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Abstract—In various applications within signal processing,
system identification, pattern recognition, and scientific comput-
ing, the canonical polyadic decomposition (CPD) of a higher-
order tensor is only known via general linear measurements. In
this paper, we show that the computation of such a CPD can
be reformulated as a sum of CPDs with linearly constrained
factor matrices by assuming that the measurement matrix can
be approximated by a sum of a (small) number of Kronecker
products. By properly exploiting the hypothesized structure,
we can derive an efficient non-linear least squares algorithm,
allowing us to tackle large-scale problems.

I. INTRODUCTION

Even though the decomposition of a tensor that is known
explicitly is a prevalent problem in signal processing and ma-
chine learning [1], [2], we often want to compute a decomposi-
tion of a tensor that is only known via linear measurements [3].
Applications can be found in a wide range of domains such as
signal processing [3], [4], system identification [5], [6], pattern
recognition [3], [7]–[9], and scientific computing [10]–[13].
By limiting ourselves to a canonical polyadic decomposition
(CPD) in this paper, we can formulate the problem as a linear
system of equations with a CPD constrained solution (LS-
CPD) [3], i.e., Ax = b with x = vec (CPD). Or, equivalently,
we want to compute a CPD of a tensor X = unvec (x) that is
only defined implicitly via the solution of a linear system.

By fully exploiting all structure of the measurement matrix
A, the computational complexity of a dedicated algorithm
can be significantly reduced, enabling efficient processing
for large-scale problems [3]. For example, if A is equal
to the identity (or a diagonal) matrix, the problem reduces
to a (weighted) CPD of a known tensor, allowing efficient
computations [14]–[16]. In the special case where A is sparse,
we can also obtain efficient algorithms, see [3].

In this paper, we assume that A can be written as a
sum of L Kronecker products. This strategy is employed to
reduce the computational complexity of algorithms in vari-
ous applications within signal processing [17], [18], system
identification [5], [6], [19], [20], and tensor-based scientific
computing [10]–[12], among others. Depending on the appli-
cation, the products are considered to be given or they can be
computed. As a matter of fact, any measurement matrix can be
approximated by a sum of Kronecker products for sufficiently
large L. For a given L, a least-squares approximation can be
computed via a Kronecker product decomposition [21]–[23].

By explicitly leveraging the Kronecker structure of A, the
LS-CPD problem can be reformulated as a sum of L CPDs
with linear constraints. In constrast to existing methods that
employ projection [11], alternating least-squares [4], [12], or
a gradient approach [13], we develop numerical optimization-
based techniques such as quasi-Newton (qN) and nonlinear
least-squares (NLS) with known convergence properties [24].
By carefully exploiting all available structure, our algorithm
can tackle large-scale problems [25]. For L = 1, the problem
can be related to CANDELINC [26], [27], which can be
computed efficiently in the dense [26] and sparse [28] case.

In the remainder of this section, we discuss notations and
basic definitions. In Section II, we reformulate the LS-CPD via
Kronecker structure. By properly exploiting the structure, we
obtain an efficient optimization-based algorithm in Section III.
Numerical experiments are discussed in Section IV.

A. Notations and basic definitions
A tensor (denoted byA) is a higher-order generalization of a

vector and a matrix (e.g., a and A, resp.). A mode-n vector of
a tensor A ∈ KI1×···×IN (with K meaning R or C) is defined
by fixing every index except the nth. The mode-n unfolding of
A is the matrix A(n) with the mode-n vectors as its columns
(using the ordering in [27]). The vectorization of A, denoted as
vec(A), maps each element ai1i2...iN onto vec(A)j with j =

1 +
∑N

k=1(ik − 1)Jk and Jk =
∏k−1

m=1 Im (with
∏k−1

m (·) = 1
if m > k−1); unvec(·) is the inverse of vec(·). We denote the
outer, Kronecker, Khatri–Rao, and Hadamard product as ⊗, ⊗,
�, and ∗, resp. The complex conjugate and pseudoinverse are
denoted by · and ·† We say that N th-order tensor has rank one
if it can be written as the outer product of N nonzero vectors.
The rank of a tensor is defined as the minimal number of
rank-1 terms that generate the tensor as their sum.

B. Canonical Polyadic Decomposition (CPD)
The CPD is an important tool for tensor analysis in signal

processing, data mining and machine learning [1], [2], [27].
The decomposition is unique under rather mild conditions [29],
[30], which is a powerful advantage over matrices [2].

Definition 1: A polyadic decomposition (PD) writes an N th-
order tensor A ∈ KI1×I2×···×IN as a sum of R rank-1 terms:

A =

R∑
r=1

u(1)
r

⊗ u(2)
r

⊗ · · · ⊗ u(N)
r

def
=

r
U(1),U(2), . . . ,U(N)

z
.



The columns of the factor matrices U(n) ∈ KIn×R are equal
to the factor vectors u

(n)
r for 1 ≤ r ≤ R. The PD is said to

be canonical (CPD) when R is equal to the rank of A.
The CANDELINC model is a popular tool to incorporate prior
knowledge in the CPD by means of linear constraints, allowing
one to improve the accuracy and/or interpretability [26], [28].
One assumes that U(n) = V(n)C(n) in which V(n) is known
and C(n) is the unknown coefficient matrix.

C. Identities and derivatives
We use the following identities in this paper [31]:

(A⊗B)(C⊗D) = AC⊗BD, (1)

(A⊗B)(C�D) = AC�BD, (2)

(A�B)
T
(C�D) = ATC∗BTD, (3)

vec (ABC) = (CT⊗A) vec (B) , (4)

vec (JA,B,CKR) = (C�B�A)1R. (5)

Given a matrix P(n) that permutes the nth mode of a vector-
ized tensor to the first mode and P(n)T

P(n) = I, we have:

P(n)vec
(r

U(1), . . . ,U(n)
z)

=

vec
(r

U(n),U(1), . . . ,U(n−1),U(n+1), . . . ,U(N)
z)

.

By defining V{n} = �N
q=1,q 6=N−n+1 U

(N−q+1), we obtain:

P(n)T
(
V{n}⊗ IIn

)
vec (X) =

vec
(r

U(1), . . . ,U(n−1),X,U(n+1), . . . ,U(N)
z)

, (6)

P(n)T
vec
(
U(n)V{n}

T
)

= vec
(r

U(1), . . . ,U(n)
z)

.

Finally, we also use the following derivative [32]:

∂vec
(q
U(1), . . . ,U(n)

y)
∂vec

(
U(n)

) = P(n)T
(
V{n}⊗ IIn

)
. (7)

II. KRONECKER-STRUCTURED LS-CPD AS A SUM OF
CPDS WITH LINEARLY CONSTRAINED FACTOR MATRICES

In this paper, we consider a CPD of a tensor that is only
known via linear measurements. This can be formulated as a
linear system with a CPD constrained solution (LS-CPD) [3]:

Ax = b with x = vec
(r

U(1),U(2), . . . ,U(N)
z)

(8)

in which A ∈ KM×K , U(n) ∈ KIn×R, and K =
∏N

n=1 In.
Additionally, we assume that A admits, or can be well approx-
imated by, a sum of L Kronecker products of smaller matrices
A(n,l) ∈ KJn×In , for 1 ≤ n ≤ N , and M =

∏N
n=1 Jn, i.e.,

A =

L∑
l=1

A(N,l)⊗A(N−1,l)⊗ · · ·⊗A(1,l). (9)

By assuming Kronecker structure (9), the LS-CPD problem
in (8) can be reduced to a sum of CPDs with linear constraints.
First, combine (8) and (9) to obtain:
L∑

l=1

(
A(N,l)⊗ · · ·⊗A(1,L)

)(
U(N)� · · ·�U(1)

)
· 1R = b.

By using the mixed-product rule in (2), we can write that:
L∑

l=1

(
A(N,l)U(N)� · · ·�A(1,l)U(1)

)
· 1R = b. (10)

By defining factor matrices V(n,l) = A(n,l)U(n), 1 ≤ n ≤ N ,
we can write (10) as a sum of L CPDs with linearly con-
strained factor matrices of a tensor B = unvec(b) as follows:

B =

L∑
l=1

r
V(1,l),V(2,l), . . . ,V(N,l)

z
. (11)

If L = 1, it is clear that (11) can be related to the well-known
CANDELINC. For L > 1, we obtain a more general model.

By stacking the factor matrices V(n,l), 1 ≤ l ≤ L, in a
matrix V(n) =

[
V(n,1) V(n,2) · · · V(n,L)

]
∈ KJn×RL,

(11) reduces to a rank-RL CPD with linear block constraints:

B =
r
V(1),V(2), . . . ,V(N)

z
.

If all A(n,l) have full column rank, existing uniqueness results
can be used, see [29], [30]. Depending on the application,
we are interested in either interpretable, and therefore unique,
factor matrices or a compact representation of the underlying
tensor using factor matrices which do not need to be unique.

III. NONLINEAR LEAST-SQUARES ALGORITHM

By properly exploiting the Kronecker structure, we derive
an efficient NLS algorithm for (8)-(9). The computation can
be formulated as an optimization problem as follows:

min
z
f =

1

2
||F||2F with F defined as in (13), (12)

in which the variables U(n), for 1 ≤ n ≤ N , are concatenated
in a vector z ∈ KRI+

with I+ =
∑N

n=1 In, as follows: z =[
vec
(
U(1)

)
; · · · ; vec

(
U(N)

)]
. The residual F is given by:

F =

L∑
l=1

r
V(1,l),V(2,l), . . . ,V(N,l)

z
− B (13)

with linear constraints V(n,l) = A(n,l)U(n,l) ∈ KJn×R.
We can solve the optimization problem in (12)-(13) using

standard qN and NLS algorithms by deriving expressions for
the evaluation of the objective function, gradient, Jacobian,
Gramian, and Gramian-vector product. Importantly, we exploit
all available structure in order to obtain efficient implementa-
tions. In this paper we focus on the Gauss–Newton (GN) algo-
rithm [24], but the expressions can be used for other qN and
NLS algorithms as well. In order to implement our algorithm,
we use the complex optimization framework from [25], [33],
[34], which provides qN and NLS implementations as well as
line, plane search, and trust-region methods. Additionally, we
provide a computational complexity analysis.

The GN method using dogleg trust-region solves (12) by
linearizing the residual vec (F) in each iteration k and subse-
quently by solving the following least-squares problem [24]:

min
pk

1

2
||vec (Fk) + Jkpk||2F s.t. ||pk|| ≤ ∆k (14)



with step pk = zk+1 − zk, Jacobian J = dvec (F) /dz,
and trust-region ∆k. The exact solution to (14) is given by
the linear system Hkpk = −gk with H the Hessian, which
we approximate with the Gramian of the Jacobian, and the
conjugated gradient g = (∂f/∂z)

H [24]. The variables can
then be updated as zk+1 = zk+pk. In this paper, we solve the
linear system using several preconditioned conjugated gradient
(CG) iterations in order to reduce computational complexity.
We use random factor matrices in this paper to initalize the
algorithm. The GN method is summarized in Algorithm 1.

Algorithm 1: Kronecker-structured LS-CPD using
Gauss–Newton and dogleg trust region.

Input: B, {A(n)}Nn=1, and {U(n)}Nn=1

Output: {U(n)}Nn=1

1 while not converged do
2 Compute gradient g using (15) and (16).
3 Use preconditioned CG to solve Hp = −g for p

using Gramian-vector products in (17)-(18) and a
block-Jacobi preconditioner as explained in
Section III-E.

4 Update {U(n)}Nn=1, using dogleg trust region from
p, g, and objective function evaluation (12).

5 end

A. Objective function
The objective function f can be evaluated by taking the sum

of squared entries of the residual F(z) as defined in (13).

B. Jacobian
The Jacobian J can be partitioned in the following way:

J =
dvec (F)

dz
=
[
J(1) J(2) · · · J(N)

]
∈ KK×RI+

.

with the nth sub-Jacobian J(n) defined as:

J(n) =

L∑
l=1

P(n)T
(
V{n,l}⊗A(n,l)

)
∈ KK×RIn

with V{n,l} = �N
q=1,q 6=N−n+1 V

(n,l).
Proof.
J(n) =

∂vec (F)

∂vec
(
U(n)

) =

L∑
l=1

∂
(q
V(1,l), . . . ,V(N,l)

y)
∂vec

(
U(n)

)
=

L∑
l=1

∂
(q
A(1,l)U(1), . . . ,A(N,l)U(N)

y)
∂vec

(
U(n)

)
=

L∑
l=1

(
1⊗

n=N

A(n,l)

)
·
∂vec

(q
U(1), . . . ,U(N)

y)
∂vec

(
U(n)

)
=

L∑
l=1

(
1⊗

n=N

A(n,l)

)
P(n)T

(
V{n}⊗ IIn

)
=

L∑
l=1

P(n)T
(
V{n,l}⊗A(n,l)

)
.

Identities (2) and (5) enable the third equation. The last two
equations are obtained by using (7) and (1)-(2), respectively.

C. Gradient

The gradient g can be partitioned in the following way

g =
∂f

∂z
=
[
g(1) g(2) · · · g(N)

]
∈ KRI+

, (15)

in which g(n) ∈ KRIn is defined by:

g(n) =

L∑
l=1

vec
(
A(n,l)T

F(n)V
{n,l}

)
. (16)

Proof.

g(n) =
∂f

∂vec
(
U(n)

) = J(n)T
vec (F)

=

L∑
l=1

(
V{n,l}

T
⊗A(n,l)T

)
P(n)vec (F)

=

L∑
l=1

vec
(
A(n,l)T

F(n)V
{n,l}

)
.

We use (4) to obtain the last equation, which can be computed
efficiently using Tensorlab’s mtkrprod implementation [35].

D. Gramian-vector product

We compute the product J(m)H
J(n)vec

(
X(n)

)
efficiently,

by first computing t = J(n)vec
(
X(n)

)
with X(n) ∈ KIn×R:

J(n)vec
(
X(n)

)
=

L∑
l=1

P(n)T
(
Ṽ{n,l}⊗A(n,l)

)
vec
(
X(n)

)
=

L∑
l=1

vec
(r

V(1,l), . . . ,V(n−1,l),A(n,l)X(n),

V(n+1,l), . . . ,V(N,l)
z)
. (17)

We obtain (17) by using (6). Next, we compute y = J(m)H
t:

y = J(m)H
t =

L∑
l=1

(
V{m,l}H

⊗A(m,l)H
)
P(m)t

=

L∑
l=1

vec
(
A(m,l)H

T(m)V
{m,l}

)
. (18)

We use (5) to obtain the last equation, which can be computed
efficiently using Tensorlab’s mtkrprod implementation [35].

E. Block-Jacobi preconditioner

We use a block-Jacobi preconditioner to reduce the number
of conjugated gradient (CG) iterations and improve overall
convergence. In that case, we have to compute the inverse of
J(n)H

J(n) ∈ KRIn×RIn , for 1 ≤ n ≤ N , in each iteration.
The (n, n)th sub-Gramian is given by:

J(n)H
J(n) =

L∑
l=1

(
W{n,l}⊗A(n,l)H

A(n,l)
)

(19)

with W{n,l} = V{n,l}
H
V{n,l} ∈ KR×R which can be

computed as W{n,l} = ∗Nq=1,q 6=n V
(n,l)H

V(n,l) using (3).



TABLE I
BY FULLY EXPLOITING THE KRONECKER STRUCTURE, WE OBTAIN A
SIGNIFICANT IMPROVEMENT IN THE COMPUTATIONAL COMPLEXITY.

Complexity

Calls/iteration Our algorithm LS-CPD

Factor matrices V(n,l) 1 O (NRIJL) /
Objective function 1 + itTR O (RML) O(RMIN )
Jacobian 1 O (NRMLI) O

(
NRMIN

)
Gradient 1 O (NRML) O (NRMI)
Gramian-vector itCG O (NRML) O (NRMI)

For L = 1, computing the inverse of (19) can be done effi-
ciently by omitting the explicit construction of the Jacobians:(

J(n)H
J(n)

)†
=
(
W{n,l}

)†
⊗
(
A(n,l)H

A(n,l)
)†
,

in which
(
A(n,l)H

A(n,l)
)†

can be computed beforehand and(
W{n,l})† requires the inverse of small (R×R) matrices.

F. Computational complexity

By exploiting the Kronecker structure in (8)-(9), we obtain
a significant improvement in the computational complexity,
enabling an efficient algorithm for large-scale problems. In
Table I, we compare the per-iteration computational complex-
ity of our algorithm with the LS-CPD algorithm in [3], which
ignores the structure of A. For simplicity, we assume that
In = I and Jn = J for 1 ≤ n ≤ N . The number of trust-
region (TR) and CG iterations are denoted by itTR and itCG.

IV. EXPERIMENTS

A. The block-Jacobi preconditioner is effective

By using the block-Jacobi preconditioner we can effectively
reduce the number of CG iterations in different scenarios.
Consider problem (8)-(9) with N = 3, R = 2, L = 3
I1 = I2 = I3 = I = 10, and K = 1000. Taking
J1 = J2 = J3 = J , we consider three scenarios: 1) the
square case with J = 10 and M = 1000 = K, 2) the
underdetermined case with J = 9 and M = 729 < K,
and 3) the highly underdetermined case with J = 5 and
M = 125 � K. We simulate a typical iteration of the
algorithm by computing the Gramian H and the gradient g
for random factor matrices and then solving Hp = −g using
preconditioned CG until convergence (up to a tolerance of
10−6). We report the average and standard deviation of the
number of CG iterations across fifty experiments in Table II
using no PC and the block-Jacobi PC from Subsection III-E.

B. Graph clustering as a Kronecker-structured LS-CPD

Partitioning a graph into meaningful clusters, is crucial to
analyze large-scale networks. We show that the similarity-
based clustering method in [36] can be reformulated as the
computation of a Kronecker-structured LS-CPD, as follows.

TABLE II
THE BLOCK-JACOBI PRECONDITIONER (PC) EFFECTIVELY REDUCES THE

NUMBER OF CONJUGATED GRADIENT (CG) ITERATIONS IN VARIOUS
SCENARIOS. WE REPORTED THE AVERAGE (AND STANDARD DEVIATION

OF THE) NUMBER OF CG ITERATIONS ACROSS FIFTY EXPERIMENTS.

Scenario No PC block-Jacobi PC

Square 35 (6) 11 (2)
Underdetermined 38 (7) 13 (2)
Highly underdetermined 60 (0) 35 (6)

1 3 6
10−1

100

Rank of Ŝ

∣∣∣∣∣∣S− Ŝ
∣∣∣∣∣∣

Fig. 1. A low-rank model Ŝ of the similarity measure provides a good approx-
imation, allowing one to extract meaningful clusters using this approach [36].

It has been shown in [36] that the similarity measure can be
computed by finding a solution to the following equation:[

I⊗ I− β2 (G⊗G + GT⊗GT)
]
vec (S)

= vec (GGT + GTG) (20)

with G the weighted adjacency matrix of the graph, S the
unknown similarity measure, and a parameter β. In order to
reduce the computational cost, it has been proposed in [36] to
find a low-rank approximation Ŝ of S instead, reducing (20)
to (8)-(9) with L = 3 and N = 2. In contrast to [36], our
approach can easily be extended to N > 2, allowing one to
approximate S with a low-rank tensor model which enables
one to represent S even more compactly.

We illustrate our method for an Erdős–Rényi random graph
with fifty nodes and a simple block structure1 in the way
explained in [36] and visualized in Figure 1. In this example,
we simulate a community in which nodes primarily interact
with other nodes of the same cluster, which occurs, e.g., in
(online) social networks. By choosing R ≥ 3 for this example,
we can obtain a meaningful clustering of the nodes because
the low-rank model provides a good approximation of the
underlying similarity measure, as can be seen in Figure 1.

V. CONCLUSION

In this paper, we assumed that the measurement matrix
in the LS-CPD paper can be approximated by a sum of a
(small) number of Kronecker products. By fully exploiting the
structure, we were able to reformulate the LS-CPD problem
as a sum of CPDs with linear constraints. This insight allowed
us to derive efficient expressions for the ingredients of well-
known qN and NLS algorithms, as demonstrated by the com-
plexity analysis, enabling us to tackle large-scale problems.

1We use an identity matrix as roll graph and pin = 0.9 and pout = 0.1 [36].
The error results in Figure 1 are the median across fifty random experiments.



Additionally, we have numerically tested the effectiveness of
the block-Jacobi preconditioner and we have demonstrated our
approach for graph clustering. In future work, one can derive a
more efficient preconditioner for L > 1 in order to fully omit
the explicit construction of the Jacobians in the algorithm.
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