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Abstract
This paper considers a binaural hearing assistive device (HAD) equipped with a separate local microphone array
(LMA) for the left and right ear, as well as external microphones (XMs) that may be located within the vicinity of
this HAD. For such a system, a binaural minimum variance distortionless response (BMVDR) beamformer may
be used for noise reduction, and for the preservation of the relevant binaural speech cues, provided that a reliable
estimate of the left and right ear relative transfer function (RTF) vectors pertaining to all the microphones can
be obtained. In this paper, an alternative approach is considered, which makes use of available partial a priori
knowledge of these RTF vectors, i.e., known separate left and right ear RTF vectors for the respective LMAs
on the binaural HAD. The procedure for this approach will be discussed, which requires the estimation of
an appropriate scaling between the left and right ear RTF vectors, and the missing part of these RTF vectors
pertaining to the XMs. An experiment involving a dummy head, two behind-the-ear dummy hearing aids, and
XMs is also performed in order to evaluate the benefit of the proposed approach.
Keywords: Binaural MVDR, External Microphones, Hearing Assistive Device

1 INTRODUCTION
In noisy environments, speech intelligibility is inevitably degraded for individuals that suffer with a hearing
impairment and hence hearing assistive devices (HADs) such as hearing aids (HAs) or cochlear implants (CIs)
must perform speech enhancement tasks. In addition to the fundamental task of noise reduction, preservation
of the binaural cues, i.e., the interaural time differences (ITDs) and interaural level differences (ILDs) is also
important to maintain the spatial perception of the auditory scene.
For a binaural HAD equipped with a separate local microphone array (LMA) for the left and right ear, and a
communication link between them, the binaural minimum variance distortionless response beamformer (BMVDR)
(1) is known to exhibit substantial noise reduction and to preserve the ITD and ILD of a target speaker1. In
recent work (2, 3), such a binaural HAD has also been supplemented with an external microphone (XM) (e.g.
a wearable microphone or the microphone on a mobile device) and it was demonstrated that the XM could
contribute to additional noise reduction and preserve the relevant binaural cues. For the successful operation of
the BMVDR in this case, an estimate of the entire vector of transfer functions from the target signal at a left
ear reference microphone to all the other microphones, i.e., the left ear relative transfer function (RTF) vector,
and a corresponding right ear RTF vector is required. However, obtaining such estimates becomes increasingly
challenging in adverse acoustic conditions.
Therefore in this paper, generalising the system to include more than one XM, an alternative approach is con-
sidered, which makes use of available partial a priori knowledge of these RTF vectors, i.e., known separate left
and right ear RTF vectors for the respective LMAs on the binaural HAD (4). In such a case, it is only the

1Although, the BMVDR beamformer preserves the binaural cues for the target speaker, it distorts the binaural cues for the noise. However, in
(1), several remedies have been proposed, and hence this work will focus only on the preservation of the binaural cues for the target speaker.



estimation of an appropriate scaling between the left and right ear RTF vectors, and the missing part of these
RTF vectors pertaining to the XMs that need to be estimated.
The paper is organised as follows. In Section 2, the data model and notation are described. In Section 3, the
state of the art procedure for estimating the entire RTF vector is reviewed. In Section 4, the proposed procedure
that makes use of the partial a priori knowledge of the RTF vector is discussed. In Section 5, the proposed
procedure is evaluated using recorded audio data, and conclusions are drawn in Section 6.

2 DATA MODEL
The scenario as depicted in Figure 1 is considered, in which a user of a binaural HAD is listening to one
target speaker of interest in a noisy, reverberant environment. The binaural HAD consists of an LMA with Ma
microphones for the left ear and an LMA with Ma microphones for the right ear. Additionally, there are Me
XMs randomly placed within the room (Me = 2 in Fig.1). In the short-time Fourier transform (STFT) domain,

ya,L(k,l)
LEFT LMA RIGHT LMA

TARGET 
SPEAKER, s(k,l)

XM, ye,1(k,l)

XM, ye,2(k,l)

ya,R(k,l)

Figure 1. Scenario with a user of a binaural HAD having access to XMs, listening to the target speaker.

the microphone signals at one frequency, k, and one time frame, l, can be stacked into a vector and represented
as follows:

y(k, l) = a(k, l)s(k, l)︸ ︷︷ ︸
x(k,l)

+ n(k, l) =⇒

ya,L(k, l)
ya,R(k, l)
ye(k, l)

=

aa,L(k, l)
aa,R(k, l)
ae(k, l)

s(k, l)+

na,L(k, l)
na,R(k, l)
ne(k, l)

 (1)

where2 aa,L = [aa1,L, aa2,L, . . . aaMa,L]
T , aa,R = [aa1,R, aa2,R, . . . aaMa,R]

T , and ae = [ae1, ae2, . . . aeMe ]
T are the

acoustic transfer functions (ATFs) from the target speaker to the microphones on the left LMA, the right LMA,
and the XMs respectively. Furthermore, s is the target speaker, and na,L, na,R, and ne are the noise contributions
similarly defined as aa,L, aa,R, and ae respectively. Without loss of generality, the first microphone in each of
the LMAs is also chosen as the reference microphone:

ya1,L = eT
Ly = sa1,L +na1,L ya1,R = eT

Ry = sa1,R +na1,R (2)

where sa1,L = aa1,Ls, sa1,R = aa1,Rs, which are the speech components that need to be estimated, and eL and
eR are all-zero vectors except for a one in the left and right LMA reference microphone position respectively.
In order to perform the estimation, it is firstly convenient to re-define eq. (1) in terms of a relative transfer
function (RTF) vector, as opposed to the ATF vector, a. The RTF vector is simply the ATF vector normalised
to a reference microphone. Therefore in the binaural context, a separate RTF vector can be defined for the left
ear and another for the right ear. Hence, eq. (1) can be expressed as follows:

y = hLsa1,L +n y = hRsa1,R +n (3)

2The dependence on (k, l) is dropped for notational convenience.



where hL and hR are the RTF vectors defined as:

hL =
1

aa1,L

aa,L
aa,R
ae

=

 ha,L
ϕ ha,R
he,L

 hR =
1

aa1,R

aa,L
aa,R
ae

=

 1
ϕ

ha,L
ha,R
1
ϕ

he,L

 (4)

where ha,L =
aa,L
aa1,L

and ha,R =
aa,R
aa1,R

are the individual RTF vectors corresponding to each of the left and right

LMAs and the complex scaling, ϕ =
aa1,R
aa1,L

. It should be noted that the part of the RTF vector pertaining to the
XMs in hR is a scaled version of that in hL, where he,L = ae

aa1,L
. In fact, it can be seen that hL = ϕhR, which

means that the RTF vectors are parallel.
The speech-plus-noise spatial correlation matrix, Ryy, the noise-only correlation matrix, Rnn, and the speech-
only correlation matrix, Rxx, all ∈ C(2Ma+Me)×(2Ma+Me), are given respectively as:

Ryy = E{yyH}; Rnn = E{nnH}; Rxx = E{xxH} (5)

where E{.} is the expectation operator, H is the Hermitian transpose, and Rxx is a rank-1 correlation matrix:

Rxx = E{xxH}= σ
2
sa1,L

hLhH
L = σ

2
sa1,R

hRhH
R (6)

where σ2
sa1,L

= E{|sa1,L|2} and σ2
sa1,R

= E{|sa1,R|2} are the speech powers in the reference left and right micro-
phone respectively. It is also assumed that the speech components are uncorrelated with the noise components,
and hence Ryy = Rxx +Rnn. A perfect communication link is additionally assumed among the left and right
LMAs in the binaural HAD, and the XMs, with no bandwidth constraints and synchronous sampling.
The estimate of the speech component in the reference microphone of the left and right LMAs, i.e. the estimate
of sa1,L and sa1,R is then obtained through the linear filtering of the microphone signals, with the complex-valued
filters, wL and wR respectively:

ŝa1,L = wH
L y ŝa1,R = wH

Ry (7)

The BMVDR beamformer filters, wL and wR, are then given by:

wL =
R−1

nn hL

hH
L R−1

nn hL
wR =

R−1
nn hR

hH
R R−1

nn hR
(8)

Consequently, in order to compute these filters, estimates are required for Rnn, and the RTFs, hL, and hR.
Typically, Rnn can be estimated during periods of noise only with recursive averaging (3). Hence this paper
focuses on the estimation of hL and hR.

3 ESTIMATING THE ENTIRE RTF VECTOR
Given R̂yy and R̂nn, which are estimates of Ryy and Rnn respectively, a generalised eigenvalue decomposition
(GEVD) (5) or what is equivalently known as covariance whitening (3) can be used to estimate hL and hR. A
spatial pre-whitening operation can be firstly defined from R̂nn using the Cholesky decomposition:

R̂nn = R̂
1/2

nn R̂
H/2

nn (9)

where R̂
1/2

nn is a lower triangular matrix. Spatial pre-whitening is then performed by pre-multiplying the signal
vector of interest by R̂

−1/2

nn . For an autocorrelation matrix, spatial pre-whitening is performed by pre-multiplying
it by R̂

−1/2

nn and post-multiplying it by R̂
−H/2

nn . Using the definition of Rxx from eq. (6) and that Ryy = Rxx +Rnn,
the following optimisation problem can be considered to estimate hL (and hR by an appropriate scaling):

min
σ2

sa1,L
, hL

||R̂
−1/2

nn ((R̂yy− R̂nn)−σ
2
sa1,L

hLhH
L )R̂

−H/2

nn ||2F (10)



where ||.||F is the frobenius norm. The solution to eq. (10) then follows from an eigenvalue decomposition
(EVD) of R̂

−1/2

nn R̂yyR̂
−H/2

nn or equivalently, GEVD of the matrix pencil {R̂yy, R̂nn}:

R̂−1
nn R̂yy = UΣΣΣU−1 (11)

where ΣΣΣ is a diagonal matrix of the generalised eigenvalues arranged in descending order, and U is an in-
vertible matrix containing the corresponding generalised eigenvectors. The GEVD is also equivalent to a joint
diagonalisation of R̂yy and R̂nn:

R̂yy = QΣΣΣyQH R̂nn = QΣΣΣnQH (12)

where ΣΣΣy and ΣΣΣn are diagonal matrices, and Q = U−H is an invertible matrix. A rank-1 approximation to
(R̂yy− R̂nn) = Q(ΣΣΣy−ΣΣΣn)QH yields an estimate for Rxx, R̂xx = Qe1 eT

1 (ΣΣΣy−ΣΣΣn)e1 eT
1 QH, where e1 ∈C2Ma+Me

is an all-zero vector except for a one as the first element (and it is noted that e1 = eL). It can be shown (5)
that this corresponds to the rank-1 approximation sought from eq. (10) so that the estimates to hL and hR then
follow as:

ĥL =
Qe1

eT
LQe1

ĥR =
Qe1

eT
RQe1

(13)

Finally, a substitution of R̂nn from eq. (12) and ĥL and ĥR from eq. (13) into eq. (8) results in the correspond-
ing BMVDR filters:

ŵL = Ue1 eT
1 QHeL ŵR = Ue1 eT

1 QHeR (14)

4 USING PARTIAL A PRIORI KNOWLEDGE OF THE RTF VECTOR
As opposed to estimating the entire RTF vectors, hL, and hR, an alternative procedure may be followed if there
is a priori knowledge of the RTF vectors for the separate left and right LMA, i.e., if a suitable approximation
to ha,L and ha,R is available. For instance, such an approximation may be the measured RTF vectors for the
separate left and right LMA in an anechoic room or RTF vectors from an existing binaural noise reduction
system that uses only the LMAs. Denoting this approximation to ha,L and ha,R as h̃a,L and h̃a,R respectively,
and recalling the definitions from eq. (4), an alternative optimisation problem to eq. (10) can be considered:

min
σ2

sa1,L
, ϕ, he,L

||R̂
−1/2

nn ((R̂yy− R̂nn)−σ
2
sa1,L

 h̃a,L
ϕ h̃a,R
he,L

[h̃H
a,L ϕ∗ h̃H

a,R hH
e,L

]
)R̂

−H/2

nn ||2F (15)

where now it is only the scaling, ϕ , and the RTF vector for the XMs, he,L, which need to be found as opposed
to the entire hL as in eq. (10). As will be discussed in the following, the solution can be realised in the block
scheme of Figure 2, which consists of compressing the left and right LMA signals, an orthogonalisation oper-
ation, and finally a GEVD on a lower dimensional (C(Me+2)×(Me+2)) matrix pencil. In order to solve eq. (15),
the following blocking matrices, Ca ∈ C2Ma×(2Ma−2), Ca,L ∈ CMa×(Ma−1), Ca,R ∈ CMa×(Ma−1), fixed beamformers,
Fa ∈ C2Ma×2, fa,L ∈ CMa , fa,R ∈ CMa , and transformation matrix, T ∈ C(2Ma+Me)×(2Ma+Me) are firstly defined:

Ca =

[
Ca,L 0
0 Ca,R

]
CH

a,Lh̃a,L = 0; CH
a,Rh̃a,R = 0

Fa =

[
fa,L 0
0 fa,R

]
fH
a,Lh̃a,L = 1; fH

a,Rh̃a,R = 1
T =

[
Ca Fa 0
0 0 IMe

]
(16)

where IMe ∈ CMe×Me is an identity matrix. The first two blocks in Fig. 2 apply the transformation, TH, to y to
yield a set of blocking matrix signals, CH

a ya ∈ C2Ma−2, two compressed signals, fH
a,Lya,L and fH

a,Rya,R resulting
from the left and right fixed beamformers respectively, and the unaltered set of XM signals, ye. An alternative
spatial pre-whitening operation can then be defined by applying the transformation to R̂nn:

THR̂nnTH = LLH (17)
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Figure 2. Block scheme for a BMVDR that uses partial a priori knowledge of the RTF vectors.

where L is a lower triangular matrix. It can then be shown (6) that eq. (15) can be equivalently re-written as:

min
σ2

sa1,L
, ϕ, he,L

||L−1TH((R̂yy− R̂nn)−σ
2
sa1,L

 h̃a,L
ϕ h̃a,R
he,L

[h̃H
a,L ϕ∗ h̃H

a,R hH
e,L

]
)T L−H||2F (18)

from which the solution follows eventually from a GEVD of a matrix pencil consisting of the lower di-
mensional C(Me+2)×(Me+2) correlation matrices (6) (7) corresponding to the Me + 2 compressed signals, y =

[y
L

y
R

ye,1 . . .ye,Me]
T ∈ CMe+2. These compressed signals can be computed by performing an orthogonalisation

involving the previously transformed signals, or equivalently, with a GSC beamformer, A:

y = AHy = FH y−GHCH
a ETy (19)

with A=F−ECaG, F∈C(2Ma+Me)×(Me+2) defined as F =

[
Fa 0
0 IMe

]
, the selection matrix, E= [I2Ma |0(2Ma×Me) ]

T ,

and G ∈ C(2Ma−2)×(Me+2), which can be computed as follows:

G = (CH
a ETR̂nnECa)

−1CH
a ETR̂nnF = [ga,L ga,R ge,1 . . . ge,Me ] (20)

is comprised of the CMe+2 orthogonalisation filters in each column. As depicted in Fig. 2, ga,L and ga,R
will orthogonalise the noise components of the signals fH

a,Lya,L and fH
a,Rya,R onto the noise components of the

blocking matrix signals, and [ge,1 . . . ge,Me ] will orthogonalise the noise components of each of the respective
XMs onto the noise components of the blocking matrix signals.
A new signal model that resembles eq. (3) can in fact then be realised by substituting eq. (3) into eq. (19):

y = hLsa1,L +n y = hRsa1,R +n (21)

where hL = AHhL =
[
1 ϕ hT

e,L
]T

, hR = AHhR =
[

1
ϕ

1 1
ϕ

hT
e,L

]T
, n = AHn, and the associated correlation matrices,

Ryy = E{yyH} and Rnn = E{nnH}. These compressed signals, y, can now be used to design the BMVDR as
opposed to y. Estimates of sa1,L and sa1,R can be obtained by directly filtering y with the BMVDR filters,

w
L
∈ CMe+2 and w

R
∈ CMe+2 respectively (as in eq. (7) and depicted in Fig. 2):

w
L
=

R−1
nn hL

hH
L R−1

nn hL

w
R
=

R−1
nn hR

hH
R R−1

nn hR

(22)



Hence, similar to eq. (8), estimates are now required for Rnn, hL, and hR in order to compute these filters.
With the estimates of the correlation matrices, R̂yy = AHR̂yyA and R̂nn = AHR̂nnA, the GEVD procedure from

Section 3 then follows from the matrix pencil {R̂yy, R̂nn} to estimate hL and hR:

R̂−1
nn R̂yy = U ΣΣΣ U−1; R̂yy = Q ΣΣΣy QH; R̂nn = Q ΣΣΣn QH (23)

where ΣΣΣ is a diagonal matrix of the generalised eigenvalues arranged in descending order, and U contains the
corresponding generalised eigenvectors, ΣΣΣy, and ΣΣΣn are also diagonal matrices, and Q = U−H is an invertible
matrix. The estimates for hL and hR then follow as:

ĥL =
Q e1

eT
LQ e1

ĥR =
Q e1

eT
RQ e1

(24)

where the selection vectors, e1 = eL = [1, 0, 0(1×Me)]
T and eR = [0, 1, 0(1×Me)]

T . Finally, the substitution of R̂nn

from eq. (23) and ĥL and ĥR from eq. (24) into eq. (22) results in the corresponding BMVDR filters:

ŵ
L
= U e1 eT

1 QHeL ŵ
R
= U e1 eT

1 QHeR (25)

5 RESULTS AND DISCUSSION
In order to evaluate these algorithms, audio recordings were made in an L-shaped room of height 3.8 m, whose
longer dimensions were approximately 6 m × 5.5 m, with an estimated broadband reverberation time of 1.5 s.
Similar to Fig. 1, a Neumann KU-100 dummy head was placed in a central location of the room and equipped
with two behind-the-ear (BTE) hearing aids (HAs), each consisting of an LMA with two microphones spaced
approximately 1.3 cm apart. Denoting 0° as the azimuth direction directly in front of the dummy head and
positive angles as clockwise, two XMs (AKG-CK-97-O) were positioned such that one was at 60° and 1 m away
from the dummy head, and the other was at 20 cm below the dummy head. A Genelec 8030C loudspeaker, 1 m
from the dummy head, was used to generate the speech signal from a target male speaker (8). Four of the same
loudspeakers, facing away from the dummy head toward opposite corners, were used to generate uncorrelated
excerpts of babble noise to approximate a diffuse noise field. The speech and noises were recorded separately,
but mixed together at an input signal-to-noise ratio (SNR) of 0 dB at the reference (frontal) microphone on the
right LMA.
Four algorithms were then evaluated: (i) the BMVDR from Section 3 (BMVDR−ĥ), (ii) the BMVDR from Sec-
tion 4 (BMVDR−h̃), (iii) the BMVDR from Section 3 but only using the left and right LMA (BMVDR−ĥa),
and (iv) the BMVDR as from Section 4 but only using the left and right LMA (BMVDR−h̃a). For the process-
ing of the algorithms, the Weighted Overlap and Add (WOLA) method (9), with a Discrete Fourier Transform
(DFT) size of 128 samples, 50 % overlap, and a sampling frequency of 16 kHz was used. Using the speech
presence probability (SPP) (10), periods for which the speech was active were extracted if the SPP > 0.6, and
not active if the SPP < 0.4. R̂yy and R̂nn were then estimated accordingly via recursive averaging with an
averaging time of 1 s. Finally, the a priori RTFs, h̃a,L and h̃a,R were computed from the DFT of 128 samples
(including only the direct path component) of the measured impulse responses (IRs) from the target speaker
position to each of the left and right LMAs. The metrics used to evaluate the following experiments were the
change in speech intelligibility-weighted SNR improvement (11) (∆SI-SNR) from the input SI-SNR at LM1,
and change in binaural cue errors, ∆ITD and ∆ILD, using the auditory model from (12). As the room was
quite reverberant, the reference binaural signal for computing ∆ITD and ∆ILD was the speech signal of the
target speaker convolved with the time domain direct path IRs used to define h̃a,L and h̃a,R. All metrics were
computed in 2 s time frames with a 50 % overlap.
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Figure 3. Performance of the various BMVDR algorithms for a target speaker located at 45°. The upper plots
((a),(b),(c)) are the results for accurately estimated correlation matrices, while the lower plots ((d),(e),(f)) are
the results for less accurately estimated correlation matrices.

Figure 3 displays the results for an input signal of 13 s when the target speaker was at 45°. The upper plots
((a),(b),(c)) display the results when the SPP was computed on the speech-only signal as received by the refer-
ence microphone of the right LMA, and represents a case when R̂yy and R̂nn have been accurately estimated.
In the lower plots ((d),(e),(f)), the SPP was computed using the actual noisy signal as received by the same
microphone and represents a case when R̂yy and R̂nn have not been as accurately estimated.

Firstly, in terms of ∆SI-SNR, it can be observed that the BMVDR−h̃ and BMVDR−ĥ (i.e., algorithms that
use the LMAs along with the XMs) always demonstrate an improvement over BMVDR−h̃a and BMVDR−ĥa
(i.e., algorithms that use the LMAs only). Furthermore, the ∆ITD and ∆ILD remain relatively constant between
BMVDR−h̃a and BMVDR−h̃, as well as between BMVDR−ĥ and BMVDR−ĥ, suggesting that the inclusion
of the XMs does not contribute to any additional distortion in the binaural cues.
The impact of accurate estimation of R̂yy and R̂nn is also evident. In the upper plots ((a),(b),(c)), where R̂yy

and R̂nn have been accurately estimated, both the BMVDR−h̃ and BMVDR−ĥ perform quite similarly. In
the lower plots ((d),(e),(f)), where R̂yy and R̂nn have been estimated less accurately, the absolute values of all
metrics now indicate a generally lower performance for all algorithms. However, in such a case, it is seen
that the BMVDR−h̃ offers an improved ∆SI-SNR and maintenance of the binaural cues in comparison with
the BMVDR−ĥ. Therefore, in cases of inaccurate estimation of R̂yy and R̂nn, the approach proposed in this
paper is seen to be beneficial. The resulting audio files from this experiment may be listened to for subjective
evaluation (13).

6 CONCLUSIONS
An approach to designing a BMVDR beamformer for a binaural HAD consisting of separate LMAs for the left
and right ear, as well as XMs has been developed. As opposed to the conventional approach of estimating entire
RTF vectors, partial a priori knowledge of these RTF vectors, i.e., known separate left and right ear RTF vectors
for the LMAs on the binaural HAD was incorporated so that only the computation of an appropriate scaling and
the missing part of these RTF vectors pertaining to the XMs was required. An experiment with a dummy head,
two behind-the-ear dummy hearing aids, and XMs indicated that the proposed approach is especially beneficial
in cases where there may be inaccurate estimation of the relevant correlation matrices needed for the BMVDR
beamformer.
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