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Chapter 1

Introduction

1.1 Context

During the last four decades, the insurance has undergone radical
changes driven by multiple and interacting forces - regulatory, eco-
nomic, demographic and technological- that resulted in a complete
paradigm shift.

Traditional life insurance is typically based on a diversification
argument which justifies the mitigation of the risk borne by an
individual by averaging out its consequences over a large pool of
individuals exposed to the same risk. This valuation is performed
based on historical life tables and is defined as the expectation
plus an additional risk margin to cover any adverse economic-
demographic development that is not diversified (e.g. changes in
mortality or interest rates). Based on historical data, the actuarial
valuation involves a subjective actuarial judgement on the choice
of the model to be chosen, see e.g. Kaas et al. (2008) for non-life
and Laurent et al. (2016) for life insurance.

In the past, actuaries mostly used deterministic models for dis-
counting liabilities with a constant interest rate. It turned out that
this deterministic approach was unable to cope with the stochas-
tic environment of the financial market: several life insurance and
pensions have shown huge deficits caused by premiums that were
unsustainable in periods of financial crises and significant changes
in mortality (in particular, due to a decline in interest rates cou-
pled with an improvement of longevity).

On the regulatory side, the old standard solvency regulations
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2 Chapter 1. Introduction

(Solvency I) were rule-based and not risk-based: the required cap-
ital was a percentage of the premiums and was not related to the
underlying risk the insurers were facing. Moreover, the solvency
regulations were focused on the liability side and disregarded the
risk on the asset side. As a consequence, new insurance solvency
regulations based on risk management (Solvency II) were intro-
duced in the last years whose main objective is to be risk-sensitive
and take market risk (major risk for life insurers) into account in
capital requirements.

More specifically, modern solvency regulations for the insur-
ance industry, such as the Swiss Solvency Test and Solvency II,
require insurance undertakings to apply a fair valuation of their
assets and liabilities. The fair value of an asset or a liability is gen-
erally understood as ‘the amount for which it could be transferred
(exchanged) between knowledgeable willing parties in an arm’s
length transaction’. A fair valuation method combines techniques
from financial mathematics and actuarial science, in order to take
into account and be consistent with information provided by the
financial markets on the one hand and actuarial judgement based
on generally available data concerning the underlying risks on the
other hand. Loosely speaking, any hedgeable (part of a) claim has
to be valuated at the price of its hedge. Otherwise, the value of
the claim is determined by its expected present value (called the
best estimate), augmented by an appropriate risk loading (called
the risk margin, e.g. based on cost-of-capital arguments).1

Insurance liabilities are in most cases (only) partially replicable
by traded assets. This may be due to the fact that the payoffs of
the underlying insurance contracts are defined in terms of a com-
bination of hedgeable and unhedgeable claims (e.g. unit-linked
insurance) or due to the existence of traded insurance-linked se-
curities of which the payoff is correlated with the payoff of the in-
surance liability (e.g. CAT bonds). Since not all insurance claims
can be perfectly replicated by traded assets, we face the problem
of valuating claims in incomplete markets (i.e. markets in which
some claims are not perfectly hedgeable).

1Solvency II (Directive 2009/138/EC, Article 77, calculation of technical
provisions): If the cash flows of the liability (or part of the cash flows) can be
replicated reliably, then the value of the (part of the) cash flows is determined
on the basis of the market value of these financial instruments. Otherwise, the
value is equal to the sum of the best estimate and a risk margin.
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Several ways of valuating unhedgeable (unreplicable) claims
have been considered in the literature. Under a ‘utility indiffer-
ence’ approach, the value of a claim is set equal to the amount
which makes the agent indifferent, in terms of expected utility,
between holding the claim or not. The idea for the utility indiffer-
ence approach in an incomplete market setting is often attributed
to Hodges and Neuberger (1989). A market-consistent insurance
premium based on expected utility indifference arguments is devel-
oped in Malamud et al. (2008). A similar algorithm was proposed
by Musiela and Zariphopoulou (2004) for determining indifference
prices in a multiperiod binomial model. For an overview of the
theory, we refer to Henderson and Hobson (2004) and Carmona
(2009).

Another approach for valuating unreplicable claims starts from
the observation that in an incomplete market setting no-arbitrage
arguments only partially specify the pricing measure (which allows
to express prices of contingent claims as discounted expectations
under that measure). Therefore, one extends this partially speci-
fied measure to a ‘complete’ pricing measure that is used to de-
termine the value of all contingent claims, also the ones that are
not traded. The ‘complete’ pricing measure is chosen such that
it is, in one way or another, the ‘most appropriate’ one. A pop-
ular choice is the minimal entropy martingale measure, see e.g.
Frittelli (1995) and Frittelli (2000) in a pure financial context and
Dhaene et al. (2015) in a combined financial-actuarial framework.
Another possible choice is the risk-neutral Esscher measure, see
Gerber and Shiu (1994). Under such a ‘completing approach’, the
value of an unhedgeable claim can be interpreted as a reasoned
estimate of what its market value would have been had it been
readily traded. A formal definition of market-consistent valuation
has only emerged recently, see e.g. Malamud et al. (2008), Artzner
and Eisele (2010) or Pelsser and Stadje (2014).

For the determination of the solvency capital requirement, each
insurance company is required to determine the fair value of its
liabilities, not only today but also in future points in time. An im-
portant question in a dynamic setting is how risk valuations at dif-
ferent times are interrelated. In this context, time-consistency is a
natural approach to glue together static valuations. It means that
the same value is assigned to a position regardless of whether it is



4 Chapter 1. Introduction

calculated over two time periods at once or in two-steps backwards
in time. Time-consistent valuations have been largely studied and
we refer to Acciaio and Penner (2011) for an overview.

1.2 Contribution

The main goal of this thesis is to introduce different valuation
frameworks for the determination of a fair valuation for insurance
liabilities. The objective of this valuation is to merge the tradi-
tional actuarial valuation based on pooling and diversification with
a market-consistent approach based on hedging and replication.

We remark that the thesis is about the generic meaning of fair
valuation of random payments related to liabilities in an insurance
context and not about a particular technical meaning that is given
to it by a particular regulation or legislation. Furthermore, we
consider fair valuation in a general context without specifying the
purpose it is used for. The results we present and discuss may
be used not only in a reserving context (determining technical
provisions) but also in a pricing context (setting premiums).

In Chapter 2, we define a fair valuation as a valuation which is
both market-consistent and actuarial in a single period framework.
This valuation is market-consistent in the sense that any hedgeable
part of a claim is valuated at the price of its hedge. Moreover, the
valuation is actuarial in the sense that claims with payoffs that are
independent of the evolution of asset prices are valuated taking
into account actuarial judgement.

We introduce and investigate ‘hedge-based valuations’. Under
this approach, one unbundles the unhedgeable insurance claim in a
hedgeable part and a remaining part. The fair value of the claim is
then set equal to the sum of the respective values of the hedgeable
and the unhedgeable parts, where the hedgeable part is valuated
by the financial price of its underlying hedge, while the value of the
remaining part is determined via an actuarial approach. In par-
ticular, we consider the class of ‘convex hedge-based valuations’.
An important subclass consists of the ‘mean-variance hedge-based
valuations’. Further, we also investigate an adapted version of the
two-step valuation approach, as introduced in Pelsser and Stadje
(2014). We show that the classes of fair valuations, hedge-based
valuations and two-step valuations are identical.
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In Chapter 3, we extend the approach of the first chapter to a
multi-period discrete time setting and focus on the ’mean-variance
hedge-based valuations’. which is a two-stage valuation procedure.
In a first step, a mean-variance hedge is set up for the claim,
based on the available traded assets. In a second step, an actuarial
valuation is applied to the remaining non-hedged part of the claim.
The fair value is then defined as the sum of the price of the mean-
variance hedge and the actuarial value of the residual claim. In
this chapter, we will generalize the MVHB valuation approach in
a dynamic investment setting and investigate properties of this
valuation framework.

In Chapter 4, we incorporate time-consistency considerations
in our setting and investigate the fair valuation of insurance lia-
bilities in a dynamic multi-period setting. We define a fair dy-
namic valuation as a valuation which is actuarial (mark-to-model
for claims independent of financial market evolutions), market-
consistent (mark-to-market for hedgeable parts of claims) and
time-consistent, and study their properties. In particular, we pro-
vide a complete hedging characterization for fair dynamic valua-
tions, extending the work of the first two chapters in a dynamic
setting. Moreover, we show how we can implement fair dynamic
valuations through a backward iterations scheme combining risk
minimization methods from mathematical finance with standard
actuarial techniques based on risk measures. We remark that
Pelsser and Stadje (2014) and Ghalehjooghi and Pelsser (2017)
proposed time-consistent and market-consistent valuations via a
so-called ‘two-step market evaluation’. Compared to their papers
which characterize time-consistent and market-consistent valua-
tions in a complete financial market by operator splitting, our val-
uation framework is hedge-based and allows for financial market
incompleteness.

In Chapter 5, we introduce two broad classes of valuations:
two-step financial valuations that are market-consistent and two-
step actuarial valuations that are actuarial-consistent. We provide
a complete axiomatic characterization for the two-step valuations
based on coherent valuations. The two-step valuations are gen-
eral in the sense that they do not impose linearity constraints
on the actuarial and financial valuations. Therefore, they allow
to account for the diversification of actuarial risks and/or the in-
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completeness of the financial market (e.g. non-linear pricing with
bid-ask prices).

While the two-step financial valuation is an extension of the
two-step market valuation of Pelsser and Stadje (2014), the two-
step actuarial valuation consists of reversing the valuation order:
applying a financial valuation after conditioning on the actuarial
component. We show that the two-step actuarial valuation can be
decomposed into a best estimate (expected value) plus a risk mar-
gin to cover the uncertainty in the actuarial risks. The procedure
will be illustrated on a portfolio of life insurance contracts with
dependent financial and actuarial risks.

The various chapters in this thesis can be found in

(i) Dhaene, J., Stassen, B., Barigou, K., Linders, D., & Chen, Z.
(2017). Fair valuation of insurance liabilities: merging actu-
arial judgement and market-consistency. Insurance: Mathe-
matics and Economics, 76, 14-27.

(ii) Barigou, K., & Dhaene, J. (2019). Fair valuation of insur-
ance liabilities via mean-variance hedging in a multi-period
setting. Scandinavian Actuarial Journal, 2019(2), 163-187.

(iii) Barigou, K., Chen, Z., & Dhaene, J. (2019). Fair dynamic
valuation of insurance liabilities: Merging actuarial judge-
ment with market-and time-consistency. Insurance: Mathe-
matics and Economics, 88, 19-29.

(iv) Barigou, K., Linders, D & Yang F. (2019). Two-step fi-
nancial and actuarial valuations: Axiomatic characterization
and applications. Working paper.

The author also contributed to the following original publications

(i) Delong, L., Dhaene, J., & Barigou, K. (2019). Fair valuation
of insurance liability cash-flow streams in continuous time:
Theory. Insurance: Mathematics and Economics, 88, 196-
208.

(ii) Delong, L., Dhaene, J., & Barigou, K. (2019). Fair valuation
of insurance liability cash-flow streams in continuous time:
Applications. Astin Bulletin. 1-35. doi:10.1017/asb.2019.8



Chapter 2

Fair valuation of
insurance liabilities:
Merging actuarial
judgement and
market-consistency

This chapter is based on
Dhaene, J., Stassen, B., Barigou, K., Linders, D., & Chen, Z.
(2017). Fair valuation of insurance liabilities: merging actuarial
judgement and market-consistency. Insurance: Mathematics and
Economics, 76, 14-27.

2.1 Introduction

This chapter introduces the concept of fair valuation in a single
period framework. As we said in the introduction, our objective is
to take market prices from the financial market on the one hand
and actuarial information and judgement about non-traded risks
on the other hand into account in our valuation. Since most in-
surance liabilities are a combination of traded financial and non-
traded actuarial risks, it is important that our valuation frame-
work considers these market-consistent and actuarial aspects. In

7



8 Chapter 2. Fair valuation in a one-period setting

particular, we will define a fair valuation as a valuation that is
market-consistent (mark-to-market for any hedgeable part of a
claim) and actuarial (mark-to-model for any claim that is inde-
pendent of financial market evolutions).

Moreover, for asset and liability management purposes, the
valuation of insurance liabilities should be driven by the idea of
hedging and replication. In that direction, we introduce a class of
hedge-based valuations, where in a first step, a ‘best hedge’ for the
liability is set up, based on the traded assets in the market, while
in a second step, the remaining part of the claim is valuated via
an actuarial valuation. Finally, we also introduce a class of two-
step valuations, that are closely related to the two-step valuations
introduced by Pelsser and Stadje (2014) and further studied by
Ghalehjooghi and Pelsser (2017). We will show that the classes of
fair, hedge-based and two-step valuations are identical.

The remainder of this chapter is organized as follows. In Sec-
tion 2.2, we describe the financial-actuarial world and its market
of traded assets. In Section 2.3, fair valuations and the related
notion of fair hedgers are introduced. Hedge-based valuations are
considered in Section 2.4. An adapted version of the two-step val-
uations introduced by Pelsser and Stadje (2014) is considered in
Section 2.5. Section 2.6 provides some concluding remarks.

2.2 The financial-actuarial world

We investigate the fair valuation of traded and non-traded pay-
offs in a single period financial-actuarial world. Let time 0 be
‘now’ and consider a set of random payoffs, which are due at time
1. These payoffs are random variables (r.v.’s) defined on a given
probability space (Ω,G,P), which is a mathematical abstraction
of the combined financial-actuarial world. We call these random
payoffs (contingent) claims. We assume that the second moments
of all claims and the first moments of all products of claims that
we will encounter exist and are finite under P.

Any element of ω ∈ Ω represents a possible state of the financial-
actuarial world at time 1. For instance, ω could represent a set
of possible outcomes for the time-1 prices of the stocks composing
the Dow Jones Index and for the number of survivors at time 1
from a given closed population observed at time 0. The σ-algebra
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G stands for the set of all events that may or may not occur in
this single period world. Probabilities for these events follow from
the real-world probability measure P. We denote the set of all
(contingent) claims defined on (Ω,G) by C.

The financial-actuarial world (Ω,G,P) is home to a market
of n+ 1 traded assets. These assets can be bought or sold in any
quantities in a deep, liquid, transparent and frictionless market (no
transaction costs and other market frictions). Asset 0 is the risk-
free zero coupon bond. Its current price is y(0) = 1, while its payoff
at time 1 is given by Y (0) = er, where r ≥ 0 is the (continuously
compounded) deterministic interest rate r. Furthermore, there
are n risky assets, denoted by 1, . . . , n, traded in the market. The
price (or the payoff) at time 1 of each asset is a claim defined on
(Ω,G). The current price of asset m ∈ {1, 2, . . . , n} is denoted
by y(m) > 0, whereas its non-deterministic payoff at time 1 is
Y (m) ≥ 0. We introduce the notations y and Y for the vectors of
the time-0 and time-1 asset prices, respectively:

y =
(
y(0), y(1), . . . , y(n)

)

and

Y =
(
Y (0), Y (1), . . . , Y (n)

)
.

A trading strategy θ =
(
θ(0), θ(1), . . . , θ(n)

)
is a real-valued vec-

tor, where the quantity θ(m) stands for the number of units in-
vested in asset m at time 0. The time-0 and time-1 values of the
trading strategy θ are given by the scalar products

θ · y =

n∑

m=0

θ(m) y(m)

and

θ · Y =
n∑

m=0

θ(m) Y (m),

respectively. The set of all trading strategies is denoted by Θ.
The discrete, single period set-up of this chapter implies that any
trading strategy is static in the sense that the hedging portfolio
chosen at time 0 remains unchanged over the period [0, 1].
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Throughout this chapter, we assume that the n+ 1 assets are
non-redundant, which means that there exists no investment strat-
egy θ which is different from 0 = (0, 0, . . . , 0) such that θ · Y = 0.
Hence,

θ · Y = 0⇒ θ = 0. (2.1)

By convention, (in-)equalities between r.v.’s, such as θ · Y = 0,
have to be understood in the P-almost sure sense, unless explicitly
stated otherwise.

A probability measure Q defined on the measurable space (Ω,G)
is said to be an equivalent martingale measure (or a risk-neutral
measure), further abbreviated as EMM, for the market defined
above, if it fulfils the following conditions:

(1) Q and P are equivalent probability measures:

P [A] = 0 if and only if Q [A] = 0, for all A ∈ G.

(2) The current price of any traded asset in the market is given
by the expected value of the discounted payoff of this asset
at time 1, where discounting is performed at the risk-free
interest rate r and expectations are taken with respect to Q:

y(m) = e−r EQ
[
Y (m)

]
, for m = 0, 1, ..., n.

Hereafter, we always assume that the market is arbitrage-free
in the sense that there is no investment strategy θ ∈ Θ such that

θ · y = 0, P [θ · Y ≥ 0] = 1 and P [θ · Y > 0] > 0.

It is well-known that in our setting, the no-arbitrage condition is
equivalent to the existence of a (not necessarily unique) equiva-
lent martingale measure, whereas completeness of the arbitrage-
free market is equivalent to the existence of a unique equivalent
martingale measure, see e.g. Dalang et al. (1990).

Definition 1 (Hedgeable claim) A hedgeable claim Sh is an
element of C that can be replicated by a trading strategy ν =(
ν(0), ν(1), . . . , ν(n)

)
∈ Θ:

Sh = ν · Y =
n∑

m=0

ν(m) Y (m). (2.2)
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We introduce the notationH for the set of all hedgeable claims.
The time-0 price of Sh = ν · Y is given by

ν · y =
n∑

m=0

ν(m) y(m) = e−r EQ
[
Sh
]
, (2.3)

where Q is a generic member of the class of EMM’s. The non-
redundancy assumption (2.1) implies that the hedge of any hedge-
able claim is uniquely determined. Hereafter, we will say that two
random vectors X and Y defined on (Ω,G) are P-independent in
case they are independent under the measure P, and we will denote
this relation by X ⊥ Y .

Definition 2 (Orthogonal claim) An orthogonal claim S⊥ is
an element of C which is P-independent of the vector of traded
claims:

S⊥ ⊥
(
Y (1), Y (2), . . . Y (n)

)
. (2.4)

Hereafter, we will denote the set of all orthogonal claims by
O. The risk-free claims a ∈ R are the only claims which are both
hedgeable and orthogonal. Obviously, the hedge related to the
claim a due at time 1 is an investment of amount e−ra in zero
coupon bonds.

Example 1 (Cost-of-capital principle)
Consider the liability S⊥ related to a portfolio of one-year insur-
ances:

S⊥ =
N∑

i=1

Xi,

where N ∈ N and X1, X2, . . . XN are the losses of the different poli-
cies, which are assumed to be P-independent of

(
Y (1), Y (2), . . . Y (n)

)
.

The position of the insurer in the orthogonal liability S⊥ cannot be
hedged in the financial market. Suppose that the regulator requires
the holder of this position to set up a provision ρ

[
S⊥
]

determined
by

ρ
[
S⊥
]

= e−r EP
[
S⊥
]

+ RM
[
S⊥
]
, (2.5)

and a capital buffer e−r
(
V aRp

[
S⊥
]
− EP [S⊥

])
at time 0, for

some probability level p ∈ (0, 1]. Here, e−r EP [S⊥
]

is the best



12 Chapter 2. Fair valuation in a one-period setting

estimate of S⊥, where the Value at Risk of S⊥ at a confidence
level p is given by

V aRp

[
S⊥
]

= inf
{
x | P

[
S⊥ ≤ x

]
≥ p
}
,

while RM
[
S⊥
]

is the risk margin under the cost-of-capital ap-
proach:

RM
[
S⊥
]

= e−r i
(

VaRp

[
S⊥
]
− EP

[
S⊥
])

(2.6)

for some cost-of-capital rate i. The risk margin RM
[
S⊥
]

reflects
the cost related to holding the capital e−r

(
VaRp

[
S⊥
]
− EP [S⊥

])

to buffer the risk of S⊥ being larger than EP [S⊥
]

at time 1.
Let us now additionally assume that under P, the claims Xi are
i.i.d. with expectation and variance given by µ and σ2 > 0, re-
spectively. Furthermore, let the portfolio be sufficiently large such
that we can assume that

P

[
S⊥ − EP [S⊥

]

σP [S⊥]
≤ s
]

= Φ [s] , for all s,

where Φ is the cdf of a standard normal distribution. In this case,
we find that ρ

[
S⊥
]

is given by

ρ
[
S⊥
]

= e−r
(
Nµ+ i

√
NσΦ−1 [p]

)
. (2.7)

Due to the diversification effect, the risk margin per policy, i.e.
e−ri σ√

N
Φ−1 [p], is a decreasing function of the portfolio size N . J

Many claims that insurance companies face are not perfectly
hedgeable, but nevertheless not P-independent of the payoffs of
the traded assets. Such claims are neither hedgeable nor orthog-
onal. Instead, they belong to the class of unhedgeable and non-
orthogonal claims. Hereafter, we will call the members of this class
hybrid claims.

Definition 3 (Hybrid claim) A claim S is a hybrid claim in
case it is neither perfectly hedgeable nor orthogonal:

S ∈ C \ (H ∪O) .
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Unit-linked insurance products often have by construction a
financial (hedgeable) and an actuarial (unhedgeable) part in their
payoff. This means that the valuation of unit-linked insurance
claims gives rise to the valuation of hybrid claims. Furthermore,
the development of markets in insurance-linked securities (such as
catastrophic bonds, weather derivatives, longevity bonds) creates
the possibility that liabilities of insurance portfolios that are ex-
posed to specific actuarial risks (such as those arising from natural
catastrophes) become at least partially hedgeable. Hence, insur-
ance securitization may also lead to hybrid claims in insurance
portfolios.

Insurance valuation regulations are in general clear about the
fair valuation of hedgeable and orthogonal claims. The former type
of claims are valuated at the cost of the replicating portfolio, while
the latter are valuated as the sum of their expected present value
and a risk margin. However, it is usually unclear how to perform
the fair valuation of hybrid claims. This thesis contributes to the
development of solutions for that important issue.

2.3 Fair valuations and fair hedgers

In this section, we define different classes of valuations, which
attach a value to any claim S ∈ C. We also introduce different
classes of hedgers, which attach a trading strategy to any claim.
We show that there is a one-to-one relation between each class of
valuations and its corresponding class of hedgers.

2.3.1 Fair valuations

In this subsection, we define the notion of valuation. Furthermore,
we introduce the notions of market-consistent, actuarial and fair
valuations, respectively.

Definition 4 (Valuation) A valuation is a mapping ρ : C → R,
attaching a real number to any claim S ∈ C:

S → ρ [S] ,

such that ρ is normalized:

ρ [0] = 0, (2.8)



14 Chapter 2. Fair valuation in a one-period setting

and ρ is translation invariant:

ρ [S + a] = ρ [S] + e−ra, for any S ∈ C and a ∈ R. (2.9)

A valuation ρ attaches a real number to any claim, which we
interpret as a ‘value’ of that claim. For any valuation ρ, we imme-
diately find that

ρ [a] = e−ra, for any a ∈ R. (2.10)

Other properties that a valuation may satisfy or not are P-law
invariance, positive homogeneity and subadditivity. A valuation ρ
is said to be P-law invariant if

ρ [S1] = ρ [S2] for any S1, S2 ∈ C with S1
P
= S2.

It is said to be positive homogeneous if

ρ [aS] = a ρ [S] , for any scalar a > 0 and any S ∈ C,

while it is said to be subadditive if

ρ [S1 + S2] ≤ ρ [S1] + ρ [S2] , for any S1, S2 ∈ C.

An important subclass of the class of valuations is the class of
market-consistent valuations, which are defined hereafter.

Definition 5 (Market-consistent valuation)
A market-consistent valuation (MC valuation) is a valuation ρ :
C → R such that any hedgeable part of any claim is marked-to-
market:

ρ [S + ν · Y ] = ρ [S]+ν · y, for any S ∈ C and any ν ·Y ∈ H.
(2.11)

In the literature on MC valuation, market-consistency is usu-
ally defined via condition (2.11), see e.g. Kupper et al. (2008),
Malamud et al. (2008) or Artzner and Eisele (2010) and Pelsser
and Stadje (2014). The mark-to-market condition (2.11) can be
interpreted as an extension of the notion of translation (or cash)
invariance (2.9) from scalars to hedgeable claims. The mark-to-
market condition can also be stated in the following way:

ρ [S] = ρ [S − ν ·Y] + ν · y, for any S ∈ C and ν ·Y ∈ H.
(2.12)
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In order to interpret (2.12), consider a person facing a loss S. This
person could decide to transfer the whole loss S to the insurer.
Alternatively, he could split his claim S into a hedgeable claim
ν ·Y, which he hedges in the financial market, while he brings the
remaining part S−ν ·Y to the insurer. The condition (2.12) states
that the claim S is equally valuated in both cases. In other words,
the insurer valuates in agreement with the financial market, in the
sense that he does not charge a risk margin for any hedgeable part
of a claim. From (2.12), we also find that for any hedgeable claim
Sh = ν ·Y, we have that

ρ [ν ·Y] = ν · y, (2.13)

which means that the market-consistent value of a hedgeable claim
is equal to the price of its underlying hedge.

Next we define actuarial valuations.

Definition 6 (Actuarial valuation) An actuarial valuation is
a valuation ρ : C → R such that any orthogonal claim is marked-
to-model:

ρ
[
S⊥
]

= e−r EP
[
S⊥
]
+ RM

[
S⊥
]
, for any S⊥ ∈ O, (2.14)

where RM : O → R is a mapping attaching to any orthogonal
claim a real number, not depending on the current asset prices(
y(1), y(2), . . . , y(n)

)
.

The mark-to-model condition (2.14) states that any orthogonal
claim is valuated by the sum of its best estimate e−r EP [S⊥

]
and

a risk margin RM
[
S⊥
]
. In order to guarantee that an actuarial

valuation is indeed a valuation, one must have that RM [0] =
0 and RM

[
S⊥ + a

]
= RM

[
S⊥
]

for any orthogonal claim. The
actuarial valuation ρ and in particular the risk margin function
RM that is used in a specific situation is chosen by the actuary,
the regulator or any other valuator of the claims and introduces
actuarial judgement in the valuation of claims. In the traditional
view on valuation in an insurance context, the existence of the
financial market is ignored, except for the risk-free bank account.
In such an approach, any claim S is orthogonal, and any claim is
valuated via an actuarial valuation.
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Our definition of an actuarial valuation is broad in the sense
that the only requirement that is made concerning the risk margin
is that it is not dependent on information concerning the prices of
the traded assets that is available at the moment of the valuation.
Alternative definitions for an actuarial valuation are possible. In
a narrow setting, one could define an actuarial valuation as a val-
uation of the form (2.14) where RM is the risk margin function
of the Cost-of-Capital principle (2.6) for a given probability level
p and cost-of-capital i. In general, an actuarial valuation could
be defined as a valuation satisfying a well-defined property in the
set of orthogonal claims. One could consider e.g. a set of prob-
ability measures (P1,P2, . . . ,Pn) on the measurable space (Ω,G),
and require that for any orthogonal claim S⊥ ∈ O, ρ

[
S⊥
]

only

depends on the n cdf’s F P1

S⊥
, F P2

S⊥
, , . . . , F Pn

S⊥
of S⊥ under these dif-

ferent measures. An example is the ‘worst-case’ valuation for any
S⊥ ∈ O:

ρ
[
S⊥
]

= max
(
ρ1

[
S⊥
]
, ρ2

[
S⊥
]
, . . . , ρn

[
S⊥
])
,

where for each i, ρi is an actuarial valuation in the sense of the
original definition (2.14), where the measure P is replaced by Pi.
It is important to notice that all the results that we will derive
hereafter concerning the characterization of fair valuations remain
valid under any such adapted definition of an actuarial valuation.

Current insurance solvency regulations impose mark-to-market
as well as mark-to-model requirements for the valuation of assets
and liabilities.1 However, in the existing scientific literature on
valuating claims in a combined financial-actuarial setting, the fo-
cus is on the mark-to-market condition as defined according to
(2.11), while the mark-to-model condition, which states that non-
financial components of a claim should be valued taking into ac-
count actuarial judgement, is ignored. Therefore, hereafter we
introduce the class of fair valuations, which is a subset of the class
of market-consistent valuations. These fair valuations are closer to

1In the ’Solvency II Glossary’ of the ’Comité Européen des Assurances’ and
the ’Groupe Consultatif Actuariel Européen’ of 2007, Fair Value is defined as
’the amount for which ... a liability could be settled between knowledgeable,
willing parties in an arm’s length transaction. This is similar to the concept of
Market Value, but the Fair Value may be a mark-to-model price if no actual
market price for the ... liability exists.’
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the meaning of fair valuation in current insurance solvency regula-
tions, as they satisfy a mark-to-market as well as a mark-to-model
condition.

Definition 7 (Fair valuation) A fair valuation is a valuation
that is both market-consistent and actuarial.

At first sight, one could wonder whether it would be more
appropriate to define a fair valuation as a valuation that obeys
the mark-to-market condition (2.11) for any hedgeable part of a
claim, as well as the following mark-to-model condition for any
orthogonal part of a claim:

ρ
[
S + S⊥

]
= ρ [S] + π

[
S⊥
]

, for any S ∈ C and any S⊥ ∈ O,

where π is an actuarial valuation as defined above. One can easily
prove that this condition would imply that ρ

[
S⊥
]

= π
[
S⊥
]

and
hence,

π
[
S⊥1 + S⊥2

]
= π

[
S⊥1

]
+ π

[
S⊥2

]
, for any S⊥1 , S⊥2 ∈ O,

which would ignore the diversification benefit which is essential
for valuating non-replicable insurance liabilities, see e.g. (2.7) in
Example 1.

The valuation ρ : C → R defined by

ρ [S] = e−r EQ [S] (2.15)

for a given EMM Q is an example of a valuation which is market-
consistent but in general not actuarial and hence, not fair. Using
the risk neutral valuation (2.15) for hybrid and orthogonal claims
in insurance portfolios is in general not appropriate. Consider e.g.
the orthogonal claim S⊥ =

∑N
i=1Xi, where the claims Xi are i.i.d.

and suppose that this claim is valuated by (2.15). The value per
policy is then given by

ρ
[
S⊥
]

N
= e−r EQ [X1] ,

which is independent of the size N of the portfolio and hence,
ignores the diversification effect in an insurance context. This ob-
servation illustrates the fact that market-consistency is a necessary
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but not sufficient condition for a valuation to be appropriate in an
insurance context. The insufficiency is a consequence of the igno-
rance of diversification concerns in a market-consistent valuation.

From the requirements (2.11) and (2.14), we find that the fair
valuation for S⊥ + ν ·Y with S⊥ ∈ O and ν ·Y ∈ H is given by

ρ
[
S⊥ + ν ·Y

]
= π

[
S⊥
]

+ ν · y, (2.16)

where π is an actuarial valuation. Hence, the fair value of the claim
S⊥ + Sh is given by the sum of the actuarial value of S⊥ and the
financial market price of ν · Y. In other words, the orthogonal
part of the claim is marked-to-model, whereas the hedgeable part
is marked-to-market.

Most hybrid claims observed in an insurance context are of a
more complex structure than the additive structure considered in
(2.16). One often encounters a multiplicative structure, where the
claim S to be valuated can be expressed in the form

S = Sh × S⊥, with Sh ∈ H and S⊥ ∈ O. (2.17)

Solvency regulations are in general rather vague on how to evaluate
such hybrid claims. It is obvious that this claim is only partially
hedgeable, and that Sh is hedgeable whereas S⊥ is not. But it is
not clear how to combine market prices of hedgeable claims with
actuarial considerations to determine a fair value for the claim,
since regulatory frameworks usually do not prescribe how to de-
termine the hedgeable part of a non-hedgeable claim.

Example 2 (Unit-linked insurance)
Consider an insurance portfolio consisting of N insureds, with
Xi ∈ O equal to 1 if insured i = 1, 2, . . . , N, is alive at time 1 and
equal to 0 in the other case. The orthogonal claims Xi are assumed
to be i.i.d. with mean p under P. The number of survivors at time
1 is given by

S⊥ =

N∑

i=1

Xi.

Each insured i has underwritten a one-year unit-linked contract
with guarantee against the risk that asset 1 falls short of K > 0.
The payoff of individual contract i at time 1 is given by

max
(
Y (1),K

)
×Xi.
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Suppose that the put option with payoff
(
K − Y (1)

)
+

is traded at
price P [K]. The unit-linked contracts have an unbounded upside
potential and offer downward protection. The portfolio liability at
time 1 is given by

Sh × S⊥ = max
(
Y (1),K

)
×

N∑

i=1

Xi. (2.18)

Let us now consider a valuation ρ satisfying

ρ
[
Sh × S⊥

]
= e−r EQ

[
Sh
]
×
(
EP
[
S⊥
]

+ α σP
[
S⊥
])
,

with α ≥ 0. In our particular case, this expression reduces to

ρ
[
Sh × S⊥

]
=
(
y(1) + P [K]

)(
Np+

√
Nα
√
p(1− p)

)
.

It is easy to prove that in case each unit-linked contract is charged

a premium equal to
ρ[Sh×S⊥]

N and if these premiums are fully in-
vested in Sh, the probability that the insurer will be able to fulfil
his liabilities at time 1 is given by

P

[
S⊥ − EP [S⊥

]

σP [S⊥]
≤ α

]
.

Assuming the portfolio is sufficiently large, this probability is ap-
proximately equal to Φ [α], where Φ is the cdf of a standard normal
distribution. J

More complicated hybrid claims arise when the claim S is given
by

S = Sh × S′, with Sh ∈ H and S′ ∈ C, (2.19)

where Sh and S′ are not assumed to be P-independent. Obviously,
in this case the decomposition is not unique. As an example, con-
sider the claim S defined in the previous example, where we do
not assume P-independence between (X1, X2, . . . , Xn) and Y (1).

A major simplification for valuating the claim S defined in
(2.17), originating from Brennan and Schwartz (1976), see also
Brennan and Schwartz (1979a,b), arises if we assume that the
claim S⊥ is completely diversified, in the sense that

S⊥ = EP
[
S⊥
]
.
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This assumption can be justified for very large portfolios of inde-
pendent claims by the law of large numbers. Under this assumption
of complete diversification, we find that Sh × EP [S⊥

]
is a hedge-

able claim, only containing financial uncertainty and hence, taking
into account (2.13), we find that

ρ
[
Sh × S⊥

]
= ν · y × EP

[
S⊥
]
. (2.20)

Taking into account that

ν · y = e−r EQ
[
Sh
]

for any EMM Q, we can transform the previous expression in the
well-known Brennan & Schwartz-formula:

ρ
[
Sh × S

]
= e−r EQ

[
Sh
]
× EP

[
S⊥
]
. (2.21)

This approach based on ‘complete actuarial diversification’ does
not answer the question of how to quantify hybrid claims of the
form Sh × S⊥ in case the law of large numbers is not applicable
for the insurance claim S⊥. In this case, one is not able to ‘aver-
age out’ the insurance risk. Instead, one has to consider Sh × S⊥
as a claim in an incomplete market and come up with a valua-
tion approach that reflects both financial and actuarial risk. Such
valuation approaches will be considered in the following sections.

2.3.2 Fair hedgers

After having defined market-consistent, actuarial and fair valua-
tions, we will now introduce the corresponding classes of hedgers.
In particular, we will define market-consistent, actuarial and fair
hedgers. We will investigate the relation between each type of val-
uation and its corresponding class of hedgers.

Definition 8 (Hedger) A hedger is a function θ : C → Θ which

maps any claim S into a trading strategy θS =
(
θ

(0)
S , θ

(1)
S , . . . , θ

(n)
S

)
,

such that
• θ is normalized:

θ0 = (0, 0, . . . , 0) .
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• θ is translation invariant:

θS+a = θS +
(
e−ra, 0, . . . , 0

)
,

for any scalar a > 0 and any S ∈ C.
The mapping θ : C → Θ is called a hedger, whereas for any

claim S, the trading strategy θS is called a hedge for S. This
hedge may be a partial or a perfect hedge. The value of the hedge
θS of S at time 1 is given by

θS · Y =
n∑

m=0

θ
(m)
S Y (m), (2.22)

whereas its time-0 value equals

θS · y =

n∑

m=0

θ
(m)
S y(m) = e−r EQ [θS · Y ] , (2.23)

where Q can be any element of the class of EMM’s.

Definition 9 A hedger θ : C → Θ is said to be
• positive homogeneous if

θa S = a θS , for any scalar a > 0 and any S ∈ C,
• additive if

θS1+S2 = θS1 + θS2 , for any S1, S2 ∈ C.
Hereafter, we introduce the subclasses of market-consistent,

actuarial and fair hedgers.

Definition 10 (MC, actuarial and fair hedger)
(1) A hedger is market-consistent (MC) in case any hedgeable part
ν ·Y of any claim is hedged by ν:

θS+ν·Y = θS + ν, for any S ∈ C and any ν ·Y ∈ H. (2.24)

(2) A hedger is actuarial in case any orthogonal claim is hedged
risk-free via an actuarial valuation ρ:

θS⊥ =
(
ρ
[
S⊥
]
, 0, . . . , 0

)
, for any S⊥ ∈ O. (2.25)

(3) A hedger is fair in case it is market-consistent and actuarial.
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For any actuarial or fair hedger θ with actuarial valuation ρ
used to hedge claims in O, we call ρ the underlying actuarial val-
uation of θ. The condition (2.24) in the definition of a market-
consistent hedger can also be expressed as follows: for any hedge-
able claim ν · Y and any claim S, one has that

θS = ν + θS−ν·Y . (2.26)

Written in this way, it is easily seen that hedging in two steps and
hedging in a single step lead to the same global hedge. Indeed, first
choosing a hedge ν and then applying the hedger θ to the remain-
ing loss S − ν · Y leads to the same overall hedge as immediately
applying the hedger θ on S.

The condition (2.25) in the definition of an actuarial hedger
means that any orthogonal claim S⊥ is hedged by an investment
of amount ρ

[
S⊥
]

in zero-coupon bonds.

In the following lemma, we summarize some properties of hed-
gers that will be used hereafter. The proofs are straightforward
and therefore omitted.

Lemma 1 Consider a claim S, an orthogonal claim S⊥, a hedge-
able claim ν ·Y and a scalar a.
(1) For any hedger θ, one has that

θa =
(
e−r a, 0, . . . , 0

)
. (2.27)

(2) For any market-consistent hedger θ, one has that

θν·Y = ν. (2.28)

(3) For any fair hedger θ with underlying actuarial valuation ρ,
one has that

θS⊥+ν·Y =
(
ρ
[
S⊥
]
, 0, . . . , 0

)
+ ν. (2.29)

In the proofs of a number of forthcoming theorems, we will
consider a hedge µS for any claim S which is defined as the sum
of another hedge θS of S and an actuarial hedge of the remaining
risk S − θS · Y . Some properties of such hedgers are considered
in the following lemma.
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Lemma 2 Consider a hedger θ and a valuation ρ. Define the
hedger µ by

µS = θS + (ρ [S − θS · Y ] , 0, . . . , 0) , for any S ∈ C. (2.30)

(a) If θ is a MC hedger, then µ is a MC hedger.

(b) If θ is an actuarial hedger and ρ is an actuarial valuation, then
µ is an actuarial hedger with underlying actuarial valuation ρ.

(c) If θ is a fair hedger and ρ is an actuarial valuation, then µ is
a fair hedger with underlying actuarial valuation ρ.

Proof: (a) Suppose that θ is a MC hedger. For any claim S and
any hedgeable claim Sh = ν ·Y, we find that

µS+Sh = θS+Sh +
(
ρ
[
S + Sh − θS+Sh · Y

]
, 0, . . . , 0

)

= θS + ν + (ρ [S − θS · Y ] , 0, . . . , 0)

= µS + ν.

We can conclude that µ is a MC hedger.
(b) Next, suppose that θ is an actuarial hedger with underlying
actuarial valuation π. Further, suppose that ρ is an actuarial
valuation. For any orthogonal claim S⊥, we have

µS⊥ = θS⊥ +
(
ρ
[
S⊥ − θS⊥ · Y

]
, 0, . . . , 0

)

=
(
π
[
S⊥
]

+ ρ
[
S⊥ − er π

[
S⊥
]]
, 0, . . . , 0

)

=
(
ρ
[
S⊥
]
, 0, . . . , 0

)
,

where in the last step, we used the translation invariance of ρ. We
can conclude that µ is an actuarial hedger with underlying actu-
arial valuation ρ.
(c) Finally, suppose that θ is a fair hedger with underlying actu-
arial valuation π, while ρ is an actuarial valuation. From (a) and
(b) it follows immediately that µ is a fair hedger with underlying
actuarial valuation ρ.

In Section 2.4.3 , we will consider mean-variance hedging and
the related mean-variance hedger which will be shown to be a fair
hedger, see Corollary 2 hereafter. The mean-variance hedger is
defined as follows:

θMV
S = arg min

µ∈Θ
EP
[
(S − µ ·Y)2

]
, for any S ∈ C. (2.31)
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In the following theorem it is shown that any MC valuation
can be represented as the time-0 price of a MC hedger. Similar
properties hold for actuarial and fair valuations.

Theorem 1 Consider the valuation ρ : C → R.
(a) ρ is a MC valuation if and only if there exists a MC hedger θm

such that
ρ [S] = θmS · y, for any S ∈ C. (2.32)

(b) ρ is an actuarial valuation if and only if there exists an actuarial
hedger θa such that

ρ [S] = θaS · y, for any S ∈ C. (2.33)

(c) ρ is a fair valuation if and only if there exists a fair hedger θf

such that
ρ [S] = θfS · y, for any S ∈ C. (2.34)

Proof: (a) Let ρ be a MC valuation. Consider a MC hedger θ,
e.g. the mean-variance hedger defined in (2.31). For any claim S,
we find from (2.12) that

ρ [S] = ρ [S − θS · Y ] + θS · y
= θmS · y

with
θmS = θS + (ρ [S − θS · Y ] , 0, . . . , 0) . (2.35)

From Lemma 2 we know that θm is a MC hedger.
(a’) Suppose that the valuation ρ is defined by (2.32) for some MC
hedger θm. For any hedgeable claim ν · Y , we find that

ρ [S + ν · Y ] = θmS+ν·Y · y
= (θmS + ν) · y
= ρ [S] + ν · y.

We can conclude that ρ is a MC valuation.
(b) Let ρ be an actuarial valuation. Consider the hedger θa with

θaS = (ρ [S] , 0, . . . , 0) ,

for any claim S. Obviously, θa is an actuarial hedger. Then we
find that

ρ [S] = θaS · y, for any S ∈ C.
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(b’) Suppose that the valuation ρ is defined by (2.33) for some
actuarial hedger θa with underlying actuarial valuation π. For any
orthogonal claim S⊥, we have

ρ
[
S⊥
]

= θaS⊥ · y = π
[
S⊥
]
.

We can conclude that the valuation ρ is actuarial.
(c) Let ρ be a fair valuation. Consider a fair hedger θ, e.g. the
mean-variance hedger, with underlying actuarial valuation π. From
(a) we know that for any claim S, ρ [S] can be expressed as

ρ [S] = θmS · y,

with the MC hedger θm given by (2.35). Furthermore, for any
orthogonal claim S⊥, we find that

θmS⊥ = θS⊥ +
(
ρ
[
S⊥ − θS⊥ · Y

]
, 0, . . . , 0

)

=
(
π
[
S⊥
]
, 0, . . . , 0

)
+
(
ρ
[
S⊥ − er π

[
S⊥
]]
, 0, . . . , 0

)

=
(
ρ
[
S⊥
]
, 0, . . . , 0

)
.

As ρ is an actuarial valuation, we can conclude that the hedger
θm is not only market-consistent but also actuarial and hence, a
fair hedger.
(c’) Suppose that the valuation ρ is defined by (2.34) for some fair
hedger θf . From (a) and (b) we can conclude that the valuation
ρ is market-consistent and actuarial, which means that it is fair.

From Theorem 1, we know that any fair value ρ [S] can be
considered as the time-0 price of a fair hedge:

ρ [S] = e−r EQ
[
θfS · Y

]
,

where Q is an EMM and θfS is a fair hedger. We remark that this
result is mainly of a theoretical nature, and often not really useful
in practice, as the fair hedge θfS is only implicitly specified, see
(2.35). Moreover, notice that the fair hedger attached to a fair
valuation is not uniquely determined.

Consider the fair valuation characterized by

ρ [S] = θfS · y, for any S ∈ C, (2.36)
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where θf is a fair hedger with underlying actuarial valuation π.
Furthermore, consider the claim Sh × S⊥, where Sh = ν · Y ∈ H
and S⊥ ∈ O. In case

θf
Sh×S⊥ = ν × er π

[
S⊥
]

(2.37)

holds, the fair value ρ
[
Sh × S⊥

]
can be expressed as

ρ
[
Sh × S⊥

]
= EQ

[
Sh
]
× π

[
S⊥
]
, (2.38)

for any EMM Q. The condition (2.37) is always satisfied when
S⊥ = EP [S⊥

]
. In this case, we have that π

[
S⊥
]

= e−r EP [S⊥
]

and (2.38) reduces to the well-known Brennan & Schwartz-formula
(2.21). In this sense, the expression (2.38) is a generalization of
the Brennan & Schwartz result. As we will see in Section 2.4.3,
the assumption (2.37) is satisfied and hence, the expression (2.38)
holds in case θf is the mean-variance hedger.

2.4 Hedge-based valuations

In this section, we present and investigate a class of fair valuations,
the members of which we will call hedge-based valuations. We show
that the classes of fair and hedge-based valuations are identical.

2.4.1 The general class of hedge-based valuations

In order to determine a hedge-based value of S, one first splits
this claim into a hedgeable claim, which (partially) replicates S,
and a remaining claim. The value of the claim S is then defined as
the sum of the financial price of the hedgeable claim and the value
of the remaining claim, determined according to a pre-specified
actuarial valuation.

Definition 11 (Hedge-based valuation)
The valuation ρ : C → R is a hedge-based valuation (HB valuation)
if for any claim S, the value ρ[S] is determined by

ρ[S] = θS · y + π[S − θS · Y ]. (2.39)

where θ is a fair hedger and π is an actuarial valuation.
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For any claim S, we call ρ[S] a hedge-based value of S. It is
easy to verify that the mapping ρ defined in (2.39) is normalized
and translation invariant, and hence, a valuation as defined above.

From the definition above, we find that any HB valuation ρ
reduces to an actuarial valuation for orthogonal claims:

ρ[S⊥] = π[S⊥], for any S⊥ ∈ O.

Moreover, the HB value of any hedgeable claim is equal to the
price of the underlying hedge:

ρ[Sh] = e−r EQ
[
Sh
]
, for any Sh ∈ H.

Sufficient conditions for positive homogeneity and subadditiv-
ity of hedge-based valuations are considered in the next theorem.

Theorem 2 For any HB valuation ρ with fair hedger θ and ac-
tuarial valuation π, the following properties hold:
(1) If θ and π are positive homogeneous, then ρ is positive homo-
geneous:

ρ [a S] = a ρ [S] , for any a > 0 and S ∈ C. (2.40)

(2) If θ is additive and π is subadditive, then ρ is subadditive:

ρ [S1 + S2] ≤ ρ [S1] + ρ [S2] , for any S1, S2 ∈ C. (2.41)

The proof of the theorem is straightforward.
In the following theorem, it is proven that the class of hedge-

based valuations is equal to the class of fair valuations.

Theorem 3 A mapping ρ : C → R is a HB valuation if and only
if it is a fair valuation.

Proof:
(a) Consider the HB valuation ρ defined in (2.39). For any claim
S, we can rewrite ρ [S] as

ρ [S] = µS · y

with
µS = θS + (π [S − θS · Y ] , 0, . . . , 0) . (2.42)
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From Lemma 2, it follows that µ is a fair hedger with underlying
actuarial valuation π. Theorem 1 leads then to the conclusion that
ρ is a fair valuation.
(b) Consider the fair valuation ρ. From Theorem 1, we know that

there exists a fair hedger θf such that ρ[S] = θfS · y for any claim
S. Define the valuation ρ′ by

ρ′ [S] = θfS · y + ρ[S − θfS ·Y]. (2.43)

Obviously, ρ′ is a HB valuation. Moreover, it is easy to verify that

ρ[S − θfS ·Y] = 0.

We can conclude that ρ ≡ ρ′, and hence, ρ is indeed a HB valua-
tion.

One could define a broader class of HB valuations by requiring
that the hedger θ in (2.39) is a market-consistent hedger and π is
an actuarial valuation. In this case the hedger µ defined in (2.42)
is market-consistent, but not necessarily fair, implying that such a
generalized HB valuation is market-consistent but not necessarily
fair.

2.4.2 Convex hedge-based valuations

We start this subsection by introducing a class of hedgers, which
we baptize convex hedgers.

Definition 12 (Convex hedger) Consider a strictly convex non-
negative function u with u(0) = 0. The convex hedger θu is de-
termined by

θuS = arg min
µ∈Θ

EP [u (S − µ · Y )] , for any S ∈ C. (2.44)

The convex hedger θu : C → Θ attaches the hedge θuS to any
claim S, such that the claim and the time-1 value of the hedge
are ’close to each other’ in the sense that the P-expectation of the
u-value of their difference is minimized. The choice of the convex
function u determines how severe deviations are punished.

Theorem 4 The convex hedger θu is a fair hedger with underly-
ing actuarial valuation πu satisfying

πu
[
S⊥
]

= arg min
s∈R

EP
[
u
(
S⊥ − er s

)]
, for any S⊥ ∈ O.

(2.45)
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Proof: Consider the convex hedger θu defined in (2.44). We have
to prove that θu satisfies the conditions (2.24) and (2.25) of the
definition of a fair hedger.
(a) For any hedgeable claim Sh = ν ·Y, we have that

θuS+ν·Y = arg min
µ∈Θ

EP [u (S − (µ− ν) ·Y)]

= ν + arg min
µ′∈Θ

EP [u
(
S − µ′ ·Y

)]

= ν + θuS ,

which means that the condition (2.24) is satisfied.
(b) Consider the orthogonal claim S⊥ ∈ O. Taking into account
the independence of S⊥ and Y as well as Jensen’s inequality, we
find for any trading strategy µ ∈ Θ that

EP
[
u
(
S⊥ − µ ·Y

)
| S⊥

]
≥ u

(
S⊥ − µ · EP [Y]

)
.

Taking expectations on both sides leads to

EP
[
u
(
S⊥ − µ ·Y

)]
≥ EP

[
u
(
S⊥ − µ · EP [Y]

)]

≥ EP
[
u
(
S⊥ − er πu

[
S⊥
])]

,

which holds for any µ ∈ Θ. Taking into account that er πu
[
S⊥
]

can be rewritten as

er πu
[
S⊥
]

=
(
πu
[
S⊥
]
, 0, . . . , 0

)
·Y,

with
(
πu
[
S⊥
]
, 0, . . . , 0

)
being an element of Θ, we find that

θuS⊥ =
(
πu
[
S⊥
]
, 0, . . . , 0

)
.

Let us now extend the definition (2.45) of πu to all S ∈ C. It is
easy to verify that πu is an actuarial valuation. We can conclude
that also the condition (2.25) is satisfied.

Definition 13 (Convex hedge-based valuation)
Consider a strictly convex non-negative function u with u(0) = 0.
The valuation ρ : C → R defined by

ρ [S] = θuS · y + π[S − θuS ·Y],

with convex hedger θu and actuarial valuation π is called a convex
hedge-based valuation (CHB valuation).
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Corollary 1 Any CHB valuation is a fair valuation.

The proof of the corollary follows from observing that any CHB
valuation is a HB valuation, implying that it is a fair valuation.

2.4.3 Mean-variance hedge-based valuations

A particular example of a convex hedge-based valuation arises
when using the convex hedger with quadratic function u(s) = s2.
This hedger is called the mean-variance hedger.

Definition 14 (Mean-variance hedger) For any S ∈ C, the
mean-variance hedge θMV

S (MV hedge) is the hedge for which the
P-expected quadratic hedging error is minimized:

θMV
S = arg min

µ∈Θ
EP
[
(S − µ ·Y)2

]
. (2.46)

For an overview on the general theory of mean-variance hedg-
ing, we refer to Schweizer (2001).

Corollary 2 The mean-variance hedger θMV : C → Θ is a fair
hedger with underlying actuarial valuation satisfying

πMV
[
S⊥
]

= e−r EP
[
S⊥
]
, for any S⊥ ∈ O. (2.47)

Proof: The MV hedger is a convex hedger, implying that it is a
fair hedger. From (2.45) it follows that it has an actuarial valuation
which satisfies (2.47).

In the following theorem, we present the unique solution θMV
S =(

θ
(0)
S , . . . , θ

(n)
S

)
of the minimization problem (2.46), which is a

standard result from least squares optimization. We use the nota-
tion Aᵀ for the transpose of a matrix A.

Theorem 5 The mean-variance hedge θMV
S of S ∈ C is uniquely

determined from

EP [YᵀY]
(
θMV
S

)ᵀ
= EP [SYᵀ] . (2.48)

Proof: Taking partial derivatives of the objective function in
(2.46) leads to (2.48). As the market of traded assets is assumed
to be non-redundant, for any θ 6= 0, one has that

θ EP [YᵀY] θᵀ = EP
[
(θS ·Y)2

]
> 0.
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We can conclude that the matrix EP [YᵀY] is positive definite and
hence, non-singular. This implies that the mean-variance hedge
θMV
S is uniquely determined and follows from (2.48).

It is a straightforward exercise to show that the system of equa-

tions (2.48) to determine θMV
S =

(
θ

(0)
S , . . . , θ

(n)
S

)
can be trans-

formed into



n∑

m=1

covP [Y (k), Y (m)
]
θ

(m)
S = covP [Y (k), S

]
, for k = 1, ..., n

θ
(0)
S = e−r

(
EP [S]−

n∑

m=1

EP [Y (m)
]
θ

(m)
S

)

(2.49)
In the following theorem, we provide some well-known proper-

ties of the MV hedger.

Theorem 6 The mean-variance hedger θMV has the following
properties:
(a) Any claim S and the time-1 value of its MV hedge are equal
in P-expectation:

EP [S] = EP [θMV
S ·Y

]
, for any S ∈ C. (2.50)

(b) The MV hedger is additive:

θMV
S1+S2

= θMV
S1

+ θMV
S2

, for any S1, S2 ∈ C. (2.51)

(c) The MV hedger is positive homogeneous:

θMV
a×S = a× θMV

S , for any scalar a > 0 and any S ∈ C. (2.52)

(d) The MV hedge of the product of a hedgeable and an orthogonal
claim:

θMV
Sh×S⊥ = ν × EP

[
S⊥
]
, for any Sh = ν ·Y ∈ H and S⊥ ∈ O.

(2.53)

Proof: The expression (2.50) follows immediately from the ex-

pression for θ
(0)
S in (2.49). The other expressions are easy to prove

with the help of Theorem 5.
Based on the mean-variance hedger introduced above, we can

define mean-variance hedge-based valuations.
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Definition 15 (Mean-variance hedge-based valuation) The
valuation ρ : C → R where for any claim S, ρ [S] is determined by

ρ [S] = θMV
S · y + π

[
S − θMV

S ·Y
]
, (2.54)

with θMV is the mean-variance hedger and π is an actuarial val-
uation, is called a mean-variance hedge-based valuation (MVHB
valuation).

As any MVHB valuation is a HB valuation, we immediately
find the following result.

Corollary 3 Any MVHB valuation is a fair valuation.

Combining Theorems 2 and 6 leads to the following result.

Theorem 7 For any MVHB valuation ρ with underlying actuar-
ial valuation π, the following properties hold:
(1) If π is positive homogeneous, then ρ is positive homogeneous.
(2) If π is subadditive, then ρ is subadditive.

In the following subsection, we illustrate the calculation of
MVHB valuations with two examples.

2.4.4 Examples

Example 3
(a) Consider the financial-actuarial world in which a zero-coupon
bond and a stock are traded. The current price of the zero-coupon
bond equals y(0) = 1, while its time-1 price is given by Y (0) = 1.
The stock trades at current price y(1) = 1/2, whereas its value
at time 1, notation Y (1), is either 0 or 1. In this world, we also
observe a non-traded survival index. Its time-1 value I is either 0
(if few people of a given population survive) or 1 (in case many of
them survive).
We model this financial-actuarial world in the probability space(
Ω, 2Ω,P

)
, with the universe Ω given by

Ω = {(0, 0) , (0, 1) , (1, 0) (1, 1)} ,

where each element denotes a possible scenario. The first compo-
nent of any couple corresponds to a possible value of the stock
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price Y (1) at time 1, while the second component is a possible
value of the survival index I at time 1. Suppose that the real-
world probability measure P is characterized by

p00 =
1

6
, p10 =

2

6
, p01 =

1

6
and p11 =

2

6
,

where each pij stands for P [(i, j)]. One can verify that the time-1
values Y (1) and I of the stock and the survival index are mutu-
ally independent under the physical measure P, implying that the
survival index is an orthogonal claim.
Let us now consider the valuation of the following non-traded hy-
brid claim:

S =
(

1− Y (1)
)
× (1− I) . (2.55)

The MV hedge of S is given by

θMV
S = arg min

µ∈Θ
EP
[(
S − µ(0) − µ(1)Y (1)

)2
]

=

(
1

2
,−1

2

)
.

The MVHB value (2.54) of S is then equal to

ρ [S] =
1

4
+ π

[
S − 1

2
+

1

2
Y (1)

]
.

Suppose that the actuarial valuation π is a cost-of-capital princi-
ple:

π [X] = EP [X]+0.06
(

VaR0.995 [X]− EP [X]
)
, for any X ∈ C.

(2.56)
As EP [S] = EP [1

2 − 1
2Y

(1)
]

and VaR0.995

[
S − 1

2 + 1
2Y

(1)
]

= 1/2,
we find that

ρ [S] =
7

25
.

(b) Next, we consider a market where in addition to the zero-
coupon bond and the stock, also the survival index I is traded,
with current price y(2) = 2

3 and value at time 1 given by Y (2) = I.
The MV hedge of S is now given by

θMV
S = arg min

µ∈Θ
EP
[(
S − µ(0) − µ(1)Y (1) − µ(2)Y (2)

)2
]

=

(
2

3
,−1

2
,−1

3

)
,
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while the MVHB valuation (2.54) of S takes the form

ρ [S] =
7

36
+ π

[
S − 2

3
+

1

2
Y (1) +

1

3
Y (2)

]
.

In case the actuarial valuation π is given by the cost-of-capital
principle (2.56), taking into account that

VaR0.995

[
S − 2

3
+

1

2
Y (1) +

1

3
Y (2)

]
= 1/3,

we find that

ρ [S] =
193

900
.

(c) Let us now assume that, apart from the zero-coupon bond, the
stock and the survival index I, also the call option with current
price y(3) = 1

6 and payoff at time 1 given by

Y (3) = Y (2) × (Y (1) − 0.5)+ (2.57)

is traded. The MV hedge of S now equals

θMV
S = arg min

µ∈Θ
EP
[(
S − µ(0) − µ(1)Y (1) − µ(2)Y (2) − µ(3)Y (3)

)2
]

= (1,−1,−1, 2) .

The claim S is now perfectly hedged by its MV hedge:

S = Y (0) − Y (1) − Y (2)+2Y (3).

This is due to the fact that the introduction of the call option leads
to a complete market, see forthcoming Example 5. In this case,
the MVHB value (2.54) of S is given by the price of the replicating
portfolio:

ρ [S] =
1

6
.

In this example, the fair value of S decreases by introducing ad-
ditional traded assets. Notice however that this is not always nec-
essarily the case. J

Example 4
(a) Consider a national population of Nnat members. For member
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i, we introduce the Bernoulli r.v. Ii, which equals 0 if i dies in
the coming year, while it equals 1 in the other case. The ’national
survival index’ I is given by

I = I1 + I2 + . . .+ INnat .

Next, we consider an insured population, consisting of N ins mem-
bers, with Ji, i = 1, 2, . . . , N , the Bernoulli r.v. which equals 1 in
case insured i survives and 0 otherwise. Notice that the insured
population is not necessarily a subset of the national population.
The insurance claim at the end of the year is given by

S = J1 + J2 + . . .+ JN ins . (2.58)

Suppose the financial market consists of 3 traded assets. The zero-
coupon bond has current value y(0) = 1, while its value at time
1 is given by Y (0) = er. The second traded asset is a stock with
current price y(1) and payoff at time 1 given by Y (1), which takes
a value in the set A. Finally, also the national survival index is
traded. Its current value is y(2), while its payoff at time 1 is given
by Y (2) = I.
We model this financial-actuarial world by the probability space(
Ω, 2Ω,P

)
, with

Ω =
{

(x1, x2, x3) | x1 ∈ A; x2 = 0, 1..., Nnat; x3 = 0, 1, ..., N ins
}
,

where any triplet (x1, x2, x3) describes a possible outcome of the
stock Y (1), the national survival index I and the insurance claim S,
respectively. Throughout this example, we assume that mortality
is independent of the stock price evolution. To be more precise,
Y (1) and (I, S) are assumed to be mutually independent under the
physical probability measure P.
From (2.49) with n = 2, it follows that the mean-variance hedge

θMV
S =

(
θ

(0)
S , θ

(1)
S , θ

(2)
S

)
of the insurance claim S is given by





θ
(0)
S = e−r

(
EP [S]− EP [I] covP[I,S]

varP[I]

)

θ
(1)
S = 0

θ
(2)
S = covP[I,S]

varP[I]
.

(2.59)

This MV hedging strategy for S does not contain an investment
in the stock, due to its assumed P- independence with mortality.
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A higher correlation between the insurance claim and the national
survival index leads, ceteris paribus, to a higher investment in
the national survival index and a lower investment in zero coupon
bonds.
(b) From here on, we assume that the insured population is a
subset of the national population. More specifically, we assume
that N ins ≤ Nnat and Ji = Ii for i = 1, 2, . . . , N ins. Furthermore,
all Ii are assumed to be i.i.d. under P, with P [Ii = 1] = p. In this
case we find that

covP [I, S] = varP [S] .

Taking into account the P-i.i.d. assumption of the Bernoulli vari-
ables, one has that varP [S] = Np(1 − p), varP [I] = Mp(1 − p).
These observations lead to the following MV hedge for S:





θ(0) = 0

θ(1) = 0

θ(2) = N ins

Nnat ,

(2.60)

which corresponds with an investment in the national survival
index only. The MVHB value (2.54) of S is then given by

ρ [S] =
N ins

Nnat
y(2) + π

[
S − N ins

Nnat
Y (2)

]
.

Suppose now that the actuarial valuation π is the standard-deviation
principle:

π [X] = EP [X] + β
√

var [X], for any X ∈ C,

for some β ≥ 0. In this case, we find that the MVHB value of S
is given by

ρ [S] =
N ins

Nnat
y(2) + β

√
N ins

Nnat
(Nnat −N ins) p(1− p). (2.61)

Obviously, when N ins = Nnat, the insurance claim S is fully hedge-
able, and we find that ρ [S] is equal to the time-0 price of the
national survival index. J
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2.5 Two-step valuations

2.5.1 Conditional valuations and two-step valuations

In this section, we will introduce a class of valuations which is
very closely related to, but slightly different from the two-step
valuations proposed by Pelsser and Stadje (2014). Hereafter, a
derivative of the vector of asset prices Y has to be understood
as a claim that can be expressed in the form f (Y), for some
measurable function f . Hence, a derivative of Y is a r.v. defined on
the measurable space

(
Ω,FY

)
, where FY ⊆ G is the sigma-algebra

generated by the asset price vector Y. Examples of derivatives of
Y are EP [S | Y], VarP [S | Y] and θS ·Y, where S is a claim and
θ is a hedger. We denote the set of all derivatives of Y by CY.

Definition 16 (Conditional valuation) A conditional valuati-
on is a mapping πY : C → CY attaching a derivative of Y to any
claim S:

S → πY [S]

such that
(1) πY is normalized:

πY [0] = 0

(2) πY is conditionally translation invariant:

πY

[
S + Sh

]
= πY [S] + e−r Sh, for any S ∈ C and Sh ∈ H.

A conditional valuation is a mapping from the set of claims
defined on (Ω,G) to the set of claims defined on

(
Ω,FY

)
. For any

conditional valuation, one has that

πY [a] = e−r a, for any scalar a.

Notice that the derivative πY [S] may be hedgeable or not. Our
definition of a conditional valuation is closely related but slightly
different from the one proposed in Pelsser and Stadje (2014).

Definition 17 (Actuarial conditional valuation) An actuar-
ial conditional valuation πY is a conditional valuation which re-
duces to an actuarial valuation on O:

πY

[
S⊥
]

= π
[
S⊥
]
, for any S⊥ ∈ O,
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for some actuarial valuation π.

Hereafter, we will always denote the underlying actuarial val-
uation of an actuarial conditional valuation πY by π.

A first example of an actuarial conditional valuation is the
conditional standard deviation principle:

πY [S] = e−r
(
EP [S | Y] + β

√
VarP [S | Y]

)
, (2.62)

for any S ∈ C, where β is a non-negative real number.

As a second example of an actuarial conditional valuation, con-
sider the conditional cost-of-capital principle:

πY [S] = e−r
(
EP [S | Y] + i

(
VaRp [S | Y]− EP [S | Y]

))
,

(2.63)
for any S ∈ C and a given probability level p and cost-of-capital
rate i, and where VaRp [S | Y] is the Value-at-Risk of S at confi-
dence level p, conditional on the available information concerning
the asset prices at time 1.

A third example of an actuarial conditional valuation is given
by

πY [S] = e−r θfS ·Y, (2.64)

where θf is a fair hedger.

Definition 18 (Two-step valuation) A mapping ρ : C → R is
a two-step valuation (TS valuation) if there exists an actuarial
conditional valuation πY and an EMM Q such that for any claim
S, ρ [S] is determined by

ρ [S] = EQ [πY [S]] . (2.65)

One can easily verify that the mapping defined in (2.65) is nor-
malized and translation invariant, implying that a TS valuation
is indeed a valuation as defined above. For any claim S, ρ [S] is
called the two-step value (TS value) of S. The two-step valuation
is characterized by an actuarial conditional valuation πY and an
EMM Q. It is determined by first applying the actuarial condi-
tional valuation πY to S, and then determining the market price
of the derivative πY [S], based on a given pricing measure Q.
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As a first example of a TS valuation, consider the two-step
standard deviation valuation, where the value of any claim S is
determined by

ρ [S] = e−r EQ
[
EP [S | Y] + β

√
VarP [S | Y]

]
. (2.66)

This means that ρ [S] is determined as the financial market price
of the derivative that arises from applying the conditional stan-
dard deviation principle on the claim S, given the time-1 prices of
traded assets.

A second example of a TS valuation is the two-step cost-of-
capital valuation:

ρ [S] = e−r EQ
[
EP [S | Y] + i

(
VaRp [S | Y]− EP [S | Y]

)]
.

(2.67)
Finally, a third example of a TS valuation is given by

ρ [S] = e−r EQ
[
θfS ·Y

]
, (2.68)

where θf is a fair hedger.
Pelsser and Stadje (2014) assume that the financial market of

the (n+ 1) traded assets is complete in
(
Ω,FY,P

)
. Equivalently

stated, they assume that any derivative f (Y) is hedgeable. In
particular, any claim πY [S] is hedgeable, and hence, its market
value is uniquely determined. The completeness condition means
that there exists a mapping θTS : C → Θ such that

θTSS ·Y = er πY [S] , for any S ∈ C. (2.69)

We call θTS the two-step hedger of the two-step valuation ρ. Due
to the non-redundancy assumption (2.1), the time-1 value θTSS ·Y
uniquely determines θTSS . It is straightforward to prove that θTS

is a fair hedger with

θTSS⊥ =
(
π
[
S⊥
]
, 0, . . . , 0

)
, for any S⊥ ∈ O. (2.70)

Under the completeness assumption, the TS value ρ [S] of S can
be expressed as

ρ [S] = e−r EQ [θTSS ·Y
]

= θTSS · y, (2.71)



40 Chapter 2. Fair valuation in a one-period setting

which does not depend on the particular choice of the pricing
measure Q.

Hereafter, we will not make the completeness assumption, which
implies that we have to choose a particular measure Q in the set
of all feasible pricing measures and hence ρ [S] might depend on
this choice.

In the special case there is no financial market, except the
risk-free bank account, any claim S is an orthogonal claim, and
the two-step valuation reduces to an actuarial valuation:

ρ [S] = π [S] .

In the following theorem, we prove that the class of two-step
valuations is identical to the class of fair valuations.

Theorem 8 A mapping ρ : C → R is a TS valuation if and only
if it is a fair valuation.

Proof: (a) Consider the TS valuation ρ with ρ [S] = EQ [πY [S]]
for any claim S. It is straightforward to prove that ρ is both
market-consistent and actuarial valuation, which means that ρ is
a fair valuation.
(b) Consider the fair valuation ρ. From Theorem 1, we know that
there exists a fair hedger θf such that

ρ [S] = e−r EQ
[
θfS · Y

]
, for any S ∈ C.

As e−r θfS ·Y is an actuarial conditional valuation, we can conclude
that ρ is a TS valuation.

Consider the TS valuation ρ with underlying conditional val-
uation πY and EMM Q. Let Sh ∈ H and S⊥ ∈ O. In case

πY

[
Sh × S⊥

]
= Sh × π

[
S⊥
]
, (2.72)

we find that the TS value of Sh × S⊥ is given by

ρ
[
Sh × S⊥

]
= EQ

[
Sh
]
× π

[
S⊥
]
. (2.73)

In the special case of complete diversification of the orthogonal
claim, i.e. when S⊥ = EP [S⊥

]
, we have that the condition (2.72)

is satisfied and (2.73) reduces to the Brennan-Schwartz formula
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(2.21). From this result, it follows that the formula (2.73) is an
intuitive generalization of the formula (2.21), proposed by Brennan
and Schwartz (1976). It is a straightforward exercise to prove that
the generalized Brennan-Schwartz formula (2.73) holds for the TS
standard deviation valuation as well as for the TS Cost-of-Capital
valuation, defined in (2.66) and (2.67), respectively, provided Sh ≥
0.

2.5.2 Examples

We end this section with two illustrative examples, which are the
counterparts of the Examples 3 and 4 considered in Subsection
2.4.4.

Example 5
(a) Consider the financial-actuarial world

(
Ω, 2Ω,P

)
as described

in Example 3, with a non-traded survival index and a market
of traded assets consisting of a zero-coupon bond and a stock.
Suppose that we want to determine the fair value ρ [S] of the
hybrid claim S defined in (2.55) according to the two-step cost-of-
capital valuation (2.67) with r = 0, p = 0.995 and i = 0.06. Taking
into account that I ∈ C⊥ and applying the generalized Brennan-
Schwartz formula (2.73), we find that

ρ [S] = EQ
[
1− Y (1)

]
× π [1− I] =

53

200
.

Notice that in this setting, the vector of time-1 asset prices is given
by Y =

(
Y (0), Y (1)

)
and any derivative f (Y ) is hedgeable. One

can easily verify that the TS hedger θTS is given by

θTS = (0.53, − 0.53) ,

from which we find that

ρ [S] = θTSS · y =
53

200
.

(b) Suppose now that, apart from the zero-coupon bond and the
stock, also the survival index I is traded, with current price y(2) =
2/3 and time-1 value Y (2) = I. In this case, the vector of time-
1 asset prices is Y =

(
Y (0), Y (1), Y (2)

)
and S is a non-hedgeable
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derivative of Y . The two-step cost-of-capital valuation (2.67) trans-
forms into

ρ [S] = EQ
[(

1− Y (1)
)
×
(

1− Y (2)
)]
.

In order to fully characterize ρ, one has to choose a particular
risk-neutral measure Q for the financial market. One can easily
verify that Q ≡ (q00, q10, q01, q11) is an EMM if and only if there
exists a q ∈

(
0, 1

3

)
such that

q00 = q, q10 =
1

3
− q, q01 =

1

2
− q and q11 =

1

6
+ q. (2.74)

Given that the payoff of S only differs from zero in the scenario(
Y (1), Y (2)

)
= (0, 0), we find that

ρ [S] = q.

The two-step value ρ [S] can take any value in
(
0, 1

3

)
, depending

on the choice of the EMM. In case we require e.g. that Y (1) and
I are independent under Q, we find that the two-step value of S
is equal to 1/6.
(c) Let us now assume that apart from the zero coupon bond,
the stock and the survival index, also the call option with current
price y(3) = 1

6 and payoff at time 1 given by (2.57) is traded in
the market. In this case, the set of EMM’s is defined by (2.74) for
some q ∈

(
0, 1

3

)
, complemented with the additional requirement

y(3) = EQ
[
Y (3)

]
.

This situation leads to a unique EMM Q characterized by (2.74)
with q = 1

6 . We can conclude that in this complete market setting,
the fair value of S is given by

ρ [S] =
1

6
.

Notice that under this unique EMM Q, the payoffs Y (1) and I are
independent. J

Example 6 Consider the financial-actuarial world described in
Example 4(b). We model this financial-actuarial world by the
probability space

(
Ω, 2Ω,P

)
, with

Ω =
{

(x1, x2, x3) | x1 ∈ A; x2 = 0, 1..., Nnat; x3 = 0, 1, ..., N ins
}
,
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where any triplet (x1, x2, x3) describes a possible outcome of the
stock Y (1), the national survival index Y (2) and the insurance
claim S, respectively. Suppose that the insurance claim S de-
fined in (2.58) is valuated according to the TS standard deviation
valuation (2.66), with Y =

(
Y (0), Y (1), Y (2)

)
. From the assumed

P-independence between mortality and the stock price, we find
that

ρ [S] = e−r EQ
[
EP [S | I] + β

√
varP [S | I]

]

Taking into account that

EP [S | I] =
N ins

Nnat
I

and

varP [S | I] =
N ins(Nnat −N ins)

Nnat(Nnat − 1)
I
Nnat − I
Nnat

,

one finds that

ρ [S] =
N ins

Nnat
y(2)

+ βe−rEQ



√
N ins(Nnat −N ins)

Nnat(Nnat − 1)
Y (2)

Nnat − Y (2)

Nnat


 .

(2.75)

The incompleteness of the market requires the choice of an EMM
Q for the valuation of S. In case the insurance and national pop-
ulations coincide, it follows from (2.75) that the TS value ρ [S] of
S is equal to the price y(2) of the ’national survival index’. J

2.6 Final remarks

The fair value of a hybrid claim, which is by definition neither
hedgeable nor orthogonal, is in general not uniquely determined.
This is not only due to the involvement of actuarial judgement,
but at an earlier stage in the valuation process also due to the
ambiguity that exists in how to determine the hedgeable part of
such a hybrid claim.

In this chapter we proposed a framework to combine market-
consistency and actuarial considerations in a so-called fair valua-
tion. In such a setting, a market-consistent valuation of claims is
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based on an extension of cash invariance to all hedgeable claims,
such that all claims are valuated in agreement with current mar-
ket prices. Under a market-consistent valuation, the valuation of
hedgeable claims is consistent with risk-neutral pricing based on
an EMM Q. An actuarial valuation on the other hand, is typi-
cally performed with an actuarial premium principle, based on a
physical probability measure P, chosen by the actuary. In such a
setting, the problem the actuary is solving is to value the claim
such that the insurer will be able to pay the observed claim amount
at the end of the period, ignoring the existence of a financial mar-
ket. A fair valuation combines the financial approach of a market-
consistent valuation and the actuarial approach of an actuarial
valuation. Such a fair valuation makes use of P- and Q-measures
and in this sense, it can be considered as the right setting to value
claims which have financial and actuarial components.

We presented a fair valuation technique, baptized hedge-based
valuation, where one first unbundles the hybrid claim in a hedge-
able claim (determined from the original claim according to some
well-defined hedging procedure) and the remaining claim (i.e. the
original claim minus the payoff of the hedgeable claim). The fair
value of the claim is then defined as the sum of the financial mar-
ket price of the hedge and the actuarial value of the remaining
claim.

We also investigated the class of two-step valuations. The def-
inition of a two-step valuation proposed in this chapter is inspired
by the two-step valuations definition of Pelsser and Stadje (2014).
Our definition is slightly different, as opposed to the original ap-
proach of Pelsser and Stadje (2014), we do not require that the
market of traded assets is complete.

We showed that the set of fair valuations coincides with the
set of hedge-based valuations and also with the set of two-step
valuations. The two-step and the hedge-based approaches are only
two different ways of identifying the different members of the set of
fair valuations. The hedge-based approach starts from the choice
of a hedger and does not require the choice of an EMM. In general,
the two-step approach starts from the choice of an EMM. In case
the market of traded assets is complete, the two-step approach
does not require the choice of an EMM and the underlying two-
step hedger is determined via (2.69). The hedge-based approach
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has the advantage of providing an explicit additive decomposition
of the fair value into a financial price and an actuarial value while
in the two-step approach the decomposition is performed through
a less intuitive conditional procedure.

In the next chapters, we will extend the notion of fair valuation
which was defined here in a static one-period setting to the case
of a multi-period setting where dynamic hedging strategies are
allowed. Moreover, we will investigate the requirement of time-
consistency of fair dynamic valuations.
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Chapter 3

Fair valuation of
insurance liabilities via
mean-variance hedging in
a multi-period setting

This chapter is based on
Barigou, K., & Dhaene, J. (2019). Fair valuation of insurance lia-
bilities via mean-variance hedging in a multi-period setting. Scan-
dinavian Actuarial Journal, 2019(2), 163-187.

3.1 Introduction

In the previous chapter, a general class of fair valuations which are
both market-consistent (mark-to-market for any hedgeable part of
a claim) and actuarial (mark-to-model for any claim that is inde-
pendent of financial market evolutions) was introduced in a sin-
gle period framework. In particular, we considered mean-variance
hedge-based (MVHB) valuations where fair valuations of insurance
liabilities are expressed in terms of mean-variance hedges and ac-
tuarial valuations. In this chapter, we generalize this MVHB ap-
proach to a multi-period dynamic investment setting. We will
show that the classes of fair valuations and MVHB valuations are
equivalent in this generalized setting. We will illustrate how in the

47
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MVHB valuation framework applied to the valuation of equity-
linked insurance claims in a stochastic mortality setting, the ac-
tuarial part of the valuation decomposes into a diversifiable and
a non-diversifiable component. As another illustration, we will
consider the fair valuation of a portfolio of equity-linked contracts
where the self-financing trading strategy depends on the number
of survivors in the insured population, a case which is rarely con-
sidered in the literature.

Throughout this chapter, we will give particular attention to
time-T claims of the form

S = S⊥ × Sf ,

where S⊥ is a T−claim which is independent of the financial mar-
ket evolutions, while Sf is a financial T−claim. Such product
claims often arise in insurance as payoffs of equity-linked life-
insurance contracts. For local risk minimization of such payoffs,
see e.g. Pansera (2012) and Gaillardetz and Moghtadai (2017).

The rest of this chapter is structured as follows. In Section
3.2 we generalize the combined financial-actuarial world from the
previous chapter to a multi-period setting. In this world, we will in-
troduce the concepts of orthogonal claims, financial trading strate-
gies and financially hedgeable claims. In Section 3.3 we consider
mean-variance hedging in discrete time. We investigate the mean-
variance hedge for product claims, as well as the mean-variance
hedge for general claims in a linear subset of self-financing trading
strategies available to the valuator. In Section 3.4, fair valuations
and MVHB valuations in a multi-period setting are introduced. In
particular, we show that these two classes of valuations are equiv-
alent and provide some detailed illustrative examples. Section 3.5
concludes the chapter.

3.2 The combined financial-actuarial world

From now on, we consider a combined financial-actuarial world in
a multi-period setting. The extension from one period to multi-
period requires the introduction of new concepts (e.g. self-financing
strategies and financially hedgeable claims) but also the gener-
alization of previous notions such as orthogonal and hedgeable
claims. The multi-period combined world is defined hereafter.
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Consider a combined financial-actuarial world which is home to
tradable as well as non-tradable claims. The time horizon is given
by T , which is an element of the set {1, 2, . . .}. The financial-
actuarial world is modeled by the probability space (Ω,G,G,P),
equipped with the finite and discrete-time filtration G = {Gt}t∈τ
with τ = {0, 1, , . . . , T}. The initial σ−algebra G0 is set equal to
{∅,Ω} while the σ−algebra GT is identical to G. The σ−algebra
Gt, t ∈ τ , represents the general information available up to and
including time t in the combined world. Further, P is the measure
attaching physical probabilities to all events in that world. Like
the previous chapter, we assume that all r.v.’s that we consider
have finite second order moments under P. Furthermore, we will
denote the set of all t−claims defined on (Ω,G,G), that is the set
of all Gt−measurable r.v.’s, by Ct.

The combined financial-actuarial world hosts a number of in-
surance liabilities, which are due at time T . Any insurance liability
is represented by a T−claim, which will be generally denoted by
S(T ) or simply by S if no confusion is possible. A simple example
of an insurance liability related to the remaining lifetime Tx of an
insured (x) observed at time 0 is the indicator variable S defined
by

S =

{
0 : Tx ≤ T
1 : Tx > T

(3.1)

The combined financial-actuarial world (Ω,G,P) is also home
to a financial market of n ∈ {1, 2, . . .} tradable (non-dividend
paying) risky assets and a risk-free bank account. For any i =
1, 2, . . . , n, we introduce the notation Y (i)(t) for the market price
of 1 unit of risky asset i at time t ∈ τ . The risky assets can be
stocks, bonds, mutual funds, etc. The time−t value of an invest-
ment of amount 1 at time 0 in the risk-free bank account is given
by Y (0)(t) = ert, where r ≥ 0 is the deterministic and constant
risk-free interest rate. We assume that any tradable asset can be
bought and/or sold in any quantities in a deep, liquid and trans-
parent market with negligible transactions costs and other market
frictions.

The price processes of the traded assets are described by the
(n+ 1)−dimensional stochastic process Y = {Y (t)}t∈τ . Here,
Y (t), t ∈ τ , is the vector of time−t prices of all tradable assets,
i.e. Y (t) =

(
Y (0)(t), Y (1)(t), . . . , Y (n)(t)

)
. We assume that the



50 Chapter 3. Fair valuation via mean-variance hedging

price process Y is adapted to the filtration G:

Y (t) is Gt −measurable, for any t ∈ τ.

The filtration G may simply coincide with the filtration generated
by the price process Y . In this chapter however, we will consider
a more general setting, where G is not only related to the price
history of traded assets, but may also contain information related
to non-tradable claims such as a survival index of a particular
population.

A trading strategy (also called a dynamic portfolio) θ = {θ(t)}t
is a predictable (n+ 1)−dimensional process with respect to the
filtration G:

θ(t) is Gt−1 −measurable, for any t ∈ {1, 2, . . . , T} .

The vector θ(t) =
(
θ(0)(t), θ(1)(t) . . . , θ(n)(t)

)
represents the num-

ber of units θ(i)(t) invested in each asset i in time period t, that
is in the time interval (t− 1, t]. The Gt−1−measurability require-
ment means that the portfolio composition θ(t) for the period
(t− 1, t] follows from the general information available up to and
including time t− 1, i.e. the information collected in time interval
[0, t− 1]. This information includes in particular the price history
of traded assets in that time interval.

The value at time t of the trading strategy θ is denoted by
V θ(t):

V θ(t) = θ(t)·Y (t) =

n∑

i=0

θ(i)(t) Y (i)(t), for any t = 1, 2, . . . , T,

while

V θ(0) = θ(1) · Y (0) =

n∑

i=0

θ(i)(1) Y (i)(0).

Obviously, V θ(t) is Gt−measurable. For any t > 0, we have that
V θ(t) is the value of the trading strategy at time t, just before
eventual rebalancing, whereas V θ(0) is the initial investment or
the endowment of the trading strategy θ.

Fair valuation in the single period case T = 1 was investigated
in detail in Chapter 2. Hereafter, we will always assume that
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T ≥ 2, implying that there is at least one rebalancing moment. A
trading strategy θ is said to be self-financing if

θ(t) · Y (t) = θ(t+ 1) · Y (t), for any t = 1, ..., T − 1. (3.2)

This means that no capital is injected or withdrawn at any rebal-
ancing moment t = 1, ..., T −1. We denote the set of self-financing
trading strategies by Θ. Taking into account (3.2), the time-T
value of any self-financing strategy θ ∈ Θ with initial investment
V θ(0) can be expressed as

V θ(T ) = θ(T ) · Y (T ) = V θ(0) +

T∑

t=1

θ(t) ·∆Y (t) , (3.3)

with ∆Y (t) = Y (t)− Y (t− 1). In this formula, θ(t) ·∆Y (t) is
the change of the market value of the investment portfolio in the
time period (t− 1, t], i.e. between time t−1 (just after rebalancing)
and time t (just before rebalancing).

We will always assume that the market of traded assets is
arbitrage-free in the sense that there is no self-financing strategy
θ ∈ Θ with the following properties:

P
[
V θ(0) = 0

]
= 1, P

[
V θ(T ) ≥ 0

]
= 1 and P

[
V θ(T ) > 0

]
> 0.

(3.4)
In our discrete-time setting, the absence of arbitrage is equiva-

lent to the existence of an equivalent martingale measure Q, such
that the price Y (i)(t) of any traded asset i at any trading date t
can be expressed as

Y (i)(t) = e−r(T−t) EQ
[
Y (i)(T ) | Gt

]
. (3.5)

For a proof of this equivalence, we refer to Chapter 6 in Delbaen
and Schachermayer (2006).

Definition 19 (Hedgeable T−claim) A hedgeable T−claim S
is an element of CT that can be replicated by a self-financing strat-
egy θ ∈ Θ :

S = V θ(T ).

We will denote the set of all hedgeable T−claims by HT . The
no-arbitrage assumption guarantees that the time−t price S(t) of a
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hedgeable T−claim S is equal to the time−t price of the underlying
self-financing strategy θ :

S(t) = V θ(t) = e−r(T−t) EQ [S | Gt] . (3.6)

In this chapter, we consider an incomplete market setting. This
means that apart from the hedgeable T−claims, of which the val-
uation is straightforward, there are also T−claims that cannot
be perfectly replicated. A possible example of an unhedgeable
T−claim is the r.v. S defined in (3.1).

A self-financing strategy is by definition G−predictable. Hence,
the rebalancing of the portfolio at any time t may depend on all
information available up to time t, not only including observed
asset prices, but also actuarial information such as survival in-
dices, earthquake indices, etc. Hereafter, we will often consider the
smaller set of self-financing strategies which are predictable with
respect to the financial information. For this purpose, we intro-
duce the financial filtration F. The filtration F = {Ft}t∈τ contains
all information about financial events. This filtration may coincide
with the filtration FY generated by the price process Y but may
include additional financial information, such as economic barom-
eters and/or information about non-traded securities. Hence, in
general we have that

FY ⊆ F ⊆ G.

We will denote the set of all financial t−claims, that is the set of
all Ft−measurable r.v.’s, by CFt . It is obvious that

CFt ⊆ Ct.

Furthermore, we introduce the notation ΘF for the set of self-
financing strategies which are predictable with respect to F and
call its elements financial self-financing trading strategies, as they
are based on the financial filtration. We have that

ΘF ⊆ Θ.

For any financial self-financing strategy θ ∈ ΘF , the investor se-
lects his period (t− 1, t] portfolio, based on the financial informa-
tion observed in the time period [0, t− 1], including asset prices
and other additional financial information.

Next, we define the set of financially hedgeable T−claims.
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Definition 20 (Financially hedgeable T−claim) A financial-
ly hedgeable T−claim S is an element of CFT which can be repli-
cated by a financial trading strategy θ ∈ ΘF :

S = V θ(T ).

We introduce the notation HFT for the set of all financially
hedgeable T−claims. One has that

HFT ⊆ HT .

Finally, we introduce orthogonal T−claims. We will use the term
P-independence for independence between r.v.’s under the measure
P.

Definition 21 (Orthogonal claim) An orthogonal T−claim S
is an element of CT which is P-independent of the financial filtra-
tion F.

Hereafter, we will denote the set of all orthogonal T -claims
by OT . Hence, S ∈ OT means that S is P-independent of any
FT−measurable random variable. An example of an orthogonal
T−claim is the indicator variable S defined in (3.1), provided Tx
is independent of the financial market evolution. In case F ≡ FY ,
one has that S ∈ OT if and only if S is P-independent of any r.v.
which can be expressed as f (Y ) for some measurable function f .

We remark that

EP
[
S⊥ × Sf

]
= EP

[
S⊥
]
× EP

[
Sf
]
,

for any S⊥ ∈ OT and Sf ∈ CFT . In particular, we find that

EP
[
S⊥ × V θ(T )

]
= EP

[
S⊥
]
× EP

[
V θ(T )

]
,

for any S⊥ ∈ OT and θ ∈ ΘF . This follows immediately from the
fact that V θ(T ) ∈ CFT .
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3.3 Mean-variance hedging of insurance li-
abilities

3.3.1 Some general results on mean-variance hed-
ging

Mean-variance hedging (further abbreviated as MV hedging) is the
technique of approximating, with minimal mean squared error, a
given T−claim by the time−T value of a self-financing trading
strategy. The literature on MV hedging is extensive. We refer
to Schweizer (2010) for a survey. Two main approaches are con-
sidered in the literature: the first one uses martingale measures
and projection arguments, see e.g. Černỳ et al. (2007), while the
second one describes the problem in terms of a linear backward
stochastic differential equation, see e.g. Delong (2013).

In this section, we introduce MV hedging to determine the
’closest’ hedge of a combined financial-actuarial claim. This hedge
will constitute the first step of the mean-variance hedge-based val-
uation which will be considered in Section 3.4. Hereafter, when-
ever we consider a subset Θ′ of the set of all self-financing trading
strategies Θ, we assume that Θ′ is a linear subspace (closed under
addition and scalar multiplication) of Θ. This assumption implies,
in particular, that the set

{
V θ(T ) | θ ∈ Θ′

}
is a linear subspace

of CT .

Definition 22 (Mean-variance hedging) Consider a T−claim
S. The MV hedge of S in Θ′ ⊆ Θ is the self-financing strategy
θMV
S ∈ Θ′ for which the expected quadratic hedging error at time
T is minimized :

θMV
S = arg min

θ∈Θ′
EP
[(
S − V θ(T )

)2
]
. (3.7)

The existence of a solution to the minimization problem (3.7)
is tantamount to the condition that

{
V θ(T ) | θ ∈ Θ′

}
is a closed

set. In this chapter, we will always assume that this condition is
satisfied.1 Uniqueness of this solution holds under the additional

1The closedness assumption is satisfied for Θ′ = Θ and for Θ′ = ΘF ,
see Černỳ et al. (2007) for technical details. It is also satisfied for the set

Θ(θ1,...,θm) =
{∑m

j=1 αjθj | (α1, α2, ..., αm) ∈ Rm
}
, with θj , j = 1, ...,m, ∈

Θ, which is considered in Section 3.3.3.
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condition of non-redundancy of Θ′. Non-redundancy of Θ′ means
that for any θ ∈ Θ′, one has that V θ(T ) = 0 implies that θ = 0,
where 0 is the trivial zero investment strategy with all components
equal to 0. Hereafter, we will not require non-redundancy of Θ′.
This means that a T−claim S can have several mean-variance
hedges. Notice however that the time−T values of all these self-
financing strategies are identical. In the remainder of the chapter,
we will denote the unique time−T value of all the mean-variance
hedges of S by VMV

S (T ).
The determination of the solution of the discrete time mini-

mization problem (3.7) for the set Θ of G−predictable self-financing
strategies is considered in Černỳ et al. (2007), see also Schweizer
(2010) and the references therein.

It is well-known that MV hedging in the linear subspace Θ′

has the following properties:

VMV
α×S (T ) = α× VMV

S (T ), for any scalar α ≥ 0, (3.8)

and

VMV
S1+S2

(T ) = VMV
S1

(T ) + VMV
S2

(T ), for any S1 and S2 ∈ CT .
(3.9)

A no-arbitrage argument leads to

VMV
S1+S2

(0) = VMV
S1

(0) + VMV
S2

(0), for any S1 and S2 ∈ CT .
(3.10)

As a special case of the additivity property (3.9), we have that

VMV
S+Sh(T ) = VMV

S (T ) + Sh, (3.11)

for any S ∈ CT and Sh = V θ(T ) with θ ∈ Θ′.
In the following subsection, we will consider mean-variance

hedging of claims which can be expressed as the product of an
orthogonal claim and the time−T value of a financial self-financing
strategy.

3.3.2 MV hedging of product claims

The benefit payment of an insurance contract at contract termi-
nation date T can often be expressed as

S = S⊥ × Sf , with S⊥ ∈ OT and Sf ∈ CFT . (3.12)
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This situation occurs for unit-linked contracts in case the corre-
sponding claim S is the product of an actuarial and a financial
component, where the actuarial component is independent of the
financial information flow over time. In the following theorem,
we determine the MV hedge of T−claims of the form (3.12) in a
subset of financial trading strategies: Θ′ ⊆ ΘF .

Theorem 9 Consider the T -claim S defined in (3.12). The MV
hedge θMV

S of S in the subset Θ′ of the set ΘF of financial self-
financing strategies is given by

θMV
S = EP

[
S⊥
]
× θMV

Sf , (3.13)

where θMV
Sf is the MV hedge of Sf in Θ′. Moreover, the time−T

value of the MV hedge of S equals

VMV
S (T ) = EP

[
S⊥
]
× VMV

Sf (T ). (3.14)

Proof: For any financial self-financing strategy µ ∈ Θ′, we find
that

EP
[
(S − V µ(T ))2

]

= EP
[((

EP
[
S⊥
]
Sf − V µ(T )

)
+ (S⊥ − EP

[
S⊥
]
)Sf
)2
]

= EP
[(

EP
[
S⊥
]
Sf − V µ(T )

)2
]

+ EP
[(

(S⊥ − EP
[
S⊥
]
)Sf
)2
]
,

where the last step follows from taking into account that S⊥ ∈ OT ,
which is independent of Sf and V µ(T ).

As EP
[(

(S⊥ − EP [S⊥
]
)Sf
)2]

does not depend on µ, we find that

the MV hedge θMV
S in the set Θ′ follows from

θMV
S = arg min

µ∈Θ′
EP
[(

EP
[
S⊥
]
Sf − V µ(T ))

)2
]
.

Taking into account that Θ′ is a linear space, we can conclude
that VMV

S (T ) is given by (3.14) and the self-financing strategy
θMV
S defined in (3.13) is a solution of the minimization problem

(3.7).
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A special case of Theorem 9 arises when the financial part of
the payoff at time T is equal to the time−T value of a financial
self-financing trading strategy in ΘF . This case is considered in
the following corollary, with Θ′ = ΘF .

Corollary 4 Let S⊥ ∈ OT and consider the following T -claim:

S = S⊥ × V θ (T ) , with S⊥ ∈ OT and θ ∈ ΘF . (3.15)

The MV hedge of S in the set ΘF is given by

θMV
S = EP

[
S⊥
]
× θ,

while the time−T value of this MV hedge equals

VMV
S (T ) = EP

[
S⊥
]
× V θ(T ). (3.16)

In the following corollary, we consider the special case of Corol-
lary 4, where the financial part of the payoff at time T is equal to
the time−T price of a traded asset.

Corollary 5 Let S⊥ ∈ OT and consider the following T -claim:

S = S⊥ × Y (i)(T ), i = 0, 1, . . . , n. (3.17)

The MV hedge of S in the set ΘF is given by

θMV
S = EP

[
S⊥
]
× θ(i),

where θ(i) ∈ ΘF is the static financial investment strategy con-
sisting of buying 1 unit of asset i at time 0 and holding it until
time T . The time−T value of θMV

S is given by

VMV
S (T ) = EP

[
S⊥
]
× Y (i)(T ). (3.18)

The MV hedge of an orthogonal claim is considered in the
following corollary.

Corollary 6 The MV hedge of S⊥ ∈ OT in the set ΘF is given
by

θMV
S⊥ = e−rT EP

[
S⊥
]
θ(0),
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where θ(0) ∈ ΘF is the static investment strategy consisting of a
risk-free investment of 1 at time 0, which is maintained until time
T . The time−T value of θMV

S⊥ is given by

VMV
S⊥ (T ) = EP

[
S⊥
]
. (3.19)

The proof of this corollary follows immediately from Corollary
5.

3.3.3 MV hedging of general claims

3.3.3.1 MV hedging in the set of linear combinations of
self-financing strategies

In this subsection, we consider a general T−claim S and search
for the self-financing strategy with the minimal expected quadratic
hedging error at time T , where we restrict our search to the set
of all strategies which can be expressed as linear combinations
of a number of given self-financing trading strategies which are
available to the decision maker. More specifically, we consider a
vector of m self-financing trading strategies (θ1,θ2, ...,θm), with
any θj ∈ Θ, and the following set of self-financing investment
strategies:

Θ(θ1,...,θm) =





m∑

j=1

αjθj | (α1, α2, ..., αm) ∈ Rm


 . (3.20)

Notice that Θ(θ1,...,θm) ⊆ Θ, but it is not necessary a subset of ΘF .
In the following theorem, we determine the MV hedge of a general
T−claim S in the set of trading strategies defined in (3.20). The
MV hedge θMV

S of S in Θ(θ1,...,θm) is determined from

min
α∈Rm

EP




S −

m∑

j=1

αjV
θj (T )




2
 . (3.21)

Hereafter, we use the notation Aᵀ for the transpose of a matrix
A and the notation × for the product of 2 matrices.

Theorem 10 Consider the vector (θ1,θ2, ...,θm) of self-financing
investment strategies θi ∈ Θ and assume that their time−T values



3.3. Mean-variance hedging of insurance liabilities 59

V θi (T ) , i = 1, 2, , . . . ,m, are linearly independent. The MV hedge
θMV
S of the T−claim S in the set Θ(θ1,...,θm) is given by

θMV
S =

m∑

j=1

αjθj ,

where the m−vector α = (α1, α2, . . . , αm) is given by

αᵀ = W−1 ×Vᵀ. (3.22)

In this expression, W is the (m×m)−matrix with elements (i, j)
defined by

(W)ij = EP
[
V θi(T ) V θj (T )

]
, (3.23)

while V is the (1×m)−matrix with j−th element given by

(V)j = EP
[
S V θj (T )

]
. (3.24)

Proof: Taking the derivatives of the objective function in (3.21)
with respect to the αi and setting them equal to 0 leads to the
following set of equations:

m∑

j=1

(W)ij αj = EP[S V θi(T )], i = 1, ...,m,

where the elements (W)ij are defined in (3.23). This set of equa-
tions can be rewritten as follows:

W ×αᵀ = Vᵀ.

The assumption of linear independence of the r.v.’s V θi (T ), i =
1, 2, , . . . ,m, is equivalent to the non-singularity of the matrix W.
This proves (3.22).

The MV hedge of the T−claim S in the set Θ(θ1,...,θm) takes
into account the mutual dependency structure between the time
T−values of the m self-financing strategies via the components
EP [V θi(T ) V θj (T )

]
of the matrix W, while the dependency be-

tween the time T−values of these m strategies and the claim S is
captured by the components EP [S V θj (T )

]
of the vector V.

Remark that the optimization problem solved in Theorem 10
is very similar to the general MV hedging problem in the single
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period setting (see Theorem 5 in Section 2.4.3). This problem
is strongly related to portfolio replication where one searches for
a linear combination of traded assets which generates cash-flows
that approximate the cash-flows of a given T−claim. For further
details, we refer to Pelsser and Schweizer (2016) and Natolski and
Werner (2017).

3.3.3.2 MV hedging in the set of linear combinations of
a risk-free and risky self-financing strategies

In this subsection, we consider the special case of Theorem 10,
where apart from a risk-free investment, there is a number of risky
self-financing strategies. This case is considered in the following
corollary.

Corollary 7 Consider the vector (θ(0),θ1,θ2, ...,θm), where θ(0)

is the static strategy consisting of a risk-free investment of 1 at
time 0, while θ1,θ2, ...,θm are self-financing investment strategies
in Θ. Assume that the m + 1 time−T values of the self-financing
strategies are linearly independent. The MV hedge θMV

S of any

T−claim S in the set Θ(θ(0),θ1,θ2,...,θm) is then given by

θMV
S = α0 θ

(0) +

m∑

j=1

αjθj ,

with the αj determined by the set of equations

m∑

j=1

covP
[
V θi (T ) , V θj (T )

]
αj = covP

[
S, V θi (T )

]
, (3.25)

for i = 1, 2, . . . ,m, while α0 follows from

α0 = e−rT


EP [S]−

m∑

j=1

αj EP
[
V θj (T )

]

 (3.26)

Moreover, we have that

EP [VMV
S (T )

]
= EP [S] . (3.27)

Proof: The proof follows from (3.22).



3.3. Mean-variance hedging of insurance liabilities 61

As a special case of the previous corollary, consider the case
where m = 1. Then we find that the MV hedge of S is given by

θMV
S = α0 θ

(0) + α1θ1 (3.28)

with

α1 =
covP [S, V θ1 (T )

]

VarP [V θ1 (T )]
(3.29)

and
α0 = e−rT

(
EP [S]− α1 EP

[
V θ1 (T )

])
. (3.30)

For the particular case of a single-period setting, i.e. T = 1, these
equations can be found e.g. in Tsanakas et al. (2013) and Černỳ
and Kallsen (2009). In the particular case that S is P−independent
of the time−T value V θ1 (T ) of the risky self-financing strategy θ1,
we find that

α1 = 0

and
α0 = e−rT EP [S] .

Hence, in this particular case, the MV hedge is given by e−rT

EP [S] θ(0), which is a static investment strategy of amount e−rT

EP [S] in the risk-free asset at time 0.

3.3.3.3 MV hedging with a single self-financing strategy

In this subsection, we consider a self-financing strategy θ1 ∈ Θ
and determine the MV hedge of the T−claim S in the set

Θ(θ1) = {α θ1 | α ∈ R} .

From Theorem 10, we immediately find the following corollary.

Corollary 8 Consider the self-financing investment strategy θ1 ∈
Θ. The MV hedge of the T−claim S in the set Θ(θ1) is given by

θMV
S = α θ1,

with α determined by

α =
EP [S V θ1(T )

]

EP
[
(V θ1(T ))

2
] . (3.31)
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Hereafter, we consider two special cases of this corollary.
First, suppose the strategy θ1 coincides with the static risk-free

investment strategy θ(0). In this case, we have that V θ
(0)

(T ) =
erT , which leads to

α = EP [S] e−rT .

Hence, the MV hedge of S in Θ(θ(0)) consists of buying EP [S] e−rT

zero-coupon bonds at time 0 and holding this portfolio until time
T . Obviously, the time T−value of this hedge is given by

V θ
(0)

S (T ) = EP [S] .

Next, suppose that θ1 ∈ ΘF and consider the T−claim S =
S⊥×V θ1 (T ), where S⊥ ∈ OT . In this case, we find that α is given
by

α = EP
[
S⊥
]
.

This means that the MV hedge of S in Θ(θ1) equals

θMV
S = EP

[
S⊥
]
θ1.

This result was to be expected, taking into account Theorem 9.

3.3.4 Examples

In this subsection, we consider two examples illustrating the calcu-
lation of MV hedges of insurance liabilities. In a first example, we
consider the MV hedge of an equity-linked life insurance contract
with payment guarantee.

Example 7 (MV hedging of equity-linked liabilities)
Consider a portfolio of equity-linked life insurance contracts un-
derwritten at time 0 on lx persons of age x. Each contract specifies
that at time T the financial T−claim Sf ∈ CFT is paid out, pro-
vided the underlying insured is still alive at that time. Let Ti
be the remaining lifetime of insured i, i = 1, 2, . . . , lx, at contract
initiation. The time−T payoff for policy i is given by

Si = 1{Ti>T} × Sf , i = 1, 2, . . . , lx, (3.32)

where 1{Ti>T} is the indicator variable which equals 1 in case Ti >
T and 0 otherwise. We assume that the remaining lifetimes of all
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insureds follow the same distribution and introduce the notation

T px for the survival probability P[Ti > T ]. The average claim per
policy at time T is given by the time−T claim

S =
Lx+T

lx
× Sf , (3.33)

with

Lx+T =

lx∑

i=1

1{Ti>T}. (3.34)

Furthermore, we assume that the policyholders’ remaining life-
times T1, ..., Tlx are independent of the financial market evolution
in the sense that any Ti ∈ OT . This implies that the indicator
variables 1{Ti>T} ∈ OT and also that Lx+T ∈ OT .
In case mortality is fully diversifiable and the portfolio is suffi-
ciently large, we can substitute

Lx+T

lx
by T px in (3.33) and we have

that the claim S is a financial T−claim: S = T px × Sf ∈ CFT , see
Brennan and Schwartz (1976) and Boyle and Schwartz (1977).
An example of a payoff Sf is given by

Sf = max
(
f
(
Y (1)(T )

)
,K
)
. (3.35)

Here, Y (1)(T ) is the market price of 1 unit of risky asset 1 at time
T , while f is a real-valued non-negative non-decreasing function,
e.g. f(x) = (1− ε)Tx, where ε is an annual fee rate. Furthermore,
K ≥ 0 is the guaranteed minimal survival benefit. It is well-known
that the payoff (3.35) can be split into a deterministic payment
and a call option payoff:

max
(
f
(
Y (1)(T )

)
,K
)

= K + max(0, f
(
Y (1)(T )

)
−K). (3.36)

Hereafter, we investigate the valuation of the claim S defined in
(3.33) in case the actuarial risk

Lx+T

lx
is not necessarily fully diver-

sified.
(a) Let us first consider the case where the payoff upon survival is
a financially hedgeable T−claim, i.e. Sf ∈ HFT . This means that

Sf = V θ(T ), for some θ ∈ ΘF . (3.37)

From Corollary 4 it follows that the MV hedge of the equity-linked
payoff S in ΘF is given by

θMV
S = T px × θ, (3.38)
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while the time−0 value of the MV hedge of S equals

VMV
S (0) = T px × V θ(0). (3.39)

(b) Usually, the time horizon for equity-linked life insurance poli-
cies (typically 5 to 10 years) is different from the time horizon
of standard call options (less than a few years). This makes that
the claim Sf is often unhedgeable. Therefore, let us now assume
that Sf /∈ HFT . In this case, one could determine the MV hedge

of the claim S in the set Θ(θ(0),θ1,θ2,...,θm), where θ(0) is the static
zero-coupon bond investment and each θi ∈ ΘF is a financial
self-financing strategy. We assume that the time−T values of the
m + 1 self-financing strategies are linearly independent. Taking
into account Theorem 9 and Corollary 7, we find that

θMV
S = T px × θMV

Sf = T px ×


α0 θ

(0) +

m∑

j=1

αjθj


 (3.40)

and

VMV
S (0) = T px ×


α0 V

θ(0)

(0) +
m∑

j=1

αjV
θj (0)


 , (3.41)

with the αj determined by the set of equations (3.25) and (3.26).
From (3.27), if follows that

EP [VMV
S (T )

]
= EP [S] . (3.42)

Notice that in case Sf can be replicated by a hedge in the set

Θ(θ(0),θ1,θ2,...,θm), the two values (3.39) and (3.41) are equal. For
instance, in the one-period binomial model (Cox et al. (1979)), one
can verify that (α0, α1) is a perfect hedge for max

(
f
(
Y (1)(T )

)
,K
)
.

5

In the following example, we consider a two-period binomial
setting and apply Theorem 10 to derive the MV hedge of a financial-
actuarial liability with a survival benefit at time 2 equal to the
maximum of two dynamic investment strategies.
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Example 8
Suppose that the combined financial-actuarial world is home to a
financial market where a risk-free and two risky assets are traded
in a two-period setting. The current value of risky asset i = 1, 2,
is given by Y (i)(0) = 1, while its price dynamics follows a binomial
tree over 2 periods. At each time t = 1, 2, the value of asset i can
go up to Y (i)(t− 1) u(i) or down to Y (i)(t− 1) 1

u(i) , with u(i) > 1.

We assume that u(1) 6= u(2).
First, consider a constant-mix strategy, which is defined as the
self-financing strategy θ1 = {θ1(t)}t=1,2 with

θ1(1) = (1, 1)

θ1(2) =

(
Y (1)(1) + Y (2)(1)

2Y (1)(1)
,
Y (1)(1) + Y (2)(1)

2Y (2)(1)

)
.

At time 0, 1 unit of each risky asset is bought. Hence, the time−0
market price of the strategy is 2. At time 1, the portfolio is re-
balanced such that the initial proportions of 50% investment of
the available capital in each risky asset, are restored. The time−2
value of this 50% / 50% mix portfolio is given by

V θ1(2) = θ1(2) · Y (2)

=
2∑

i=1

Y (1)(1) + Y (2)(1)

2Y (i)(1)
Y (i)(2).

Next, consider the buy-and-hold strategy which keeps the number
of units constant over time:

θ2(t) = (1, 1) , for t = 1, 2.

The time−0 price of this strategy is 2, while its time−2 value is
given by

V θ2(2) =

2∑

i=1

Y (i)(2).

Suppose that the combined financial-actuarial world is also home
to the indicator variable S⊥ ∈ O2 defined by

S⊥ =

{
0 : Tx ≤ 2,
1 : Tx > 2

(3.43)
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where Tx is the remaining lifetime of (x).
Consider an insurance liability S ∈ C2 which guarantees the maxi-
mum payoff of the two self-financing strategies defined above, pro-
vided the insured (x) is still alive at time 2:

S = S⊥ ×max
(
V θ1(2), V θ2(2)

)
. (3.44)

By Theorem 10, we know that the MV hedge of S in the set
Θ(θ1,θ2) is given by

θMV
S = α1θ1 + α2θ2,

with the αi determined by

αi =

2∑

j=1

(
W−1

)
ij

EP
[
S V θj (2)

]
, i = 1, 2, (3.45)

where W is the (2× 2)−matrix with elements (i, j) defined by

(W)ij = EP
[
V θi(2) V θj (2)

]
. (3.46)

Apart from the claim S defined in (3.44), we also consider claims
S̃ ∈ C2 of the form

S̃ = S⊥ ×
(
β1V

θ1(2) + β2V
θ2(2)

)
,

for given real numbers β1 and β2.
From Theorem 9, we find that the MV hedge of S̃ in the set ΘF

is given by

θMV
S̃

= EP
[
S⊥
]

(β1θ1 + β2θ2) .

As θMV
S̃
∈ Θ(θ1,θ2) ⊆ ΘF , it is obvious that the MV hedge of S̃ in

ΘF is equal to the MV hedge of S̃ in Θ(θ1,θ2).
Let us now suppose that u(1) = 4

3 and u(2) = 8
3 , indicating that the

second asset is more volatile. Furthermore, we suppose that the
P−probability of an up-movement equals 1/2 for each risky asset
and each time period. Finally, suppose that P [Tx > 2] = 0.9,
implying that EP [S⊥

]
= 0.9. The numerical values of the MV
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hedges of different time−2 claims are summarized in the following
table.

Time−2 claim MV hedge

S⊥ × V θ1(2) 0.9 θ1

S⊥ × V θ2(2) 0.9 θ2

S⊥ ×
(
0.5V θ1(2) + 0.5V θ2(2)

)
0.45 θ1 + 0.45 θ2

S⊥ ×max(V θ1(2), V θ2(2)) 0.52 θ1 + 0.46 θ2

5

The claims considered in the previous examples were in general
not perfectly hedgeable. In the next section, we consider the mean-
variance hedge-based approach which values unhedgeable claims
as the sum of the time−0 price of their MV hedge and an actuarial
value for the remaining (unhedged) part of the claim.

3.4 Fair valuation of insurance liabilities

In this section, we define the class of fair valuations as well as the
class of mean-variance hedge-based (MVHB) valuations in a multi-
period setting. These concepts were introduced and investigated in
Chapter 2 in a single period framework and are now generalized.
In Section 3.4.2, we show that the classes of fair valuations and
MVHB valuations are equal. In Section 3.4.3, we provide some
detailed examples illustrating the MVHB valuation.

3.4.1 Fair valuations

Solvency II, the European regulatory framework for insurance and
reinsurance companies, focuses on the fair valuation of insurance
liabilities. A distinction is made between hedgeable and non-
hedgeable claims. For a hedgeable claim, the fair value equals
the market value of the underlying hedging portfolio. The fair
value of a non-hedgeable claim is defined as the sum of the ex-
pected present value (called best estimate) and a risk margin, see
CEIOPS (2010). The application of this regulatory principle is not
always straightforward as insurance liabilities are often partially
replicable and it is usually not clear how the regulatory valuation
principle should be applied in such a case.
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In Chapter 2, we defined a general class of fair valuations which
meet the fundamental regulatory requirements by merging actu-
arial judgement and market-consistency. Hereafter, we first define
the class of valuations and then introduce the classes of market-
consistent, actuarial and fair valuations in our multi-period set-
ting.

Definition 23 (Valuation) A valuation is a mapping ρ : CT →
R, attaching a real number to any claim S ∈ CT :

S → ρ [S] ,

such that ρ is normalized:

ρ [0] = 0,

and ρ is translation invariant:

ρ [S + a] = ρ [S] + e−rTa, for any S ∈ CT and a ∈ R.

Our convention of identifying r.v.’s which are equal in the
P−almost sure sense implies that ρ [S1] = ρ [S2] in case S1 and
S2 are equal in that sense.

Definition 24 (Market-consistent valuation)
A valuation ρ : CT → R is market-consistent (MC) if any finan-
cially hedgeable part of any claim is marked-to-market:

ρ
[
S + Sh

]
= ρ[S] + V θ(0), (3.47)

for any S ∈ CT and any Sh = V θ(T ) with θ ∈ ΘF .

In the literature, market-consistency is usually defined via a
condition equal or similar to condition (3.47), see e.g. Artzner
and Eisele (2010), Malamud et al. (2008) and Pelsser and Stadje
(2014). The mark-to-market condition (3.47) postulates that any
financial replicable part of a claim is valuated by the price of
its hedge. The MC condition (3.47) can be seen as an exten-
sion of translation invariance from scalars to financially hedgeable
claims. We remark that the condition (3.47) is closely related
to the market-consistent property defined in Pelsser and Stadje
(2014).

In order to define actuarial valuations, we first have to intro-
duce the notions of P−law invariant and market-invariant map-
pings on the set of orthogonal claims OT .
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Definition 25 (P−law invariant mapping)
A mapping ρ : OT → R is P−law invariant if for any S⊥1 and S⊥2 ∈
OT with the same P−distribution, one has that ρ

[
S⊥1
]

= ρ
[
S⊥2
]
.

The P−law invariance property stems from the fact that chang-
ing the r.v. S⊥1 into S⊥2 does not change the value of the map-
ping, provided both have the same P−distribution. In other words,
a P−law invariant mapping ρ : OT → R is in fact a mapping
from the set of all P−distributions of orthogonal claims to the real
line. In this sense, one can say that ρ

[
S⊥
]

only depends on the
P−distribution of the orthogonal claim S⊥.

Definition 26 (Market-invariant mapping)
A mapping ρ : OT → R is market-invariant if for any S⊥ ∈ OT ,
the value ρ

[
S⊥
]

is independent of the current risky asset prices

Y (1)(0), ..., Y (n)(0).

In this case, the market-invariance property results from the
observation that ρ

[
S⊥
]

is constant with respect to any change in
the current risky asset prices.

Definition 27 (Actuarial valuation) A valuation ρ : CT → R
is actuarial if any orthogonal claim is marked-to-model:

ρ
[
S⊥
]

= e−rT EP
[
S⊥
]

+ RM
[
S⊥
]
, for any S⊥ ∈ OT ,

(3.48)
where RM : OT → R is a P−law invariant and market-invariant
mapping.

The mark-to-model (or actuarial) condition (3.48) introduces
actuarial aspects in the valuation of claims by stating that for
claims that are independent of the financial market information
that will become available over time, the valuation does not de-
pend on the current prices of traded risky assets and hence, also
does not depend on Q.

Notice that all results that we will derive hereafter in this pa-
per remain valid if we define an actuarial valuation as a member
of a given subset of the broad class of valuations considered in the
definition above. For instance, we could define an actuarial valu-
ation as a valuation of the form (3.48) where RM

[
S⊥
]

= e−rT β
varP

[
S⊥
]
, for some deterministic β ≥ 0.
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Definition 28 (Fair valuation) A fair valuation is a valuation
which is both market-consistent and actuarial.

Our definition of a fair valuation in a multi-period setting is
in line with current insurance solvency regulations which impose
mark-to-market as well as mark-to-model requirements for the fair
valuation of assets and liabilities.2 Definition 28 combines market-
consistency considerations concerning financially hedgeable parts
of claims with the traditional actuarial view involving actuarial
judgement of insurance claims. We remark that our definition of
a fair valuation is generic and does not necessarily fully correspond
to any particular definition of fair value in a particular regulation.

3.4.2 Mean-variance hedge-based valuations

Valuating a T−claim S via MV hedging starts with finding the op-
timal self-financing trading strategy θMV

S which hedges the claim
S with minimal expected quadratic hedging error in a linear sub-
space Θ′ of Θ. Defining the value of the claim S as the initial
cost VMV

S (0) of the MV hedging strategy θMV
S leads to the same

value for the T−claim S and for VMV
S (T ), neglecting the part of

S which is not hedged, i.e. S − VMV
S (T ). In order to solve this

issue, we considered in Chapter 2 a class of fair valuations, the
members of which are called mean-variance hedge-based (MVHB)
valuations. Determining the MVHB value of a T−claim S departs
from splitting this claim into the time−T value of its MV hedge
and the remaining claim:

S = VMV
S (T ) +

(
S − VMV

S (T )
)
.

The MVHB value of S is then defined as the sum of the finan-
cial market price of the MV hedge and an actuarial value of the
remaining claim.

2In the ’Solvency II Glossary’ of the ’Comité Européen des Assurances’ and
the ’Groupe Consultatif Actuariel Européen’ of 2007, Fair Value is defined as
’the amount for which ... a liability could be settled between knowledgeable,
willing parties in an arm’s length transaction. This is similar to the concept of
Market Value, but the Fair Value may be a mark-to-model price if no actual
market price for the ... liability exists.’
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Definition 29 (MVHB valuation) A mapping ρ : CT → R is a
mean-variance hedge-based (MVHB) valuation in case there exists
a linear subspace Θ′ of Θ and an actuarial valuation π such that

ρ [S] = VMV
S (0) + π[S − VMV

S (T )], for any S ∈ CT , (3.49)

where VMV
S (0) and VMV

S (T ) are the time−0 and time−T values
of the MV hedge θMV

S of S in Θ′, respectively.

It is straightforward to prove that a MVHB valuation is nor-
malized and translation invariant, and hence, a valuation in the
sense of Definition 23. Moreover, a MVHB valuation is positive
homogeneous, provided the underlying actuarial valuation is pos-
itive homogeneous.

In the following lemma, a MVHB valuation formula is derived
for product claims, taking into account Theorem 9.

Lemma 3 Consider the MVHB valuation with underlying MV
hedging in the linear space of self-financing trading strategies Θ′ ⊆
ΘF and actuarial valuation π. For any S⊥ ∈ OT and any Sf ∈ CFT ,
the MVHB value of S = S⊥ × Sf is given by

ρ [S] = EP
[
S⊥
]
VMV
Sf (0) + π

[
S⊥ × Sf − EP

[
S⊥
]
VMV
Sf (T )

]
.

(3.50)

In the following theorem, we prove that the class of MVHB
valuations is identical to the class of fair valuations.

Theorem 11 A mapping ρ : CT → R is a MVHB valuation with
underlying MV hedging in the set ΘF if and only if it is a fair
valuation.

Proof: (a) Consider the MVHB valuation ρ defined in (3.49). In
order to show that ρ is a fair valuation, we have to verify whether
ρ is a market-consistent and actuarial valuation.

(i) Let S ∈ CT and Sh = V θ(T ) with θ ∈ ΘF . We have that

VMV
S+Sh(T ) = VMV

S (T ) + Sh,

and hence, also

VMV
S+Sh(0) = VMV

S (0) + V θ(0),
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see (3.11). Taking into account these additivity relations, we find
that

ρ
[
S + Sh

]
= VMV

S+Sh(0) + π
[
S + Sh − VMV

S+Sh(T )
]

= VMV
S (0) + V θ(0) + π[S − VMV

S (T )]

= ρ[S] + V θ(0).

Hence, ρ is market-consistent.

(ii) Let S⊥ ∈ OT . From Corollary 6, we know that θMV
S⊥ =

e−rT EP [S⊥
]
θ(0). Taking into account the translation-invariance

of π leads to

ρ
[
S⊥
]

= VMV
S⊥ (0) + π[S⊥ − VMV

S⊥ (T )]

= e−rT EP
[
S⊥
]

+ π
[
S⊥ − EP

[
S⊥
]]

= π[S⊥].

Given that π is an actuarial valuation, we find that ρ is also an
actuarial valuation.
(b) Consider the fair valuation ρ. Let VMV

S (T ) be the time−T
value of the MV hedge of the T−claim S in ΘF . By the market-
consistency property, we immediately find that

ρ [S] = ρ
[
VMV
S (T ) +

(
S − VMV

S (T )
)]

= VMV
S (0) + ρ

[
S − VMV

S (T )
]
.

Given that ρ is fair, it is also actuarial. Hence, we can conclude
that the fair valuation ρ is a MVHB valuation.

Theorem 11 holds for MVHB valuations with MV hedge deter-
mined in the set of financial self-financing strategies ΘF whereas
the MC condition (3.47) in the definition of a fair valuation has
to hold for all Sh = V θ(T ) with θ ∈ ΘF . Important to notice
is that Theorem 11 remains to hold if we replace ΘF by a linear
subspace Θ′ of ΘF which includes θ(0) as one of its elements, pro-
vided we redefine a MC valuation as a valuation which satisfies
the MC property only for claims which are hedgeable with a self-
financing strategy in Θ′, while we redefine a MVHB valuation as
a valuation of the form (3.49), where the MV hedge is determined
in the set Θ′. We remark that the self-financing strategy θ(0) is
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required to be an element of Θ′ in order to guarantee that the
MVHB valuation is actuarial.

Moreover, Theorem 11 is a generalization of Theorem 3 in
Chapter 2 in the MV hedging case as it allows periodic rebalanc-
ing (for instance yearly) for long term T−claims. Obviously, this
cannot be achieved within a single period model.

3.4.3 Examples

We end this section with two examples illustrating the fair valua-
tion of insurance liabilities.

In Example 9, we consider the fair value of the liabilities related
to a portfolio of equity-linked life insurance contracts by applying
the MVHB valuation with a standard deviation actuarial valua-
tion principle for the non-hedged part of the claims. Under the
assumption of diversifiability of mortality, the actuarial value of
the non-hedged part per policy converges to zero due to the law
of large numbers (LLN). In case of conditional independence, in-
stead of independence of the remaining lifetimes of the insureds,
the LLN breaks down and the actuarial value in the MVHB valua-
tion converges to a non-zero constant, giving rise to a risk margin
for non-diversifiable mortality risk, see also Milevsky et al. (2006).

Example 9 (Valuation of equity-linked liabilities)
Consider the portfolio of lx contracts underwritten at time 0 as
described in Example 7. Each contract guarantees to its benefi-
ciary the payment Sf ∈ CFT at time T , provided the insured is still
alive at that time. All insureds are assumed to be x years old at
policy issue. As in Example 7, we assume that the policyholders’
remaining lifetimes T1, ..., Tlx are identically distributed and inde-
pendent of the financial market evolution in the sense that any

Ti ∈ OT . As before, we use the notation T px for EP
[
Lx+T

lx

]
.

The average claim per policy at time T is given by (3.33):

S =
Lx+T

lx
× Sf ,

with

Lx+T =

lx∑

i=1

1{Ti>T}.
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Suppose that we apply the MVHB valuation (3.49) with underly-
ing MV hedging in the space of of self-financing trading strategies

Θ(θ(0),θ1,θ2,...,θm) defined in Example 7, and as actuarial valuation
π the standard deviation principle, i.e.

π [S] = e−rT
(
EP [S] + β σP[S]

)
, for any S ∈ CT ,

with β a given non-negative real number.
From (3.42), we know that

θMV
S = T px × θMV

Sf ,

with

θMV
Sf =


α0 θ

(0) +
m∑

j=1

αjθj


 ,

where the coefficients αj follow from (3.25) and (3.26).
Taking into account Lemma 3 and (3.42), we find that the MVHB
value of S is given by

ρ [S] = T px×VMV
Sf (0)+e−rT β σP[

Lx+T

lx
×Sf − T px×VMV

Sf (T )].

(3.51)
After some straightforward calculations, this value can be rewrit-
ten as follows:

ρ [S] = T px × VMV
Sf (0) + e−rT β σ (3.52)

with

σ2 = (T px)2×VarP
[
Sf − VMV

Sf (T )
]
+EP

[(
Sf
)2
]
×VarP

[
Lx+T

lx

]
.

(3.53)

The actuarial premium for the non-hedged part of the claim, i.e.
e−rT β σ, can be interpreted as a ’risk loading’ composed of two
components. The first component is related to the fact that Sf

is not perfectly hedgeable, whereas the second component is due
to the fact that the survival risk is not fully diversified. In case

Sf is perfectly hedgeable in Θ(θ(0),θ1,θ2,...,θm), the first term of σ2
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vanishes, whereas in case of full diversification of the survival risk,
its second term disappears. Due to (3.27), we remark that

VarP
[
Sf − VMV

Sf (T )
]

= EP
[(
Sf − VMV

Sf (T )
)2
]

= min
µ∈Θ(θ(0),θ1,θ2,...,θm)

EP
[(
Sf − V µ(T ))

)2
]
.

(a) Let us additionally assume that T1, ..., Tlx are i.i.d under P. In
this case, we find that

VarP
[
Lx+T

lx

]
=

T px (1− T px)

lx
.

The MVHB value ρ [S] of the average claim per policy is then
given by (3.52) with

σ2 = (T px)2×VarP
[
Sf − VMV

Sf (T )
]
+EP

[(
Sf
)2
]
× T px (1− T px)

lx
.

Increasing the number of policies leads to a decrease of the value of
the average claim per policy for the non-hedged part of the claim.
Moreover, we have that

lim
lx→∞

ρ [S] = T px

(
VMV
Sf (0) + e−rT β σP

[
Sf − VMV

Sf (T )
])
.

Therefore, when lx goes to infinity, the actuarial value per policy
for the non-hedged part of the claim is only due to the hedging
error.

(b) Instead of assuming that T1, ..., Tlx are P−i.i.d, let us now
assume that there exists a r.v. P with P−cdf given by F P

P (p),
p ∈ [0, 1], such that given P = p, the remaining lifetimes T1, ..., Tlx
are P−i.i.d., with

P [Ti > T | P = p] = p, p ∈ [0, 1] .

P can be interpreted as the ’stochastic survival probability’ and
we find that

P [Ti > T ] = EP [P ] .
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Due to the random nature of P , the remaining lifetimes Ti are not
mutually independent anymore. Instead they have become condi-
tionally independent.
The expectation and the variance of

Lx+T

lx
are now given by

EP
[
Lx+T

lx

]
= EP [P ]

and

VarP
[
Lx+T

lx

]
=

EP [P (1− P )]

lx
+ VarP [P ] .

Inserting these expressions in (3.53), we find that the MVHB value
ρ [S] of the average claim per policy is given by (3.52) with

σ2 = (T px)2 ×VarP
[
Sf − VMV

Sf (T )
]

+ EP
[(
Sf
)2
]
×
(
EP [P (1− P )]

lx
+ VarP [P ]

)
.

Again, we can conclude that increasing the number of policies leads
to a decrease of the actuarial value per policy for the non-hedged
part of the claim. Moreover, we have that

lim
lx→∞

σ2 = (T px)2×VarP
[
Sf − VMV

Sf (T )
]
+EP

[(
Sf
)2
]
×VarP [P ] .

Hence, in case VarP [P ] 6= 0, the survival risk is not fully diversifi-
able: even if the number of insureds becomes infinitely large, the
actuarial premium of the unhedged risk contains a term related to
the undiversifiable survival risk. 5

Remark 1 In the previous example, we treated the remaining
non-hedged part by a standard actuarial principle. Another alter-
native consists of splitting the non-hedged part into a diversifiable
part and a residual part, that is neither hedgeable nor diversifi-
able, leading to a three-step valuation. We refer to Deelstra et al.
(2018) and the references therein.

In the following example, we investigate the fair value of a
product claim of the form S = S⊥ × V θ (T ) where the trading
strategy θ depends on S⊥ (hence, θ /∈ ΘF ). In particular, we
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consider the fair value of a pool of equity-linked contracts in which
the investment portfolio depends on the number of survivors. We
further quantify the impact on the fair value when the aggregate
longevity risk is transferred from the pool to the insurer.

Example 10 (Transfer of the longevity risk)
(a) Consider a portfolio of T−year equity-linked policies under-
written at time 0 on a cohort of lx insureds aged x at policy initia-
tion. The random number of survivors a time t is denoted by Lx+t,
t = 0, 1, . . . , T . At time T , the value V θ (T ) of a self-financing in-
vestment strategy θ ∈ Θ, set up at time 0, is equally distributed
among the survivors in the portfolio. Hence, the payoff per policy
in force at time T is given by

Si =
V θ (T )

Lx+T
1{Ti >T}, i = 1, 2, . . . , lx, (3.54)

where Ti is the remaining lifetime of insured i. Any policyholder
i faces three sources of risk: investment risk (caused by the ran-
dom nature of the final value V θ (T ) of the investment strategy),
individual longevity risk (due to the randomness of the remaining
lifetime Ti of the insured) and aggregate longevity risk (because
of the random nature of the number of survivors Lx+T ). The
aggregate portfolio liability at time T equals

S =

lx∑

i=1

Si = V θ (T ) .

As S is a hedgeable claim, its fair value at time 0 is given by the
cost of the initial investment of the trading strategy θ:

ρ [S] = V θ (0) . (3.55)

The insurer who charges a single premium of V θ(0)
lx

per underwrit-
ten contract and sets up the investment strategy θ at time 0 does
not take any risk: all sources of risk are born by the pool of policy-
holders. The portfolio can be considered as a pool of tontine-like
policies. For the reader interested in pooled funds and tontines, we
refer to Milevsky and Salisbury (2015), Bräutigam et al. (2017)
and the interesting book on the 1693 tontine by Milevsky (2015).
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(b) Let us now in addition assume that θ ∈ ΘF and that all
Ti, and hence also Lx+t, are orthogonal claims. Furthermore, we
adapt the contract payoff (3.54) in the sense that the random
number of survivors Lx+T is replaced by its deterministic estimate
lx+t = EP [Lx+T ] in the payoff per policy:

Si =
V θ (T )

lx+T
1{Ti>T}. (3.56)

In this adapted contract, the aggregate longevity risk is transferred
to the insurer, i.e. he bears the uncertainty on the number of
survivors at maturity. The aggregate portfolio liability is now
given by

S = V θ (T )
Lx+T

lx+T
. (3.57)

As the aggregate liability S is no longer hedgeable, the insurer
determines the fair value of S via a MVHB valuation.
From Corollary 4, it follows that the MV hedge of S in ΘF is given
by

θMV
S = θ.

From Lemma 3, we find that the MVHB value of S equals

ρ [S] = V θ(0) + π

[(
Lx+T − lx+T

lx+T

)
V θ(T )

]
.

Let us now choose, as actuarial valuation, the standard deviation
principle, i.e.

π [S] = e−rT
(
EP [S] + β σP [S]

)
,

for some β > 0. Taking into account that

VarP
[(

Lx+T − lx+T

lx+T

)
V θ(T )

]
= EP

[(
V θ(T )

)2
]
×VarP

[
Lx+T

lx+T

]
,

we find that

ρ [S] = V θ(0) + β e−rT
√
EP
[
(V θ(T ))

2
]
× σP

[
Lx+T

lx+T

]
.

In case the insurer charges a premium of ρ[S]
lx

per policy, we observe
that the first part of the premium corresponds with the premium
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charged in (a), whereas the second part is the extra loading per
policy for the transfer of the aggregate longevity risk to the insurer.
This extra loading is caused by the volatility of both V θ(T ) and
Lx+T .

(c) As a special case of (b), suppose that θ = lx+T e
−rT θ(0). The

time−T payoff per policy is then given by

Si = 1{Ti>T}. (3.58)

In this case, the policyholder only bears the individual longevity
risk. The aggregate portfolio liability is now given by

S =

lx∑

i=1

Si = Lx+T , (3.59)

while the fair value of the portfolio liability is given by

ρ [S] = e−rT
(
lx+T + β σP [Lx+T ]

)
.

Notice that the insurance contract considered in (c) corresponds
to a classical pure endowment.

(d) Let us go back to (a) and consider the portfolio of lx contracts
with time−T benefits given by (3.54), with trading strategy θ ∈ Θ
defined in the following way:
At time 0, for any underwritten policy, an amount A

lx
is fully in-

vested in the risk-free bank account. Furthermore, any time an
insured dies in any year (j − 1, j), the amount A

lx
erj is withdrawn

from the bank account at time j and is fully invested in asset 1,
from time j until time T . The aggregate portfolio liability is then
equal to the time−T value of the investment strategy θ:

S = V θ (T ) =
A

lx


Lx+T e

rT +
T∑

j=1

Dx+j−1 e
rj Y

(1)(T )

Y (1)(j)


 ,

=
A

lx
Lx+T e

rT + S′,

where Dx+j−1 is the number of people who died during the year
(j − 1, j) and S′ denotes the part of the aggregate survival ben-
efits which was invested in the risky asset 1 (after the death of
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the respective insureds). Obviously, θ is a self-financing trading
strategy with V θ (0) = A. Moreover, θ /∈ ΘF as the investment
strategy depends on the number of survivors at each time j. As in
(a), we have that S is a hedgeable claim and the fair value of the
portfolio is given by

ρ [S] = A.

From (3.56), it follows that the time−T payoff per policy Si is
given by

Si =

(
A

lx
erT +

S′

Lx+T

)
1{Ti>T},

which clearly shows that the policyholder bears the risky invest-
ment risk, as well as the individual and the aggregate longevity
risk.

(e) Let us consider the self-financing strategy θ introduced in (d).
Suppose now that the time−T payoff per policy is defined by

Si =

(
A

lx
erT +

S
′

lx+T

)
1{Ti>T}, (3.60)

where

S
′
=
A

lx

T∑

j=1

dx+j−1 e
rj Y

(1)(T )

Y (1)(j)
,

with dx+j−1 = EP [Lx+j−1 − Lx+j ], the expected number of people
who will die during the year (j − 1, j). The aggregate portfolio
liability is now given by

S =

(
A

lx
erT +

S
′

lx+T

)
Lx+T . (3.61)

From the expression (3.61), we observe that the aggregate longevity
risk is transferred to the insurer and also that the aggregate port-
folio liability is no longer hedgeable. Notice that S can be written
as

S =
A

lx


lx+T e

rT +
T∑

j=1

dx+j−1 e
rj Y

(1)(T )

Y (1)(j)


 Lx+T

lx+T

= V µ (T )
Lx+T

lx+T
,
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where µ is similar to the strategy θ introduced in (d), but with the
real numbers of deaths and survivors (Dx+t and Lx+t) replaced by
their respective expectations (dx+t and lx+t). As µ ∈ ΘF , we can
follow the same approach as in (b) to determine the MVHB value
of S.
From Corollary 4, the MV hedge of S in ΘF is given by

θMV
S = µ,

and from Lemma 3, we find that the MVHB value of S equals

ρ [S] = V µ(0) + π

[(
Lx+T − lx+T

lx+T

)
V µ(T )

]
.

Since V µ(0) = V θ (0) = A, the second term in this expression for
ρ [S] can be interpreted as the fair value for the transfer of the
aggregate longevity risk to the insurer. 5

3.5 Concluding remarks

In this chapter, we investigated the fair valuation of insurance lia-
bilities based on mean-variance hedging and extended the results
of Chapter 2 to a multi-period dynamic investment setting. We fo-
cused on product claims, i.e. claims which can be expressed as the
product of an actuarial and a financial claim. Under independence
between the actuarial claim (typically a mortality-related claim)
and the financial market, we derived the MV hedge in Theorem
9 and obtained tractable formulas for the fair valuation of such
product claims. For general claims, we derived the MV hedge in
the set of all strategies which can be expressed as linear combina-
tions of a number of given self-financing trading strategies. The
obtained results have been illustrated with numerous examples.

In Section 3.4, we showed that the class of fair valuations is
identical to the class of mean-variance hedge-based valuations.
Under the MVHB approach, we showed that the risk margin in
equity-linked contracts can be decomposed into a risk loading
for non-diversifiable mortality risk and a risk loading for non-
hedgeable financial risk. Moreover, we determined the extra load-
ing in the fair value when the longevity risk in pooled equity-linked
contracts is transferred to the insurer.
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As considered in Chapter 2, one can also define a two-step val-
uation based on a conditional actuarial valuation, which extends
the two-step valuation of Pelsser and Stadje (2014) by introduc-
ing actuarial considerations. Like in the previous chapter, one can
show that the set of two-step valuations coincides with the set of
fair valuations and hence, also with the set of MVHB valuations.
These results can be seen as generalizations of the equivalences
which hold in a one-period static setting in Chapter 2.

Under the MVHB approach, the valuation gives an explicit
hedge and an additive decomposition of the claim into a financial
hedgeable part and an actuarial non-hedgeable part. Therefore, we
believe that the MVHB valuation provides a relevant framework to
determine the hedgeable part and the fair valuation of insurance
liabilities which involve both actuarial and financial components.



Chapter 4

Fair dynamic valuation of
insurance liabilities:
Merging actuarial
judgement with market-
and time-consistency

This chapter is based on
Barigou, K., Chen, Z., & Dhaene, J. (2019). Fair dynamic val-
uation of insurance liabilities: Merging actuarial judgement with
market-and time-consistency. Insurance: Mathematics and Eco-
nomics, 88, 19-29.

4.1 Introduction

In the previous chapters, we considered a static valuation problem:
what is the value today of an insurance contract with payoff at
time T?

To determine solvency capital requirements (SCR), insurers
need to determine the value of their liabilities not only today but
also at future points in time: what is the value of my insurance
liabilities in five years from now if there is a shock in the financial
market coupled with an increase in longevity?

83
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An important question in a dynamic setting is how risk val-
uations at different times are interrelated. In this context, time-
consistency is a natural approach to glue together static valua-
tions. It means that the same value is assigned to a position re-
gardless of whether it is calculated over two time periods at once or
in two-steps backwards in time. Time-consistent valuations have
been largely studied and we refer to Acciaio and Penner (2011) for
an overview.

In this chapter, we investigate the fair valuation of insurance
liabilities in a dynamic multi-period setting. We define a fair dy-
namic valuation as a valuation which is actuarial (mark-to-model
for claims independent of financial market evolutions), market-
consistent (mark-to-market for hedgeable parts of claims) and
time-consistent, and study their properties. In particular, we pro-
vide a complete hedging characterization for fair dynamic valua-
tions, extending the work of our previous chapters in a dynamic
setting. Moreover, we show how we can implement fair dynamic
valuations through a backward iterations scheme combining risk
minimization methods from mathematical finance with standard
actuarial techniques based on risk measures.

The chapter is organized as follows. In Section 4.2, we de-
scribe the combined financial-actuarial world and the notions of
orthogonal and hedgeable claims. In Section 4.3, fair t−valuations
and the related notion of fair t−hedgers are introduced. In par-
ticular, we show that any fair t−valuation can be characterized in
terms of a fair t−hedger. In Section 4.4, we extend the results in a
time-consistent setup and provide a time-consistent hedging char-
acterization for time-consistent and market-consistent valuations.
Section 4.5 presents a practical approach to apply our framework
and some numerical illustrations. Section 4.6 concludes the paper.

4.2 The combined financial-actuarial world

In this chapter, we consider again the combined financial-actuarial
world of Chapter 3. However, since we are considering dynamic
valuations in this chapter, we need to adapt and generalize the
notions of trading strategies, orthogonal and hedgeable claims that
are defined hereafter.

Like in the previous chapter, the financial-actuarial world is
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modeled by the probability space (Ω,G,P), equipped with the fi-
nite and discrete time filtration G = {Gt}t∈τ , such that G0 is equal
to {∅,Ω} and GT = G. We will denote the set of all t−claims
defined on (Ω,G,G), that is the set of all Gt−measurable r.v.’s, by
Ct. Hereafter, when considering a t−claim, we will always silently
assume that it is payable at time t, except if stated otherwise.

The combined financial-actuarial world (Ω,G,P) is also home
to a financial market of n+ 1 tradable (non-dividend paying1 as-
sets). The price processes of the traded assets are described by
the (n+ 1)−dimensional stochastic process Y = {Y (t)}t∈τ . Here,
Y (t), t ∈ τ , is the vector of time−t prices of all tradable assets,
i.e. Y (t) =

(
Y (0)(t), Y (1)(t), . . . , Y (n)(t)

)
. We assume that the

price process Y is adapted to the filtration G, which means that

Y (t) is Gt −measurable, for any t = 0, 1, , . . . , T.

A time−t trading strategy (also called a time−t dynamic port-
folio), t ∈ {0, . . . , T − 1}, is an (n+ 1)−dimensional predictable
process θt = {θt(u)}u∈{t+1,...,T} with respect to the filtration G.
The predictability requirement means that

θt(u) is Gu−1 −measurable, for any u = t+ 1, . . . , T.

Notice that a time−t trading strategy is only set up at time t by
acquiring a portfolio θt(t + 1) at that time. Introducing the no-

tations θt(u) =
(
θ

(0)
t (u), θ

(1)
t (u) . . . , θ

(n)
t (u)

)
for the components

of θt(u), we interpret the quantity θ
(i)
t (u) as the number of units

invested in asset i in time period u, that is in the time inter-
val (u− 1, u]. The Gu−1−measurability requirement means that
the portfolio composition θt(u) for the time period u follows from
the general information available up to and including time u− 1.
This information includes, but is broader than the price history of
traded assets in that time interval.

The initial investment or the endowment at time t of the trad-
ing strategy θt can be expressed as

θt(t+ 1) · Y (t) =
n∑

i=0

θ
(i)
t (t+ 1)× Y (i)(t).

1Without loss of generality, we assume that there are no dividends. Other-
wise, one can replace the traded asset by the gain process of the traded asset,
which is the sum of its price process and the process describing its accumulated
dividends.
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The value of the trading strategy θt at time u, just before rebal-
ancing, is given by

θt(u) · Y (u) =

n∑

i=0

θ
(i)
t (u)× Y (i)(u),

for any u = t + 1, . . . , T, whereas its value at time u, just after
rebalancing, is given by

θt(u+ 1) · Y (u) =
n∑

i=0

θ
(i)
t (u+ 1)× Y (i)(u),

for any u = t+ 1, . . . , T − 1.
Obviously, θt(u) · Y (u) and θt(u+ 1) · Y (u) are Gu−measurable.

A time−t trading strategy θt is said to be self-financing if

θt(u) · Y (u) = θt(u+ 1) · Y (u), for any u = t+ 1, ..., T − 1.
(4.1)

This means that no capital is injected or withdrawn at any re-
balancing moment u = t + 1, ..., T − 1. We denote the set of
self-financing time−t trading strategies by Θt. Taking into ac-
count (4.1), the time−T value of any self-financing time−t strat-
egy θt ∈ Θt can be expressed as

θt(T ) · Y (T ) = θt(t+ 1) · Y (t) +
T∑

u=t+1

θt(u) ·∆Y (u) , (4.2)

with ∆Y (u) = Y (u)−Y (u− 1). In this formula, θt(u) ·∆Y (u)
is the change of the market value of the investment portfolio in
the time period u, i.e. between time u− 1 (just after rebalancing)
and time u (just before rebalancing).

We assume that the market of traded assets is arbitrage-free
in the sense that there is no self-financing strategy θ0 ∈ Θ0 with
the following properties:

θ0(1) · Y (0) = 0,

P [θ0(T ) · Y (T ) ≥ 0] = 1,

P [θ0(T ) · Y (T ) > 0] > 0.

In our discrete-time setting, the absence of arbitrage is equivalent
to the existence of an equivalent martingale measure Q (further



4.2. The combined financial-actuarial world 87

abbreviated as EMM), under which the discounted price process
Y is a G−martingale:

Y (t−1) = EQ
t−1

[
e−
∫ t
t−1 rsdsY (t)

]
, for any t = 1, ..., T, (4.3)

for some (possibly stochastic) interest rate rs.
2 For the rest of the

chapter, we will use the notation EQ
t [·] := EQ [ ·| Gt]. For a proof of

this equivalence, we refer to Delbaen and Schachermayer (2006).
Consider a time−t self-financing strategy θt ∈ Θt. From (4.3) it
follows that its time−u price is given by

θt(u+ 1) · Y (u) = EQ
u

[
e−
∫ T
u rsdsθt(T ) · Y (T )

]
, (4.4)

for any u = t, ..., T−1. In the remainder of the chapter, we assume
that the asset 0 is the zero-coupon bond paying an amount of 1
at maturity T . Its price at time t, denoted by B(t, T ), is given by

Y (0)(t) = B(t, T ) = EQ
t

[
e−
∫ T
t rsds

]
, for any t = 0, 1, ..., T−1.

A simple example of a self-financing time−t trading strategy is
the static trading strategy βt consisting of buying one unit of the
zero-coupon bond B(t, T ) at time t and holding it until maturity
T . The value of this strategy at time u is given by

βt(u) · Y (u) = EQ
u

[
e−
∫ T
u rsds

]
, for any u = t+ 1, ..., T.

Definition 30 (t−hedgeable T−claim)
A t−hedgeable T−claim Sh is an element of CT which can be
replicated by a time−t self-financing strategy θt ∈ Θt :

Sh = θt(T ) · Y (T ),

where θt(T ) · Y (T ) is the time−T value of the hedging portfolio
θt.

We introduce the notation HtT for the set of all time−t hedge-
able T−claims. For any time−t hedgeable T -claim Sh, a time−t

2Even though we use the continuous-time notation for interest rates, in
practice the discrete-time version will be used calibrated to a market yield
curve (see for instance MacKay and Wüthrich (2015) and Wüthrich (2016)).
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trading strategy which replicates Sh is called a replicating t−hedge
of Sh.

The time−t price of Sh is given by

θt(t+ 1) · Y (t) = EQ
t [e−

∫ T
t rsdsθt(T ) · Y (T )],

where Q is a generic member of the class of EMM’s and θt is a
replicating t−hedge of Sh.

Notice that HtT is increasing in t. The T−claim

S = Y (1)(t) Y (2)(T ),

is an example of a T−claim which will in general not be an element
of HsT for any s = 0, 1, . . . , t − 1, while S ∈ HsT for any s =
t, t+ 1, . . . , T − 1.

Next, we introduce the notion of t−orthogonal T−claims.

Definition 31 (t−orthogonal T−claim)
A t−orthogonal T−claim S⊥ is an element of CT which is P-
independent of the stochastic process Yt+1 = {Y (u)}u∈{t+1,...,T}
describing the evolution of the traded assets from t+ 1 onwards:

S⊥ ⊥ Yt+1.

Hereafter, we will denote the set of all t−orthogonal T -claims
by OtT . We remark that the set OtT is also increasing in t. An
example of a T−claim which does not belong to the initial set of
orthogonal claims O0

T , but which is an element of OtT is given by

S =
1

t

t∑

i=1

Y (1)(i) 1(x)

where 1(x) is the indicator variable which equals 1 if (x) survives
until time T and 0 otherwise. Hence, in case of survival, the claim
guarantees the average price of asset 1 between time 1 and time
t. Under independence between mortality and the traded assets,
we have that S /∈ OuT , for u = 0, 1, . . . , t − 1, while S ∈ OuT for
u = t, t+ 1, . . . , T .
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4.3 t−valuations

In this section, we define different classes of t−valuations. In
a dynamic multiperiod setting, a t−valuation ρt assigns to each
T−claim a Gt−measurable random variable ρt [S] that represents
the value of the T−claim given the available information at time
t. In Chapter 2 fair valuations of insurance claims in a static one-
period setting were considered. We showed that any fair valuation
can be characterized in terms of a fair hedger. In this section, we
generalize this result in a dynamic setting by showing that any
fair t−valuation can be characterized in terms of a fair t−hedger.

4.3.1 Fair t−valuations

In this subsection, we define the notion of t−valuation. Further-
more, we introduce the notions of actuarial, market-consistent and
fair t−valuations, respectively.

Definition 32 (t−valuation) A t−valuation, t = 0, 1, . . . , T−1,
is a mapping ρt : CT → Ct, attaching a t−claim to any T -claim
S ∈ CT :

S → ρt [S] ,

such that

• ρt is normalized:
ρt [0] = 0.

• ρt is translation invariant:

ρt [S + a] = ρt [S] +B(t, T )a,

for any S ∈ CT and a ∈ Ct payable at time T.

For any T−claim, the value ρt [S] is a t−claim and hence,
seen from the perspective of time 0, it is a random variable. On
the other hand, having arrived at time t, ρt [S] is clearly deter-
ministic. In Pelsser and Stadje (2014), t−valuations are called
Gt−conditional evaluations.

Important subclasses of t−valuations include the class of actu-
arial and market-consistent t−valuations, which are defined here-
after.
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Definition 33 (Actuarial and MC t−valuations)
Consider a t−valuation ρt : CT → Ct.

• ρt is actuarial if any t−orthogonal T -claim is marked-to-
model:

ρt

[
S⊥
]

= B(t, T )πt

[
S⊥
]
, for any S⊥ ∈ OtT , (4.5)

where the t−valuation πt : OtT → Ct is P−law invariant
and P-independent of time−t and future asset prices Yt =
{Y (u)}u∈{t,...,T}.

• ρt is market-consistent (MC) if any t−hedgeable part of any
T−claim is marked-to-market:

ρt

[
S + Sh

]
= ρt[S] + EQ

t

[
e−
∫ T
t rsdsSh

]
, (4.6)

for any S ∈ CT and Sh ∈ HtT .

The mark-to-model condition (4.5) corresponds to the tradi-
tional valuation of orthogonal (i.e. non-equity-linked) claims in
an insurance context. It postulates that any t−orthogonal claim
is valuated by a P−law invariant t−valuation πt (e.g. standard
deviation principle, mean-variance principle,...) multiplied by the
time-t zero-coupon bond price B(t, T ). For instance, in case πt is
the standard deviation principle, we find that

ρt

[
S⊥
]

=
(
EP
t

[
S⊥
]

+ ασPt

[
S⊥
])
B(t, T ),

with σPt
[
S⊥
]

:=
√
V arP [S⊥ | Gt] and α > 0.

Moreover, we make the technical requirement that πt
[
S⊥
]

is P-independent of asset prices at time t and beyond: Yt =
{Y (u)}u∈{t,...,T} for any S⊥ ∈ OtT . Otherwise stated, the actuarial
value of a claim independent of future asset prices is independent
of time−t and future asset prices. This intuitive requirement will
be used in the proof of Theorem 13.

The mark-to-market condition (4.6) extends the notion of cash-
invariance to all t−hedgeable claims by postulating that any t−hed-
geable claim should be valuated at the price of its replicating
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t−hedge. We remark that the mark-to-market condition can also
be expressed as follows:

ρt

[
S + Sh

]
= ρt[S] + θt(t+ 1) · Y (t), (4.7)

for any S ∈ CT and Sh ∈ HtT , with θt a replicating t−hedge of Sh.
Combining these notions leads to the definition of a fair t−valua-

tion.

Definition 34 (Fair t−valuation)
A fair t−valuation is a t−valuation which is both actuarial and
market-consistent.

Hereafter, we provide a simple example of a fair t−valuation
for equity-linked life-insurance contracts.

Example 11 (Fair t−valuation of product claims)
Consider a T−claim S for which we want to determine the fair
valuation at time t. We assume that we can decompose the claim
as follows

S = S⊥ × Sh,
where S⊥ is a t−orthogonal T−claim and Sh is a t−hedgeable
T−claim.
Such product claims often arise in insurance as payoffs of equity-
linked life-insurance contracts. In such payoffs, Sh is typically a
hedgeable claim contingent on the price history of traded assets
such as stock, mutual funds, options or bonds while S⊥ is contin-
gent on the survival or death of a policyholder. For any product
T−claim S, we define the t−valuation

ρt [S] = EP
t

[
S⊥
]
EQ
t

[
e−
∫ T
t rsdsSh

]
,

for any S⊥ ∈ OtT and Sh ∈ HtT .
Hence, the t−valuation ρt appears as a product of two expecta-
tions. The non-equity linked part S⊥ is valuated under the phys-
ical measure P modeling the non-hedgeable risks and the hedge-
able part Sh is valuated under a risk-neutral measure Q modeling
hedgeable risks.
One can easily verify that the t−valuation ρt is actuarial:

ρt

[
S⊥
]

= EP
t

[
S⊥
]
B(t, T ),
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and market-consistent:

ρt

[
S + Sh

]
= ρt[S] + EQ

t

[
e−
∫ T
t rsdsSh

]
.

One can also extend the valuation by introducing a loading on
the valuation of orthogonal claims via an appropriate distorted
probability measure P∗ ∼ P to take into account the uncertainty
in the orthogonal claims, see e.g. Chapter 2.6 in Wüthrich (2016).

4.3.2 Fair t−hedgers

In this section, we introduce the class of t−hedgers, as well as
the subclasses of actuarial, market-consistent and fair t−hedgers.
These notions are generalizations of the time−0 hedgers which
were defined in Chapter 2. In the forthcoming sections of this
chapter, we will use these notions to express our main results.

Definition 35 (t−hedger)
A t−hedger is a function θt : CT → Θt which maps any T−claim
S into a self-financing time−t trading strategy θt,S ∈ Θt such that

• θt is normalized:
θt,0 = 0t,

where 0t is the self-financing time−t trading strategy cor-
responding to the null investment at time t, i.e. 0t(u) =
(0, 0, . . . , 0) for all u = t+ 1, . . . , T .

• θt is translation invariant:

θt,S+a = θt,S + aβt,

for any S ∈ CT and a ∈ Ct payable at time T , where βt is the
static trading strategy which consists in buying one unit of
the zero-coupon bond B(t, T ) and holding it until maturity
T .

The mapping θt : CT → Θt is called a t−hedger, whereas for
any T -claim S, the self-financing trading strategy θt,S is called
a t−hedge for S. The value of the hedge θt,S of S at time u =
t + 1, . . . , T , before rebalancing, is given by θt,S(u) · Y (u), while
after rebalancing, it is θt,S(u+ 1) · Y (u).
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Hereafter, we introduce the subclasses of actuarial, market-
consistent and fair t−hedgers.

Definition 36 (Actuarial and MC t−hedgers)
Consider a t−hedger θt.

• θt is actuarial in case any t−orthogonal T−claim S⊥ is
hedged via an actuarial t−valuation ρt in zero-coupon bonds:

θt,S⊥ =
ρt
[
S⊥
]

B(t, T )
βt, for any S⊥ ∈ OtT . (4.8)

• θt is market-consistent (MC) in case any t−hedgeable part
Sh of any T -claim S is hedged by a replicating hedge:

θt,S+Sh = θt,S + θt,Sh , for any S ∈ CT and any Sh ∈ HtT ,
(4.9)

where θt,Sh is a replicating t−hedge of Sh.

We remark that an actuarial t−hedger θt is defined in terms
of an actuarial t−valuation ρt. Hereafter, we will call ρt the un-
derlying actuarial t−valuation of the actuarial t−hedger θt.

Combining the definitions of actuarial and market-consistent
t−hedgers leads to the definition of fair t−hedgers.

Definition 37 (Fair t−hedger)
A t−hedger is fair in case it is actuarial and market-consistent.

In the remainder of the chapter, we often consider the trading
strategy which consists in investing (at time t) ρt [S] in the zero-
coupon bond B(t, T ), for t = 0, 1, ..., T − 1. It is clear that the
initial investment at time t of this trading strategy is ρt [S] and
its time−T value, denoted by ρ̃t, is given by

ρ̃t [S] =
ρt [S]

B(t, T )
. (4.10)

Hereafter, we provide an example of a fair t−hedger. This will
be used later in the proof of Theorem 12.

Example 12 Fix t ∈ {0, . . . , T − 1} and define the t−hedger θt
as follows:
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1. For any t−orthogonal T−claim S⊥ ∈ OtT , we define the
t−hedger θt by

θt,S⊥ = EP
t

[
S⊥
]
βt.

2. For all other T−claims S /∈ OtT , the t−hedger θt is defined
as the mean-variance hedger:

θt,S = arg min
θ∈Θt

EP
t

[
(S − θt,S(T ) · Y (T ))2

]
. (4.11)

As we assume that the time−T value of any time−t trading
strategy is square-integrable, a solution to the optimization
problem (4.11) exists (see for instance Černỳ and Kallsen
(2009)). It is then easy to verify that θt is well defined and
a fair t−hedger.

4.3.3 Characterization of t−valuations

In the following lemma, we consider properties of a t−hedger µt,S
which is defined as the sum of another t−hedger θt,S and an invest-
ment in zero-coupon bonds of the remaining risk S−θt,S(T )·Y (T ).
The proof of a forthcoming theorem is based on the construction
of such hedgers.

Lemma 4 Consider a t−hedger θt and a t−valuation ρt. Define
the t−hedger µt by

µt,S = θt,S + ρ̃t [S − θt,S(T ) · Y (T )] βt, (4.12)

for any S ∈ CT .

(a) If θt is an actuarial t−hedger and ρt is an actuarial t−valua-
tion, then µt is an actuarial t−hedger with underlying actu-
arial t−valuation ρt.

(b) If θt is a MC t−hedger, then µt is a MC t−hedger and
µt,Sh = θt,Sh for any t−hedgeable T−claim Sh.

(c) If θt is a fair t−hedger and ρt is an actuarial t−valuation,
then µt is a fair t−hedger with underlying actuarial t−valua-
tion ρt.
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Proof: It is a straightforward exercise to verify that µt is a
t−hedger.
(a) Suppose that θt is an actuarial t−hedger with underlying ac-
tuarial t−valuation ψt. Further, suppose that ρt is an actuarial
t−valuation. For any t−orthogonal T−claim S⊥, we have

µt,S⊥ = θt,S⊥ + ρ̃t

[
S⊥ − θt,S⊥(T ) · Y (T )

]
βt

= ψ̃t

[
S⊥
]
βt + ρ̃t

[
S⊥ − ψ̃t

[
S⊥
]]
βt

= ρ̃t

[
S⊥
]
βt,

where in the last step, we used the translation invariance of ρt.
We can conclude that µt is an actuarial t−hedger with underlying
actuarial t−valuation ρt.
(b) Suppose that θt is a MC t−hedger. By definition of µt, we
have that

µt,S+Sh = θt,S+Sh + ρ̃t

[
S + Sh − θt,S+Sh(T ) · Y (T )

]
βt,

for any Sh ∈ HtT . Given that θt is a MC t−hedger, we find

µt,S+Sh = θt,S + θt,Sh + ρ̃t [S − θt,S(T ) · Y (T )] βt

= µt,S + θt,Sh .

We can conclude that µt is a MC t−hedger.
(c) Finally, suppose that θt is a fair t−hedger with underlying ac-
tuarial t−valuation ψt, while ρt is an actuarial t−valuation. From
(a) and (b) it follows immediately that µt is a fair t−hedger with
underlying actuarial t−valuation ρt.

In the following theorem it is shown that any actuarial t−valua-
tion ρt can be represented as the time−t price of an actuarial
t−hedger. Similar properties hold for market-consistent and fair
t−valuations.

Theorem 12 Consider a t−valuation ρt : CT−→ Ct.
(a) ρt is an actuarial t−valuation if and only if there exists an
actuarial t−hedger θat such that

ρt [S] = θat,S(t+ 1) · Y (t), for any S ∈ CT . (4.13)
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(b) ρt is a MC t−valuation if and only if there exists a MC
t−hedger θmt such that

ρt [S] = θmt,S(t+ 1) · Y (t), for any S ∈ CT . (4.14)

(c) ρt is a fair t−valuation if and only if there exists a fair t−hedger

θft such that

ρt [S] = θft,S(t+ 1) · Y (t), for any S ∈ CT . (4.15)

Proof: (a) Let ρt be an actuarial t−valuation. For any S ∈ CT ,
we can write ρt [S] as

ρt [S] = ρ̃t [S]B(t, T )

= θat,S(t+ 1) · Y (t),

with θat,S defined by

θat,S = ρ̃t [S] βt.

Obviously, θat is an actuarial t−hedger.
(a’) Suppose that the t−valuation ρt is defined by (4.13) for some
actuarial t−hedger θat with underlying actuarial t−valuation πt.
For any t−orthogonal T−claim S⊥, we have

ρt

[
S⊥
]

= θat,S⊥(t+ 1) · Y (t) = πt

[
S⊥
]

.

We can conclude that the valuation ρt is an actuarial t−valuation.
(b) Let ρt be a MC t−valuation. Consider a MC t−hedger θt, e.g.
the t−hedger defined in Example 12. For any T−claim S, we find
from (4.6) that

ρt [S] = EQ
t

[
e−
∫ T
t rsdsθt,S(T ) · Y (T )

]
+ ρt [S − θt,S(T ) · Y (T )]

= θt,S(t+ 1) · Y (t) + ρt [S − θt,S(T ) · Y (T )]

= θmt,S(t+ 1) · Y (t),

with

θmt,S = θt,S + ρ̃t [S − θt,S(T ) · Y (T )] βt. (4.16)

From Lemma 4 we know that θm is a MC t−hedger.
(b’) Consider the t−valuation ρt defined by (4.14) for some MC
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t−hedger θmt . For any T−claim S and any t−hedgeable T−claim
Sh, we find that

ρt

[
S + Sh

]
= θmt,S+Sh(t+ 1) · Y (t)

= θmt,S(t+ 1) · Y (t) + θmt,Sh(t+ 1) · Y (t)

= ρt [S] + ρt

[
Sh
]
.

We can conclude that ρt is a MC t−valuation.
(c) Let ρt be a fair t−valuation. Consider a fair t−hedger θt, e.g.
the t−hedger defined in Example 12, with underlying actuarial
t−valuation ψt. From (a) we know that for any T−claim S, ρt [S]
can be expressed as

ρt [S] = θmt,S(t+ 1) · Y (t),

with the MC t−hedger θmt given by (4.16). For any t−orthogonal
T−claim S⊥, we find that

θmt,S⊥ = θt,S⊥ + ρ̃t

[
S⊥ − θmt,S⊥(T ) · Y (T )

]
βt

= ψ̃t

[
S⊥
]
βt + ρ̃t

[
S⊥ − ψ̃t

[
S⊥
]]
βt

= ρ̃t

[
S⊥
]
βt.

As ρt is an actuarial valuation, we can conclude that the t−hedger
θmt is not only market-consistent but also actuarial and hence, a
fair t−hedger.
(c’) Suppose that the t−valuation ρt is defined by (4.15) for some

fair t−hedger θft . From (a) and (b) we can conclude that the
t−valuation ρt is actuarial and market-consistent, which means
that it is fair.

Taking into account (4.4), we have that the relation (4.15) for
a fair t−valuation can be rewritten as follows:

ρt [S] = EQ
t

[
e−
∫ T
t rsdsθft,S(T ) · Y (T )

]
, for any S ∈ CT . (4.17)

The fair valuation at time t of any T−claim can then be expressed
as a conditional expectation of the time−T value of a fair hedge
for S, θft,S , under an equivalent martingale measure Q. Actuarial
considerations are implicitly involved since any fair valuation is an
actuarial valuation, implying actuarial judgement on the valuation
of orthogonal claims.
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4.4 Dynamic valuations

In the previous section, we introduced the concept of t−valuations
which assess a time−t value for any T−claim, taking into account
the available information at time t, for any time t = 0, 1, . . . , T−1.
This approach was static in the sense that we considered the value
of a T−claim at different times t < T , without specifying the inter-
connection between the t−valuations. Bringing the t−valuations
together leads to the concepts of time-consistent and dynamic val-
uations, which are defined hereafter.

4.4.1 Fair dynamic valuations

In the following definition, we introduce the notion of dynamic
valuation. See for instance Acciaio and Penner (2011), Artzner
et al. (2007) or Riedel (2004) for similar notions.

Definition 38 (Dynamic valuation) A dynamic valuation is a
sequence (ρt)

T−1
t=0 where for each t = 0, 1, ..., T−1, ρt is a t−valuation.

After having introduced the concept of dynamic valuation, we
now define actuarial, market-consistent and time-consistent dy-
namic valuations. Notice that a t−valuation ρt is defined for
T−claims S payable at time T . In order to compare t−valuations
at different times, we consider the t−valuation ρ̃t [S] introduced in
(4.10) which corresponds to the value at time T of the investment
of the t−valuation ρt [S] in the zero-coupon bond B(t, T ).

Definition 39 (Actuarial, MC and TC dynamic valuations)

Consider the dynamic valuation (ρt)
T−1
t=0 .

• (ρt)
T−1
t=0 is actuarial in case any t−valuation ρt is actuarial.

• (ρt)
T−1
t=0 is market-consistent (MC) in case any t−valuation

ρt is market-consistent.

• (ρt)
T−1
t=0 is time-consistent (TC) in case all t−valuations in-

volved are connected in the following way:

ρt [S] = ρt [ρ̃t+1 [S]] , (4.18)

for any S ∈ CT and t = 0, 1, ..., T − 2.
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Actuarial and market-consistent dynamic valuations are natu-
ral generalizations of actuarial and market-consistent t−valuations.
Time-consistency is a concept that couples the different static
t−valuations. It means that the same time−t value is assigned
to a T−claim regardless of whether it is calculated in one step
or in two steps backwards in time. Some weaker notions of time-
consistency have been proposed in the literature, see e.g. Roorda
et al. (2005) and Kriele and Wolf (2014). The definition (4.18)
is often named the ”recursiveness” or ”tower property” definition.
In the literature, an alternative definition of time-consistency is
often used: if a claim is preferred to another claim at time t+ 1 in
almost all states of nature, then the same conclusions should be
drawn at time t:

ρt+1 [S1] ≤ ρt+1 [S2] =⇒ ρt [S1] ≤ ρt [S2] , (4.19)

for all S1, S2 ∈ CT and t < T .
Under monotonicity of the dynamic valuation (ρt)

T−1
t=0 , it is well-

known that both notions of time-consistency are equivalent (see for
instance Acciaio and Penner (2011)). Since (4.19) implies mono-
tonicity, the advantage of using the definition (4.18) is that we can
also apply time-consistency to non-monotone dynamic valuations.

Time-consistent valuations have been discussed extensively in
recent years. For the discrete time case, we refer to Cheridito
and Kupper (2011), Acciaio and Penner (2011) and Föllmer and
Schied (2011). For the continuous case, we refer to Frittelli and
Gianin (2004), Delbaen et al. (2010), Pelsser and Stadje (2014)
and Feinstein and Rudloff (2015).

Merging the notions of actuarial, market-consistent and time-
consistent valuations leads to the concept of fair dynamic valua-
tions.

Definition 40 (Fair dynamic valuations) A fair dynamic val-
uation is a dynamic valuation which is actuarial, market-consistent
and time-consistent.

4.4.2 Fair dynamic hedgers

After having defined the class of t−hedgers in the previous section,
we introduce the notion of a dynamic hedger.
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Definition 41 (Dynamic hedger) A dynamic hedger is a se-
quence (θt)

T−1
t=0 where for each t = 0, 1, . . . , T−1, θt is a t−hedger.

Hereafter, we introduce natural definitions of actuarial, market-
consistent and time-consistent dynamic hedgers in accordance with
Definition 39.

Definition 42 (Actuarial, MC and TC dynamic hedgers)
Consider the dynamic hedger (θt)

T−1
t=0 .

• (θt)
T−1
t=0 is actuarial in case any t−hedger θt is actuarial.

• (θt)
T−1
t=0 is market-consistent (MC) in case any t−hedger θt

is market-consistent.

• (θt)
T−1
t=0 is time-consistent (TC) in case all t−hedgers in-

volved are connected in the following way:

θt,S = θt,ρ̃t+1[S], (4.20)

for any S ∈ CT and t = 0, 1, ..., T − 2, where ρt+1 [S] is the
initial investment of θt+1:

ρt+1 [S] = θt+1,S(t+ 2) · Y (t+ 1).

The definition of a time-consistent dynamic hedger should be
compared with the definition of a time-consistent dynamic valu-
ation. It means that the same hedger is assigned to a T−claim
regardless of whether it is hedged in one step (i.e. directly over
T − t periods) or in two steps backwards in time.

Similarly to the concept of fair dynamic valuations, we intro-
duce the concept of fair dynamic hedgers.

Definition 43 (Fair dynamic hedgers) A fair dynamic hedger
is a dynamic hedger which is actuarial, market-consistent and
time-consistent.

4.4.3 Characterization of fair dynamic valuations

In the following theorem we show that a fair dynamic valuation
can be characterized in terms of a fair dynamic hedger.
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Theorem 13 A dynamic valuation (ρt)
T−1
t=0 is fair if and only if

there exists a fair dynamic hedger (µt)
T−1
t=0 such that

ρt [S] = µt,S(t+ 1) · Y (t), for any S ∈ CT . (4.21)

Proof: (a) Suppose that (ρt)
T−1
t=0 is a fair dynamic valuation. From

Theorem 12, we have that for any t = 0, 1, . . . , T − 1, there exists
a fair t−hedger θt such that

ρt [S] = θt,S(t+ 1) · Y (t), for any S ∈ CT . (4.22)

The dynamic hedger (θt)
T−1
t=0 is actuarial and market-consistent

but is a priori not time-consistent. Based on the dynamic hedger
(θt)

T−1
t=0 , we construct a dynamic hedger (µt)

T−1
t=0 which is actuar-

ial, market-consistent and time-consistent. First, we set µT−1 =
θT−1. Obviously, µT−1 is a fair (T − 1)−hedger and

ρT−1 [S] = µT−1,S(T ) · Y (T − 1), for any S ∈ CT .

Second, we define the (T − 2)−hedger µT−2 via

µT−2,S = θT−2,ρ̃T−1[S], for any S ∈ CT .

Let us prove that µT−2 is a fair (T − 2)−hedger.

• Actuarial hedger: for any (T − 2)−orthogonal T−claim S⊥,
we have

µT−2,S⊥ = θT−2,ρ̃T−1[S⊥].

Given that ρT−1 is an actuarial (T−1)−valuation, ρ̃T−1

[
S⊥
]

equals πT−1

[
S⊥
]
, which is by definition a (T−2)−orthogonal

T−claim. Given that θT−2 is actuarial, we have

µT−2,S⊥ = θT−2,πT−1[S⊥]

= πT−2

[
πT−1

[
S⊥
]]
βT−2

= πT−2

[
S⊥
]
βT−2,

where we used the time-consistency of (ρt)
T−1
t=0 .

Hence, µT−2 is an actuarial (T − 2)−hedger.
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• Market-consistent hedger: for any (T−2)−hedgeable T−claim

Sh, we have

µT−2,S+Sh = θT−2,ρ̃T−1[S+Sh]

= θT−2,ρ̃T−1[S]+ρ̃T−1[Sh]

= θT−2,ρ̃T−1[S] + θT−2,Sh

= µT−2,S + θT−2,Sh ,

where we used the fact that any t−hedgeable claim is (t +
1)−hedgeable as well (remark that the inverse is not true)
and the market-consistency of θT−2.
Hence, µT−2 is a market-consistent (T − 2)−hedger.

Moreover, by (4.22), we have

ρT−2 [S] = θT−2,S(T − 1) · Y (T − 2)

= θT−2,ρ̃T−1[S](T − 1) · Y (T − 2) by time-consistency

= µT−2,S(T − 1) · Y (T − 2) by definition of µT−2.

Iteratively, starting from a fair t−hedger θt, we construct the time-
consistent adaptation

µt,S = θt,ρ̃t+1[S], for any S ∈ CT .

Similarly to µT−2, one can verify that µt is a fair t−hedger. More-
over, (µt)

T−1
t=0 is time-consistent by construction and we have

ρt [S] = θt,S(t+ 1) · Y (t)

= θt,ρ̃t+1[S](t+ 1) · Y (t) by time-consistency

= µt,S(t+ 1) · Y (t) by definition of µt,

which ends the proof.
(b) Suppose that there exists a fair dynamic hedger (µt)

T−1
t=0 such

that

ρt [S] = µt,S(t+ 1) · Y (t), for any S ∈ CT . (4.23)

From Theorem 12, we know that any t−valuation ρt is fair. More-
over, we have

ρt [S] = µt,S(t+ 1) · Y (t)

= µt,ρ̃t+1[S](t+ 1) · Y (t) given (µt)
T−1
t=0 is time-consistent

= ρt [ρ̃t+1 [S]] by definition of ρt,
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which ends the proof.

4.5 Fair dynamic valuations: A practical
approach

This section is dedicated to the practical application of the con-
cepts introduced above. In Section 4.5.1, we present a general
procedure to determine the fair dynamic valuation of insurance li-
abilities. The procedure is based on a backward iterations scheme
combining risk minimization methods from mathematical finance
and standard actuarial techniques. In Section 4.5.2, we apply the
procedure to a portfolio of equity-linked life insurance contracts via
a Least Square Monte Carlo (LSMC) implementation.3 We pro-
vide numerical results illustrating the impact of time-consistency
on the fair valuation in Section 4.5.3.

4.5.1 Fair dynamic valuation problem

We study the problem of an insurer who needs to determine a
fair (actuarial, market-consistent and time-consistent) dynamic
valuation for an insurance liability S which matures at time T .
We assume that the financial market consists of a risk-free as-
set Y (0)(t) = ert and a risky asset Y (1)(t), t = 0, 1, ..., T . This
objective is achieved by a backward procedure in which the con-
structed hedger θt is optimal (in the quadratic hedging sense) for
the fair value ρt+1 [S] for any time t = 0, ..., T − 1. Moreover, for
each time step, the residual non-hedged risk is valuated via an
actuarial t−valuation πt, implying that the dynamic valuation is
actuarial as well.

Consider a T−claim S. The optimal hedger at time T − 1 is
defined by

θT−1,S(T )

= arg min
θ∈ΘT−1

EP
T−1

[(
S − θ(0)

T−1,S(T ) · erT − θ(1)
T−1,S(T ) · Y (1)(T )

)2
]

3We remark that a similar approach was used to determine time-consistent
valuations by a two-step operator. We refer to Ghalehjooghi and Pelsser (2017)
and Pelsser and Ghalehjooghi (2016)
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Hence, the hedging strategy is determined at time T −1 such that
the value of the hedger at time T is as close as possible to S in
the quadratic hedging sense. Once the hedging strategy is set up,
we value the non-hedged risk via an actuarial (T − 1)−valuation
πT−1. The fair value of S at time T −1 is then defined as the sum
of the financial value of the optimal hedge and the actuarial value
of the remaining risk:

ρT−1 [S] = θT−1,S(T ) · Y (T − 1) + πT−1 [S − θT−1,S(T ) · Y (T )] .

Iteratively, the optimal hedge at time t for ρt+1 [S] is determined
by

θt,S(t+ 1)

= arg min
θ∈Θt

EP
t

[(
ρt+1 [S]− θ(0)

t,S(t+ 1) · er(t+1) − θ(1)
t,S(t+ 1) · Y (1)(t+ 1)

)2
]

After some direct derivations, we find that

θ
(1)
t,S(t+ 1) =

CovPt
[
ρt+1 [S] , Y (1)(t+ 1)

]

V arPt
[
Y (1)(t+ 1)

] , (4.24)

θ
(0)
t,S(t+ 1) =

(
EP
t [ρt+1 [S]]− θ(1)

t,S(t+ 1) · EP
t

[
Y (1)(t+ 1)

])
· e−r(t+1).

(4.25)

Then, the fair value at time t is obtained via

ρt [S] = θt,S(t+ 1) · Y (t) + πt [ρt+1 [S]− θt,S(t+ 1) · Y (t+ 1)] ,

with πt an actuarial t−valuation.
The procedure is quite intuitive: for each time period, an op-

timal hedge is set up by quadratic hedging and the remaining risk
is valuated via an actuarial valuation, combining actuarial judge-
ment and market-consistency. Moreover, the scheme is iterated
backward in time to make it time-consistent. Since the hedger θt
is fair, by Theorem 13, ρt is a fair dynamic valuation.

4.5.2 Application to a portfolio of equity-linked life-
insurance contracts

The backward recursive scheme presented above is similar to the
one solving the local quadratic hedging problem and can be imple-
mented by dynamic programming. Since the optimal hedger is a
function of conditional expectations, a popular technique consists
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of constructing a Markov grid with the use of a multinomial tree
model (see e.g. Černỳ (2004), Coleman et al. (2006)). However,
in order to decrease the calculation volume, we follow a LSMC
approach.4 This regression-based method was proposed by Car-
riere (1996) and Longstaff and Schwartz (2001) for the valuation of
American-type options. The key idea is to regress the conditional
expectations on the cross-sectional information of the underlying
risk drivers (in our case, mortality and equity risks). The LSMC
technique will be used in order to determine the dynamic hedger
in the expressions (4.24)-(4.25).

For the remainder of this section, we assume that the insurance
liability which matures at time T has the following form

S = N(T )×max
(
Y (1)(T ),K

)
, (4.26)

with N(t) a mortality process, Y (1)(t) a risky asset process and K
is a fixed guarantee level.

For simplicity of illustration5, we assume that the stock follows
a geometric Brownian motion:

dY (1)(t) = Y (1)(t) (µdt+ σdW1(t))

with parameters µ, σ > 0. The conditional expectation and vari-
ance are then given by

EP
t

[
Y (1)(t+ 1)

]
= Y (1)(t)eµ+σ2

2 , (4.27)

V arPt

[
Y (1)(t+ 1)

]
=
(
Y (1)(t)

)2
e2µ+σ2

(
eσ

2 − 1
)
. (4.28)

We assume that the mortality process N(t) counts the number
of survivals among an initial population of lx policyholders of age
x. The mortality intensity is assumed to be stochastic and follows
the dynamics under P given by

dλx(t) = cλx(t)dt+ ξdW2(t),

4The LSMC approach is used to approximate conditional expectations that
are needed to determine the optimal hedging strategy in (4.24) and (4.25).

5The presented approach can be easily adapted to other stock dynamics,
e.g. stochastic volatility or Lévy models.
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with c, ξ > 0 and W2(t) a standard Brownian motion, independent
of W1(t). The survival function is then defined by

Sx(t) := P (Tx > t) = exp

(
−
∫ x+t

x
λx(s)ds

)
,

where Tx is the remaining lifetime of an individual who is aged x
at time 0.

Moreover, deaths of individuals are assumed to be independent
events conditional on knowing population mortality (see Milevsky
et al. (2006) for similar assumptions). Further, if we denote D(t+
1) the number of deaths during year t + 1, the dynamics of the
number of active contracts can be described as a nested bino-
mial process as follows: N(t + 1) = N(t) − D(t + 1) with D(t +
1)|N(t), qx+t ∼ Bin(N(t), qx+t). Here, qx+t represents the one-
year death probability

qx+t := P (Tx ≤ t+ 1|Tx > t) = 1−Sx(t+ 1)

Sx(t)
, for t = 0, . . . , T−1.

Knowing the dynamics of N(t) and Y (1)(t), one can simulate n sce-
narios for the mortality and the equity risk factors for t = 1, . . . , T .
Finally, the conditional expectations at time t are regressed over
the risk drivers at time t via a second-order6 least-squares regres-
sion:

EP
t [ρt+1 [S]]

≈ β0 + β1N(t)Y (1)(t) + β2

(
N(t)Y (1)(t)

)2
,

EP
t

[
ρt+1 [S]Y (1)(t+ 1)

]

≈ β0 + β1N(t)
(
Y (1)(t)

)2
+ β2

(
N(t)

(
Y (1)(t)

)2
)2

.

For the one-year actuarial t−valuation7, we consider a standard

6The choice of type and number of basis functions was based on an equi-
librium between bias and complexity and the payoff structure in (4.26). For a
discussion of the basis functions and its implications on robustness and conver-
gence, we refer to Areal et al. (2008), Moreno and Navas (2003) and Stentoft
(2012).

7We remark that one can also consider an actuarial valuation which depends
on the maturity T and the number of time steps (for instance, a Value-at-Risk
principle for which the level of confidence decreases with the number of steps,
see for instance Devolder and Lebègue (2016)).
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deviation principle

πt [S] = e−r
[
EP
t [S] + ασPt [S]

]
,

with σPt [S] :=
√
V arPt [S] and α > 0, which is also approximated

via the LSMC approach.

4.5.3 Numerical analysis

In this section, we provide a numerical analysis for the fair dy-
namic valuation of the insurance liability S introduced above.
Our numerical results are obtained by generating 50000 sample
paths for N(t) and Y (1)(t), for t = 1, . . . , T . The benchmark
parameters for the financial market are r = 0.01, µ = 0.02,
σ = 0.1, K = 1 and Y (1)(0) = 1. The mortality parameters
(λx(0) = 0.0087, c = 0.0750, ξ = 0.000597) follow from Luciano
et al. (2017) and correspond to UK male individuals who are aged
55 at time 0. We assume that there are lx = 1000 initial contracts
at time 0 with a maturity of T = 10 years.

4.5.3.1 The effect of a time-consistent and actuarial dy-
namic valuation

First, we assess the effect of valuating the non-hedgeable risk in
each step of our dynamic valuation. To do so, we compare two
situations:

• Situation 1: We determine the optimal hedger in each step
by quadratic hedging without adding an actuarial valuation
for the remaining risk. In this case, the dynamic valuation
is market-consistent and time-consistent but not actuarial in
the sense that there is no risk margin for the mortality risk.
Indeed, under this approach, one can prove that

ρt [N(T )] = EP
t [N(T )] · e−r(T−t).

• Situation 2: We determine the optimal hedger in each step
as explained above by valuating the remaining risk through
a dynamic standard deviation principle

πt [S] = e−r
[
EP
t [S] + ασPt [S]

]
,
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with α = 0.15. In that case, the dynamic valuation is
market-consistent, time-consistent and actuarial as well.
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Figure 4.1: Expected dynamic valuation for the life-insurance
portfolio with and without actuarial valuation for the non-
hedgeable risk.

Figure 4.1 compares the dynamic valuations in situations 1 and
2 through time. Since ρt [S] is random from the view point of time
0, we consider the evolution of the expected dynamic valuation
EP [ρt [S]].

In situation 1, we observe that the dynamic valuation is steadily
increasing over time to reach the expected payoff at maturity. This
was expected since it is market-consistent, the dynamic valuation
follows the trend of the risky asset. We remark that given there is
no risk margin for the non-hedgeable risk (in particular the mor-
tality risk), the insurer will suffer losses in case policyholders live
longer than expected.

On the other hand, in situation 2, we observe a slightly decreas-
ing trend of the dynamic valuation. This can be explained by two
adverse effects: while the upward trend of the stock increases the
dynamic valuation through time, the value of the non-hedgeable
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risk decreases over time (a shorter time horizon reduces the un-
certainty). From Figure 4.1, we observe that this latter effect
decreases at a higher rate than the increase of the former effect.

4.5.3.2 The effect of a static versus dynamic actuarial
valuation for different maturities

Now, we take another perspective: instead of considering the evo-
lution of the fair valuation until a fixed maturity, we consider
the fair valuation at time 0 for different maturities. Moreover,
compared to the previous case, we add an intermediate situation
in which the non-hedgeable risk until maturity is valuated via a
static actuarial valuation. The three situations can be summarized
as follows:

• Situation 1: We follow the situation 1 above, i.e. the opti-
mal hedger in each step is determined by quadratic hedging
without adding an actuarial valuation for the remaining risk.
Hence, there is no risk margin for the non-hedgeable risk.

• Situation 2: We introduce an intermediate situation in which
we follow the situation 1 but add a static risk margin at time
0 for the non-hedgeable risk

RM [S] =
T−1∑

t=0

π [ρt+1 [S]− θt,S(t+ 1) · Y (t+ 1)] (4.29)

with π is a static standard deviation principle.

• Situation 3: We consider the fair (actuarial, MC and TC)
valuation in which the non-hedgeable risk is valuated via a
dynamic standard deviation principle. This corresponds to
the situation 2 in Section 4.5.3.1.

Figure 4.2 compares the three situations for different maturi-
ties T = 1, ..., 15 years. In situation 1, we observe that the valua-
tion decreases with the maturity increase. This follows from two
adverse effects: the longer the maturity, the fewer the number of
survivals N(T ). But at the same time, the longer the maturity,
the higher the financial guarantee max

(
Y (1)(T ),K

)
. Figure 4.2
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Figure 4.2: Fair valuation at time 0 with a static versus a dynamic
actuarial valuation for the non-hedgeable risk.

shows that the mortality effect is stronger that the effect of the
financial guarantee.

Not surprisingly, the fair valuation in situations 2 and 3 are
higher than the pure market-consistent valuation because of the
inclusion of a risk margin for the non-hedgeable risk. Moreover,
the fair valuation with dynamic actuarial valuation dominates the
one with static actuarial valuation. This difference is due to the
iterating effect of the time-consistent valuation. While in situa-
tion 2, the one-year remaining risks are added up (see the relation
(4.29)), the time-consistent valuation has a multiplicative effect
since ρt [S] contains all non-hedgeable risks from time t until ma-
turity T .

Remark 2 Ghalehjooghi and Pelsser (2017) considered the im-
plementation of time-consistent valuations via the two-step val-
uation of Pelsser and Stadje (2014). They compared the time-
consistent valuations with the standard best-estimate and EIOPA
valuations. The authors found, as in Figure 4.2, that the time-
consistent valuations lead to higher prices due to the iterative ef-
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fect of time-consistency. We also refer to Pelsser and Ghalehjooghi
(2016) and Ghalehjooghi et al. (2016) for the application of the
two-step operators to pension liabilities.

4.5.3.3 The effect of dependence between financial and
actuarial risks

Finally, we study the impact of a dependence structure between
mortality and equity risks on the fair dynamic valuation of the
insurance liability S. We assume that under P the dynamics of
the stock process and the population force of mortality are given
by

dY (1)(t) = Y (1)(t) (µdt+ σdW1(t)) (4.30)

dλx(t) = cλx(t)dt+ ξdW2(t), (4.31)

with c, ξ, µ and σ are positive constants, and W1(t) = ρW2(t) +√
1− ρ2Z(t). Here, W2(t) and Z(t) are independent standard

Brownian motions.
We consider three levels of correlation, namely ρ = {−1, 0, 1}.

The case ρ = 0 corresponds to the independence case of our pre-
vious analysis while the extreme cases ρ = 1 and ρ = −1 repre-
sents the comonotonic (respectively countermonotonic) situation
in which stock and force of mortality are driven by the same ran-
dom source in the same direction (respectively in the opposite
direction). Intuitively, given the payoff

S = N(T )×max
(
Y (1)(T ),K

)
,

we could expect that if N(T ) and Y (1)(T ) move in the same di-
rection, this is synonymous with a better hedging and hence a
reduction of the non-hedgeable risk.

Figure 4.3 represents the expected value for the non-hedgeable
risk until maturity, computed as the difference between the time-
consistent valuation with and without inclusion of an actuarial
valuation for the non-hedgeable risk. The figure confirms our in-
tuition: if the number of survivals and the stock are moving in
the same direction (i.e. force of mortality and stock are mov-
ing in the opposite direction), the non-hedgeable risk is reduced.
Moreover, as expected, the non-hedgeable risk decreases when we
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Figure 4.3: Expected value for the non-hedgeable risk under dif-
ferent dependence levels ρ = {−1, 0, 1}.

come closer to maturity. We remark that even in extreme cases,
the non-hedgeable risk is not null given that the financial guaran-
tee max

(
Y (1)(T ),K

)
and the number of survivals N(T ) are not

completely hedgeable.

4.6 Concluding remarks

The determination of the fair valuation for insurance liabilities,
which are often a combination of hedgeable and unhedgeable risks,
has become a challenging task. Information about prices of traded
assets provided by the financial market should be combined with
information about mortality experience to provide a reliable market-
consistent and actuarial valuation. Moreover, for the determina-
tion of future solvency capitals, the fair valuations have to be
determined at future points in time in a consistent way, leading to
time-consistent valuations.

In this chapter, we have studied the fair valuation of insurance
liabilities in a dynamic discrete-time setting. We have proposed
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a new framework to merge actuarial, market-consistent and time-
consistent considerations in a set of so-called fair dynamic valu-
ations, extending the framework of Chapters 2 and 3. We have
provided a complete hedging characterization in Theorem 13 and
illustrated how these fair dynamic valuations can be implemented
through a backward iterations scheme combining risk minimiza-
tion techniques with standard actuarial principles.
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Chapter 5

Two-step financial and
actuarial valuations:
Axiomatic
characterization and
applications

This chapter is based on
Barigou, K., Linders, D & Yang F. (2019). Two-step financial and
actuarial valuations: Axiomatic characterization and applications.
Working paper.

5.1 Introduction

Insurance liabilities depend in most cases on financial (e.g. interest
rate risk, equity risk, etc) as well as non-financial risk (e.g. mor-
tality risk). Pricing such payoffs involves combining standard ac-
tuarial valuation techniques performed under P for actuarial risks
with risk-neutral valuation under Q for financial risks.

In an insurance context, in which risks are partially diversifi-
able and traded, building a valuation framework which combines
actuarial and financial approaches is primordial. In the litera-
ture, different authors proposed such “hybrid” approaches. For

115
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instance, Pelsser and Stadje (2014) proposed a “two-step market
valuation” which extends standard actuarial principles by condi-
tioning on the financial information as we detailed in Chapter 2.
Moreover, in the previous chapters, we proposed a new framework
for the fair valuation of insurance liabilities in discrete time: we
introduced the notion of a “fair valuation”, which we defined as
a valuation which is both market-consistent (mark-to-market for
any hedgeable part of a claim) and actuarial (mark-to-model for
any claim that is independent of financial market evolutions) and
studied their properties. As it was pointed in Albrecher et al.
(2018), these valuation frameworks end up with a two-step ap-
proach, where an actuarial valuation is applied after conditioning
on the financial component.

In this chapter, we introduce two broad classes of valuations:
two-step financial valuations that are market-consistent and two-
step actuarial valuations that are actuarial-consistent. We provide
a complete axiomatic characterization for the two-step valuations
based on coherent valuations. The two-step valuations are gen-
eral in the sense that they do not impose linearity constraints
on the actuarial and financial valuations. Therefore, they allow
to account for the diversification of actuarial risks and/or the in-
completeness of the financial market (e.g. non-linear pricing with
bid-ask prices).

While the two-step financial valuation is an extension of the
two-step market valuation of Pelsser and Stadje (2014), the nov-
elty of this paper is to study a two-step actuarial valuation which
consists of reversing the valuation order: applying a financial val-
uation after conditioning on the actuarial component. We show
that the two-step actuarial valuation can be decomposed into a
best estimate (expected value) plus a risk margin to cover the un-
certainty in the actuarial risks. The procedure will be illustrated
on a portfolio of life insurance contracts with dependent financial
and actuarial risks.

The rest of the chapter is structured as follows. In Section 5.2,
we define the notions of two-step financial and actuarial valuations.
In particular, we provide an axiomatic characterization of two-step
valuations. Moreover, we investigate the notions of market- and
actuarial-consistency and discuss if it is always possible to combine
both notions. Section 5.3 presents a detailed numerical application
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of the two-step actuarial valuation on a portfolio of equity-linked
contracts. Section 5.4 concludes the chapter.

5.2 Two-step valuations

All random variables introduced hereafter are defined on the fil-
tered probability space (Ω,F ,F,P). Equalities and inequalities
between r.v.’s have to be understood in the P-almost sure sense.
The space of square integrable random variables is denoted by
L2(P,F) and all risks (often called claims) are represented by ran-
dom variables S ∈ L2(P,F). The flow of information provided by
the financial risks (stock prices, bond prices, etc.) is represented

by the filtration F(1) =
{
F (1)
t

}
t∈[0,T ]

with F (1)
T = F (1) and the flow

of information provided by the actuarial risks (mortality intensity,

death and survival of policyholders, etc.) by F(2) =
{
F (2)
t

}
t∈[0,T ]

with F (2)
T = F (2). The general filtration F is then defined as

the minimal σ-algebra containing all events of F(1) and F(2), i.e.
F = σ

(
F(1) ∪ F(2)

)
. An overview of the different filtrations is de-

picted in Figure 5.1.
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Figure 5.1: Overview of the different filtrations and valuations
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We remark that the two filtrations are not disjoint for two main
reasons:

• We allow for a general model with dependent financial and
actuarial risks (e.g. a stock price and a force of mortality
which can possibly be dependent). Then, by construction,
both financial and actuarial filtrations are not independent.

• The payoffs of some traded assets can be mortality-linked
(e.g. a longevity bond related to the longevity development
of a particular population).

As far as the valuation is concerned, we assume there is no
ambiguity on the valuation to use for pure financial or actuarial
risks. For financial risks, we apply a financial valuation π(1) based
on market prices while for actuarial risks, the valuation is deter-
mined based on historical information with an actuarial valuation
π(2). The valuation issue comes from the observation that most
insurance liabilities are a combination of financial and actuarial
risks (i.e. elements in the ellipse in Figure 5.1). Therefore, dif-
ferent valuation frameworks can be considered depending on how
financial and actuarial valuations are merged together.

In this section, we start by defining the family of linear and
coherent valuations and the class of financial and actuarial val-
uations. In Section 5.2.2, we define a broad class of market-
consistent valuations and two-step financial valuations inspired
from Pelsser and Stadje (2014). In Section 5.2.3, we introduce
a class of actuarial-consistent valuations and propose a new valu-
ation framework, called the two-step actuarial valuation. We end
this section by investigating whether it is always feasible to define
a valuation that is market- and actuarial-consistent.

5.2.1 Valuations

5.2.1.1 Linear and coherent valuations

A contingent claim is a random liability that has to be paid at
the future time T . Formally, a contingent claim is modeled by the
random variable S which is FT -measurable and which is defined on
the probability space (Ω,F,P). In what follows we are interested
in the valuation of contingent claims.



5.2. Two-step valuations 119

Definition 44 (Valuation) A valuation is a mapping Π : L2(P,F)
→ R satisfying the following properties:

• Normalization: Π[0] = 0.

• Translation-invariance: For any S ∈ L2(P,F) and a ∈ R,
Π[S + a] = Π[S] + a.

We start by proceeding as in Buhlmann et al. (1992), Bühlmann
(2000) and Wüthrich (2016) via the use of a linear, positive and
continuous valuation (functional) on the set of contingent claims
S ∈ L2(P,F).

Definition 45 (Linear valuation) A mapping Π : L2(P,F) →
R is a linear valuation if the following axioms hold:

• Linearity: For all S1, S2 ∈ L2(P,F) and a, b ∈ R we have

Π[aS1 + bS2] = aΠ[S1] + bΠ[S2].

• Positivity: For any S ∈ L2(P,F) with S ≥ 0 we have Π[S] >
0.

• Continuity: For any sequence (Sk)k ⊂ L2(P,F) with (Sk)k →
S in L2, we have Π[Sk]→ Π[S] in R as k →∞.

• Translation-invariance: For any S ∈ L2(P,F) and a ∈ R,
Π[S + a] = Π[S] + a.

We remark that in the positivity axiom, S ≥ 0 means that
S ≥ 0 a.s. and S > 0 with positive probability. The valuation Π
is a mapping which assigns to any claim S ∈ L2(P,F) a monetary
value Π[S] which can be interpreted as the value of the claim at
time 0.

Based on the Riesz’ representation theorem1, we have the fol-
lowing result.

Theorem 14 For any linear valuation Π, there exists a ϕ ∈ L2(P,F)
such that

Π[S] = E [ϕS] . (5.1)

Moreover, ϕ is unique and ϕ > 0.

1Let Π be a linear continuous functional on a Hilbert space H. Then there
exists a unique y ∈ H such that Π[S] = 〈y, S〉 ∀S ∈ H (see e.g. Rudin (1987)).
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Proof: From the classical Riesz’ representation theorem, for ev-
ery linear and continuous functional, there exists a unique ϕ ∈
L2(P,F) such that the relation (5.1) holds. The property ϕ > 0 a.s.
follows from the positivity of Π.

Since the linear case is too restrictive in an actuarial context,
we also introduce the class of coherent valuations.

Definition 46 (Coherent valuation) A mapping Π : L2(P,F)
→ R is a coherent valuation if the following axioms hold:

• Monotonicity: For all S1, S2 ∈ L2(P,F) with S1 ≤ S2, Π[S1] ≤
Π[S2].

• Positive homogeneity: For any S ∈ L2(P,F) and a ∈ R+,
Π[aS] = aΠ[S].

• Subadditivity: For all S1, S2 ∈ L2(P,F), Π[S1+S2] ≤ Π[S1]+
Π[S2].

• Translation-invariance: For any S ∈ L2(P,F) and a ∈ R,
Π[S + a] = Π[S] + a.

Coherent valuations can always be represented as upper ex-
pectations over a set of other probability measures P̃ than the

real-world measure P such that the density function ϕ = dP̃
dP is

well-defined. Such density functions form the set

P = {ϕ ∈ L2(P,F) | ϕ ≥ 0,EP [ϕ] = 1}.

Theorem 15 (Dual representation of coherent valuations)
Π is a coherent valuation if and only if

Π[S] = sup
ϕ∈Q

E [ϕS] ,

where Q is a unique, non-empty, closed convex subset of P.

A coherent valuation can then be understood as a worst-case
expectation with respect to some class of probability measures.
This can be motivated by the desire for robustness: the valuator
does not only want to rely on a single measure P for the occurrence
of future events but prefers to test a set of plausible measures and
value with the worst-case scenario. We also note that the set of
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linear valuations is a subset of the set of coherent valuations. In
particular, Theorem 14 can be seen as a particular case of Theorem
15. The proof of Theorem 15 can be found in Artzner et al. (1999)
for Ω finite and in Delbaen (2002) for general probability spaces.
The special case of L2 is proven in Rockafellar et al. (2006).

In the following subsections, we will consider two important
types of claims, namely financial and actuarial claims, and their
respective valuations.

5.2.1.2 Financial Valuation

The financial probability space is denoted by
(
Ω,F (1),F(1),P

)
. We

assume there are n financial assets Y = (Y1, . . . , Yn) in the finan-

cial market generating the financial filtration F(1) =
{
F (1)
t

}
t∈[0,T ]

with F (1)
T = F (1). The price of asset i at time t is denoted by Yi(t).

Note that we do not assume that all assets can be bought and sold
at a unique price Yi(t) at time t. There is a risk-free bank account
and we assume the risk-free rate r to be deterministic and con-
stant.2 Examples of financial assets are: stocks, options, futures,
government and mortality bonds.

A financial claim is a F (1)
T -measurable random variable defined

on the financial probability space. Otherwise stated, a financial
claim only depends on Y and its realization is completely known
given the realization of the financial assets.

We assume that a valuation principle π(1) is available to price
financial claims. The choice of the financial valuation principle π(1)

depends on the additional assumption we make about the financial
market. Assuming that markets are complete corresponds with
assuming that any financial claim can be replicated. The law of
one price implies that market participants can buy and sell an
asset for the same price. Below, we consider how to determine the
financial valuation for different market situations.

1. Completeness and the law of one price. Assume that all fi-
nancial assets are traded in the market and, moreover, that
the payoff of any financial claim S can be replicated. One
can prove that completeness of the market and the law of

2For simplicity of presentation but our main results can be easily extended
to stochastic interest rates.
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one price is equivalent with the existence of an equivalent
martingale measure (EMM) Q satisfying:

Yi(s) = e−r(t−s)EQ
[
Yi(t)| F (1)

s

]
, for i = 1, 2, . . . , n,

where t > s. In this complete financial market where one
can buy and sell any asset at a unique price, the financial
valuation principle is given by:

π(1)[S] = e−rTEQ[S].

Any other price would lead to an arbitrage. The financial
valuation is in this situation a linear valuation principle.

2. Incompleteness and the law of one price. Assume that not all
assets in the financial market are traded, making the finan-
cial market incomplete. In terms of EMMs, this incomplete-
ness implies that there is an infinite number of choices for the
equivalent martingale measure Q. Several techniques were
proposed in the literature to “complete” the financial market
by choosing the EMM which is the most “appropriate” one.
Popular approaches include the minimal entropy martingale
measure (Frittelli (2000) and Dhaene et al. (2015)), the min-
imal martingale measure (Föllmer and Schweizer (1991)) or
the risk-neutral Esscher measure (Gerber and Shiu (1994)).

Another approach is via the theory of utility indifference
pricing. Under this approach, the value of the claim is set
equal to the amount which makes the agent indifferent, in
terms of expected utility, between holding the claim or not.
In Musiela and Zariphopoulou (2004), the authors consid-
ered the indifference price under an exponential utility func-
tion with one traded and one non-traded asset. In this in-
complete financial market, a financial claim consists of a
hedgeable and an unhedgeable part. The filtration F (11)

captures the hedgeable information whereas F (12) captures
the unhedgeable information. The financial filtration F (1) is
then given by σ

(
F(11) ∪ F(12)

)
. Musiela and Zariphopoulou

(2004) showed that the indifference price is given by a two-
step approach:

π(1)[S] = EQ
[

1

γ
logEP

[
eγS | F(11)

]]
.
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We note that the indifference price is not coherent because
of its lack of positive homogeneity.

3. Incompleteness and bid-ask prices. In classical finance, mar-
kets are usually modelled as a counterparty for market par-
ticipants. It is assumed that markets can accept any amount
and direction of the trade (buy or sell) at the going market
price. However, due to market imperfection, there is in prac-
tice a difference between the price the market is willing to
buy (bid price) and the price the market is willing to sell (ask
price). This difference, called the bid-ask spread, creates a
two-price economy. In particular, the value π(1)[S] which
corresponds with the price the market is willing to pay to
take over the financial claim S will typically be higher than
the risk-neutral price. Indeed, the asymmetry in the market
allows that market to take a more prudent approach when
determining the price π(1)[S]. Instead of using a single risk-
neutral probability measure, a set of “stress-test measures”
is selected from the set of martingale measures and the price
is determined as the supremum of the expectations w.r.t.
the stress-test measures:

π(1)[S] = e−rT sup
Q∈Q

EQ [S] .

Due to the duality theorem (Theorem 15), this price can be
expressed as follows:

π(1)[S] = ρg [S] ,

where ρg is a distortion risk measure and g is an appropri-
ately chosen concave distortion function. For more details
on conic finance, we refer to Madan and Cherny (2010) and
Madan and Schoutens (2016). We remark that in this case,
the valuation of financial claims is non-linear.

In the remainder of the chapter, we consider coherent financial
valuations to account for bid-ask spread and market incomplete-
ness. Hereafter, we provide a simple example of the valuation of
a call option with the law of one-price. This example will be used
later in Example 17 to illustrate our two-step valuations.
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Example 13 (a) Consider a financial market with a traded stock
with spot price Y (0) = 100 and risk-free rate r = 0. The random
price of the stock at time T = 1 is denoted by Y . The random
variable Y is defined on the financial probability space

(
Ω,F (1),P

)
.

The set Ω of possible scenarios is given by

Ω = {ω1, ω2} .

We assume that the future stock price can go up or down:

Y [ω1] = 50 and Y [ω2] = 200.

We consider a call option with strike 100 and maturity T = 1.
The financial claim S(1) is the payoff of this call option. Then S(1)

is F (1)-measurable and given by

S(1) [ω] = (Y [ω]−K)+ =

{
0, if ω = ω1,

100, if ω = ω2.

The financial market in this example is arbitrage-free and com-
plete. Moreover, we assume that the stock can be bought and
sold at the spot price (hence, the law of one price applies here).
As the no-arbitrage condition is satisfied, the financial valuation
principle π(1) should be given by the discounted risk-neutral ex-
pectation:

π(1)
[
S(1)

]
= e−rEQ

[
S(1)

]
.

It is straightforward to prove that the risk-neutral probability mea-
sure Q is given by

Q[ω] =

{
1− q, if ω = ω1,
q, if ω = ω2,

where q = 1/3. Therefore, the value of the call option is

π(1)
[
S(1)

]
=

2

3
× 0 +

1

3
× 100 =

100

3
. (5.2)

This is the unique no-arbitrage price for S(1). Any different price
would lead to an arbitrage, since one can buy and sell any quantity
at the spot price.
(b) Let us now assume the future stock price can go up, down or
stay at the same price:

Y [ω1] = 50, Y [ω2] = 100 and Y [ω3] = 200.
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In this case, the market becomes incomplete and there is a range
of risk-neutral prices which is given by

Q[ω] =





2
3(1− q), if ω = ω1,

q, if ω = ω2,
1
3(1− q), if ω = ω3,

where 0 < q < 1. Therefore, the call price is given by the interval:

0 < π(1)
[
S(1)

]
=

100

3
(1− q) < 100

3
.

The valuator should then make a subjective choice on the Q-
probability to be chosen.

5.2.1.3 Actuarial valuation

The actuarial probability space is denoted by
(
Ω,F (2),F(2),P

)
.

We assume there are n actuarial risks X = (X1, . . . , Xn) generat-

ing the actuarial filtration F(2) =
{
F (2)
t

}
t∈[0,T ]

with F (2)
T = F (2).

Examples of actuarial risks are: death, survival, lapse, medical
expenses.

An actuarial claim is a F (2)
T -measurable random variable de-

fined on the actuarial probability space. Equivalently stated, an
actuarial claim only depends on X and its realization is completely
known given the realization of the actuarial risks X.

We assume that a valuation principle π(2) is chosen to price ac-
tuarial claims. The actuarial valuation principle π(2) is based on
the idea of pooling and diversification. The value of a completely
diversifiable portfolio has to correspond with its expectation under
the physical measure P. However, there is always an amount of
residual actuarial risk present because one can never fully diver-
sify away all the risk. Moreover, there are also systematic actuarial
risks (e.g. longevity risk) which cannot be diversified away. Below,
we briefly discuss the most important actuarial valuation princi-
ples.

1. Linear valuation:
π(2)[S] = EP̃ [S] .

The risk margin is modelled by an appropriate change of
measure from P to P̃. In terms of life tables, the change
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of measure can be interpreted as a switch from the second
order life table (best-estimate survival or death probabilities)
to a first order life table (survival or death probabilities that
are chosen with a safety margin). For more details, see for
instance Wüthrich (2016) and Laurent et al. (2016).

2. Standard deviation principle:

π(2)[S] = EP [S] + β

√
VarP [S], (5.3)

with β ≥ 0.
In this case, the loading equals β times the standard devi-
ation. It is well-known that β > 0 is required in order to
avoid getting ruin with probability 1 (see e.g. Kaas et al.
(2008)).

3. Coherent valuation:

π(2)[S] = ρ [S] ,

where ρ is a coherent valuation. We remark that the coherent
valuation can also be expressed as

π(2)[S] = sup
P∈Q

EP [S] .

Therefore, model risk can be taken into account by consider-
ing a family of different distributions and the actuarial claim
is valuated with the most conservative one.

Hereafter, we provide an example of the valuation of a pure en-
dowment liability by a standard deviation principle; example that
will be used in Example 17 to illustrate the two-step valuations.

Example 14 (Standard deviation principle) Consider a pure
endowment contract for a life (x), which pays 100 in case the policy
holder is alive at time T = 1 and 0 otherwise. The actuarial risk
of this contract is the survival of the policyholder in the interval
[0, 1]. To model this risk, we first define the actuarial probability
space

(
Ω,F (2),P

)
. We assume that

Ω = {ω1, ω2} ,
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and

P[ω] =

{
1− p, if ω = ω1,
p, if ω = ω2,

with p = 0.95. The random variable I is defined on the actuarial
probability space:

I [ω1] = 0 and I [ω2] = 1.

The random variable I indicates if the policy holder survives (I =
1) or dies (I = 0) in the time interval [0, 1]. The actuarial contin-
gent claim S(2) corresponds with the payout of the pure endow-
ment, hence:

S(2) = 100× I.
If π(2) is chosen to be the standard deviation principle (5.3), we
find that

π(2)
[
S(2)

]
= 100×

(
p+ β

√
p(1− p)

)

= 95 + 0.218β.

5.2.2 Market-consistency and two-step financial val-
uations

A hybrid claim is a contingent claim that is neither completely
actuarial nor completely financial. Instead, a hybrid claim S is a
FT -measurable random variable which is partly actuarial and fi-
nancial. We assume that a financial valuation principle π(1) and an
actuarial valuation principle π(2) are given. We search for valua-
tions Π that combine the financial valuation π(1) and the actuarial
valuation π(2) and study their properties. A first important class
of valuations are the market-consistent valuations.

Definition 47 (Strong market-consistency) A valuation Π is
called strong market-consistent (strong MCV) if for any financial
claim S(1) the following holds:

Π
[
S + S(1)

]
= Π [S] + π(1)

[
S(1)

]
. (5.4)

In the literature, market-consistency is usually defined via a
condition identical or similar to the condition (5.4) (see e.g. Pelsser
and Stadje (2014) and the previous chapters). However, strong
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market-consistency implies linearity of the financial valuation prin-
ciple. Indeed, we have that if Π is strong market-consistent, then
for the financial claims X and Y , the following holds:

π(1) [X + Y ] = π(1) [X] + π(1) [Y ] . (5.5)

Combining (5.4) and (5.5) shows that strong market-consistency
of the valuation operator Π restricts the financial valuation princi-
ple to linear valuations. Therefore, strong MCV is too restrictive
when the law of one price does not prevail.

Definition 48 (Weak market-consistency) A valuation Π is
called weak market-consistent (weak MCV) if for any financial
claim S(1) the following holds:

Π
[
S(1)

]
= π(1)

[
S(1)

]
. (5.6)

Weak market-consistency only postulates that for all finan-
cial claims, a financial valuation is applied. This weaker notion
of market-consistency does not impose linearity of the financial
valuation and allows for two-price economy and market incom-
pleteness. We remark that Assa and Gospodinov (2018) also in-
vestigated these two types of market-consistency, that they called
market-consistency of type I and type II.

It is straightforward to show that strong MCV implies weak
MCV. Following discussions from Pelsser and Stadje (2014), the
following lemma proves that in case the financial valuation prin-
ciple is linear, weak MCV does imply strong MCV.

Lemma 5 Consider a coherent valuation principle Π with finan-
cial valuation principle π(1) which is linear in the sense that

π(1)
[
S(1)

]
= E

[
ϕ(1)S(1)

]
,

for all financial claims S(1), with a positive F (1)-measurable den-
sity ϕ(1).
Then, the following statements are equivalent:

1. Π is strong MCV.

2. Π is weak MCV.
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Proof: The proof of (1) → (2) is straightforward. In order to
prove (2)→ (1), we remark that since Π is coherent, we can write:

Π[S] = sup
ϕ∈Q

E [ϕS] . (5.7)

Weak market-consistency and linearity of the financial valuation
principle π(1) implies that for all financial claims S(1), we have
that

π(1)
[
S(1)

]
= E

[
ϕ(1)S(1)

]
(5.8)

= sup
ϕ∈Q

E
[
ϕS(1)

]

= sup
ϕ∈Q

E
[
E
[
ϕS(1)| F (1)

]]

= sup
ϕ∈Q

E
[
S(1)E

[
ϕ| F (1)

]]
(5.9)

where we used that S(1) is F (1)-measurable. Since (5.8)=(5.9), it
is sufficient to consider ϕ ∈ Q : E

[
ϕ|F (1)

]
= ϕ(1). Because ϕ(1)

is positive, we can then write ϕ = ϕ(1)Z with Z ∈ Q(1) = {ϕ ∈
L2(P,F) | E

[
Z| F (1)

]
= 1}. Thus, we have that:

Π
[
S + S(1)

]
= sup

Z∈Q(1)

E
[
ϕ(1)Z

(
S + S(1)

)]

= sup
Z∈Q(1)

{
E
[
ϕ(1)ZS

]
+ E

[
ϕ(1)ZS(1)

]}

= sup
Z∈Q(1)

{
E
[
ϕ(1)ZS

]
+ E

[
E
[
ϕ(1)ZS(1)| F (1)

]]}

= sup
Z∈Q(1)

{
E
[
ϕ(1)ZS

]
+ E

[
ϕ(1)S(1)E

[
Z| F (1)

]]}

= sup
Z∈Q(1)

{
E
[
ϕ(1)ZS

]
+ E

[
ϕ(1)S(1)

]}

= sup
Z∈Q(1)

{
E
[
ϕ(1)ZS

]
+ π(1)

[
S(1)

]}

= sup
Z∈Q(1)

{
E
[
ϕ(1)ZS

]}
+ π(1)

[
S(1)

]

= Π[S] + π(1)
[
S(1)

]
,
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which proves that Π is also strong MCV.

Now, we introduce a class of market-consistent valuations which
we call two-step financial valuations, extending the two-step mar-
ket valuation of Pelsser and Stadje (2014). First, we define the
notion of F (i)-conditional valuation which maps any claim S into
an F (i)-measurable r.v, for i = 1, 2. This operator allows us to
transform a claim S into a financial or actuarial claim.

Definition 49 (F(i)-conditional valuation) A F (i)-conditional
valuation is a mapping Π : L2(P,F) → Π : L2(P,F(i)) satisfying
the following properties:

• Normalization: Π[0|F (i)] = 0.

• Translation-invariance: For any S ∈ L2(P,F) and S(i) ∈
L2(P,F(i)), we have

Π[S + S(i)|F (i)] = Π[S] + S(i).

Remark 3 We remark that a F (1)-conditional valuation attaches
the financial claim Π[S|F (1)] to any claim S. Since F(1) is the filtra-
tion generated by the financial assets Y = (Y1, . . . , Yn), condition-

ing on F (1)
T = F (1) is equivalent to conditioning on the stochastic

process Y = (Y1, . . . , Yn) from time 0 to time T . Similarly, a F (2)-
conditional valuation Π[S|F (2)] can be interpreted as conditioning
on the actuarial risks X = (X1, . . . , Xn) from time 0 to time T .

The two-step financial valuations do not arise from hedging
but from operator splitting. Namely, in a first step we compute
the actuarial value of S conditional on financial scenarios (the
values of the financial assets Y ), i.e. π(2)

[
S| F (1)

]
. Then for

every different future value of the financial assets we obtain a
different actuarial value. However, since this payoff depends only
on financial scenarios and is then F (1)-measurable, one could argue
that the quantity π(2)

[
S| F (1)

]
should be valuated via a financial

valuation π(1). This motivates the following definition.

Definition 50 (Two-step financial valuation) The valuation
Π is called a two-step financial valuation principle if it can be
expressed as follows:

Π [S] = π(1)
[
π(2)

[
S| F (1)

]]
,
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where π(1) is the financial valuation principle and π(2) is the F (1)-
conditional actuarial valuation principle.

Definition 50 can be seen as a generalization of Pelsser and
Stadje (2014) where the linear risk-neutral operator is replaced by
a coherent valuation π(1). Pelsser and Stadje (2014) showed that,
under appropriate assumptions, strong market-consistent valua-
tion is equivalent to two-step financial valuation where π(1) is lin-
ear (see their Theorem 3.10). In the following theorem, this result
is extended to the non-linear case: we show that coherent weak
market-consistent valuation is equivalent to two-step financial co-
herent valuation.

Theorem 16 (Characterization of weak MCV) The follow-
ing statements are equivalent:

1. Π is a coherent weak market-consistent valuation.

2. There exist an F (1)-conditional coherent valuation Π(2) and
a coherent financial valuation Π(1) such that

Π[S] = Π(1)
[
Π(2)

[
S|F (1)

]]
.

Proof: We start with (2)→ (1). To prove that Π is weak market-
consistent, it is sufficient to notice that

Π
[
S(1)

]
= Π(1)

[
Π(2)

[
S(1)|F (1)

]]

= Π(1)
[
S(1)

]
,

where we have used that S(1) is F (1)-measurable. Moreover, Π is
coherent since Π(1) and Π(2) are coherent.
Let us prove (1) → (2).3 Because Π is coherent, we have that

Π[S] = sup
ϕ∈Q

E[ϕS]

where Q is a unique, non-empty, closed convex subset of P. By
weak market-consistency, for any financial claim S(1), the following
also holds:

Π
[
S(1)

]
= sup

ϕ(1)

E[ϕ(1)S(1)],

3We acknowledge that some arguments of the proof are similar to Theorem
3.10 in Pelsser and Stadje (2014)
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where the supremum is taken over a set of probability measures
such that ϕ(1) is F (1)-measurable. Similar to the proof of Lemma
5, we can then write

ϕ = ϕ(1)Z,

with Z ∈ Q(1) := {Z ∈ L2(P,F) | EP [Z|F (1)
]

= 1}. Therefore, we
have that

Π[S] = sup
ϕ(1)

sup
Z∈Q(1)

E[ϕ(1)ZS]

= sup
ϕ(1)

sup
Z∈Q(1)

E
[
ϕ(1)E

[
ZS|F (1)

]]
.

We remark that if we can prove that

sup
Z∈Q(1)

E
[
ϕ(1)E

[
ZS|F (1)

]]
= E

[
ϕ(1) sup

Z∈Q(1)

E
[
ZS|F (1)

]]
,

(5.10)
then the proof is over since this relation implies that

Π[S] = sup
ϕ(1)

E

[
ϕ(1) sup

Z∈Q(1)

E
[
ZS|F (1)

]]

= Π(1)
[
Π(2)

[
S|F (1)

]]
.

To prove (5.10), we first observe that

sup
Z∈Q(1)

E
[
ϕ(1)E

[
ZS|F (1)

]]
≤ E

[
ϕ(1) sup

Z∈Q(1)

E
[
ZS|F (1)

]]
.

Let us prove the other inequality. By definition of the supre-
mum, there exists a sequence Zn ∈ Q(1) with E

[
Z1S|F (1)

]
≤

E
[
Z2S|F (1)

]
≤ · · · such that

lim
n

E
[
ZnS|F (1)

]
= sup

Z∈Q(1)

E
[
ZS|F (1)

]
.

Thus, by the monotone convergence theorem,

E

[
ϕ(1) sup

Z∈Q(1)

E
[
ZS|F (1)

]]
= lim

n
E
[
ϕ(1)E

[
ZnS|F (1)

]]

≤ sup
Z∈Q(1)

E
[
ϕ(1)E

[
ZS|F (1)

]]
,

which ends the proof.
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5.2.3 Actuarial-consistency and two-step actuarial va-
luations

While the previous section focused on market-consistency and how
the valuation should treat financial claims, this section is dedicated
to actuarial-consistency and the valuation of actuarial claims. The
essential idea is to replace the role played by a financial claim
in market-consistency by an actuarial claim. One can then also
define a two-step actuarial valuation where financial and actuarial
valuations are interchanged.

Definition 51 (Strong actuarial-consistency) A valuation Π
is called strong actuarial-consistent (strong ACV) if for any actu-
arial claim S(2) the following holds:

Π
[
S + S(2)

]
= Π [S] + π(2)

[
S(2)

]
. (5.11)

Similar to strong market-consistency, strong actuarial-consis-
tency implies linearity of the actuarial valuation principle (this
issue was also discussed in Chapter 2). Therefore, it would not be
appropriate in an actuarial context in which diversification benefits
are desired by pooling identical actuarial risks.

Definition 52 (Weak actuarial-consistency) A valuation Π is
called weak actuarial-consistent (weak ACV) if for any actuarial
claim S(2) the following holds:

Π
[
S(2)

]
= π(2)

[
S(2)

]
. (5.12)

Weak actuarial-consistency only postulates that an actuarial
valuation is applied for all actuarial claims. We remark that in
the previous chapters, we defined a similar notion of actuarial-
consistency, but the condition only held for the claims which are
independent of the financial filtration F(1). Similar to Lemma
5, one can show that weak and strong actuarial-consistency of a
valuation Π are equivalent when the actuarial valuation principle
π(2) is linear.

Hereafter, we introduce a class of actuarial-consistent valua-
tions which we call two-step actuarial valuations. These are the
counterpart of the two-step financial valuations in which financial
and actuarial valuations are reversed. More specifically, in a first
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step we compute the financial value of S conditional on actuarial
scenarios (the values of the actuarial assets X), i.e. π(1)

[
S| F (2)

]
.

Since this conditional payoff depends only on actuarial scenarios
and is then F (2)-measurable, the quantity π(1)

[
S| F (2)

]
should be

valuated via a standard actuarial valuation π(2). This motivates
the following definition.

Definition 53 (Two-step actuarial valuation) The valuation
Π is called a two-step actuarial valuation principle if it can be ex-
pressed as follows:

Π [S] = π(2)
[
π(1)

[
S| F (2)

]]
,

where π(2) is the actuarial valuation principle and π(1) is the F (2)-
conditional financial valuation principle.

Hence, the two-step actuarial valuation consists of applying the
market-adjusted valuation π(1) to the residual risk which remains
after having conditioned on the future development of the actuarial
risks, i.e. the filtration F(2).

In the same vein as Theorem 16, we can prove that weak
actuarial-consistent valuation is equivalent to two-step actuarial
valuation for coherent valuations.

Theorem 17 (Characterization of weak ACV) The following
statements are equivalent:

1. Π is a coherent weak actuarial-consistent valuation.

2. There exists an F (2)-conditional coherent valuation Π(1) and
a coherent actuarial valuation Π(2) such that

Π[S] = Π(2)
[
Π(1)

[
S|F (2)

]]
. (5.13)

Proof: The proof is similar to the one of Theorem 16 and is thus
omitted.

5.2.4 Fair valuation: merging market- and actuarial-
consistency

After having defined two broad classes of valuations: market-
consistent and actuarial-consistent valuations, a natural question
arises: Could we always define a fair valuation that is market-
consistent and actuarial-consistent?
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Definition 54 (Fair valuation) The valuation Π is fair if it is
weak market-consistent and weak actuarial-consistent.

In general, it will not always be possible to define a fair valua-
tion. Indeed, in a general probability space in which financial and
actuarial risks are dependent, there is ambiguity on the valuation
to be used: a market-consistent valuation calibrated to market
prices or an actuarial-consistent valuation calibrated to historical
actuarial data.

In the following lemma, we show that if the valuation is weak
MCV and ACV and there exist a financial and actuarial claim that
are equal a.s., then the financial and actuarial valuations should
coincide. In particular, this lemma implies that for a given finan-
cial valuation π(1) and actuarial valuation π(2), it is not always
possible to define a fair valuation (i.e. a valuation that is weak
MCV and ACV).

Lemma 6 Assume that there exist a financial claim S(1) and an
actuarial claim S(2) such that

S(1) a.s.= S(2). (5.14)

If the valuation Π is weak MCV and weak ACV, then the following
holds:

π(1)
[
S(1)

]
= π(2)

[
S(1)

]
.

Proof: Since Π is weak MCV, we can write:

Π
[
S(1)

]
= π(1)

[
S(1)

]

= π(1)
[
S(2)

]
by (5.14).

Moreover, weak ACV implies that

Π
[
S(2)

]
= π(2)

[
S(2)

]

= π(2)
[
S(1)

]
by (5.14).

Because we identify claims which are equal a.s., we have that

Π
[
S(1)

]
= Π

[
S(2)

]
,
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which ends the proof.

To illustrate the previous lemma, we consider the financial
claim of Example 13 and the actuarial claim of Example 14 and
show that if the claims are comonotonic4, a fair valuation cannot
be properly defined.

Example 15 (Comonotonic financial and actuarial claims)
Consider the financial claim S(1) and the actuarial claim S(2) which
are given by

S(1) =

{
0, if Y = 50,

100, if Y = 200.
and S(2) =

{
0, if I = 0,

100, if I = 1.

(5.15)

Assume moreover that the claims are comonotonic:

P[(Y, I) = (50, 0)] = p,

P[(Y, I) = (200, 1)] = 1− p.

Clearly, we have that S(1) a.s.= S(2). Based on the results of Exam-
ples 13 and 14, any fair valuation Π should satisfy:

Π
[
S(1)

]
= 100q,

Π
[
S(2)

]
= 100

(
p+ β

√
p(1− p)

)
,

if the financial valuation is the risk-neutral valuation and the ac-
tuarial valuation is the standard deviation principle. We then
have two identical risks with two (possibly very different) values,
creating inconsistency in the valuation mechanism.

With the emergence of the market for longevity derivatives, a
valuator needs to make a choice between market-consistency and
actuarial-consistency. For instance, consider a market with some
traded longevity bonds and there is an issue of a new longevity
product. One needs to decide to use either a market-consistent
approach based on the traded longevity bonds in the market or an

4We recall that two claims S(1) and S(2) are comonotonic if they can be

represented as increasing functions of the same random source: (S(1), S(2))
d
=

(F−1

S(1)(U), F−1

S(2)(U)) with U ∼ Uniform(0, 1).
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actuarial-consistent approach based on longevity trend assump-
tions.

In the following example, we illustrate this point and compare
a market-consistent and an actuarial-consistent valuation in pres-
ence of a longevity bond.

Example 16 (Comparison between MCV and ACV)
(a) Consider a portfolio of pure endowment for lx Belgian insureds
of age x at time 0. The pure endowment guarantees a sum of 1
if the policyholder is still alive at maturity. The aggregate payoff
can be written as

S = Lx+T

with Lx+T the number of policyholders who survive up to the
maturity time T . Moreover, we assume that the financial market
is composed of two assets: a risk-free asset Y (0)(t) = ert and a
longevity bond for which the payoff at maturity is Y (1)(T ) = L̃x+T ,
the equivalent of Lx+T but for the Dutch population. First, we
determine the expected value (called best-estimate) by a two-step
actuarial valuation:

BE[S] = EP
[
EQ
[
e−rTLx+T |F (2)

]]

= EP
[
e−rTLx+TEQ

[
1|F (2)

]]

= e−rTEP [Lx+T ] .

The actuarial-consistent valuation would suggest a full invest-
ment in the risk-free asset. Secondly, assuming that the Bel-
gian population live slightly shorter than the Dutch population5:

EP
[
Lx+T |L̃x+T

]
= βL̃x+T with β < 1, we determine the best-

estimate according to a two-step financial valuation:

BE∗[S] = EQ
[
e−rTEP

[
Lx+T |F (1)

]]

= EQ
[
e−rTβL̃x+T

]

= βY (1)(0),

5For the reader interested in Dutch and Belgian mortality projections, we
refer to Antonio et al. (2017)
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where Y (1)(0) is the current price of the longevity bond. The
market-consistent valuation would then suggest a full investment
in the Dutch longevity bond.

(b) In order to better grasp the difference between the actuarial-
consistent and market-consistent valuations, we introduce some
modelling assumptions.
Assume that the interest rate r = 0, and the bivariate Belgian-
Dutch population follows the distribution: (Lx+T , L̃x+T ) ∼ N (µ,Σ)
with

µ =

(
µ1

µ2

)
, Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

Hence, both Belgian and Dutch populations are normal distributed
with correlation ρ. The best-estimate of S = Lx+T by a two-step
actuarial valuation is given by

BE[S] = EP
[
EQ [e−rTLx+T |Lx+T

]]

= EP [Lx+T ]

= µ1. (5.16)

To determine the best-estimate by a two-step financial valuation,
we first notice that by standard results of normal distributions, we
have

EP
[
Lx+T |L̃x+T

]
= µ1 + ρ

σ1

σ2

(
L̃x+T − µ2

)
.

Let us further assume that the distribution of L̃x+T under Q is

L̃x+T
Q∼ N (µ2 + σ2κ, σ

2
2),

where κ > 0 is the market price of risk for the longevity bond.
Therefore, we find that

BE∗[S] = EQ
[
EP
[
Lx+T |L̃x+T

]]

= EQ
[
µ1 + ρ

σ1

σ2

(
L̃x+T − µ2

)]

= µ1 + ρ
σ1

σ2

(
EQ
[
L̃x+T

]
− µ2

)

= µ1 + ρσ1κ. (5.17)

We can compare the standard best-estimate for the Belgian popu-
lation (5.16) with the market-consistent value taking into account
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the Dutch longevity bond (5.17). Intuitively, the difference should
reflect two aspects:

1. The dependence between Belgian and Dutch populations.

2. The risk premium on the Dutch longevity bond.

The results confirm the intuition: the difference is given by

BE∗[S]−BE[S] = ρσ1κ. (5.18)

We observe that the higher the correlation ρ, the higher the dif-
ference (this reflects the point 1.). Moreover, the difference is an
increasing function of the market price of risk κ (this reflects the
point 2.).

If the valuator can choose between the risk-free investment or
the Dutch longevity bond, he will go for the longevity bond if
the benefits are higher than the costs, i.e. if the risk reduction of
investing in the longevity bond is higher than the extra price he
has to pay (given by Equation (5.18)). The prices at time 0 of
both approaches and the residual losses at maturity are given in
the table below:

Price at time 0 Residual loss
BE[S] = µ1 R1 = Lx+T − EP [Lx+T ] ∼ N (0, σ2

1)

BE∗[S] = µ1 + ρσ1κ R2 = Lx+T −
(
µ1 + ρσ1

σ2

(
L̃x+T − µ2

))

∼ N (0, (1− ρ2)σ2
1)

From the table, we observe that the investment in the longevity
bond leads to a decrease in the volatility of the residual risk. No-
tice that in case of extreme dependence (i.e. ρ → ±1), the claim
S can be almost completely hedged with the longevity bond and
the residual loss R2 tends to 0. The valuator will typically go for
the longevity bond if the risk reduction (computed in terms of
Value-at-Risk for simplicity) is higher than the extra price to pay:

ρσ1κ < V aRp[R1]− V aRp[R2] = σ1Φ−1(p)(1−
√

1− ρ2) (5.19)

On the other hand, if the longevity bond price is too high in com-
parison with the risk reduction (e.g. if the market price of risk κ
is set high), an actuarial-consistent valuation is then preferable.
J
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Remark 4 In the previous example, we compared the best-estimate
values by choosing the actuarial valuation π(2)[S] = EP [S] in the
two-step operators (for simplicity of presentation). Similar con-
clusions can be drawn if the actuarial valuation includes a risk
margin. For instance, if one considers a standard deviation prin-
ciple as actuarial valuation, Equation (5.19) takes the form:

ρF [S]− ρA [S] = σ1

[
κρ− α(1−

√
1− ρ2)

]

< V aRp[R1]− V aRp[R2]

= σ1(1−
√

1− ρ2)
(
Φ−1(p)− α

)
,

where ρF [S] and ρA [S] are the two-step financial and actuarial
valuations, respectively. In that case, we also observe that, if the
longevity bond price is high (meaning that κ is high) and the
liability is not strongly correlated to the longevity bond (i.e. ρ
close to zero), an actuarial-consistent valuation is desirable (the
extra price to pay is higher than the risk reduction).

Remark 5 In this chapter, we do not want to argue that one
method is better than another; each one has pros and cons. While
the second method allows to transfer the risk to the financial mar-
ket, it comes also with a price: the liabilities become totally de-
pendent on the longevity bond. In particular, an adverse shock
on the Dutch population or a counterparty’s default will have a
direct effect on the assets backing the liabilities.

More generally, as pointed out by Vedani et al. (2017), market-
consistent valuations are directly subject to market movements,
and can lead to excess volatility, depending on the calibration sets
chosen by the actuary. We also refer to Rae et al. (2018) for dif-
ferent concerns around the appropriateness of market-consistency
to the insurance business.

In the next example, we consider the valuation of a hybrid
claim via a two-step financial and actuarial valuation. More specif-
ically, we combine Example 13 for the financial valuation and Ex-
ample 14 for the actuarial valuation into the two-step valuations
and investigate the difference between the two-step operators.

Example 17 (Two-step valuations for hybrid claims)
Consider an equity-linked contract for a life (x), which pays the
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call option (Y −K)+ in case the policyholder is alive at time T = 1
and 0 otherwise. We recall that the stock Y can go up to 200 or
down to 50, the strike K = 100 and the policyholder survival is
modelled by the indicator I. Therefore, the payoff of this contract
is given by

S = (Y −K)+ × I =

{
100, if Y = 200, I = 1,
0, otherwise.

(5.20)

We assume that the financial valuation is the risk-neutral expecta-
tion and the actuarial valuation is the standard deviation principle:

π(1) [S] = EQ [S] ,

π(2)[S] = EP [S] + β

√
VarP [S].

We consider the two-step valuations for the hybrid payoff (5.20):

1. Two-step financial valuation: The value of S is given by

Π(1)[S] = EQ
[
EP
[
S|F (1)

]
+ β

√
VarP

[
S|F (1)

]]

= EQ
[
(Y −K)+

(
EP [I|Y ] + βσP [I|Y ]

)]
.

If we note that

EP [I|Y ] =

{
P[I = 1|Y = 50], if Y = 50,
P[I = 1|Y = 200], if Y = 200,

then we find that the two-step financial value of S is

Π(1)[S] = 100 qY

(
pI|Y=200 + β

√
pI|Y=200(1− pI|Y=200)

)
,

(5.21)
where qY is the Q-probability that Y goes up:

qY = Q [Y = 200]

and pI|Y=200 is the P-probability that the policyholder is
alive given that the stock goes up:

pI|Y=200 = P[I = 1|Y = 200].
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2. Two-step actuarial valuation: The value of S is given by

Π(2) [S] = EP
[
EQ
[
S|F (2)

]]
+ βσP

[
EQ
[
S|F (2)

]]

= EP
[
IEQ [(Y −K)+|I]

]
+ βσP

[
IEQ [(Y −K)+|I]

]
.

Noting that

EQ [(Y −K)+|I] =

{
100 Q[Y = 200|I = 0], if I = 0,
100 Q[Y = 200|I = 1], if I = 1,

then we find that the two-step actuarial value of S is

Π(2) [S] = 100 qY |I=1

(
pI + β

√
pI(1− pI)

)
, (5.22)

where pI is the P-probability that the policyholder is alive:
pI = P[I = 1] and qY |I=1 is the Q-probability that the stock
goes up given that the policyholder is alive:

qY |I=1 = Q[Y = 200|I = 1].

If we compare the two-step financial and actuarial values (5.21)
and (5.22), the structure is similar but the dependence between
financial and actuarial risks is taken into account differently. In
the first case, it is via the P-probability of actuarial risks given
financial scenarios, i.e. pI|Y=200 while in the second case, it is via
the Q-probability of financial risks given actuarial scenarios, i.e.
qY |I=1. In case of independence under P and Q, both valuations
are equal. In case of dependence, both valuations (5.21) and (5.22)
will in general be different as we illustrate below:

Π(2) [S]−Π(1) [S] = 100 qY |I=1 pI − 100 qY pI|Y=200

+ 100 qY |I=1 β
√
pI(1− pI)

− 100 qY β
√
pI|Y=200(1− pI|Y=200).

Let us further assume that the difference between P and Q is given
by a constant market price of risk κ:

κ = qY − pY ,
= qY |I=1 − pY |I=1.
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Therefore, by Bayes’ Theorem, we find that

Π(2) [S]−Π(1) [S] = 100

(
pI|Y=200pY

pI
+ κ

)
pI

− 100 (pY + κ) pI|Y=200

+ 100 (pY |I=1 + κ)β
√
pI(1− pI)

− 100 (pY + κ)β
√
pI|Y=200(1− pI|Y=200).

After simplifications, we find that

Π(2) [S]−Π(1) [S]

= 100κ
(
pI − pI|Y=200

)

+ 100κβ
(√

pI(1− pI)−
√
pI|Y=200(1− pI|Y=200)

)

+ 100pY |I=1β
√
pI(1− pI)

− 100pY β
√
pI|Y=200(1− pI|Y=200).

Similar to Example 16, we observe that the difference between the
two-step valuations relies mainly on

• The risk premium κ which reflects the difference between the
real-world measure P and the risk-neutral measure Q.

• The dependence between actuarial and financial risks (ex-
pressed as the difference between pI and pI|Y=200 as well as
the difference between pY and pY |I=1). J

We remark that in the literature, it is common to assume that
financial and actuarial claims are independent (either under P or
Q6). In that case, one can define a valuation that is MCV and
ACV since the valuation is decoupled into two independent valua-
tions, one for financial claims and one for actuarial claims. In the
following lemma, we show that if the conditional actuarial valua-
tion of actuarial claims does not depend on the financial filtration,
the two-step financial valuation is fair. Similar result holds for the
two-step actuarial valuation.

6Note that independence under P does not necessarily imply independence
under Q, see Dhaene et al. (2013).
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Lemma 7 Consider hybrid claims of the form S = S(1) × S(2)

where S(1) is financial and S(2) is actuarial. If one of the two
following conditions holds:

1. Π is a two-step financial valuation and π(2)
[
S(2)| F (1)

]
=

π(2)
[
S(2)

]
.

2. Π is a two-step actuarial valuation and π(1)
[
S(1)| F (2)

]
=

π(1)
[
S(1)

]
.

Then, we have that

Π
[
S(1) × S(2)

]
= π(1)

[
S(1)

]
× π(2)

[
S(2)

]
.

In particular, the valuation Π is fair:

Π
[
S(1)

]
= π(1)

[
S(1)

]

Π
[
S(2)

]
= π(2)

[
S(2)

]
.

Proof: The proof follows directly from the definition of the two-
step valuations.

From Lemma 7, we observe that we can define a fair valuation
under appropriate independence assumptions. The first condition
will typically require independence under P (e.g. E

[
S(2)|F (1)

]
=

E[S(2)]) and the second condition independence under Q (e.g.
EQ [S(1)|F (2)

]
= EQ[S(1)]). Another possibility is to restrict the

notion of actuarial-consistency to the risks which are independent
of the financial market as we did in the previous chapters.

Example 17 (continued) If we assume independence under P
in the two-step financial valuation or independence under Q in the
two-actuarial valuation, both valuations lead to a fair valuation.
This is in line with Lemma 7.

5.3 Numerical illustration

Based on the two-step actuarial valuation introduced in the pre-
vious section, we show how the valuation can be decomposed into
a best estimate and a risk margin as required by solvency reg-
ulations. Moreover, we illustrate the valuation on a portfolio of
equity-linked life insurance contracts with dependent financial and
actuarial risks.
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5.3.1 Best estimate, risk margin and fair valuation

5.3.1.1 Best estimate

In Article 77 of the DIRECTIVE 2009/138/EC (European Com-
mission (2009)), the best estimate is defined as “the probability-
weighted average of future cash-flows taking account of the time
value of money” (expected present value of future cash-flows).
Hence, the best estimate of an insurance liability can be inter-
preted as an appropriate estimation of the expected present value
based on actual available information.

Based on our two-step actuarial valuation, we can define a
broad notion of best estimate for a general claim S.

Definition 55 (Best estimate) For any claim S ∈ L2(P,F), the
best estimate is given by

BE[S] = EP
[
EQ
[
S|F (2)

]]
. (5.23)

It turns out that the best estimate appears as a two-step ac-
tuarial valuation for which there is no distortion of the different
measures, i.e. π(1) [S] = EQ [S] and π(2) [S] = EP [S]. In general,
the expression (5.23) could be hardly tractable since we can pos-
sibly have an infinite number of actuarial scenarios. For practical
purposes, we will often consider the approximated best estimate
B̂E defined by

B̂E[S] =

n∑

i=1

P [Ai]EQ [S|Ai] , (5.24)

for a finite number n of actuarial scenarios: A1, A2, ..., An ∈ F (2).

The best estimate in Definition 55 appears as an average of
risk-neutral valuations which are applied to the risk which remains
after having conditioned on the actuarial filtration. Hereafter, we
consider some special cases:

• For any actuarial risk S(2), we find that

BE[S(2)] = EP
[
S(2)

]
.
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• For any product claim S with independent actuarial and
financial risks (under Q), we find that

BE[S] = EP
[
EQ
[
S(1) × S(2)|F (2)

]]

= EP
[
S(2) × EQ

[
S(1)|F (2)

]]

= EP
[
S(2) × EQ

[
S(1)

]]

= EP
[
S(2)

]
× EQ

[
S(1)

]
.

5.3.1.2 Risk margin

In order to motivate the risk margin, we recall that the best esti-
mate is centered around the risk

EQ
[
S|F (2)

]
.

This risk represents the risk-neutral financial price of S conditional
on the actuarial information. Looking at the tail of this (actuarial)
risk will provide information on the actuarial scenarios which yield
the worst financial price. Hence, applying a coherent actuarial
valuation on this conditional financial price allows to measure the
impact of the actuarial uncertainty on the risk-neutral price. This
motivates the following definition.

Definition 56 (SCR for actuarial risk)
For any claim S ∈ L2(P,F) and any actuarial coherent valuation
π(2), the SCR for actuarial risk is given by

SCR [S] = π(2)
[
EQ
[
S|F (2)

]]
− EP

[
EQ
[
S|F (2)

]]
. (5.25)

It turns out that the SCR for actuarial risk appears as a two-
step actuarial coherent valuation for which we deducted the best
estimate. Thanks to the representation theorem (see Theorem 15),
the SCR for actuarial risk can be represented as

SCR [S] = sup
P̃

{
EP̃
[
EQ
[
S|F (2)

]]
− EP

[
EQ
[
S|F (2)

]]}

where the supremum is taken over a set of probability measures P̃
absolutely continuous to P. Hence, the SCR for actuarial risk can
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be interpreted as a worst case scenario: we can consider a family
of stressed actuarial models (e.g. different mortality dynamics)
and define the SCR as the value under the worst-case model.

For instance, in case the actuarial valuation π(2) is the TVaR
measure at a confidence level p, we find that

SCR [S] = TV aRp

[
EQ
[
S|F (2)

]]
− EP

[
EQ
[
S|F (2)

]]
. (5.26)

The expression (5.26) can be interpreted as follows: If we assume
that the insurer receives the best estimate from the policyholder
and a capital buffer equal to SCR provided by investors, the in-
surer will be able to cover all losses with a confidence level equal
to p since

BE [S] + SCR [S] = EP
[
EQ
[
S|F (2)

]]
+ TV aRp

[
EQ
[
S|F (2)

]]

− EP
[
EQ
[
S|F (2)

]]
,

= TV aRp

[
EQ
[
S|F (2)

]]
≥ V aRp

[
EQ
[
S|F (2)

]]
.

For any product claim with independent actuarial and financial
risks, the SCR for actuarial risk takes the form

SCR [S] = π(2)
[
EQ
[
S(1) × S(2)|F (2)

]]
− EP

[
EQ
[
S(1) × S(2)|F (2)

]]

=
(
π(2)

[
S(2)

]
− EP

[
S(2)

])
EQ
[
S(1)

]
. (5.27)

From the expression (5.27), we observe that the SCR appears as a
capital buffer to add on top of the best estimate in order to cover
losses due to the uncertainty in the actuarial risk.

5.3.1.3 Cost-of-capital fair valuation of insurance liabil-
ities

In Solvency II, the fair value of insurance liabilities is defined as the
sum of the best estimate and the risk margin in which the latter
is defined as the cost of capital needed to cover the unhedgeable
risks.

Similarly to regulatory directives, we define a cost-of-capital
fair valuation as the sum of the best estimate (expected present
value) plus the risk margin (cost to cover unhedgeable risks) where
the latter represents the cost of providing the SCR for actuarial
risk.
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Definition 57 (Cost-of-capital fair valuation) For any claim
S ∈ L2(P,F) and any coherent actuarial valuation π(2), the fair
value of S is defined by

ρ [S] = BE [S] + iSCR [S] (5.28)

with

SCR [S] = π(2)
[
EQ
[
S|F (2)

]]
− EP

[
EQ
[
S|F (2)

]]
,

where i is the cost-of-capital rate and SCR is the SCR for actuarial
risk defined in Definition 56.

Remark 6 The fair valuation from Definition 57 has some sim-
ilarities with the fair valuation of Solvency II in the sense that
the valuation is decomposed into an expected present value plus a
cost-of-capital risk margin. However, Definition 57 is based on a
one-period perspective while Solvency II takes a one-year view and
the risk margin for long-term liabilities is defined as the sum of all
future one-year cost-of-capital premiums, see e.g. Moehr (2011).

5.3.2 Numerical application

In this subsection, we show how to determine the fair value (5.28)
for a portfolio of guaranteed minimum maturity benefit (GMMB)
contracts underwritten at time 0 on lx persons of age x. In partic-
ular, we detail the numerical procedure for the best estimate and
the SCR for actuarial risk. Moreover, we compare the fair valu-
ation with the setting of Brennan and Schwartz (1976) in which
complete diversification of mortality is assumed.

The GMMB contract offers at maturity the greater of a min-
imum guarantee K and a stock value if the policyholder is still
alive at that time. Let Ti be the remaining lifetime of insured i,
i = 1, 2, . . . , lx, at contract initiation. The payoff per policy can
be written as

S =
Lx+T

lx
×max

(
S(1)(T ),K

)
, (5.29)

with

Lx+T =

lx∑

i=1

1{Ti>T}.
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Here, Lx+T is the number of policyholders who survived up to
time T and S(1)(T ) is the value of the stock at time T .

We consider a continuous time setting for the stock and the
force of mortality dynamics. Let us assume that the dynamics of
the stock process and the population force of mortality are given
by

dS(1)(t) = S(1)(t) (µdt+ σdW1(t)) (5.30)

dλ(t) = cλ(t)dt+ ξdW2(t), (5.31)

with c, ξ, µ and σ are positive constants, and W1(t) = ρW2(t) +√
1− ρ2Z(t). Here, W2(t) and Z(t) are independent standard

Brownian motions. The specification of a non-mean reverting
Ornstein-Uhlenbeck (OU) process (5.31) for the mortality model
allows negative mortality rates. However, Luciano and Vigna
(2008) and Luciano et al. (2017) showed that the probability of
negative mortality rates is quite negligible with calibrated parame-
ters. The great benefit of such specification is to allow tractability
of mortality rates. Indeed, under Equation (5.31), λ(t) is a Gaus-

sian process and
∫ T

0 λ(v)dv is normal distributed.
First we start by computing the best estimate. Since we want

to determine the best estimate mortality, we assume that there
is no risk premium in the actuarial market or, equivalently, that
Equation (5.31) holds under P and Q. Therefore, the calibration
of the mortality intensity is performed by estimating its dynamic
under the real-world measure, and then using it under the risk-
neutral measure.7 For the stock process, we define

dWQ
1 (t) =

µ− r
σ

dt+ dW P
1 (t),

where µ−r
σ represents the market price of equity risk. We can then

write the dynamics under Q as follows

dS(1)(t) = S(1)(t) (rdt+ σdW1(t)) (5.32)

dλ(t) = cλ(t)dt+ ξdW2(t). (5.33)

The best estimate for the aggregate payoff (5.29) is given by

BE[S] = EP
[
EQ
[
e−rT

Lx+T

lx
×max

(
S(1)(T ),K

)
|F (2)

]]
.

7A similar approach is considered in Luciano et al. (2017)
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Under the independence assumption between the force of mortality
and the stock dynamics, one can easily show that the best estimate
simplifies into

BE[S] = EP
[
Lx+T

lx

]
× EQ

[
e−rT max

(
S(1)(T ),K

)]
(5.34)

= T px

[
S(1)(0)N(d1) +Ke−rT (1−N(d2))

]
(5.35)

= EP
[
e−
∫ T
0 λ(v)dv

]

︸ ︷︷ ︸
T px

[
S(1)(0)N(d1) +Ke−rT (1−N(d2))

]

(5.36)

with

d1 =
ln
(
S(1)(0)
K

)
+ (r + σ2

2 )T

σ
√
T

,

d2 = d1 − σ
√
T .

We remark that the survival probability T px can be obtained in
closed-form (for details, see for instance Mamon (2004)):

T px = EP
[
e−
∫ T
0 λ(v)dv

]
= eAλ(0)+B

2 ,

with

A =
1

c

(
1− ecT )

)

B =
ξ2

c3

(
cT +

3

2
− 2ecT +

1

2
e2cT

)
. (5.37)

Under the dependence assumption, we provide in the next propo-
sition the approximated best estimate for the portfolio of GMMB
contracts.

Proposition 1 If we denote by T p
i
x (i = 1, ..., n) the survival

rates for each actuarial scenario8, the approximated best estimate
for the aggregate payoff of GMMB contracts:

B̂E[S] =
1

n

n∑

i=1

EQ
[
e−rT

Lx+T

lx
×max

(
S(1)(T ),K

)∣∣∣∣Lx+T = lx T p
i
x

]

8We assume that the actuarial scenarios are generated by a Monte-Carlo
sample of i.i.d. observations
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is given by

B̂E[S] =
1

n

n∑

i=1

T p
i
x

(
S̃(1)(0)N(d1) + e−rTK (1−N(d2))

)
,

(5.38)
with

S̃(1)(0) = S(1)(0)e

−σρ0
√
T√

1
2c e

2cT− 2
c e
cT+T+ 3

2c

(
c
ξ

ln T p
i
x+

λ(0)
ξ (ecT−1)

)
e−

1
2
σ2ρ2

0T ,

ρ0 =
ρ
(

1
ce
cT − 1

c − T
)

√
T
(

1
2ce

2cT − 2
ce
cT + T + 3

2c

) ,

d1 =
ln
(
S̃(1)(0)
K

)
+
(
r + 1

2σ
2(1− ρ2

0)
)
T

σ
√(

1− ρ2
0

)
T

,

d2 = d1 − σ
√(

1− ρ2
0

)
T .

Proof: The proof based on classical arguments of stochastic cal-
culus can be found in the Appendix Section 5.5.

The approximated best estimate (5.38) appears as an average
of Black-Scholes call option prices which are adjusted for the de-
pendence between the population force of mortality and the stock
price processes. In each call option, there is an adjustment of the
current stock price S(1)(0) to S̃(1)(0), taking into account the re-
alized survival rate T p

i
x in each actuarial scenario. It is also worth

noticing that in case of independence (ρ = 0), the approximated
best estimate (5.38) converges to the best estimate (5.36).

To determine the best estimate (5.38), we only need to gener-
ate survival rates T p

i
x (i = 1, ..., n) and plug them into the Black-

Scholes option pricing formulas. Since the force of mortality dy-
namics is given by

dλ(t) = cλ(t)dt+ ξdW2(t),

one can prove (for details, see Appendix 5.5) that

ln T px = −
∫ T

0
λ(s)ds ∼ N

(
µ, σ2

)
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with

µ =
λ(0)

c

(
ecT − 1

)
,

σ2 =
ξ2

c3

(
1

2
e2cT − 2ecT + cT +

3

2

)
.

We generate n = 100000 mortality paths. The benchmark param-
eters for the stock and the force of mortality are given in Table 5.1.
The mortality parameters follow from Luciano et al. (2017) while
the financial parameters are based on Bernard and Kwak (2016).
The mortality parameters correspond to UK male individuals who
are aged 55 at time 0.

Parameter set for numerical analysis

Force of mortality model: c = 0.0750, ξ = 0.000597, λ(0) = 0.0087.

Financial model: r = 0.02, T = 10, S(1)(0) = 1,K = 1, σ = 0.2.

Table 5.1: Parameter values used in the numerical illustration.

Table 5.2 displays the best estimate per policy obtained using
Equation (5.38) for a range of correlation coefficients: ρ ∈ [−1, 1].
We observe that the best estimate slightly decreases with the in-
crease of the correlation parameter. This can be justified by a
compensation effect between the mortality and the stock dynam-
ics:

• In case of positive dependence, high mortality scenarios (re-
spectively low mortality scenarios) are linked with high stock
values (respectively low stock values). In consequence, the
expected value of the claim

S =
Lx+T

lx
×max

(
S(1)(T ),K

)

will be reduced since high values of survivals Lx+T will be
associated with low financial guarantees, max

(
S(1)(T ),K

)
,

and vice-versa.

• On the other hand, in case of negative dependence, high
survival rates will be linked with high financial guarantees,
which implies a higher uncertainty and an increase of the
best estimate.
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ρ Best estimate

-1.0 1.01132
-0.9 1.01086
-0.8 1.01041
-0.7 1.00995
-0.6 1.0095
-0.5 1.00904
-0.4 1.00858
-0.3 1.00811
-0.2 1.00764
-0.1 1.00716

0 1.00667
0.1 1.00618
0.2 1.00568
0.3 1.00517
0.4 1.00466
0.5 1.00414
0.6 1.0036
0.7 1.00307
0.8 1.00252
0.9 1.00196
1.0 1.00141

Table 5.2: Best estimate for the GMMB contract using Equation
(5.38).

The SCR for actuarial risk is given by

SCR [S] = π(2)
[
EQ
[
S|F (2)

]]
− EP

[
EQ
[
S|F (2)

]]

for some coherent actuarial valuation π(2). For this numerical
illustration, we consider the TVaR with a confidence level p =
0.95.

Figure 5.2 displays the SCR for actuarial risk under the TVaR
with a confidence level p = 0.95 for a range of correlation coeffi-
cients: ρ ∈ [−0.5, 0.5]. We observe that the SCR tends to increase
when the correlation coefficient ρ increases in absolute value. This
observation expresses the increase of the tails and the variance of
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Figure 5.2: SCR for actuarial risk under the TVaR measure (p =
0.95)

the conditional financial price

EQ
[
Lx+T

lx
×max

(
S(1)(T ),K

)
|F (2)

]

in case of an increase of the dependence parameter |ρ|. To clarify
this point, we can distinguish two situations:

• In case of positive dependence, scenarios in which mortality
is higher than expected increase the trend of the stock and
the price of the financial guarantee.

• On the contrary, in case of negative dependence, scenarios
in which mortality is lower than expected increase the trend
of the stock and the price of the financial guarantee.

The fair value of the insurance liability S is then determined
by

ρ [S] = BE [S] + iSCR [S] ,

where the cost-of-capital rate i is fixed at 6%.
Figure 5.3 represents the fair value of S for a range of corre-

lation coefficients: ρ ∈ [−1, 1]. Overall, we observe an increase of
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Figure 5.3: Fair value for the GMMB contract under the two-step
actuarial approach and the approach of Brennan and Schwartz
(1976).

the fair value of the GMMB contract under dependent mortality
and equity risks. However, this effect is less pronounced for pos-
itive dependence. By comparison, the fair value of S under the
assumption that mortality can be completely diversified (denoted
by ρB-S for Brennan and Schwartz (1976)), is given by Equation
(5.36):

ρB-S [S] = EP
[
Lx+T

lx

]
× EQ

[
e−rT max

(
S(1)(T ),K

)]
(5.39)

= T px

[
S(1)(0)N(d1) +Ke−rT (1−N(d2))

]
(5.40)

= 1.0067.

From Figure 5.3, we clearly observe that this assumption un-
derestimates the fair value of the contract since it does not take
into account the actuarial uncertainty and the possible dependence
with the financial market.
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5.4 Concluding remarks

In this chapter, we have proposed a general valuation framework
for insurance liabilities based on two-step valuation procedures.
First, we introduced the family of two-step financial valuations
that are weak market-consistent and the family of two-step actu-
arial valuations that are weak actuarial-consistent. For each fam-
ily, we provided a complete axiomatic characterization of the two-
step operators. In particular, we showed that any weak market-
consistent or actuarial-consistent valuation has a two-step repre-
sentation. We also studied under which conditions it is feasible
to define a fair valuation, i.e. a valuation that is weak market-
consistent and actuarial-consistent.

Based on our two-step actuarial valuation, we have defined a
cost-of-capital fair valuation in which the valuation is defined as
the sum of a best estimate (expected value) and a risk margin
(cost of providing the SCR for actuarial risk). The detailed nu-
merical illustration has shown the important impact on risk man-
agement when relaxing the independence assumption between ac-
tuarial and financial risks. In an extended B-S financial market,
we determined the fair value of a GMMB contract where the force
of mortality dynamics is a Vasicek-type model as considered in Lu-
ciano et al. (2017). It turns out that the dependency structure has
an important impact on the fair valuation and the related SCR.

As pointed out by Liu et al. (2014), Solvency II Directive highly
recommends the testing of capital adequacy requirements on the
assumption of mutual dependence between financial markets and
life insurance markets. In that respect, we believe that our two-
step framework provides a plausible setting for the valuation of
insurance liabilities with dependent financial and actuarial risks.
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5.5 Appendix A: Proof of Proposition 1

Proof: We recall that the dynamics of the stock process and the
population force of mortality under Q are given by

dS(1)(t) = S(1)(t) (rdt+ σdW1(t)) (5.41)

dλ(t) = cλ(t)dt+ ξdW2(t) (5.42)

with c, ξ, µ and σ1 are positive constants, and W1(t) = ρW2(t) +√
1− ρ2Z(t). Here, W2(t) and Z(t) are independent standard

Brownian motions under Q. From (5.42), we note that

d
(
e−ctλ(t)

)
= −ce−ctλ(t)dt+ e−ctdλ(t)

= ξe−ctdW2(t).

Hence, the force of mortality is a Gaussian process:

λ(t) = λ(0)ect + ξ

∫ t

0
e−c(u−t)dW2(u).

Moreover, we find that

∫ T

0
λ(s)ds =

λ(0)

c

(
ecT − 1

)
+ ξ

∫ T

0

∫ s

0
e−c(u−s)dW2(u)ds

=
λ(0)

c

(
ecT − 1

)
+ ξ

∫ T

0

∫ T

u
e−c(u−s)dsdW2(u)

=
λ(0)

c

(
ecT − 1

)
+
ξ

c

∫ T

0

(
e−c(u−T ) − 1

)
dW2(u)

=
λ(0)

c

(
ecT − 1

)
+
ξ

c
XT ,

with

XT =

∫ T

0

(
e−c(u−T ) − 1

)
dW2(u) ∼ N

(
0,

1

2c
e2cT − 2

c
ecT + T +

3

2c

)
.

We can also remark that

E (W1(T )XT ) = E
(∫ T

0
dW1(u)

∫ T

0

(
e−c(u−T ) − 1

)
dW2(u)

)

= ρ

(
1

c
ecT − 1

c
− T

)
,



158 Chapter 5. Twp-step financial and actuarial valuations

which leads to

corr (W1(T ), XT ) =
ρ
(

1
ce
cT − 1

c − T
)

√
T
(

1
2ce

2cT − 2
ce
cT + T + 3

2c

) ≡ ρ0.

We can then assume that

W1(T ) =
ρ0

√
T√

1
2ce

2cT − 2
ce
cT + T + 3

2c

XT +
√
T
(
1− ρ2

0

)
Z,

where Z is a standard normal r.v. independent of XT .
From

e−
∫ T
0 λ(s)ds = T p

i
x,

we find that

XT = − c
ξ

ln T p
i
x −

λ(0)

ξ

(
ecT − 1

)
.

The stock price at time T can be written as

S(1)(T ) = S(1)(0)e(r− 1
2
σ2)T+σW1(T )

= S(1)(0)e

−σρ0
√
T√

1
2c e

2cT− 2
c e
cT+T+ 3

2c

(
c
ξ

ln T p
i
x+

λ(0)
ξ (ecT−1)

)

× e(r− 1
2
σ2)T+σ

√
1−ρ2

0

√
TZ ,

= S̃(1)(0)e(r−
1
2
σ2(1−ρ2

0))T+σ
√

1−ρ2
0

√
TZ ,

with

S̃(1)(0) = S(1)(0)e

−σρ0
√
T√

1
2c e

2cT− 2
c e
cT+T+ 3

2c

(
c
ξ

ln T p
i
x+

λ(0)
ξ (ecT−1)

)
e−

1
2
σ2ρ2

0T .

Finally, we find that

EQ
[
e−rTLx+T ×max

(
S(1)(T ),K

)∣∣∣ e−
∫ T
0 λ(s)ds = T p

i
x

]

= lx T p
i
xEQ

[
e−rTK + e−rT max

(
S(1)(T )−K, 0

)∣∣∣ e−
∫ T
0 λ(s)ds = T p

i
x

]

= lx T p
i
x

(
S̃(1)(0)N(d1) + e−rTK (1−N(d2))

)
,

which ends the proof.



Chapter 6

Outlook

During the past decades, major changes have taken place in the
way risk is assessed and managed in the insurance industry. One of
the most critical risks to which insurers writing long-term business
are exposed is the risk of a mismatch between assets and liabilities.
Therefore, it is essential to determine a valuation of insurance
liabilities which is consistent to the financial market for the traded
risks on the one hand and to actuarial judgement for the non-
traded risks on the other hand.

As pointed out in Albrecher et al. (2018), determining such
valuation framework is challenging in practice for many practical
reasons: long maturity of insurance liabilities, incompleteness of
the insurance market, negative interest rates, etc. This valuation
issue leads to a variety of interesting academic and practical ques-
tions. In all modesty, this thesis studied some valuation frame-
works which can contribute to solve these valuation problems.

Hereafter, we provide a brief overview of the general results
of this dissertation. Moreover, we discuss some possibilities for
future research.

6.1 General Contribution

This dissertation introduced and studied different valuation frame-
works for the determination of a fair valuation of insurance liabili-
ties. We started in Chapter 2 by defining a fair valuation as a valu-
ation which is market-consistent (marked-to-market for hedgeable
claims) and actuarial (marked-to-model for claims independent of
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financial market evolutions). We also introduced two families of
valuations: hedge-based valuations and two-step valuations, and
we showed that fair, hedge-based and two-step valuations are iden-
tical classes of valuations. From a practical perspective, this means
that if one valuates insurance liabilities either via a hedge-based
approach or a two-step approach, this will lead to a fair valuation.
Moreover, we obtained a one-to-one hedging characterization of
fair valuations.

Chapter 3 studied more in detail a specific case of the hedge-
based valuations in a multi-period setting, namely the mean-varian-
ce hedge-based (MVHB) valuations where in the first step, the
hedge is determined by mean-variance hedging. We obtained some
characterization results and explicit decomposition formulas for
product claims (e.g. unit-linked contracts).

In Chapter 4, we generalized our fair valuation framework to
incorporate time-consistency in a full dynamic setting. We pro-
vided a complete hedging characterization for fair dynamic valu-
ations (i.e. valuations which are market-consistent, actuarial and
time-consistent). Moreover, we presented a backward iterations
scheme based on Least-Squares Monte Carlo in order to determine
explicitly the fair dynamic valuation.

Finally, Chapter 5 investigated two-step valuation operators.
We studied the two-step financial valuations as considered in Chap-
ter 2 and two-step actuarial valuations which essentially consist of
reversing the valuation order. We provided an axiomatic charac-
terization for the two-step operators, compared the two types of
two-step operators and illustrated the two-step actuarial valua-
tions on a portfolio of equity-linked life insurance.

6.2 Future Research

There are still many open questions related to the valuation of
insurance liabilities. Hereafter, we raise some questions which are
directly related to the analysis of this thesis:

• Independence assumption between financial and ac-
tuarial risks:
The actuarial condition of a fair valuation is based on claims
that are independent of financial market evolutions, for in-
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stance a survival index if we assume that mortality is inde-
pendent of the financial market. If we consider dependent
financial and actuarial risks, the actuarial condition becomes
restricted and valuation formulas are more difficult to ob-
tain. Future research is needed to study the impact of the
dependence between financial and actuarial risks on the fair
valuation and hedging of insurance liabilities (see e.g. Deel-
stra et al. (2016), Zhao and Mamon (2018)).

• The time-consistent property is too strong:
The time-consistent property used in Chapter 4 was the most
used definition of time-consistency. However, different au-
thors argue that this definition is too strong and proposed
alternative weaker notions of time-consistency, see e.g. Ro-
orda and Schumacher (2007) and Chapter 2 in Kriele and
Wolf (2014).

• Machine learning for pricing and hedging life insur-
ance liabilities:
We covered the valuation and hedging problem from a proba-
bilistic rather than a statistical approach. However, machine
learning techniques can be useful to solve these problems, see
e.g. Buehler et al. (2019) and Han et al. (2018). These meth-
ods can help to reduce the computational burden of standard
Monte Carlo methods.

• Non-linear financial pricing rule:
Standard no-arbitrage financial pricing is based on the risk-
neutral expectation that is linear. In practice, the presence
of bid-ask spread, transaction costs, model ambiguity and
limited liquidity implies that one needs to be careful with a
linear pricing rule. Further research on the impact of market
imperfection on the fair valuation is necessary.

• Fair valuation in non-life insurance:
We focused on the fair valuation in life insurance. There
remain several open problems on the determination of a
market-consistent valuation in non-life insurance which need
to be investigated further, see Wüthrich (2016).
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Bräutigam, M., Guillén, M. and Nielsen, J. P. (2017), ‘Facing up to
longevity with old actuarial methods: A comparison of pooled
funds and income tontines’, The Geneva Papers on Risk and
Insurance-Issues and Practice 42(3), 406–422.

Brennan, M. J. and Schwartz, E. S. (1976), ‘The pricing of equity-
linked life insurance policies with an asset value guarantee’,
Journal of Financial Economics 3(3), 195–213.

Brennan, M. J. and Schwartz, E. S. (1979a), ‘Alternative invest-
ment strategies for the issuers of equity-linked life insurance
with an asset value guarantee’, Journal of Business 52, 63–93.

Brennan, M. J. and Schwartz, E. S. (1979b), Pricing and Invest-
ment Strategies for Guaranteed Equity-Linked Life Insurance,
Monograph no. 7. The S. S. Huebner Foundation for Insur-
ance Education, Wharton School, University of Pennsylvania,
Philadelphia.

Buehler, H., Gonon, L., Teichmann, J. and Wood, B. (2019), ‘Deep
hedging’, Quantitative Finance pp. 1–21.
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