Two systems for which we believe
further integration of event duration information would be straightforward are: (1)
the direct timeline models by Leeuwenberg and Moens (2018a), and (2) the work of
Reimers et al. (2018), as both approaches already predict and combine event position
and duration.

5.7 Conclusions

We presented a comprehensive survey on how temporal reasoning mechanisms can be
exploited for temporal information extraction, covering the literature of the last three
decades in this research area.

To explain the complexity of the temporal information that is present in language we
provided an exemplified overview of the different types of temporal information present
in language: absolute v.s. relative cues, definite and indefinite cues, implicit cues, and
background knowledge. Many types of temporal cues, like explicit event position cues,
and event durations can already be extracted by different types of temporal information
extraction systems from the literature.

There appears to be a trend towards more complete TR, going from only reasoning
about EE-R, towards including also TE-R, DCT-R, and even TT-R. Although still no
systems seem to combine all temporal cues as of yet. For example, information about
the relative ordering of events and quantified duration information have not yet been
combined in TR, although data is available, accommodating room for future work on
joint models.

To provide a back-bone for the state-of-the-art TIE systems using TR, a comprehensive
explanation of the most widely used temporal reasoning frameworks in temporal
information extraction systems was given. We reviewed Allen’s interval algebra and
its relation to point algebra in detail, giving insight into the considerations with regard
to expressiveness of temporal reasoning and computational efficiency. We argue that
for obtaining practical systems point-algebraic approaches for TR are preferred, as
they strike a good balance between expressiveness and efficiency instead of reasoning
directly with Allen’s interval relations.
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In the core of the survey, we reviewed the different methods to exploit temporal
reasoning for constructing temporal information extraction models and distilled the
most widely confirmed conclusions. TR during annotation has been proposed already
early on, and is effective for ensuring connectivity and consistency in annotations but
has been used to a limited degree in existing corpora. To expand the often only sparsely
annotated TimeML data, a transitive closure is used frequently to densify the annotated
temporal graphs. This has been found mostly beneficial when TR is also used during
model inference, as TR during model inference appears to work better on densely
connected temporal graphs. Generally, usage of TR for model inference appears to
increase model performance. Some approaches use TR only during training, and some
both during training and inference. Inference-only approaches include: BF, ILP, RRHC,
and SLI, and approaches that use TR also during training include: MLN, SI, SP+ILP,
and DTLM. The last category of approaches has been researched most recently and
has been reported to perform better than inference-only approaches. For evaluation
the research community has converged on using the TR-based temporal awareness
measure.

In closing, it is clear that TR is crucial for TIE, and widely used in all aspects of model
construction. However, most current research on TIE still addresses sub-fragments of
the complete TIE problem, focusing on extraction of specific types of temporal cues,
instead of extracting all cues jointly which would allow them to complement each
other. Consequently, it remains an open research question how to perform efficient and
expressive TR involving all types of temporal cues. We believe to answer this question,
a flexible, expressive and efficient reasoning framework is required. For this, we
believe important directions of research are point-based reasoning approaches, striking
a good balance between efficiency and expressiveness, and deep learning methods,
that facilitate flexibility in model construction, multi-task learning, and sharing of
representations.



6
Direct Prediction of Relative Timelines

This chapter was previously published as:

Artuur Leeuwenberg and Marie-Francine Moens. 2018. Temporal Information
Extraction by Predicting Relative Timelines. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 1237-1246,
Brussels, Belgium. ACL.

Chapters 3 and 4 have focused on the extraction of temporal relations. In this chapter,
we address the successive step of timeline construction, using the powerful link between
the interval-based temporal relations and point-based reasoning, highlighted in the
previous chapter (Chapter 5). We investigate how we can construct timelines from
temporal graphs, but more interestingly whether we can train models from annotated
temporal graphs that directly predict timeline positions for events, without extracting
temporal relations as intermediate step. The motivation for this is that temporal relation
extraction generally involves a squared complexity with regard to the number of events
in the text.

This chapter introduces an indirect timeline construction method, two direct timeline
models, and three loss functions to train the models. The approaches are empirically
evaluated on two benchmark datasets in the news domain, and provide promising
results, particularly for direct timeline prediction.
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6.1 Introduction

The current leading perspective on temporal information extraction regards three phases:
(1) a temporal entity recognition phase, extracting events (blue boxes in Fig. 6.1) and
their attributes, and extracting temporal expressions (green boxes), and normalizing
their values to dates or durations, (2) a relation extraction phase, where temporal
links (TLinks) among those entities, and between events and the document-creation
time (DCT) are found (arrows in Fig. 6.1, left). And (3), construction of a timeline
(Fig. 6.1, right) from the extracted temporal links, if they are temporally consistent.
Much research has concentrated on the first two steps, but very little research looks
into step 3, timeline construction, which is the focus of this chapter.

In this chapter, we propose a new timeline construction paradigm that avoids phase
2, the relation extraction phase, because in the classical paradigm temporal relation
extraction comes with many difficulties in training and prediction that arise from the
fact that for a text with n temporal entities (events or temporal expressions) there are
n2 possible entity pairs, which makes it likely for annotators to miss relations, and
makes inference slow as n2 pairs need to be considered. Temporal relation extraction
models consistently give lower performance than those in the entity recognition phase
(UzZaman et al., 2013; Bethard et al., 2016, 2017), introducing errors in the timeline
construction pipe-line.

The ultimate goal of our proposed paradigm is to predict from a text in which entities
are already detected, for each entity: (1) a probability distribution on the entity’s
starting point, and (2) another distribution on the entity’s duration. The probabilistic
aspect is crucial for timeline based decision making. Constructed timelines allow for
further quantitative reasoning with the temporal information, if this would be needed
for certain applications.

As a first approach towards this goal, in this chapter, we propose several initial timeline
models in this paradigm, that directly predict - in a linear fashion - start points and
durations for each entity, using text with annotated temporal entities as input (shown in
Fig. 6.1). The predicted start points and durations constitute a relative timeline, i.e., a
total order on entity start and end points. The timeline is relative, as start and duration
values cannot (yet) be mapped to absolute calender dates or durations expressed in
seconds. It represents the relative temporal order and inclusions that temporal entities
have with respect to each other by the quantitative start and end values of the entities.
Relative timelines are a first step toward our goal, building models that predict statistical
absolute timelines. To train our relative timeline models, we define novel loss functions
that exploit TimeML-style annotations, used in most existing temporal corpora.

This chapter leads to the following contributions:
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TLink Extraction: O(n²) S-TLM and C-TLM: O(n)

Output: Relative TimelineTimeML Annotations

includes simultaneous

Last week, John jogged for many hours.
t1 t2

before e1: jogged

t1: last week
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Input: Text with Temporal Entities (n=3)

Last week, John jogged for many hours.
t1 e1 t2

DCT
TL2RTL

DCT

e1

Figure 6.1: An overview of two paradigms: (1) The indirect approach (dashed arrows),
where first TLinks are predicted from which we can build a relative timeline using
TL2RTL. And (2), the direct approach (solid arrow), where a relative timeline is
predicted directly from the input by S-TLM or C-TLM.

• A new method to construct a relative timeline from a set of temporal relations
(TL2RTL).

• Two new models that, for the first time, directly predict (relative) timelines - in
linear complexity - from entity-annotated texts without doing a form of temporal
relation extraction (S-TLM & C-TLM).

• Three new loss functions based on the mapping between Allen’s interval
algebra and the end-point algebra to train timeline models from TimeML-style
annotations.

In the next sections we will further discuss the related work on temporal information
extraction. We will describe the models and training losses in detail, and report on
conducted experiments.

6.2 Related Work

6.2.1 Temporal Information Extraction

The way temporal information is conveyed in language has been studied for a long time.
It can be conveyed directly through verb tense, explicit temporal discourse markers
(e.g. during or afterwards) (Derczynski, 2017) or temporal expressions such as dates,
times or duration expressions (e.g. 10-05-2010 or yesterday). Temporal information
is also captured in text implicitly, through background knowledge about, for example,
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duration of events mentioned in the text (e.g. even without context, walks are usually
shorter than journeys).

Most temporal corpora are annotated with TimeML-style annotations, of which an
example is shown in Fig 6.1, indicating temporal entities, their attributes, and the
TLinks among them.

The automatic extraction of TimeML-style temporal information from text using
machine learning was first explored by Mani et al. (2007). They proposed a multinomial
logistic regression classifier to predict the TLinks between entities. They also noted
the problem of missed TLinks by annotators, and experimented with using temporal
reasoning (temporal closure) to expand their training data.

Since then, much research focused on further improving the pairwise classification
models, by exploring different types of classifiers and features, such as (among others)
logistic regression and support vector machines (Bethard, 2013; Lin et al., 2016a), and
different types of neural network models, such as long short-term memory networks
(LSTM) (Tourille et al., 2017a; Cheng and Miyao, 2017), and convolutional neural
networks (CNN) (Dligach et al., 2017). Moreover, different sieve-based approaches
were proposed (Chambers et al., 2014; Mirza and Tonelli, 2016), facilitating mixing of
rule-based and machine learning components.

Two major issues shared by these existing approaches are: (1) models classify TLinks
in a pairwise fashion, often resulting in an inference complexity of O(n2), and (2)
the pair-wise predictions are made independently, possibly resulting in prediction of
temporally inconsistent graphs. To address the second, additional temporal reasoning
can be used at the cost of computation time, during inference (Chambers and Jurafsky,
2008a; Denis and Muller, 2011; Do et al., 2012), or during both training and inference
(Yoshikawa et al., 2009; Laokulrat et al., 2015; Ning et al., 2017; Leeuwenberg and
Moens, 2017b). In this chapter, we circumvent these issues, as we predict timelines -
in linear time complexity - that are temporally consistent by definition.

6.2.2 Temporal Reasoning

Temporal reasoning plays a central role in temporal information extraction, and there
are roughly two approaches: (1) Reasoning directly with Allen’s interval relations
(shown in Table 6.1), by constructing rules like: If event X occurs before Y, and event
Y before Z then X should happen before Z (Allen, 1983). Or (2), by first mapping
the temporal interval expressions to expressions about interval end-points (start and
endings of entities) (Vilain et al., 1990). An example of such mapping is that If event X
occurs before Y then the end of X should be before the start of Y. Then reasoning can
be done with end-points in a point algebra, which has only three point-wise relations
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Last week , John jogged for many hours .
t1 e1 t2

biRNNd  biRNNd  biRNNd biRNNd  biRNNd  biRNNd  biRNNd biRNNd  biRNNd 

biRNNs biRNNs  biRNNs biRNNs  biRNNs  biRNNs  biRNNs biRNNs  biRNNs 

se1 de1st1 dt1 st2 dt2

w2 w1  w3  w4  w5  w6  w7  w8  w9 

Figure 6.2: Schematic overview of our two timeline models: C-TLM (solid edges),
exploiting entity context, and the simpler S-TLM (dotted edges), which is context
independent. The models predict a starting point (s) and duration (d) for each given
temporal entity (t1, e1, and t2) in the input.

(=, <,>), making reasoning much more efficient compared to reasoning with Allen’s
thirteen interval relations.

Mapping interval relations to point-wise expressions has been exploited for model
inference by Denis and Muller (2011), and for evaluation by UzZaman and Allen
(2011). In this chapter, we exploit it for the first time for model training, in our loss
functions.

6.3 Models

We propose two model structures for direct timeline construction: (1) a simple context-
independent model (S-TLM), and (2) a contextual model (C-TLM). Their structures are
shown in Fig. 6.2. Additionally, we propose a method to construct relative timelines
from a set of (extracted) TLinks (TL2RTL). In this section we first explain the first two
direct models S-TLM and C-TLM, and afterwards the indirect method TL2RTL.

6.3.1 Direct Timeline Models

Word representation

In both S-TLM and C-TLM, words are represented as a concatenation of a word
embedding, a POS embedding, and a Boolean feature vector containing entity attributes
such as the type, class, aspect, following Do et al. (2012). Further details on these are
given in the experiments section.
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Simple Timeline Model (S-TLM)

For the simple context-independent timeline model, each entity is encoded by the word
representation of the last word of the entity (generally the most important). From this
representation we have a linear projection to the duration d, and the start s. S-TLM is
shown by the dotted edges in Fig 6.2. An advantage of S-TLM is that it has very few
parameters, and each entity can be placed on the timeline independently of the others,
allowing parallelism during prediction. The downside is that S-TLM is limited in its
use of contextual information.

Contextual Timeline Model (C-TLM)

To better exploit the entity context we also propose a contextual timeline model C-
TLM (solid edges in Fig 6.2), that first encodes the full text using two bi-directional
recurrent neural networks, one for entity starts (BiRNNs), and one for entity durations
(BiRNNd).1 On top of the encoded text we learn two linear mappings, one from the
BiRNNd output of the last word of the entity mention to its duration d, and similarly
for the start time, from the BiRNNs output to the entity’s start s.

Predicting Start, Duration, and End

Both proposed models use linear mappings2 to predict the start value si and duration
di for the encoded entity i. By summing start si and duration di we can calculate the
entity’s end-point ei.

ei = si + max(di, dmin) (6.1)

Predicting durations rather than end-points makes it easy to control that the end-point
lies after the start-point by constraining the duration di by a constant minimum duration
value dmin above 0, as shown in Eq. 6.1.

Modeling Document-Creation Time

Although the DCT is often not found explicitly in the text, it is an entity in TimeML,
and has TLinks to other entities. We model it by assigning it a text-independent start
sDCT and duration dDCT.

1We also experimented with sharing weights among BiRNNd and BiRNNs. In our experiments, this
gave worse performance, so we propose to keep them separate.

2Adding more layers did not improve results.
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Start sDCT is set as a constant (with value 0). This way the model always has the same
reference point, and can learn to position the entities w.r.t. the DCT on the timeline.

In contrast, DCT duration dDCT is modeled as a single variable that is learned (initialized
with 1). Since multiple entities may be included in the DCT, and entities have a
minimum duration dmin, a constant dDCT could possibly prevent the model from fitting
all entities in the DCT. Modeling dDCT as a variable allows growth of dDCT and averts
this issue.3

Training Losses

We propose three loss functions to train timeline models from TimeML-style
annotations: a regular timeline loss Lτ , and two slightly expanded discriminative
timeline losses, Lτce and Lτh.

Regular Timeline Loss (Lτ )

Ground-truth TLinks can be seen as constraints on correct positions of entities on a
timeline. The regular timeline loss Lτ expresses the degree to which these constraints
are met for a predicted timeline. If all TLinks are satisfied in the timeline for a certain
text, Lτ will be 0 for that text.

As TLinks relate entities (intervals), we first convert the TLinks to expressions that
relate the start and end points of entities. How each TLink is translated to its
corresponding point-algebraic constraints is given in Table 6.1, following Allen (1983).

As can be seen in the last column there are only two point-wise operations in the
point-algebraic constraints: an order operation (<), and an equality operation (=). To
model to what degree each point-wise constraint is met, we employ hinge losses, with
a margin mτ , as shown in Eq. 6.2.

To explain the intuition and notation: If we have a point-wise expression ξ of the form
x < y (first case of Eq. 6.2), then the predicted point x̂ should be at least a distance
mτ smaller (or earlier on the timeline) than predicted point ŷ in order for the loss to be
0. Otherwise, the loss represents the distance x̂ or ŷ still has to move to make x̂ smaller
than ŷ (and satisfy the constraint). For the second case, if ξ is of the form x = y, then
point x̂ and ŷ should lie very close to each other, i.e., at most a distance mτ away from
each other. Any distance further than the margin mτ is counted as loss. Notice that

3Other combinations of modeling sDCT and dDCT as variable or constant decreased performance.
4No TLink for Allen’s overlap relation is present in TimeML, also concluded by UzZaman and Allen

(2011).
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Table 6.1: Point algebraic interpretation (IPA) of temporal links used to construct
the loss function. The start and end points of event X are indicated by sx and ex
respectively.

Allen Algebra Temporal Links Point Algebra (IPA)

X precedes Y
Y preceded by X

X before Y
Y after X ex < sy

X starts Y
Y started by X

X begins Y
Y begun by X

sx = sy
ex < ey

X finishes Y
Y finished by X

X ends Y
Y ended by X

ex = ey
sy < sx

X during Y
Y includes X

X is included in Y
Y includes X

sy < sx
ex < ey

X meets Y
Y met by X

X immediately before Y
Y immediately after X ex = sy

X overlaps Y
Y overlapped by X

absent4

absent4
sx < sy
sy < ex
ex < ey

X equals Y
X simultaneous Y
X identity Y

sx = sy
ex = ey

Y ey sy

Xsx ex

X simultaneous Y

X before Y

X includes Y

mτ mτmτ

Figure 6.3: Visualization of the timeline loss Lτ with margin mτ , for two events X
and Y, and TLinks simultaneous, before, and includes. The red arrows’ lengths indicate
the loss per relation, i.e., how much the points should be shifted to satisfy each relation.

if we set margin mτ to 0, the second case becomes an L1 loss |x̂− ŷ|. However, we
use a small margin mτ to promote some distance between ordered points and prevent
confusion with equality. Fig. 6.3 visualizes the loss for three TLinks.
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Lp(ξ|t, θ) =
{

max(x̂+mτ − ŷ, 0) iff x < y

max(|x̂− ŷ| −mτ , 0) iff x = y
(6.2)

The total timeline loss Lτ (t|θ) of a model with parameters θ on text t with ground-truth
TLinks R(t), is the sum of the TLink-level losses of all TLinks r ∈ R(t). Each
TLink-level loss Lr(r|t, θ) for TLink r is the sum of the point-wise losses Lp(ξ|t, θ)
of the corresponding point-algebraic constraints ξ ∈ IPA(r) from Table 6.1.5

Lr(r|t, θ) =
∑

ξ∈IPA(r)

Lp(ξ|t, θ) (6.3)

Lτ (t, θ) =
∑
r∈R(t)

Lr(r|t, θ) (6.4)

Discriminative Timeline Losses

To promote a more explicit difference between the relations on the timeline we introduce
two discriminative loss functions, Lτce and Lτh, which build on top of Lr. Both
discriminative loss functions use an intermediate score S(r|t, θ) for each TLink r
based on the predicted timeline. As scoring function, we use the negative Lr loss, as
shown in Eq. 6.5.

S(r|t, θ) = −Lr(r|t, θ) (6.5)

Then, a lower timeline loss Lr(r|t, θ) results in a higher score for relation type r.
Notice that the maximum score is 0, as this is the minimum Lr.

Probabilistic Loss (Lτce)

Our first discriminative loss is a cross-entropy based loss. For this the predicted scores
are normalized using a softmax over the possible relation types (TL). The resulting
probabilities are used to calculate a cross-entropy loss, shown in Eq. 6.6. This way, the
loss does not just promote the correct relation type but also distantiates from the other
relation types.

Lτce(t|θ) =
∑
r∈R(t)

r · log
( eS(r|t,θ)∑

r′∈TL e
S(r′|t,θ)

)
(6.6)

5The TLink during and its inverse are mapped to simultaneous, following the evaluation of TempEval-3.
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Ranking Loss (Lτh)

When interested in discriminating relations on the timeline, we want the correct relation
type to have the highest score from all possible relation types TL. To represent this
perspective, we also define a ranking loss with a score margin mh in Eq. 6.7.

Lτh(t|θ) =
∑
r∈R(t)

∑
r′∈TL\{r}

max(S(r′|t, θ) − S(r|t, θ) + mh, 0) (6.7)

Training Procedure

S-TLM and C-TLM are trained by iterating through the training texts, sampling mini-
batches of 32 annotated TLinks. For each batch we (1) perform a forward pass, (2)
calculate the total loss (for one of the loss functions), (3) derive gradients using Adam6

(Kingma and Ba, 2014), and (4) update the model parameters θ via back-propagation.
After each epoch we shuffle the training texts. As the stopping criteria we use early
stopping (Morgan and Bourlard, 1990), with a patience of 100 epochs and a maximum
number of 1000 epochs.

6.3.2 From TLinks to Relative Timelines (TL2RTL)

To model the indirect route, we construct a novel method, TL2RTL, that predicts
relative time lines from a subset of TLinks, shown in Fig 6.1. One can choose any
method to obtain a set of TLinks R(t) from a text t, serving as input to TL2RTL.
TL2RTL constructs a relative timeline, by assigning start and end values to each
temporal entity, such that the resulting timeline satisfies the extracted TLinks R(t) by
minimizing a loss function that is 0 when the extracted TLinks are satisfied. TL2RTL
on itself is a method and not a model. The only variables over which it optimizes the
loss are the to be assigned starts and duration values.

In detail, for a text t, with annotated entities E(t), we first extract a set of TLinks
R(t). In this chapter, to extract TLinks, we use the current state-of-the-art structured
TLink extraction model by Ning et al. (2017). Secondly, we assign a start variable si,
and duration variable di to each entity i ∈ E(t). Similar to S-TLM and C-TLM, for
each i ∈ E(t), di is bounded by a minimum duration dmin to ensure start si always
lies before end ei. Also, we model the DCT start sDCT as a constant, and its duration
dDCT as a variable. Then we minimize one of the loss functions Lτ , Lτce, or Lτh
on the extracted TLinks R(t), obtaining three TL2RTL variants, one for each loss.

6Using the default parameters from the paper.
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If the initially extracted set of TLinks R(t) is consistent, and the loss is minimized
sufficiently, all si and di form a relative timeline that satisfies the TLinks R(t), but
from which we can now also derive consistent TLinks for any entity pair, also the pairs
that were not in R(t). To minimize the loss we use Adam for 10k epochs until the loss
is zero for each document.7

6.4 Experiments

6.4.1 Evaluation and Data

Because prediction of relative timelines trained on TimeML-style annotations is new,
we cannot compare our model directly to relation extraction or classification models,
as the latter do not provide completely temporally consistent TLinks for all possible
entity pairs, like the relative timelines do. Neither can we compare directly to existing
absolute timeline prediction models such as Reimers et al. (2018) because they are
trained on different data with a very different annotation scheme.

To evaluate the quality of the relative timeline models in a fair way, we use TimeML-
style test sets as follows: (1) We predict a timeline for each test-text, and (2) we check
for all ground-truth annotated TLinks that are present in the data, what would be the
derived relation type based on the predicted timeline, which is the relation type that
gives the lowest timeline loss Lr. This results in a TLink assignment for each annotated
pair in the TimeML-style reference data, and therefor we can use similar metrics. As
evaluation metric we employ the temporal awareness metric, used in TempEval-3,
which takes into account temporal closure (UzZaman et al., 2013). Notice that although
we use the same metric, comparisons against relation classification systems would be
unfair, as our model assigns consistent labels to all pairs, whereas relation classification
systems do not.

For training and evaluation we use two data splits, TE‡ and TD‡, exactly following
Ning et al. (2017). Some statistics about the data are shown in Table 6.2.8 The splits
are constituted from various smaller datasets: the TimeBank (TB) (Pustejovsky et al.,
2003b), the AQUANT dataset (AQ), and the platinum dataset (PT) all from TempEval-3
(UzZaman et al., 2013). And, the TimeBank Dense (Chambers et al., 2014) , and the
Verb-Clause dataset (VC) (Bethard et al., 2007).

7For some documents the extracted TLinks were temporally inconsistent, resulting in a non-zero loss.
Nevertheless, > 96% of the extracted TLinks were satisfied.

8We explicitly excluded all test documents from training as some corpora annotated the same documents.
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Table 6.2: Dataset splits used for evaluation (indicated with ‡).
Split Training data #TLinks #Documents Test data #TLinks #Documents

TD‡ TD (train+dev) 4.4k 27 TD (test) 1.3k 9
TE3‡ TB, AQ, VC, TD (full) 17.5k 256 PT 0.9k 20

6.4.2 Hyper-parameters and Preprocessing

Hyper-parameters shared in all settings can be found in Table 6.3. The following
hyper-parameters are tuned using grid search on a development set (union of TB
and AQ): dmin is chosen from {1, 0.1, 0.01}, mτ from {0, 0.025, 0.05, 0.1}, αd
from {0, 0.1, 0.2, 0.4, 0.8}, and αrnn from {10, 25, 50}. We use LSTM (Hochreiter
and Schmidhuber, 1997) as RNN units9 and employ 50-dimensional GloVe word-
embeddings pre-trained10 on 6B words (Wikipedia and NewsCrawl) to initialize the
models’ word embeddings.

Table 6.3: Hyper-parameters from the experiments.

Hyper-parameter Value

Document-creation starting time (sDCT) 0
Minimum event duration (dmin) 0.1
Timeline margin (mτ ) 0.025
Hinge loss margin (mh) 0.1

Dropout (αd) 0.1
Word-level RNN units (αrnn) 25
Word-embedding size (αwemb) 50
POS-embedding size 10

We use very simple tokenization and consider punctuation11 or newline tokens as
individual tokens, and split on spaces. Additionally, we lowercase the text and use the
Stanford POS Tagger (Toutanova et al., 2003) to obtain POS.

6.5 Results

We compared our three proposed models for the three loss functions Lτ , Lτce, and
Lτh, and their linear (unweighted) combination L∗, on TE3‡ and TD‡, for which the
results are shown in Table 6.4.

9We also experimented with GRU as RNN type, obtaining similar results.
10https://nlp.stanford.edu/projects/glove
11, ./\"’=+-;:()!?<>%&$*|[]{}
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Table 6.4: Evaluation in terms of precision (P), recall (R), and F1-measure (F) of relative
timelines for each model and loss function, where L∗ indicates the (unweighted) sum
of Lτ , Lτce, and Lτh.

TE3‡ TD‡
Model P R F P R F

Indirect: O(n2)
TL2RTL (Lτ ) 53.5 51.1 52.3 59.1 61.2 60.1
TL2RTL (Lτce) 53.9 51.7 52.8 61.2 60.7 60.9
TL2RTL (Lτh) 52.8 51.1 51.9 57.9 60.6 59.2
TL2RTL (L∗) 52.6 52.0 52.3 62.3 62.3 62.3

Direct: O(n)
S-TLM (Lτ ) 50.1 50.4 50.2 57.8 59.5 58.6
S-TLM (Lτce) 50.1 50.0 50.1 53.4 53.5 53.5
S-TLM (Lτh) 51.5 51.7 51.6 55.1 56.4 55.7
S-TLM (L∗) 50.9 51.0 51.0 56.5 55.3 55.9
C-TLM (Lτ ) 56.2 56.1 56.1 57.1 59.7 58.4
C-TLM (Lτce) 54.4 55.4 54.9 52.4 57.3 54.7
C-TLM (Lτh) 55.7 55.5 55.6 55.3 54.9 55.1
C-TLM (L∗) 54.0 54.3 54.1 54.6 53.5 54.1

A trend that can be observed is that overall performance on TD‡ is higher than that of
TE3‡, even though less documents are used for training. We inspected why this is the
case, and this is caused by a difference in class balance between both test sets. In TE3‡

there are many more TLinks of type simultaneous (12% versus 3%), which are very
difficult to predict, resulting in lower scores for TE3‡ compared to TD‡. The difference
in performance between the datasets is probably also be related to the dense annotation
scheme of TD‡ compared to the sparser annotations of TE3‡, as dense annotations
give a more complete temporal view of the training texts. For TL2RTL better TLink
extraction12 is also propagated into the final timeline quality.

If we compare loss functions Lτ , Lτce, and Lτh, and combination L∗, it can be noticed
that, although all loss functions seem to give fairly similar performance, Lτ gives
the most robust results (never lowest), especially noticeable for the smaller dataset
TD‡. This is convenient, because Lτ is the fastest to compute during training, as it
requires no score calculation for each TLink type. Lτ is also directly interpretable
on the timeline. The combination of losses L∗ shows mixed results, and has lower
performance for S-TLM and C-TLM, but better performance for TL2RTL. However, it
is slowest to compute, and less interpretable13, as it is a combined loss.

12F1 of 40.3 for TE3‡ and 48.5 for TD‡ (Ning et al., 2017)
13The combined loss does not directly represent the distance on the timeline that points still have to shift

to satisfy all TLinks, as Lτ does.
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Moreover, we can see that on TE3‡, C-TLM performs better than the indirect models
across all loss functions (p = 0.0714). This is a very interesting result, as C-TLM is an
order of complexity faster in prediction speed compared to the indirect models (O(n)
compared to O(n2) for a text with n entities).15 We further explore why this is the case
through our error analysis in the next section.

B A II I S
B 24.8% 4.7% 2.8% 1.6% 0.1%
A 5.0% 15.8% 3.2% 0.5% 0.0%
II 3.2% 3.2% 13.0% 0.6% 0.1%
I 4.0% 1.2% 1.0% 3.2% 0.0%
S 4.4% 3.0% 2.6% 1.3% 0.4%

B A II I S
B 23.0% 8.2% 1.3% 0.9% 0.8%
A 4.7% 17.1% 1.8% 0.3% 0.5%
II 4.3% 4.4% 11.1% 0.4% 0.0%
I 1.6% 5.4% 0.5% 1.3% 0.5%
S 4.3% 4.1% 1.8% 0.6% 0.9%

Figure 6.4: On the left, the confusion matrix of C-TLM (Lτ ), and on the right of
TL2RTL (Lτce), on TE3‡ for the top-5 most-frequent TLinks (together 95% of data):
BEFORE (B), AFTER (A), IS INCLUDED (II), INCLUDES (I), and SIMULTANEOUS (S).
Predictions are shown on the x-axis and ground-truth on the y-axis.

On TD‡, the indirect models seem to perform slightly better (p = 0.12). We suspect
that the reason for this is that C-TLM has more parameters (mostly the LSTM weights),
and thus requires more data (TD‡ has much fewer documents than TE3‡) compared
to the indirect methods. Another result supporting this hypothesis is the fact that
the difference between C-TLM and S-TLM is small on the smaller TD‡, indicating
that C-TLM does not yet utilize contextual information from this dataset, whereas, in
contrast, on TE3‡, the larger dataset, C-TLM significantly (p < 0.01) outperforms
S-TLM across all loss functions, showing that when enough data is available C-TLM
learns good LSTM weights that exploit context substantially.

6.6 Error Analysis

We compared predictions of TL2RTL(Lτ ) with those of C-TLM (Lτ ), the best models
of each paradigm. In Table 6.4, we show the confusion matrices of both systems on
TE3‡.

When looking at the overall pattern in errors, both models seem to make similar
confusions on both datasets (TD‡ was excluded for space constraints).

Overall, we find that simultaneous is the most violated TLink for both models. This
can be explained by two reasons: (1) It is the least frequent TLink in both datasets. And

14We calculate p using a document-level paired t-test.
15We do not directly compare prediction speed, as it would result in unfair evaluation because of

implementation differences. However, currently, C-TLM predicts at ∼100 w/s incl. POS tagging, and
∼2000 w/s without. When not using POS, overall performance decreases consistently with 2-4 points.
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Table 6.5: Example events from the top-shortest/longest durations and top-
earliest/latest start values assigned by the model.

Short d Long d Early s Late s

started going destroyed realize
meet expects finished bring
entered recession invaded able
told war pronounced got
arrived support created work
allow make took change
send think appeared start
asked created leaving reenergize

(2), simultaneous entities are often co-referring events. Event co-reference resolution
is a very difficult task on its own.

We also looked at the average token-distance between arguments of correctly satisfied
TLinks by the timelines of each model. For TL2RTL (Lτ ) this is 13 tokens, and for
C-TLM (Lτ ) 15. When looking only at the TLinks that C-TLM (Lτ ) satisfied and
TL2RTL (Lτ ) did not, the average distance is 21. These two observations suggest
that the direct C-TLM (Lτ ) model is better at positioning entities on the timeline that
lie further away from each other in the text. An explanation for this can be error
propagation of TLink extraction to the timeline construction, as the pairwise TLink
extraction of the indirect paradigm extracts TLinks in a contextual window, to prune
the O(n2) number of possible TLink candidates. This consequently prevents TL2RTL
to properly position distant events with respect to each other.

To get more insight in what the model learns we calculated mean durations and mean
starts of C-TLM (Lτ ) predictions. Table 6.5 contains examples from the top-shortest,
and top-longest duration assignments and earliest and latest starting points. We observe
that events that generally have more events included are assigned longer duration and
vice versa. And, events with low start values are in the past tense and events with high
start values are generally in the present (or future) tense.

6.7 Discussion

A characteristic of our model is that it assumes that all events can be placed on a single
timeline, and that it does not assume that unlabeled pairs are temporally unrelated.
This has big advantages: it results in fast prediction, and missed annotation do not
act as noise to the training, as they do for pairwise models. Ning et al. (2018c) argue
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that actual, negated, hypothesized, expected or opinionated events should possibly be
annotated on separate time-axis. We believe such multi-axis representations can be
inferred from the generated single timelines if hedging information is recognized.

6.8 Conclusions

This chapter leads to the following three main contributions16: (1) Three new loss
functions that connect the interval-based TimeML-annotations to points on a timeline,
(2) A new method, TL2RTL, to predict relative timelines from a set of predicted
temporal relations. And (3), most importantly, two new models, S-TLM and C-
TLM, that – to our knowledge for the first time – predict (relative) timelines in
linear complexity from text, by evading the computationally expensive (often O(n2))
intermediate relation extraction phase in earlier work. From our experiments, we
conclude that the proposed loss functions can be used effectively to train direct and
indirect relative timeline models, and that, when provided enough data, the – much
faster – direct model C-TLM outperforms the indirect method TL2RTL.

As a direction for future work, it would be very interesting to extend the current models,
diving further into direct timeline models, and learn to predict absolute timelines, i.e.,
making the timelines directly mappable to calender dates and times, e.g. by exploiting
complementary data sources such as the EventTimes Corpus (Reimers et al., 2016) and
extending the current loss functions accordingly. The proposed models also provide a
good starting point for research into probabilistic timeline models, that additionally
model the (un)certainty of the predicted positions and durations of the entities.

16Code is available at: liir.cs.kuleuven.be/software.php

http://liir.cs.kuleuven.be/software_pages/relative_timelines.php
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Probabilistic Absolute Timeline Extraction

This chapter has been submitted as:

Artuur Leeuwenberg and Marie-Francine Moens. 2019. Extracting Bounded
Calendar Timelines from English Clinical Reports. IEEE/ACM Transactions on
Audio, Speech, and Language Processing (TASLP). IEEE Press.

To build towards a more complete extraction of the temporal information from text, it
is important to take into account explicit information, which has been the focus of most
research thus far, but also implicit information. Implicit information often involves a
higher degree of uncertainty. In this chapter, we investigate how we can annotate and
extract complete absolute timelines that also capture implicit and uncertain information,
and can provide a probabilistic interpretation of the timeline.

We propose a timeline annotation scheme, dealing with uncertain temporal information
by means of temporal bounds which we use to annotate a set of clinical intensive-
care-unit records. On top of our scheme, we suggest a probabilistic interpretation
allowing us to query the absolute temporal information in a probabilistic way. Finally,
we construct and evaluate a first set of models for this new task, which predict absolute
probabilistic timelines.
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7.1 Introduction

In this chapter, we address the new task of bounded absolute timeline construction
from text. Although temporal language understanding is essential for general natural
language understanding, information retrieval, question answering and document
summarization (Campos et al., 2015; Höffner et al., 2017; Ng et al., 2014), we focus
here on the clinical domain, for which having precise temporal information is vital,
and high quality temporal extraction from text could be an important enrichment of the
structured electronic health record, with much potential for applications (Shahar, 1999;
Jung et al., 2011). Our work in the medical domain forms a pilot for other domains.

Many temporal annotation schemes have been developed, all focusing on different
aspects of temporality: relative event order (Pustejovsky et al., 2003a, 2010; Styler IV
et al., 2014; Ning et al., 2018c), event durations (Pan et al., 2006a, 2011), explicit
temporal cues like temporal expressions (Setzer, 2002; Ferro et al., 2005; Pustejovsky
et al., 2010; Bethard and Parker, 2016).

However, for a majority of events existing schemes provide only partial event time
information, leaving many event times unbounded. With bounded event time, we mean
that a closed interval on the calendar timeline is given within which the annotator
is sure the event must have happened (e.g., between 2018 and 2019). Absence of
completely bounded annotations, often a result of implicitness and uncertainty of the
temporal information, makes positioning of events on the absolute calendar timeline
very difficult. In this chapter, we aim to deal with temporal uncertainty and integrate
various types of temporal information into a single scheme to annotate fully bounded
absolute timelines, with complete information about the possible calendar times and
durations for each event, based on the text.

Observe an example of our proposed scheme in Figure 7.1. The bounds in our scheme
model temporal uncertainty. They indicate how precisely the temporal information
can be determined based on the text, which is very important to deal with implicit
information, often underrepresented in current schemes, and for timeline evaluation.
For example, in Figure 7.1, if we replace the word fever for smoking, the timeline
should look very different, because it is more likely that smoking happened for a much
longer time period than fever, and may have started, or ended further in the past (even
years). Nevertheless, the existing TimeML annotations are the same for both cases,
ignoring such differences in absolute position and duration. Additionally, by assuming
a probability distribution on the bounds (explained further in section 7.3), our scheme
allows answering probabilistic temporal questions like the probability on whether an
event was taking place at, started, or ended at a particular time, but also more complex
queries like the most probable time period between two events, which could be useful
in practical applications and for timeline visualization.
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Figure 7.1: An example sentence annotated with our scheme: containing events x
(admitted), and y (fever), with most likely start xµs , duration xµd (dotted line), and end
xµe (all in red), and their corresponding lower and upper bounds (−, and + in black).
And similarly for event y. Below the sentence the existing temporal links of TimeML
are shown.

This chapter makes the following contributions1:

• We propose a novel annotation scheme, to annotate bounded absolute timelines,
integrating various existing temporal annotation schemes efficiently.

• We annotate an English clinical corpus with our scheme, and analyze inter-
annotator agreement, and its relation to TimeML.

• We propose and evaluate a multi-regression model to predict bounded absolute
timelines.

Firstly, we will discuss how the work covered by this chapter relates to existing
research on temporal annotation and timeline extraction. Secondly, we will discuss the
annotation scheme and analyze the annotated clinical reports. Third, we will introduce
our proposed model. And finally, we will describe and analyze our experiments, and
discuss the conclusions we draw from them.

7.2 Related Work

Event Position

The currently most widely used annotation scheme is TimeML (Pustejovsky et al.,
2003a, 2010), in which events (e.g., a meeting), and temporal expressions (e.g.,

1The dataset, annotation tool, guidelines, evaluation scripts, and model code will be made available.
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yesterday, or 02/02/2001) are temporally linked by basic Allen interval relations2

(Allen, 1983). Adaptations of this scheme were also annotated on several clinical
corpora (Sun et al., 2013a; Styler IV et al., 2014), from which we use the i2b2 temporal
corpus as a starting point of our work (Sun et al., 2013a)3. To extract TimeML style
temporal graphs, multiple shared tasks have been organized, resulting in many systems
(Verhagen et al., 2007, 2010; UzZaman et al., 2013; Bethard et al., 2015, 2016, 2017).
Current state-of-the-art systems are mostly neural network based models (Tourille et al.,
2017a; Ning et al., 2017; Meng and Rumshisky, 2018; Liu et al., 2019). Leeuwenberg
and Moens (2018a) construct relative timelines from TimeML-style predictions, where
each event is modeled as a timeline interval. We adopt this method to construct absolute
interval-based timelines from TimeML as a baseline.

Recently, there have been interesting developments in annotating news texts with
relative temporal information (Ning et al., 2018c; Vashishtha et al., 2019), which are
out of the scope of this work as we focus on extracting absolute timelines, which can
be interpreted directly on the calendar.

TimeML links events to the absolute timeline through explicit temporal expressions,
for which temporal uncertainty has been studied using fuzzy sets (Tissot et al., 2016).
However, most events cannot be directly linked to such expressions, giving them
no absolute anchors to the timeline. Reimers et al. (2016) address this issue and
re-annotated the 36 news articles from TimeBank Dense (Cassidy et al., 2014) with
a new scheme and propose a corresponding system (Reimers et al., 2018), based on
a neural decision tree. Their annotations provide calendar dates for all within-day
events. This way, within-day events receive absolute position bounds; the start and
end of that day. For multi-day events, annotators can choose to annotate a left or
right position bound, or both. This way all events are related with at least one link
to the absolute timeline. However, the majority of events in their annotations remain
unbounded4. In our scheme, we address this by providing full bounds for all events. As
their scheme was annotated on news data, and is not directly derivable from available
clinical annotations, we cannot compare with their work empirically.

Event Duration

TimeML covers explicit duration annotations through temporal expressions. However,
it does not cover implicit durations. Because of this, for many events no annotation

2E.g., before, simultaneous, during, overlap, and meets.
3These documents are a subset of MIMIC III (Johnson et al., 2016), and besides temporal TimeML

annotations, also carry relation annotations (Sun et al., 2013b), co-reference (Uzuner et al., 2012), and
question answering information (Pampari et al., 2018) (including temporal questions), increasing the potential
of this dataset for future research.

4In their annotations we found that 60% of events had open bounds (no left start bound or no right end
bound).
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of duration is present.5 Pan et al. (2006a, 2011) added explicit and implicit duration
annotations to all events of the 58-document TimeBank corpus (Pustejovsky et al.,
2003b). They assigned a lower and upper duration bound to each event. As bounds on
duration are most often not symmetric with regard to the most likely (mode) duration
(see Sec. 7.4.1), we extend Pan et al. (2006a) by also annotating mode durations. This
makes the current work the first to allow analysis of symmetry of temporal uncertainty,
and the first to annotate such complete durations. Although several methods have been
proposed to predict course-grained event duration (Pan et al., 2011; Gusev et al., 2011;
Williams and Katz, 2012), the state-of-the-art event duration prediction model on the
dataset by Pan et al. (2006a) is a Long Short-Term Memory (LSTM) network ensemble
(Vempala et al., 2018), which we retrain on our data and adopt as a baseline.

Our scheme annotates on the event level. For each event mention annotators annotate
two types of information: (1) the most likely event time, and (2) the temporal bounds
based on the text, and the annotator’s background knowledge. We start by defining the
components of a timeline.

7.2.1 Mode Event Time Components

The timeline is interpreted as the calendar timeline, discretized on minute level. We
define the event time for an event x as an interval [xs, xe] on the timeline, ranging from
its start point xs, to its end xe (with xs < xe).6 The duration xd of each event is the
difference between its start and end:

xd = xe − xs (7.1)

So, each event time can be fully specified by any pairwise combination of event
components xs, xd, or xe. As we work on a minute scale, each point (start or end) is
represented by the format: YYYY-MM-DD-hh-mm, and each duration by the format:
YY-MM-DD-hh-mm.7

We ask annotators to annotate two out of the three event time components, in the given
formats. Annotators are free to choose which two components to annotate, as the third
will be derived from Equation 7.1. From now on, we refer to the most likely value of
each component as its mode, indicated by xµs , xµd , and xµe . We use xµ to refer to the
mode event time, comprised of all three mode components (red in Figure 7.1).

5Around 83 % of all i2b2 events could not reach any TIMEX or SECTIME via simultaneous, or inclusion
relations, or a combination of a before and after relation (after extensive temporal closure), indicating open
absolute bounds, and absence of any duration information.

6Negated events are interpreted as the time during which the negation holds. Event mentions referring
to multiple sub-events (e.g., some slight headaches) are interpreted as the smallest interval covering all
sub-events (convex hull).

7Resulting in a maximum duration of almost 100 years, sufficient for our purposes. Calendar calculations
are done with python-datetime (accounting for leap years).
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7.2.2 Temporal Bounds

As temporal information is often underspecified in language, and exact minute-level
times are most often not inferable from the text, besides annotating the mode event
time, our scheme defines two temporal bounds for every event component (so six in
total): a lower bound (indicated by −), and an upper bound (indicated by +). For
each component, its two bounds provide the range of possible values, indicating the
degree of uncertainty on that component.8 The bounds have the following properties:

x−s ≤ xµs ≤ x+
s (start bounds) (7.2)

x−e ≤ xµe ≤ x+
e (end bounds) (7.3)

dmin ≤ x−d ≤ x
µ
d ≤ x

+
d (duration bounds) (7.4)

xµs ≤ xµe (start before end) (7.5)

A minimum duration dmin is introduced to prevent zero or negative durations. Notice
that if we have the bounds for any two out of the three components (start, duration or
end) we can infer the bounds for the third. Hence, annotators only need to annotate
two components to fully specify the mode event time and all bounds.

7.2.3 Annotation Steps

To obtain mode event times, and their bounds, annotators iterate through the following
steps per document: (1) Select the most certain event, (2) select its two most certain
components, (3) annotate mode xµc , and the lower bound x−c and upper bound x+

c for
both components. Overall, annotators give 6 values per event, resulting after inference
in the complete 9 values, shown in Figure 7.1.

7.2.4 Calendar Points to Numerical Values

To ease calculation with calendar values, we convert points and durations to numerical
values. The numerical value for a time point t is the number of minutes it lies after a
fixed reference point ρ in the past. For Figure 7.2, the reference point ρ is January 1,
1990, meaning that point xµs , March 12, 1991 at 9:43 am, is 626,922 minutes later than
the reference point. Using this mapping we can easily go between numerical values

8A small range of values between the bounds shows that the annotator believes a component can be
determined quite precisely, indicating high confidence, and vice versa.



100 PROBABILISTIC ABSOLUTE TIMELINE EXTRACTION

xs
- xs xs

+

9:43 9:449:42

626922 626923626921

March	12,	1991

�

0:00

0

January	1,	1900

�

Figure 7.2: Calendar times have a one-to-one mapping to regression values, which
represent the number of minutes since a reference point ρ, lying in the past.

and actual calendar dates. For all our models and analyses, the reference point was the
first of January 1900, as all events in the corpus happen after this date.

7.3 Probabilistic Timelines

As our scheme captures the uncertainty of the annotated temporal information, we
can construct a probabilistic interpretation of the scheme, allowing for probabilistic
temporal querying.

7.3.1 Two-Piece Normal Distributions

For each timeline component xc (start, duration, or end), consisting of lowerbound
x−c , mode xµc , and upperbounds x+

c , we assume a two-piece normal (TPN) distribution
(Wallis, 2014). As an example, two TPN distributions are shown in Figure 7.4. A TPN
distribution is a combination of two half normal distributions, joint at the mode, and its
probability density function (pdf ) can be defined by a left standard deviation σl, a right
standard deviation σr, and the mode µ as:

pdf(t) =
{
A exp

[
− (t− µ)2/2σ2

l

]
, t ≤ µ

A exp
[
− (t− µ)2/2σ2

r

]
, t ≥ µ

(7.6)

with scaling factor

A =
(√

2π (σl + σr) /2
)−1

(7.7)
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7.3.2 Annotations as Distributions

Because the TPN distribution is an asymmetric distribution that can be parameterized
by exactly three values: σl, σr, and µ, they align well with our asymmetric bound
annotations9, consisting of mode xµ, lower bound x− and upper bound x+. For each
event component c we convert its annotations to a TPN distribution by setting:

µ := xµc

σl := xµc − x−c

σr := x+
c − xµc

This means that for each event, three TPN distributions are obtained: for the start,
duration, and end components. These distributions form the probabilistic interpretation
of our bounded annotations. Our proposed models, introduced later in section 7.5,
predict mode component values, and their deviations. Hence, we can construct the
corresponding TPN distributions for predicted event components in the same way.

7.3.3 Probabilistic Querying

The pdf distribution models the probability density for an event component c across
time t (e.g., pdfs(t) gives the probability density for the start of the event). We can
use the cumulative functions of the start and end components to determine whether an
event has started or ended before a certain point t. The cumulative function of a TPN
distribution is given by Equation 7.8, with erf(·) as the Gaussian error function.

cdf(t) =


(

1+erf
[
t−µ√

2σl

])
σl

σl+σr t ≤ µ

σl+erf
[
t−µ√

2σr

]
σr

σl+σr t ≥ µ

(7.8)

From the cumulative functions, we can calculate the probability that an event is actively
taking place at time t as the probability that the event has started, minus the probability
that it has ended, i.e., cdfs(t)− cdfe(t), as shown in Figure 7.3.

7.4 The Annotated Clinical Dataset

Three annotators with > 3 years of study in Biomedicine annotated in total 169 English
clinical reports from the i2b2 temporal challenge (Sun et al., 2013a). Dataset statistics

9Other asymmetric distributions may also be viable alternatives (e.g., two-piece Laplace distributions).
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Figure 7.3: Probability that some event: (1) has started before time t (cdfs(t): solid
black line), and (2) that it has ended before time t (cdfe(t): dashed line), and (3) is
happening at time t (cdfs(t)− cdfe(t), in green).

A1 ∪A2 ∪A3 A2

Documents 169 37
Events 12,882 2,451

Table 7.1: Statistics on full dataset11 A1 ∪ A2 ∪ A3 , and the subset annotated by at
least two annotators A2.

are given in Table 7.1. The documents are already annotated with TimeML from which
we adopt event span annotations, on which we annotate our scheme.

We have built a new annotation tool, which, besides inference, provides insight to the
annotator about their own annotations by visualization of the mode timeline, and which
includes short keys to reuse start, duration, or end annotations of already annotated
events. Using this tool, the average annotation time per document is around 60 minutes,
which is comparable to 55 minutes per documents of the TimeML annotations (Sun
et al., 2013a). The annotators regularly discussed difficulties in person with the
adjunctator, and used a shared document to establish agreement on difficult cases.

7.4.1 Dataset Analysis

We analyzed the annotated values in terms of order of magnitude. This is shown in Table
7.2. Firstly, 100% of events have very high mode start and end values; this is because
they lie multiple decades from the used reference point ρ = 1900. More interestingly,
we can see that most bounds have a width of hours or days for all components. Also,
the vast majority of events have a duration in the range of hours or days. Another very
interesting observation we can make is that the deviations seem very asymmetric. For
all components right deviations are generally larger than left deviations. We speculate
for start and end points that this is because readers go through the text linearly, and
because the narrative clinical records generally are partially chronologically. This
can result in the fact that while reading, they have more knowledge about past events,
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Start End Duration
µ σl σr µ σl σr µ σl σr

ho 0 67 0 0 66 0 63 66 43
da 0 16 70 0 16 68 17 19 36
we 0 6 13 0 6 14 7 3 7
mo 0 6 6 0 6 6 7 6 5
ye 0 3 6 0 3 5 4 3 4
de 100 3 5 100 4 6 3 3 5

Table 7.2: For all nine annotated components, we show the distribution (in %) of the
number of events that was annotated with a value of a certain order of magnitude (hours,
days, weeks, months, years, decades).

P∩s P∈s P<s P∩e P∈e P<e P∩d P∈d P tl

I 42 (46) 65 (70) 82 (87) 39 (42) 63 (65) 74 (80) 32 (36) 60 (71) 77 (81)
II 60 (61) 88 (84) 82 (87) 54 (56) 86 (83) 74 (80) 59 (65) 87 (88) 77 (81)

Table 7.3: Agreement percentages for the different proposed metrics on the raw
annotations (I), and agreement after extending the bounds to day, week, month, year,
and decade level, which are the final annotations used in the experiments (II). In-
between brackets, the score for the 17% subset of events is given that were already
course-bounded by the existing TimeML-annotations.

which can provide more certainty on the left bound, whereas about future events less
information is given at that point, resulting in larger bounds. The fact that the past,
even in the real world, is generally more certain than the future can also influence the
writer of the document, and his/her way of incorporating temporal cues. For durations,
we believe the asymmetric uncertainty is because events have a minimum duration:
they cannot be shorter than 0 minutes. So in cases of high uncertainty the left deviation
approaches 0, while the right deviation can grow, in principle, for ever. These results
show that temporal uncertainty is best modeled by an asymmetric distribution.

To calculate inter-annotator agreement (IAA) we use all 37 documents that are
annotated by at least two annotators. We calculate agreement as a weighted mean of
pairwise agreements of all three pairwise combinations of the three annotators, where
the weight is in proportion with the number of annotated events shared by each pair
of annotators. To analyze the annotations in detail, we calculate several metrics of
agreement. Their results are given in Table 7.3. We will now discuss the used metrics
one-by-one.
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Figure 7.4: Two two-piece normal distributions for the same event’s start time: overlap
P∩s =0.38 (in green).

7.4.2 Overlap Agreement (P∩)

Our first metric to calculate IAA between two annotators is calculated as the proportion
of overlap between the TPN-distributions for each component (intersection over
union).12 A visualization of this metric is shown in Figure 7.4. This metric takes
into account all components of the annotations in a single score (left bound, mode, and
right bound), and is therefor quite strict, but complete. On the raw annotations, we
obtain a P∩ =32% for duration, P∩ =42% for start points, and P∩ =39% for event
endings. At first these scores seem quite low. However, it should be taking into account
that these numbers cannot be interpreted in the same way as for a classification task
where annotators choose between a fixed set of classes. As for this task annotators are
free to annotate any value on the timeline (for a time period of 200 years; approximately
108 minutes). We discuss this further in section 7.4.6.

7.4.3 Inclusion Agreement (P∈)

As mentioned earlier, P∩ is very strict: even if two annotators agree on almost the
exact mode value, the P∩ score can be low, as they might disagree on the width of the
bounds (as for Figure 7.4), and vice versa. To account for this we also calculate the
percentage of times the mode of one of the annotators is included within the bounds of
the other. In other words, how often does one annotator believe the other’s most likely
timing is possible. This is visualized in Figure 7.5.

12Tissot et al. (2016) used a similar metric, based on fuzzy sets instead of TPN distributions, to study
imprecise timexes.
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A1

A2

Figure 7.5: An example of inclusion P∈: on the left, the mode value (red) of A2 is
included in the bounds of A1 (agreement). And on the right, neither mode value is
included in the bounds of the other (disagreement).

7.4.4 Agreement on Temporal Order (P <)

To analyze IAA with regard to relative event order we inspect all pairs of events in each
document per annotator, and inspect the order relation between the start points of the
event pairs (>,=, or <). Agreement corresponds to the percentage of event pairs that
are assigned the same order relation. In 82% of cases annotators agree on the order of
start points, and in 74% they agree on the order of endings.

Like Ning et al. (2018c) observed for news articles, we observe that IAA on the order
of start points is higher than that of end points, which could be caused by uncertainty
on event duration.

7.4.5 Agreement with TimeML (P tl)

To be able to better compare our timeline annotations with the existing TimeML
annotations, we follow the strategy of Leeuwenberg and Moens (2018a) to evaluate
relative timelines using TimeML, and assign each TimeML-annotated event pair a
temporal link (TLink), based on the timeline, and calculate accuracy with the originally
annotated TLinks. For this we use the merged TLinks present in the data (before,
after, and overlap) by Sun et al. (2013a). Following their annotation guidelines as
close as possible, we use the following classification function to assign TLink types to
event-event and event-timex pairs:

R(x, y) =


before iff xµs < yµs
after iff xµe > yµe
overlap iff xµs ≥ yµs ∧ xµe ≤ yµe

(7.9)

When classifying the TimeML TLink types based on our timeline annotations we obtain
an accuracy of 0.77. This score is a lower bound on the agreement between the two
schemes, as there is no exact mapping between the merged TLinks and the timeline in
the guidelines.
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7.4.6 Changing Bound Granularity

As can be seen from Table 7.3, the agreement on metrics that are influenced by the width
of the bounds are fairly low (P∩ and P∈). One important reason for this is the fine
minute-level granularity of the annotations. When inspecting the cases of disagreement,
we found that annotators have different judgments of amount of uncertainty, even
though they often agree quite precisely on the event’s timing. To increase agreement,
we decrease the granularity of the bounds. We extend bounds that lie within one day,
to the start and end of that day. We also do this for bounds within one week, and
similarly for months, years, and decades. We do not change the minute-level mode
annotations, ensuring that the order of the events does not change, even within days. If
we analyze agreement again, shown in the second row of Table 7.3, we observe much
higher agreement, especially for inclusion agreement P∈, indicating that on a more
course grained level the annotators agree well on event position, and duration. We
use these course bounded timelines, with high agreement, as our final data for model
construction.

7.5 Absolute Timeline Model (ATLM)

For each event, our model predicts the mode start time, and mode duration and their
corresponding bounds (from which the end time and bounds follow automatically). Its
input is the text with ground truth event spans, and normalized temporal expressions,
as this is not the focus of this paper. Our model is shown in Figure 7.6. It is constructed
of four modules: (1) word representation (2) anchoring, (3) shifting, and (4) a duration
module. We will discuss each module below.

7.5.1 Word Representations

We experiment with two types of word representations: (1) 300-dimensional GloVe
embeddings (Pennington et al., 2014) trained on 300M words from the clinical MIMIC
III dataset (Johnson et al., 2016), and (2) ELMo embeddings (Peters et al., 2018), in
particular the embeddings by Zhu et al. (2018), which are trained on the same clinical
dataset. We use ELMo for its ability to capture character-level information, important
for encoding temporal expressions (Xu et al., 2019).
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Figure 7.6: A schematic overview of our model, which predicts the start and duration
modes of each event, and the corresponding bounds from the input sentence.

7.5.2 Event Durations

To predict event durations, we use a simple model, taking as input the event, and its
local left and right context (size: 1), as this has shown to be effective features for
estimating event duration (Vempala et al., 2018). We encode the event and its context
using either an LSTM (Hochreiter and Schmidhuber, 1997) or CNN13 (Fukushima,
1980), and from the encoding we directly predict the mode event duration xµd , and its
bounds x−d , and x+

d , through a regression layer (detailed in section 7.5.4).

7.5.3 Start Times: Anchoring and Shifting

For each event, we predict start times in two steps: First, we find the temporally closest
relevant date/time expression, and use its normalized value as an anchor (oanchor): We
use the first left and right date/time expression from the event as candidate anchors,
and classify which one is temporally closest based on the context between the event
and each candidate anchor, encoded using the anchor encoder.

13For LSTM we used 75 dimensions and for CNN we used 75 filters, with window sizes 2, 4, and 6.
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Second, based on the encoded context between the event and the found anchor, we
predict a shift value oshift, indicating how much the event’s start time is shifted with
regard to the anchor, such that oanchor + oshift = xµs . Additionally, from the same
encoded context, we estimate the left and right start time deviations σls, and σrs , to
obtain the lower and upper start bounds via x−s = xµs − σls, and x+

s = xµs + σrs . Now
that we have the start and duration component predictions, we can infer those of the
end component, and obtain the predicted TPN distributions following section 7.3.2.

7.5.4 Regression Layers

In this section, we explain the meaning of arrows in Figure 7.6. To predict an output
value o from some input encoding i, we use a feed-forward layer with one hidden layer
(of half the input dimension, and Leaky ReLU activation), and a single output node
with: (1) linear activation (closed-headed arrow), or (2) a softplus activation, ln(1+ex),
to enforce output values to be positive (open-headed arrows). The ball-headed arrow
indicates the binary logistic anchor classifier, followed by the action of setting oanchor
as the normalized datetime value of the predicted anchor.

7.5.5 Model Training

To train the anchor encoder to choose the left or right closest temporal expression, we
use a binary cross entropy loss.

For training the prediction of modes and deviations we used the L1 loss as given by
Equation 7.10. The total loss is the averaged loss across all N events. The event-level
loss l(·) for each event x in turn is the sum of the component-wise losses for event time
components C: start, duration and end.14

L1 = 1
N

N∑
i=1

l(xi) (7.10)

l(x) =
C∑
c

|x̂µc − xµc |+ |x̂σlc − xσlc |+ |x̂σrc − xσrc | (7.11)

For minimization we used Adam (Kingma and Ba, 2014), with default parameters.
As high regression values make training unstable, we rescale the timeline such that
years 1900-2100 lie in the interval [0,1] by dividing all values by scaling factor 108.
All models are trained for a maximum of 200 epochs using a held-out 15-document

14We have experimented with some alternative loss functions, but these did not result in improvements.
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validation set for early stopping (Morgan and Bourlard, 1990), with a patience value of
20.

7.6 Experiments

In this section we describe the evaluation of our anchor and shift-based absolute
bounded timeline extraction model (ATLM), using either LSTM or CNN as encoder
components.

7.6.1 Evaluation

Our annotated corpus is split into a 132-document training set (10,431 events) and 37-
document test set (2,451 events). We chose the test to consist of all documents that have
been annotated by more than one annotator. This way the agreement measures give a
realistic indication of the upper bound for system performance. We create ground-truth
annotations by taking the mean values of all the annotators. From the mean values, we
create the corresponding TPN distributions as explained in section 7.3.2. For evaluation
we calculate measures proposed in section 7.4.1. Hyper-parameters are tuned on a
small 15-document development set (from training).

7.6.2 Baselines

As there is not yet a model which predicts absolute bounded timelines, we construct
baselines from existing state-of-the-art models.

Event Duration Baseline (D-LSTM)

As this is the first clinical corpus to annotate full event durations, as a baseline for
predicting event duration we implemented the current state-of-the-art model for news
texts by Vempala et al. (2018). Their model is an LSTM-ensemble build on top of
GloVe embeddings. To adapt their model to the clinical domain, we retrain the GloVe
embeddings on 100M words of clinical reports from MIMIC III (Johnson et al., 2016).
As Vempala et al. (2018) only classify events into two duration categories: ≤ a day,
and > a day, instead of a binary softmax output on top of its event encoder, we use
three regression layers, as in section 7.5.4, to predict the duration mode, and its left
and right deviations.
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TLinks to Timeline (TL2ATL)

As the TLinks in TimeML anchor some of the events to the absolute timeline, we
can also construct a TLink-extraction-based baseline. First, to extract TLinks, we
retrained a publicly online available neural state-of-the-art clinical TLink extraction
model (Leeuwenberg and Moens, 2018b) on our data split, using the existing TimeML
annotations for training. From the extracted TLinks of types before, after, and overlap,
we position the events on the timeline following the TLinks-to-Timeline method by
Leeuwenberg and Moens (2018a): (1) Each event is assigned an interval with start
variable xµs and end variable xµe . (2) The variables are set such that the predicted TLinks
between the events are satisfied on the timeline15. Determining the variable values is
done by minimizing a loss function that reflects the degree to which the TLinks are
satisfied. We interpret the TLinks as given in Equation 7.9, modeling pointwise order
(a < b) as a margin-based hinge loss, max(a+m−b, 0), with a marginm of 1 minute,
and equality (=) with an L1 loss, |a − b|. As events are also linked to TIMEXES,
we assign two fixed constants xµs , and xµe to each TIMEX following their annotated
ground-truth normalized values. This way the TIMEXES function as anchors on the
timeline. For optimization we use Adam (Kingma and Ba, 2014).

7.7 Results and Analysis

P∩s P∈s P<s P∩e P∈e P<e P∩d P∈d P tl

IAA 60 (61) 88 (84) 82 (87) 54 (56) 86 (83) 74 (80) 59 (65) 87 (88) 77 (81)

Baselines:
TL2ATL - 13 (9) 52 (53) - 15 (11) 49 (55) - 30 (40) 68 (67)
D-LSTM - - - - - - 11 (13) 97 (97) -

Proposed:
ATLM-CNN-GLOVE 36 (42) 67 (62) 62 (61) 35 (38) 65 (62) 59 (61) 13 (14) 97 (97) 55 (59)
ATLM-CNN-ELMO 48 (56) 83 (81) 56 (66) 39 (45) 72 (73) 62 (67) 30 (36) 91 (93) 59 (63)
ATLM-LSTM-GLOVE 44 (53) 79 (79) 57 (67) 42 (47) 75 (74) 62 (64) 9 (11) 96 (94) 56 (59)
ATLM-LSTM-ELMO 37 (37) 44 (32) 67 (71) 29 (30) 75 (75) 65 (65) 47 (51) 78 (76) 60 (62)

Table 7.4: Results of the different absolute timeline models on the test set. With
in-between brackets, the scores for the 17% subset of events that were already bounded
by the existing TimeML-annotations. In short: P∩ evaluates the entire predicted
distributions (including mode and bound prediction), P∈ evaluates the predicted mode
values (while taking into account uncertainty), P< evaluates temporal order of the
mode values, and P tl evaluates TLink accuracy.

15In our experiments the predicted TLinks were satisfied for 95%. This is due to inconsistency of the
predicted TLinks.
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From Table 7.4, we observe that the timelines predicted by TL2ATL better satisfy the
existing TLinks in the test set compared to the ATLM models (8-13% higher in P tl,
with p < 0.000116). This can be expected, as TL2ATL used the TimeML Tlinks as
training data, causing the model to focus more on these relations.

For all other metrics, we can see that the ATLM models perform significantly better
(between 10-50% depending on the metric, with at least p < 0.0116). We believe the
primary reason for this is that our scheme, on which the ATLM models were trained,
provides more complete temporal information for more events, compared to the TLinks
of TimeML, which provide complete information for some events, but hardly any
information on others.

For the ATLM models, with regard to event starts, the best model combines the CNN
with ELMo embeddings. However, we do not observe clear general trends when
comparing CNN with LSTM, or when comparing GloVe embeddings with ELMo
embeddings across encoders.

When looking at predicted durations, the best model in terms of overlap (P∩) combines
the LSTM with ELMo embeddings. There is a clear improvement for both the CNN
and LSTM model when using ELMo embeddings instead of GloVe embeddings (p <
0.000116), which suggests that ELMo embeddings seem better at capturing duration
information. Since for both start and duration, the best model used ELMo embeddings,
we argue that this representation is generally more informative. A reason for this can
be the availability of a wide context for the ELMo language model, compared to GloVe
representations. We also believe this is the primary reason that our models perform
better than the state-of-the-art D-LSTM baseline for durations, as this model uses
GloVe embeddings.

Another observation is that for most metrics, in general most models perform slightly
better on the TimeML-bounded subset. We believe this is due to the slightly higher
IAA on these events, which can in turn be the result of the fact that TimeML focuses
on explicit temporal information, whereas we focus on both explicit and implicit
information. Overall, mostly for event position (start and end), we find a significant
gap between system performance and IAA, indicating much room for improvement.
From manual inspection of the timelines predicted by ATLM-LSTM, we found that the
model best predicts events with smaller durations, and events lying temporally close
to a temporal expression (the majority of events, as shown in Table 7.2). It indicates
that the models have more difficulty with events with longer durations, and events for
which the shifts are higher. We believe this can be explained by the fact that these
events are a minority of the cases.

Finally, if we compare the best models against the inter-annotator agreement scores, we
observe that the inclusion metrics (P∈) already lie quite close to the IAA, particularly

16Significance is based on a document-level paired t-test.
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for durations. This shows that the predicted mode values are already within the bounds
of the ground truth annotations. It should be mentioned that the vast majority of events
happen within a single day, making this the easiest sub-task. For all overlap metrics
(P∩), which evaluate the complete predicted distributions, we observe that the best
systems perform reasonably well, given the fact that this is a new and very challenging
task. However, there is still a significant gap between the best performing systems and
the IAA, indicating room for future work into further model development.

7.8 Conclusions

In this chapter, we address the task of complete absolute timeline construction from
text, accommodating for temporal uncertainty and implicit temporal information.
Extraction of high quality timelines not only gives important insights in general
language understanding, but also carries important potential for applications in for
example the clinical domain.

We propose a novel annotation scheme, to extract completely bounded absolute event
timelines from text, based on both explicit and implicit temporal information. We
annotate an English clinical corpus, and analyze inter-annotator agreement, and our
scheme’s relation to TimeML. Finally, we propose and evaluate a multi-regression
model to extract the absolute timelines. Results show the asymmetry of temporal
uncertainty, indicate the difficulty of this new task, and highlight the value of our
approach compared to existing approaches, providing a solid benchmark for further
development in this area of research.



8
Conclusions

People assume time is a strict
progression of cause to effect, but
actually, . . . , it’s more like a big ball
of wibbly wobbly timey wimey stuff.

Steven Moffat

8.1 Thesis Summary

In this dissertation, we investigated how we can build and further improve computer
models that extract event timelines from textual documents, focusing on the clinical
domain. Construction of high quality timelines from clinical documents plays an
increasingly important role with the increasing digitization of personal health records.

We first introduced the research questions and contributions discussed in the thesis
(Chapter 1). Two different approaches were proposed to improve current state-of-the-
art temporal relation extraction models, by integrating temporal rules (Chapter 3), and
by efficiently combining labeled and unlabeled data (Chapter 4). To advance towards
the prediction of event timelines, new methods were developed to learn models that
can predict timelines with or without intermediate relation extraction stage, based
on currently existing data and annotation schemes (Chapter 6). Extending on this
work, a new scheme and dataset were created to construct models that predict more
complete and informative timelines, that take into account implicit and uncertain
temporal information (Chapter 7). Intermediately, a thorough literature study was
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conducted on the successful integration of temporal reasoning in temporal information
extraction models (Chapter 5).

Chapter 3 investigated how we can exploit the dependencies between temporal relations
to improve temporal relation extraction models. A structured perceptron model was
proposed to learn to predict temporal relations between events and the document-
creation time, and between temporal entities in the text. The model incorporates global
features and temporal constraints, allowing it to benefit from the dependencies between
the different temporal relations. Our best system outperformed the state of the art on
the clinical THYME dataset at the time.

Manual annotation of textual data with temporal information is costly. To maximally
utilize the data available, we investigated how can we use raw text, in addition to our
annotated texts, to improve word representations of temporal relation extraction models.
In Chapter 4, we proposed a neural multi-task model for the extraction of temporal
containment relations from clinical texts. The model trains word representations
jointly on the supervised relation classification task (using annotated texts) and an
unsupervised auxiliary skip-gram objective (using raw text) through weight sharing.
This resulted in significantly better generalizing classification models compared to
using pre-trained word embeddings, and further improved the state of the art for
temporal relation extraction on the THYME dataset, even without using extra dedicated
clinical resources, in contrast to existing state-of-the-art models.

After studying temporal relation extraction models, extensively covered in the literature,
we prepared for the next less explored step: timeline construction by making a thorough
inquiry into how temporal reasoning can be used efficiently for manipulation of
temporal information. We investigated how temporal reasoning has been used in
the general research field of temporal information extraction, and conducted a literature
survey (Chapter 5). The survey provides an overview of how temporal reasoning
has been exploited in all steps of model construction: annotation, data preprocessing,
training, prediction, and evaluation. It highlighted several underexposed research areas,
like the handling of temporal uncertainty for durations and event positions, and stressed
the importance of point-based reasoning.

Based on these insights, we addressed the task of timeline construction (in Chapter 6).
Our investigation led to the development of a new method, TL2RTL, to predict relative
time-lines from a set of predicted temporal relations, and two new models, (S-TLM,
and C-TLM) that – to our knowledge for the first time – predict (relative) time-lines in
linear complexity from text, by evading the computationally expensive (often O(n2))
intermediate relation extraction phase in earlier work.

As relative timelines provide information on the order of events, but provide no absolute
calendar interpretation of the event times, and because the TimeML annotations used
in most experiments focus on explicit temporal cues, providing only a partial temporal
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picture of the text, we arrive at our final investigation into the extraction of uncertain,
often implicit, temporal information. In chapter 7, we addressed the task of complete
absolute timeline extraction, including both explicit and implicit information. For
this, we proposed a novel annotation scheme and annotated an English clinical corpus.
Finally, we developed and evaluated a multi-regression model to extract the absolute
timelines. Results show the value of including implicit information compared to
existing approaches, but also indicate the difficulty of this new task, and the need for
further model development in this new area of research.

8.2 Opportunities, Perspectives and Future Work

Based on the research covered in this dissertation, a number of avenues for future work
have opened up.

We start by extending on the previous chapter. The development of bounded absolute
timeline models is still very new, which means that there is still much potential in
improvement due to adaptation of the basic model architecture. Attention-based
encoders could be very interesting extensions to explore (Vaswani et al., 2017), but also
the exploration of alternatives to the anchor-and-shift strategy to improve the estimation
of uncertainty bounds could be interesting follow-up directions.

We continue by mentioning a large challenge in temporal information extraction: the
cost of annotation. Although recent annotation schemes have focused on event-level
annotations instead of pairwise relation annotations to make the annotation more
efficient (e.g., Reimers et al. (2016) and our work in Chapter 7), manual annotation of
texts with timelines remains a difficult, and time-consuming annotation task. It is well
known that incorporation of background knowledge on the language side can reduce
the need for annotated data (as in Chapter 4). Recently, the research in this field has
advanced rapidly, and introduced new language models (Peters et al., 2018; Devlin
et al., 2018), that have shown to improve generalization for a wide range of tasks, and
have recently become available for the clinical domain (Alsentzer et al., 2019).

Alongside insertion of domain knowledge about the structure of language, extraction of
temporal knowledge about events from already available structured data is a promising
direction for future work. With the introduction of our absolute timeline annotation
scheme, it becomes a possibility to directly link manually annotated data with possibly
available structured event time data. For example, in most hospitals most procedures
are time-stamped. This means that we can directly relate procedures mentioned in
the annotated texts, with the structured data, and possibly learn an alignment function
between events in the text and events in the structured data inheriting their time stamps.
With the availability of the structured time stamp information from the MIMIC III
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dataset (Johnson et al., 2016), from which the reports in our corpus are taken, this
research line could be an interesting next step to explore.

Beside the creation or extraction of new data, combining existing data sources through
use of temporal reasoning could help bridge the gap in performance. Based on our
literature survey in Chapter 5, we observed that temporal reasoning is already used in all
stages of model construction, although most of these models focus on the extraction of
only certain types of cues. We have seen (in Chapters 3, 5, 6, 7) that it is possible to use
temporal reasoning frameworks to combine different (temporal) extraction tasks, and
that they provide tools to translate information across different temporal representations
(intervals, points and durations), facilitating even more efficient use of the currently
available temporal data.

Combining temporal data with data from related NLP tasks could also possibly be done
more efficiently. One example of a very related task is event coreference, the task of
clustering event mentions that refer to the same event. Event coreference is related to
temporal information extraction as each event (with possibly multiple mentions) can
happen only at one time, so all temporal cues that apply to event mentions of the same
event should be temporally coherent. This was already pointed out and exploited by
(Do et al., 2012), using TimeML-style data and interval-based reasoning. We believe
that the absolute timeline prediction models (and annotations) proposed in Chapter 7
may facilitate easier integration with event coreference compared to using TimeML-
based temporal graphs: Checking if different (probabilistic) absolute intervals (one for
each event mention) are coherent with each other and could possibly refer to the same
event is fairly easy (e.g., one way to do this could be by looking at the probability that
they overlap in time). However, checking if two nodes in a temporal graph could be
unified is not, especially if the graphs are temporally inconsistent, incomplete, or when
multiple documents are involved, and the temporal graph may be very large.

8.3 Epilogue

This dissertation stresses the importance of good integration of symbolic temporal
reasoning and statistical (neural) models for temporal information extraction from text.
Symbolic reasoning plays a key role in capturing the rigid structure of time, whereas
statistical (neural) models are pivotal when dealing with the ambiguous nature and
vagueness of language.

The contributions in this thesis provide examples of this integration, and can be a
starting point for future research into the combination of these fields.
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