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ABSTRACT Driven by the exceedingly high data rates achieved in single-user implementations, interest
in a multi-user (MU) full-duplex (FDX) transmission for digital subscriber line (DSL) networks is surging.
However, near-end crosstalk (NEXT) is no longer avoided in such networks, and hence, appropriate dynamic
spectrum management (DSM) techniques are needed. Therefore, this paper proposes three novel DSM
algorithms for the MU FDX DSL network. First, an optimal spectrum balancing (OSB) algorithm is derived
that calculates the globally optimal resource allocation but does so at an exceedingly high computational
cost. The key to this algorithm is a novel multiple access channel broadcast channel (MAC-BC) duality
for the specific case of perfect NEXT cancellation at the distribution point unit. The two low-complexity
distributed spectrum balancing (DSB) algorithms are then proposed, for which simulations show that their
performance is very close to what is achieved by the OSB algorithm. Therefore, these DSB algorithms can
be used to estimate the achievable performance of anMU FDXDSL network. Such performance estimations
show that the FDX transmission can indeed lead to significant gains in MU DSL networks as well.

INDEX TERMS DSL, dynamic spectrum management, G.mgfast, multi-user full-duplex, vectoring.

I. INTRODUCTION
With the potential of doubling the spectral efficiency, full-
duplex (FDX) transmission for digital subscriber line (DSL)
networks is receiving increased attention. In early stages of
lab testing, single-user FDX has exceeded expectations. In
XG-FAST trials at Nokia Bell Labs in Antwerp, for instance,
aggregate data rates of 8.8Gbit/s have been achieved on a
single 30 m copper line [2]. When combined with multi-line
bonding, FDX promises aggregate data rates even exceeding
20Gbit/s. Consequently, FDX transmission will be part of
G.mgfast, the upcoming ITU-T recommendation for DSL.

This paper studies FDX transmission in multi-user (MU)
DSL networks, with a topology as illustrated in Fig. 1. The
core network of the Internet service provider (ISP) is con-
nected to the distribution point unit (DPU) through an optical
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fiber cable. In turn, the DPU is connected to N network
terminations (NTs), one for each user, where each connection
is established by means of a single twisted pair cable. At the
DPU side, these twisted pair cables are bundled together in a
cable binder. The dense packing of twisted pair cables in the
cable binder results in an electromagnetic coupling, giving
rise to interference or crosstalk. If not addressed appropri-
ately, crosstalk can severely deteriorate the DSL network’s
performance.

A distinction is often made between near-end crosstalk
(NEXT), i.e. interference generated by DPU (respectively
NT) transmitters into neighboring DPU (NT) receivers, and
far-end crosstalk (FEXT), i.e. interference generated by DPU
(respectively NT) transmitters into NT (DPU) receivers at the
other side of the DSL network. In previous DSL technologies,
the effects of NEXT and FEXT have been managed in a
dissimilar fashion.
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FEXT is typically dealt with by dynamic spectrum
management (DSM) techniques. These techniques are often
classified into two categories: spectrum coordination and
signal coordination. Spectrum coordination involves jointly
managing the transmit powers of different users, and signal
coordination or vectoring comprises coordinating multiple
users on a signal level [3]. Signal coordination techniques
require the modems of different users to be co-located, thus
introducing a difference between vectoring for upstream (US)
transmission, i.e. NT to DPU, and for downstream (DS)
transmission, i.e. DPU to NT.

In previous DSL technologies, the influence of NEXT
has mostly1 been avoided by dividing resources between
US and DS transmission using FDD [4]–[7] or TDD [8].
This paper however considers FDX transmission, in which
US and DS transmissions occur at the same time and in
the same frequency band. In this FDX setting, NEXT is no
longer avoided and should be dealt with using DSM tech-
niques. At the DPU, interfering DS transmitters and victim
US receivers are co-located. Therefore, the effects of NEXT
can be reduced with signal coordination techniques such
as NEXT cancellation. For the DSL setting, the DPU-side
NEXT is typically not much stronger than the received signal,
making it reasonable to assume perfect NEXT cancellation
at the DPU such that US receivers indeed experience no
NEXT. At the NTs however, interfering US transmitters and
victim DS receivers are not co-located, and only spectrum
coordination techniques are available to mitigate the NEXT
impact. Remarkably, the assumption of perfect DPU-side
NEXT cancellation provides for a more favorable problem
structure, which is exploited in this paper to derive an optimal
DSM algorithm for MU FDX networks.

The considered MU FDX DSL networks thus use joint
vectoring and spectrum coordination to deal with FEXT,
spectrum coordination to deal with NT-side NEXT, and echo
cancellation to deal with DPU-side NEXT. The DSM algo-
rithms developed in this paper determine optimal US and DS
transmit powers for all users, as well as optimal receive filter
and precoding vectors. Similar DSM algorithms have been
considered in [9], [10]. In [9], DSM algorithms have been
derived for FDX DSL networks with imperfect DPU-side
NEXT cancellation, yielding a problem statement that ismore
general than what is considered in this paper. The derived
algorithms are however not able to find the globally optimal
DSM strategy. In [10] perfect DPU-side NEXT cancellation
has been considered, but the derived zero-forcing precoders
and receive filters are suboptimal. Lastly, in [11] a practical
frame structure is proposed for MU FDX DSL networks by
means of alternating between two FDX operating points,
which can be provided by any DSM algorithm.

DSM algorithms for MU FDX networks have hitherto
mostly been studied in the context of wireless systems.
Relevant approaches include the WMMSE-based methods

1 ADSL and ADSL2 did support FDX transmission, but referred to it as
‘echo canceling mode’ [4], [5].

from [12]–[14], the successive convex approximation (SCA)-
basedmethods from [15]–[17], andmethods relying on a sim-
plifying precoding/receive filter design [18]–[20]. In wireless
systems however, the self-interference 2 (SI) power is orders
of magnitude stronger than the received signal power, such
that it cannot be assumed that all SI is canceled. The emphasis
in [13]–[20] is therefore strongly on residual SI modeling and
mitigation.

MAIN CONTRIBUTIONS
This paper introduces three novel DSM algorithms for MU
FDX DSL networks. A first algorithm extends previously
developed optimal spectrum balancing (OSB) algorithms for
US and DS transmission [21]–[23] to an OSB algorithm
for FDX transmission. Key is that the developed MAC-BC
duality theory 3 yields a novel FDX-OSB algorithm, which is
able to compute the globally optimal resource allocation. This
optimality result is in contrast with the OSB-type algorithm
developed in [9], which does not exploit perfect DPU-side
NEXT cancellation and, as such, cannot guarantee global
optimality.

The resulting FDX-OSB algorithm, however, exhibits an
exponential complexity in the number of users, such that it
becomes impractical for larger DSL networks. To overcome
this problem, algorithms with a polynomial complexity in the
number of users are presented. Both algorithms are based on
previously developed distributed spectrum balancing (DSB)
algorithms [24], [25]. The first algorithm, referred to as
FDX-DD-DSB, is obtained by replacing the most demand-
ing operation of FDX-OSB by an inexact low-complexity
procedure. As FDX-DD-DSB is very similar to FDX-OSB,
the performance of the two algorithms is anticipated to be
comparable as well. The second algorithm, referred to as
FDX-PD-DSB, is an SCA-based method that is not founded
on the newly developed MAC-BC duality theory. As such,
FDX-PD-DSB does not require perfect DPU-side NEXT can-
cellation, and can be applied the resource allocation problems
from [13]–[17] as well. FDX-PD-DSB yields sub-problems
that can be solved efficiently without relying on a solver
as in [15]–[17]. Simulations demonstrate that FDX-PD-DSB
exhibits better convergence characteristics than the WMMSE
algorithms as in [13], [14]. In simulations, it is demonstrated
that the low-complexity FDX-DSB algorithms achieve a sim-
ilar performance as FDX-OSB at only a fraction of its com-
putational cost. Lastly, simulations demonstrate that FDX as
such can indeed lead to significant performance gains in MU
DSL networks.

NOTATION
Upper case and lower case bold face symbols respectively
denote matrices and vectors. The N × 1 vector of zeros
(respectively ones) and the identity matrix are denoted as

2In wireless networks, DPU-side NEXT is referred to as self-interference.
3MAC and BC respectively abbreviatemultiple access channel and broad-

cast channel.
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FIGURE 1. DSL network topology. The ISP core network is connected to
the DPU through an optical fiber cable. In turn, the DPU is connected to N
NTs, where each connection is established by means of a single twisted
pair cable.

0N (1N ) and I. Furthermore, en is the n-th vector in the
standard basis of RN . The transpose, Hermitian transpose,
complex conjugate, and inverse of the Hermitian transpose
of a matrix A are respectively denoted as A T , AH, A ∗,
and A−H. The trace operator is denoted as tr(·), and diag(·)
returns the diagonal matrix with the non-zero elements given
by its argument. The null space of a matrix is denoted as
null(·). The Hadamard product of matricesA andB is denoted
asA◦B. The 2-norm and Frobenius norm are denoted as ‖·‖2
and ‖ · ‖F . Finally, the expected value operator is denoted as
IE[·], and both the cardinality of a set and the modulus of a
complex number are denoted as | · |.

II. SYSTEM MODEL
DSL employs discrete multi-tone modulation (DMT) to split
the available spectrum into a set ofK orthogonal sub-carriers,
often referred to as tones in DSL literature. It is assumed that
no inter-carrier interference (ICI) is present, such that trans-
mission can be modeled on each tone independently. Per tone
channel models are presented for US and DS transmission
in Sections II-A and II-B. Performance metrics for the DSL
network are presented in Section II-C.

A. UPSTREAM CHANNEL
US transmission in an N -user FDX DSL network with no
ICI and with perfect DPU-side NEXT cancellation can be
modeled on each tone as a multiple access channel (MAC),
i.e.

yUk = HU
kx

U
k + z

U
k ∀k. (1)

In the channel equation, the superscript ‘U’ indicates
that a US variable is considered. Furthermore, the vector
xU
k =

[
xU
k,1, . . . , x

U
k,N

] T contains the transmitted signals of
all the users on tone k . Vectors zUk and y

U
k denote the additive

Gaussian noise and received signal, and have the same size as
xU
k . Moreover,HU

k denotes the N×N US channel matrix, with[
HU
k

]
nm = hU

k,nm the transfer function between transmitter m
and receiver n evaluated at tone k .
The average symbol power of user n on tone k is defined

as sUk,n = 1fIE
[
|xU
k,n|

2
]
, with 1f the tone spacing. For each

user n, the total US transmit power is then given by

PU
n =

∑
k

sUk,n. (2)

In the above equation,
∑

k is a shorthand notation for the
summation over all elements k ∈ {1, . . . ,K }. Similarly,

∑
n

and
∏

n respectively denote the summation and (Cartesian)
product over all elements n ∈ N = {1, . . . ,N }, and

∑
m 6=n

denotes the summation over all elements m ∈ N \ {n}.
Furthermore, 6U

k = 1fIE
[
zUk z

U
k

H
]
denotes the US additive

noise covariance matrix.
In US transmission, signal coordination is possible at

the DPU. The non-linear general decision feedback equal-
izer (GDFE) receiver structure is assumed, i.e. transmitted
symbols are iteratively estimated from the received signal as

x̂U
k,n = rUk,n

H
(
yUk −

∑
m<n

hU
k,mx̂

U
k,m

)
. (3)

In the above equation, it is assumed that the decoding order
is determined beforehand and w.l.o.g. given by the user index
order. Moreover, RU

k is the tone k receive filter matrix with
rUk,n its n-th column. Likewise, hU

k,n denotes the n-th col-
umn of HU

k . The resulting signal-to-interference-plus-noise
ratio (SINR) for user n on tone k is given by

γ U
k,n(s

U
k , r

U
k,n,6

U
k )=

sUk,n| r
U
k,n

HhU
k,n|

2∑
m>ns

U
k,m| r

U
k,n

HhU
k,m|

2 + rUk,n
H6U

kr
U
k,n
(4)

with sUk = [sUk,1, . . . , s
U
k,N ]

T . Dependencies will always be
explicitly mentioned for the SINR, as well as for bit loading
variables later on. Lastly, it is noted that when a linear receiver
structure is considered, the feedback term is to be removed
from (3) and the summation in the denominator of (4) should
be over N \ {n} instead of m > n.
In (4), it is seen that only the SINR of user n depends

on rUk,n. The minimummean square error (MMSE) receiver is
therefore optimal, as it maximizes the SINR of user n, which
is given by (5) where 9U

k,n =
∑

m>ns
U
k,mh

U
k,m h

U
k,m

H
+ 6U

k
is user n’s received interference-plus-noise covariance matrix
on tone k . Substituting (5) into (4),RU

k can be eliminated from
the US SINR expression, yielding (6). In case a linear receiver
structure is considered, the summation in the definition of
9U
k,n should be over N \ {n} instead of m > n, and then (5)

and (6) still apply.

rUk,n =
(
9U
k,n
)−1hU

k,n (5)

γ U
k,n(s

U
k ,6

U
k ) = sUk,n h

U
k,n

H
(
9U
k,n
)−1hU

k,n (6)

B. DOWNSTREAM CHANNEL
DS transmission in an N -user FDX DSL network with no ICI
can be modeled on each tone independently as a broadcast
channel (BC) with an additional term for the NEXT caused
by the NTs.

yDk = HD
k

Hx̃D
k + HX

k
HxU

k + z
D
k (7)
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In the channel equation, the superscript ‘D’ indicates that DS
variables are considered. Vectors x̃D

k , y
D
k , and z

D
k have the same

size as xU
k and denote the transmitted signal, received signal,

and additive Gaussian noise.Moreover,HD
k andH

X
k denote the

Hermitian transpose of the N ×N DS channel matrix and the
N×N NT-side NEXT channel matrix, with

[
HD
k

]
mn = hD

k,nm
∗

and
[
HX
k

]
mn = hX

k,nm
∗ the complex conjugate of the transfer

function between transmitter m and receiver n evaluated on
tone k . The Hermitian transpose of the channel matrices are
used in (7) to simplify notation later on.

In DS transmission, signal coordination is possible at the
transmitter. Transmitted signals are generated using (8) where
TD
k is the precoding matrix. Furthermore, the average symbol

power of user n on tone k is defined as sDk,n = 1fIE
[
|xD
k,n|

2
]
.

For each line, the total DS transmit power is then given
by (9) where SD

k = diag(sDk ) with s
D
k = [sDk,1, . . . , s

D
k,N ]

T .
The received noise power for user n on tone k is
σ D
k,n = 1fIE

[
|zDk,n|

2
]
.

x̃D
k = TD

kx
D
k (8)

PD
n =

∑
k

[
TD
kS

D
k T

D
k

H
]
nn (9)

A non-linear transmitter structure implementing dirty
paper coding (DPC) is assumed [26], such as the Tomlinson-
Harashima precoder. DPC-based transmitters successively
encode the symbols of different users, treating interference
generated by previously encoded users as side informa-
tion and treating the interference generated by other users
as noise [27]. According to the original DPC results by
Costa [28], considering the interference generated by pre-
viously encoded users to be side information allows one to
obtain the same performance as when this interference were
not present. The resulting SINR of user n on tone k is given
as

γ D
k,n(s

U
k , s

D
k ,T

D
k , σ

D
k )

=
sDk,n|h

D
k,n

HtDk,n|
2∑

m<n
sDk,m|h

D
k,n

HtDk,m|
2 + hXX

k,n
T sUk + σ

D
k,n

(10)

where hXX
k,n is the n-th column of the power transfer matrix

of the NEXT channel on tone k , which is defined as
[HXX

k ]nm = |hX
k,nm|

2. In equation (10), it has been assumed that
the user encoding order is fixed beforehand and w.l.o.g. given
by the reversed user index order. When a linear transmitter
structure is considered, all interference terms are treated as
noise and the summation in the denominator of (10) should
be over N \ {n} instead of m < n.

C. PERFORMANCE METRICS
When the number of users N in a DSL network is large,
the interference-plus-noise received by each user is well
approximated by a Gaussian distribution. Under this assump-
tion, the relation between the SINR γ and the achievable
bit loading b, which is assumed to be a continuous variable,
is accurately modeled by (11) where log2(·) is the binary

logarithm and where the SNR-gap to capacity 0 accounts
for the difference in performance between ideal Gaussian
signaling and the practical modulation and coding scheme in
use. The 0 is additionally determined by the employed noise
margin and by the target bit error rate. Typical values for 0
lie between 9.5 dB and 10.5 dB. The data rate of user n is
calculated using (12) where fs is the symbol rate.

b(γ ) = log2
(
1+ 0−1γ

)
(11)

Rn = fs
∑
k

b(γk,n) (12)

III. FULL-DUPLEX DYNAMIC SPECTRUM MANAGEMENT
The so-called rate-adaptive DSM problem is considered,
which optimizes the network’s performance by selecting the
resource allocation sUk , s

D
k ,T

D
k for all tones k that solves the

weighted sum rate (WSR) maximization problem, i.e.

maximize
sUk , s

D
k ∈R

N
+ ∀k

TD
k ∀k

∑
n

ωU
n

∑
k

b(γ U
k,n)+

∑
n

ωD
n

∑
k

b(γ D
k,n) (13a)

subject to PU
n ≤ P

U
tot, ∀n and P

D
n ≤ P

D
tot, ∀n. (13b)

In (13a), the factor fs has been omitted for brevity, and
RN
+ , {s ∈ RN

| sn ≥ 0, ∀n}. By adjusting the real positive
weights ω in the objective function (13a), all Pareto-optimal
resource allocations can be obtained [21].

The considered WSR maximization problem (13) is sub-
ject to US an DS total per line power constraints (13b), and
to positivity constraints. Spectral mask and bit cap constraints
are not explicitly accounted for in the formulation of prob-
lem (13). Although it is possible to add these constraints to
the WSR maximization problem, their absence allows for a
notation that is not too unwieldy in Section IV and Section V.
Yet another version of problem (13) can be obtained by
abandoning the assumption of perfect DPU-side NEXT can-
cellation. After the derivation of each algorithm, it will be
indicated which modifications have to be made to adapt the
algorithms to these modified problem statements.

IV. OPTIMAL SPECTRUM BALANCING
In this section, the FDX-OSB algorithm is developed, which
finds the globally optimal DSM strategy for an MU FDX
DSL network. Contrary to the OSB-type algorithm developed
in [9], the favorable structure of the problem considered here
enables the development of a novel MAC-BC duality theory
that, in turn, allows finding the globally optimal resource
allocation. The FDX-OSB algorithm contains the MAC-OSB
algorithm [22] and BC-OSB algorithm [23] as special cases,
and relies on dual decomposition, MAC-BC duality, and an
exhaustive grid search. Each of these components is now
addressed individually.

A. DUAL DECOMPOSITION
The idea of dual decomposition is to solve the Lagrange dual
problem associated with problem (13), as defined in (14).
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Problem (14) is often referred to as the master problem, and
minimizes the Lagrange dual function q(λU,λD) with respect
to the US and DS Lagrange multipliers λU and λD. In turn,
the Lagrange dual function is defined as the maximum of the
Lagrangian over all possible resource allocations, as defined
in (15), which is referred to as the slave problem.

minimize
λU,λD∈RN+

q(λU,λD) (14)

q(λU,λD) = max
sUk , s

D
k ∈R

N
+ ∀k

TD
k ∀k

{
L
}

(15)

It is noted that in (15), the resource allocations are no longer
subject to total per line power constraints. These constraints
are incorporated into the Lagrangian, which is defined as

L =
∑
k

(
LU
k+L

D
k
)
+

∑
n

(
λU
nP

U
tot+λ

D
nP

D
tot
)

(16a)

LU
k =

∑
n

ωU
nb
(
γ U
k,n(s

U
k ,6

U
k )
)
− λU T sUk (16b)

LD
k =

∑
n

ωD
nb
(
γ D
k,n(s

U
k , s

D
k ,T

D
k,n, σ

D
k )
)

−

∑
n

sDk,n t
D
k,n

H
3DtDk,n, (16c)

with 3D
= diag(λD). Assuming the number of tones K is

large, the time sharing property of [29] holds such that the
duality gap [30] between problem (13) and problem (15) is
zero. The master problem in (14) is convex but non-smooth,
and can therefore be solved using a subgradient-based scheme
such as the subgradient method or the ellipsoid method.
Subgradients are calculated as

gU
= PU

− 1NPU
tot,

gD
= PD

− 1NPD
tot. (17)

For each new value of the Lagrange multipliers λU and λD,
the slave problem (15) is solved to obtain PU and PD. Each
term LU

k + LD
k in (15) depends on tone k resource alloca-

tion variables only. The slave problem is therefore separable
across tones, such that the Lagrange dual function can be
evaluated by solving K decoupled per tone slave problems
of the following form.

maximize
sUk , s

D
k ∈R

N
+

TD
k

LU
k + LD

k (18)

Section IV-B and Section IV-C elaborate on how the global
optimum of each per tone slave problem can be obtained.

B. MAC-BC DUALITY FOR FDX DSL
Whereas RU

k is effectively removed from the optimization
problem due to the favorable structure of γ U

k,n in (6), the same
does not go for TD

k . Therefore, a new MAC-BC duality
theory for FDX networks is now developed, which allows
transforming LD

k into an equivalent dual US Lagrangian
plus a coupling bilinear term. The proposed theory is based
on [23], [31], [32]. Using the duality theory, TD

k can then

be eliminated from γ D
k,n in the same way as RU

k is removed
from γ U

k,n.
The dual US Lagrangian is defined in (19), with the expres-

sion for the dual upstream SINR given by (20).

LdU
k =

∑
n

ωD
nb
(
γ dU
k,n(s

dU
k , t

D
k,n,3

D)
)
− σ D

k
T sdUk (19)

γ dU
k,n(s

dU
k , t

D
k,n,3

D)

=
sdUk,n| t

D
k,n

HhD
k,n|

2∑
m>ns

dU
k,m| t

D
k,n

HhD
k,m|

2 + tDk,n
H3DtDk,n

(20)

The superscript dU indicates that a variable of the dual
upstream channel is considered. By comparing (20) to (4),
and (19) to (16b), it is seen that this dual US Lagrangian cor-
responds to a MAC system with channel matrix HD

k , receive
filter matrix TD

k , noise covariance matrix 3D, Lagrange mul-
tiplier values σ D

k , and a decoding order that is the reversed
encoding order of the original DS system. Duality between
LdU
k and LD

k is established in the following proposition.
Proposition 1 (MAC-BC duality for FDX DSL): Let sUk ∈

RN
+ and TD

k such that t
D
k,n 6= 0N ∀n. Furthermore, assume that

both λD and σ D
k are strictly positive. The following statements

then hold true.
P.1 For each dual symbol power vector sdUk ∈ RN

+, a symbol
power vector sDk ∈ RN

+ exists such that equalities (21)
and (22) are satisfied.

P.2 The converse is also true, i.e. for each symbol power
vector sDk ∈ RN

+, a dual symbol power vector s
dU
k ∈ RN

+

exists such that equalities (21) and (22) are satisfied.

γ D
k,n(s

U
k , s

D
k ,T

D
k , σ

D
k ) = γ

dU
k,n(s

dU
k , t

D
k,n,3

D), ∀n (21)

LD
k = LdU

k − sUk
THXX

k s
dU
k (22)

Proof: Following the reasoning in [32], the validity of
P.1 is confirmed by construction of sDk from sdUk . P.2 can then
be proven analogously.

The symbol power vector sDk corresponding to a given sdUk
is found by solving the following system of equations, which
is constructed from and equivalent to the equalities in (21).

ZdU
k s

D
k =

(
HXX
k

T sUk + σ
D
k
)
◦ sdUk (23)

[
ZdU
k
]
nm =


− tDk,m

H
(
sdUk,nh

D
k,n h

D
k,n

H
)
tDk,m if n < m

tDk,m
H9dU

k,mt
D
k,m if n = m

0 if n > m

In (23), 9dU
k,n =

∑
m>ns

dU
k,mh

U
k,m h

D
k,m

H
+ 3D is the dual

interference-plus-noise covariancematrix of user n. Positivity
of sDk follows fromZdU

k being anM-matrix, such that its inverse
contains only non-negative elements [32], [33]. Furthermore,
summing the rows of (23) yields∑

n

sDk,n t
D
k,n

H
3DtDk,n = σ D

k
T sdUk + sUk

THXX
k s

dU
k , (24)

confirming that the equality in (22) holds. �
In order to adapt this duality result to a linear receiver

structure, the summation in the denominator of (20), as well
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as the summation in the definition of 9dU
k,n, should be over

N \ {n} instead of m < n. Furthermore, the lower triangular
elements of ZdU

k should be defined similarly to the upper
triangular elements.
Corollary 2: P.2 also holds when tDk,n = 0N for any n.
Proof: If tDk,n = 0N , then an equivalent DS resource

allocation can be obtained that achieves the same values for
LD
k and γ D

k,n(s
U
k , s

D
k ,T

D
k , σ

D
k ) ∀n, by setting tDk,n 6= 0N and

sDk,n = 0. This equivalent resource allocation satisfies the
assumptions of Proposition 1. �
Corollary 3 (Dual MAC optimality): The solution to

maximize
sUk , s

dU
k ∈R

N
+,T

D
k

LU
k + LdU

k − sUk
THXX

k s
dU
k , (25)

when transformed to the DS domain using (23), is the solution
to the original per tone slave problem in (18).

Proof: The Corollary is proven by contradiction.
Assume w.l.o.g. that a solution to problem (25) exists with
tDk,n 6= 0N ∀n. If Corollary 3 were false, a solution to
problem (18) would exist achieving a higher value forLU

k+L
D
k

than the transformed solution of (25). Corollary 2 would then
imply that a dual MAC domain resource allocation exists
achieving a value for LU

k + LdU
k − sUk

THXX
k s

dU
k that is higher

than the value achieved by the solution to (25), which is a
contradiction. �

In problem (25), TD
k can now be eliminated from γ dU

k,n in
the same way as RU

k has been eliminated from γ U
k,n in (4).

The optimal dual domain receive filter vector tDk,n is given
by (26) and substituting this expression into (20) yields the
expression for the SINR in (27).

tDk,n =
(
9dU
k,n
)−1hD

k,n (26)

γ dU
k,n(s

dU
k ,3

D) = sdUk,n h
D
k,n

H
(
9dU
k,n
)−1hD

k,n (27)

C. EXHAUSTIVE GRID SEARCH
After applying MAC-BC duality and eliminating both RU

k
and TD

k , the following simplified per tone slave problem is
obtained.

maximize
sUk ,s

dU
k ∈R

N
+

LU
k + LdU

k − sUk
THXX

k s
dU
k (28)

In problem (28),LU
k depends only on s

U
k , whereasL

dU
k depends

only on sdUk . This non-convex problem is solved by perform-
ing an exhaustive search over a grid of possible bit loading
combinations

∏
n B ×

∏
n B, with B the set of possible bit

loading values (assumed to be the same in US and DS). As
the number of points in the grid is |B|2N , the complexity of
this exhaustive search is exponential in 2N .
For each vector [bU

k
T bD

k
T ] T in the search grid, the corre-

sponding US and DS symbol powers sUk and s
dU
k are calculated,

and then the objective function of (28) is evaluated. It is noted
that bU

k (respectively bD
k ) solely depends on sUk (sdUk ), not on

sdUk (sUk ), such that sUk and LU
k (sdUk and LdU

k ) can be calculated
from bU

k (bdU
k ) independently of bdU

k (bU
k ). By calculating sUk

and LU
k (respectively HXX

k s
dU
k and LdU

k ) for each b ∈
∏

n B
beforehand, storing the obtained values in a set AU (AD),

Algorithm 1 FDX-OSB

1: Choose µ > 0, λU
∈ RN
+, λ

D
∈ RN
+, B ⊂ N, and ε > 0

2: while (|PU
n − P

U
tot| > δP & λU

n > δλ for any n) or (|PD
n −

PD
tot| > δP & λD

n > δλ for any n) do
3: for k ∈ K do
4:

{
sUk ,R

U
k , s

D
k ,T

D
k

}
← ExhSearch(λU, λD, k)

5: Calculate PU
n, P

D
n ∀n using (2), (9)

6: Update λU, λD using (17)
7: function ExhSearch(λU, λD, k)
8: Initialize AU

← ∅, AdU
← ∅, Lk ?←− inf

9: for all b ∈
∏

n B do
10: Calculate sUk , s

dU
k from b by inverting (6), (27)

11: Calculate LU
k , L

dU
k using (16b), (19)

12: Add
(
sUk ,L

U
k

)
to AU,

(
HXX
k s

dU
k ,L

dU
k

)
to AdU

13: for all (sUk ,L
U
k , s

dU
k ,L

dU
k ) ∈ AU

×AdU do
14: Set Lk ← LU

k + LdU
k − sUk

THXX
k s

dU
k

15: if Lk ? < Lk then
16: Set Lk ?← Lk , sUk

?
← sUk , s

dU
k
?
← sdUk

17: Calculate RU
k
?, TD

k
? from sUk

?, sdUk
? using (5), (26)

18: Calculate BC user powers sDk
? by solving (23)

the complexity of evaluating the objective function of (28)
for each [bU

k
T bD

k
T ] T
∈
∏

n B ×
∏

n B is kept to a minimum.
The symbol power vector sUk is obtained from bU

k by first
calculating each γ U

k,n using (11), and by subsequently invert-
ing (27). When sUk,m is known for all users m > n, sUk,n can be
calculated in closed form as

sUk,n =
γk,n

hU
k,n

H (9U
k,n)
−1hU

k,n

. (29)

Therefore, sUk,n is evaluated sequentially starting from user N
and ending with user 1. The dual symbol power vector sdUk
can similarly be obtained from bD

k . In case a linear transceiver
structure is considered, sUk (s

dU
k ) can be obtained from bU

k (b
D
k )

using an iterative calculation, as in [34].
The resulting algorithm is summarized in Algorithm 1,

and is referred to as full-duplex optimal spectrum balanc-
ing (FDX-OSB). To the best of the authors’ knowledge,
FDX-OSB is the first algorithm that is guaranteed to find
the globally optimal solution of a MU FDX resource allo-
cation problem as in (13). The complexity of FDX-OSB
mainly stems from line 14, requiring N multiplications and
N + 1 additions in each iteration. The overall complexity
of Algorithm 1 is therefore O(ISGK |B|2NN ), with ISG the
number of iterations required by the subgradient algorithm to
converge.

In the above derivation of FDX-OSB, it has been indicated
how to adapt the formulas used in Algorithm 1 when a
linear transceiver structure is considered. While Algorithm 1
applies to DSM problem (13), other versions of FDX-OSB
are obtained by including bit cap and/or spectral mask
constraints. Bit cap constraints are easily enforced by
appropriately designing the bit loading set B. US spectral
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mask constraints are easily enforced by discarding
(
sUk ,L

U
k

)
-

tuples that do not satisfy these constraints in line 12 of Algo-
rithm 1. DS spectral mask constraints however are tougher
to enforce. A possible method has been proposed in [35],
consisting of dualizing theDS spectral mask constraints when
formulating the Lagrange dual problem (14). Finally, prob-
lem (13) can be altered by relaxing the assumption of perfect
DPU-side NEXT cancellation. In this case however, the solu-
tion strategy employed by FDX-OSB cannot be adopted to
find the global optimum, as the proposed MAC-BC duality
transformation is not able to eliminate sDk from the resulting
US LagrangianLU

k , and hence one should resort to suboptimal
algorithms as in [9].

V. DISTRIBUTED SPECTRUM BALANCING
With FDX-OSB, finding the global optimum of problem (13)
comes at the price of an exceedingly high complexity. In this
section, two algorithms are presented that exhibit a lower
complexity, but are only able to find a local optimum of
problem (13). The algorithms are FDX adaptations of the
distributed spectrum balancing (DSB) algorithm that has pre-
viously been developed for both the spectrum coordination
problem [24] and for the US and DS joint signal and spec-
trum coordination problem [25], [34], [35]. A brief intro-
duction to the DSB algorithm structure is given first, and
then the two DSB algorithms are presented for the FDX
channel.

A. DSB ALGORITHM
The DSB algorithm [24], [25] comprises an iterative pro-
cedure to solve optimization problems of the following
form.

maximize
X

imax∑
i=1

fi(X)

subject to Xi ∈ Xi, ∀i (30)

In problem (30), the decision variable X is comprised of
multiple coordinate blocksXi, i.e.X =

[
X1

T , . . . , X T
imax

] T .
Each function fi has a (possibly empty) coordinate block Xi
associated with it in which fi is concave. Moreover, fi is con-
vex in eachXj with j ∈ {1, . . . , imax}\{i}. In each iteration of
the DSB algorithm the objective function of (30) is replaced
by the sum of surrogate functions f̃i, each depending only on
a single coordinate blockXi. The resulting surrogate problem
has the following form.

maximize
X

imax∑
i=1

f̃i(Xi; X̄)

subject to Xi ∈ Xi, ∀i (31)

In (31), X̄ denotes the current value of X. The surrogate
functions f̃i are defined as

f̃i(Xi; X̄) , fi
(
[ X̄1

T
, . . . , Xi

T , . . . , X̄imax

T
]
T )
− tr(Ai

HXi)

(32)

with Ai = −∇Xi ∗
(∑

j 6=i fj(X)
)∣∣
X=X̄ the negative conjugate

cogradient of
∑

j 6=i fj(X), and where Ai
HXi is assumed to be

Hermitian such that its trace is real. By iteratively solving sur-
rogate problems (31), which are separable across coordinate
blocks Xi, the DSB algorithm can find a stationary point of
the original problem as in (30).

It is noted that the acronym ‘DSB’ is adopted from
[24], [25], but that the same algorithmic structure is also
known as successive convex approximation (SCA). SCA
algorithms that have DSB as a special case and for which
theoretical convergence results are available include BSUM,
SJBR, and FLEXA. Convergence results have first been
established for the ‘block successive upper-bound minimiza-
tion’ (BSUM) algorithm [36], which updates only a sin-
gle coordinate block Xi after solving (31). This sequential
mode of operation is referred to as Gauss-Seidel updating.
More recently, convergence results have been established for
Algorithm 1 from [37], hereafter referred to as SJBR, which
updates all coordinate blocks by taking a step in the direc-
tion of the solution to (31). The parallel mode of operation
employed by SJBR is referred to as Jacobi updating. It is
noted that convergence of SJBR requires each f̃i to be strongly
convex, guaranteeing that all subproblems as in (31) have a
unique solution. Convergence has also been established for
the ‘inexact flexible parallel algorithm’ (FLEXA) [38], which
is similar to SJBR but can also be applied to non-smooth
problems.4

B. FDX DUAL DOMAIN DSB ALGORITHM
The first FDX DSB algorithm is obtained by applying the
DSB algorithm to problem (28). Three different types of
functions fi are identified.

f U
n (s

U
k ) = ω

U
nb
(
γ U
k,n(s

U
k ,6

U
k )
)
− λU

ns
U
k,n (33a)

f dU
n (sdUk ) = ω

D
nb
(
γ dU
k,n(s

dU
k ,3

D)
)
− σ D

k,ns
dU
k,n (33b)

f X(sUk , s
dU
k ) = − s

U
k

THXX
k s

dU
k (33c)

The coordinate block associated with f U
n is sUk,n and the coor-

dinate block associated with f dU
n is sdUk,n. An empty coordinate

block is associated with f X. Functions f U
n , f

dU
n , and f X are

concave in their associated coordinate blocks and convex in
the other coordinate blocks. The gradients Ai in the corre-
sponding surrogate functions are real scalars and calculated
as

aU
k,n =

∑
m<n

hU
k,n

H
8̄

U

k,mh
U
k,n + [HXX

k ]row ms̄dUk (34a)

adU
k,n =

∑
m<n

hD
k,n

H
8̄

dU

k,mh
D
k,n + hXX

k,n
T s̄Uk , (34b)

4 The results in [36]–[38] are derived for problems with real variables.
In [39] however, it is argued that same convergence results apply to real prob-
lems that are obtained from a complex problem by using separate variables
for the real and imaginary parts of the complex variables. As is suggested
in [39] however, one can equivalently work directly with complex variables
by means of ‘Wirtinger derivatives’ (as will be done in Section V-C). For
more information on optimization of real functions in complex variables,
the reader is referred to [40].
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Algorithm 2 Approximate Evaluation of (28) for
FDX-DD-DSB
1: function DSBsearch(λU, λD, k)
2: Choose s̄Uk ∈ RN

+, s̄
dU
k ∈ RN

+, ετ ∈ (0, 1), set τ ← 1
3: while LU

k + LdU
k − sUk

THXX
k s

dU
k not converged do

4: Calculate aU
k,n and a

dU
k,n ∀n using (34)

5: Calculate sUk,n and s
dU
k,n ∀n using (36)

6: Set s̄Uk ← (1− τ )s̄Uk + τ s
U
k

7: Set s̄dUk ← (1− τ )s̄dUk + τ s
dU
k

8: Set τ ← τ (1− τετ )
9: Calculate RU

k , T
D
k from sUk , s

dU
k using (5), (26)

10: Calculate sDk by solving (23)

where 8U
k,m (respectively 8dU

k,m) expresses the sensitivity
of user m’s weighted bit loading to changes in its (dual)
interference-plus-noise covariance matrix 9U

k,m (9dU
k,m).

8U
k,n = log(2)−1ωU

n

sUk,n (9
U
k,n)
−1hU

k,n h
U
k,n

H (9U
k,n)
−1

0 + sUk,n h
U
k,n

H (9U
k,n)
−1hU

k,n

(35a)

8dU
k,n = log(2)−1ωD

n

sdUk,n (9
dU
k,n)
−1hD

k,n h
D
k,n

H (9dU
k,n)
−1

0 + sdUk,n h
D
k,n

H (9dU
k,n)
−1hD

k,n

(35b)

When a linear transceiver structure is considered, the sum-
mations in (34) should be over N \ {n} instead
of m < n.

The resulting surrogate problem is separable across all
variables, and can therefore be solved independently for
each user. From the KKT conditions of the surrogate prob-
lem, a closed form solution for sUk,n and sdUk,n is obtained,
given by

sUk,n =
[
log(2)−1ωU

n

λU
n + a

U
k,n
−

0

hU
k,m

H (9̄
U

k,m)
−1
hU
k,m

]+
, (36a)

sdUk,n =
[
log(2)−1ωD

n

σ D
k,n + a

dU
k,n
−

0

hD
k,m

H (9̄
dU

k,m)
−1
hD
k,m

]+
, (36b)

where [·]+ , max{·, 0}.
The resulting algorithm, referred to as full-duplex dual

domain distributed spectrum balancing (FDX-DD-DSB),
is obtained from Algorithm 1 by replacing the exhaus-
tive search function by Algorithm 2. The complexity of
Algorithm 2 is determined by the calculation of (9̄

U

k,n)
−1

and (9̄
dU

k,n)
−1

in line 4, where the calculation of a single
matrix inverse results in a complexity of O(N 3). However,
by using the Sherman-Morrison identity [41], (9̄

U

k,n)
−1

can

be obtained from (9̄
U

k,n+1)
−1

with a complexity of only
O(N 2). All other calculations in lines 4-8 of Algorithm 2
have a per user complexity of at most O(N 2). Each itera-
tion of Algorithm 2 therefore has a complexity of O(N 3).
This results in a total complexity of O(ISGKIDSBN 3) for

FDX-DD-DSB, where IDSB is the number of iterations
required by the DSB algorithm to converge.

Algorithm 2 adopts the SJBR step size rule for updating the
symbol power variables in lines 6-8. As such, FDX-DD-DSB
is a special case of the SJBR algorithm [37], such that it
inherits SJBR’s convergence properties. SJBR converges to a
stationary point of problem (30), provided that the following
convergence conditions are satisfied [37]:

C.1 each Xi is closed and convex;
C.2 each fi is continuously differentiable;
C.3 the gradient of each fi is Lipschitz continuous;
C.4

∑imax
i=1 fi is coercive with respect to

∏
i Xi;

C.5 each surrogate f̃i is uniformly strongly convex for
all X̄.

Convergence conditions C.1 and C.2 are trivially satis-
fied. Moreover, C.3 follows from 8U

k,n and 8dU
k,n being

continuously differentiable. Assuming λU
n > 0 for all n,

C.4 and C.5 are satisfied as the set of possible solutions
to (36a) and (36b) is upper bounded by (λU

n log(2))
−1ωU

n and
(σ D
n log(2))

−1ωD
n [37]. In case λU

n = 0 for any n, C.4-C.5
are possibly not satisfied, and one should resort to Gauss-
Seidel iterations with ετ = 0. The resulting algorithm is then
a special case of the BSUMalgorithm,which hasmore lenient
convergence conditions.

In [29], [34], it has been pointed out that the subgradient
method, which FDX-DD-DSB uses to update λU and λD,
is not guaranteed to convergewhen q(λU,λD) is evaluated only
approximately. As Algorithm 2 does not necessarily return
the global maximizer of problem (28), FDX-DD-DSB is not
guaranteed to converge. FDX-DD-DSB has however been
observed to converge in every scenario for which it has been
executed.

In the derivation of FDX-DD-DSB, it has already been
indicated how to adapt Algorithm 2 when a linear transceiver
structure is considered. Other versions of FDX-DD-DSB can
be obtained by including bit cap or spectral mask constraints.
Bit cap constraints are readily enforced by using the following
augmented bit loading function bcap(γ ) = max{b(γ ), bmax}

or, equivalently, by upper bounding sUk,n (or s
dU
k,n) as in [35].

Convergence of the Gauss-Seidel version of FDX-DD-DSB
is still guaranteed in this case, be it not to a stationary point.
US spectral mask constraints are easily enforced by replacing

[·]+ in (36a) with [·]
smask
k
0 = max{min{·, smask

k }, 0}. This
constraint enforces C.4 and C.5, guaranteeing that Algo-
rithm 2 converges to a stationary point. DS spectral mask con-
straints, however, are tougher to enforce. A possible method
has been proposed in [35], consisting of dualizing the DS
spectral mask constraints when formulating the Lagrange
dual problem. In this case however, the time sharing prop-
erty cannot be invoked to warrant a zero duality gap lead-
ing, in some cases, to problematic convergence behavior.
Finally, problem (13) can be altered by relaxing the assump-
tion of perfect DPU-side NEXT cancellation. In this case
however, as for FDX-OSB, the employed solution strategy
cannot be adopted here, as the MAC-BC duality transfor-
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mation is not able to eliminate sDk from the resulting US
Lagrangian LU

k .

C. FDX PRIMAL DOMAIN DSB ALGORITHM
A second FDX DSB algorithm is obtained by applying the
DSB algorithm to a reformulated version of the original
optimization problem (13), similar to [37], [42]. This refor-
mulation is obtained by introducing DS transmit covariance
matrices QD

k,n = sDk,nt
D
k,n t

D
k,n

H. It is seen that any transmit
covariance matrix must be positive semidefinite (QD

k,n � 0),
Hermitian (QD

k,n
H
= QD

k,n), and rank one. Employing QD
k,n,

the SINR for user n can be expressed as

γ D
k,n(s

U
k ,Q

D
k , σ

D
k,n) = (ψD

k,n)
−1 hD

k,n
HQD

k,nh
D
k,n, (37)

with ψD
k,n =

∑
m<n h

D
k,n

HQD
k,mh

D
k,n + hXX

k,n
HsUk + σ D

k,n
the received interference-plus-noise power and with
QD
k = [QD

k,1
T , . . . , QD

k,N
T ] T . The total DS transmit power

for line n is given by

PD
n =

∑
k

∑
m

[
QD
k,m
]
nn. (38)

Using (37) and (38), tDk,n and sDk,n can be fully eliminated
from (13), which then becomes a function of QD

k,n instead.
It is noted that, even though the reformulated optimization
problem will not explicitly assert that QD

k,n should be rank
one, any QD

k,n yielded by FDX-PD-DSB does indeed satisfy
this condition (see proof Lemma 4).When a linear transceiver
structure is considered, the summation in the definition of
ψD
k,n should be over N \ {n} instead of m < n.
In the reformulated optimization problem, two different

types of functions fi are identified.

f U
n (s

U
1, . . . , s

U
K ) = ω

U
n

∑
k

b
(
γ U
k,n(s

U
k ,6

U
k )
)

(39a)

f D
n (s

U
1,Q

D
1, . . . , s

U
K ,Q

D
K )=ω

D
n

∑
k

× b
(
γ D
k,n(s

U
k ,Q

D
k , σ

D
k,n)

)
(39b)

The coordinate block associated with f U
n is [sU1,n, . . . , s

U
K ,n]

T

and the one associated with f D
n is [QD

1,n
T , . . . , QD

K ,n
T ] T .

For ease of notation, define f U
k,n(s

U
k ) = ωU

nb
(
γ U
k,n(s

U
k ,6

U
k )
)
,

f D
k,n(s

U
k ,Q

D
k ) = ωD

nb
(
γ D
k,n(s

U
k ,Q

D
k , σ

D
k,n)

)
, as well as the

corresponding surrogate functions f̃ U
k,n(s

U
k,n; s̄

U
k,n, Q̄

D
k ) and

f̃ D
k,n(Q

D
k,n; s̄

D
k,n, Q̄

D
k ). From [42], it is known that functions

f U
n and f D

n are concave in their associated coordinate blocks
and convex in the other coordinate blocks. The gradients
in the resulting surrogate functions are given by aU

n
T
=

[aU
1,n, . . . , a

U
K ,n] and AD

n
T
= [AD

1,n
T , . . . , AD

K ,n
T ] with

aU
k,n =

∑
m<n

hU
k,n

H
8U
k,mh

U
k,n +

∑
m

φD
k,mh

XX
k,mn (40a)

AD
k,n =

∑
m>n

φD
k,mh

D
k,m h

D
k,m

H
, (40b)

where 8U
k,m is defined as in (35a) and where φD

k,m expresses
the sensitivity of the weighted bit loading for user m to

changes in its interference-plus-noise power ψD
k,m.

φD
k,n = log(2)−1ωD

n

hD
k,n

HQ̄D
k,nh

D
k,n

ψ̄D
k,n(0ψ̄

D
k,n + hD

k,n
HQ̄D

k,nh
D
k,n)

(41)

When a linear transceiver structure is considered, the sum-
mations in (40) should be over N \ {n}, instead
of m < n or m > n.
When functions fi are identified as in (39), the WSR

maximization problem (13) does not fit the DSB problem
structure from (30) due to the feasible space of the DS trans-
mit covariance matrices being non-separable. As a result,
the convergence results from [36]–[38] no longer apply. Nev-
ertheless, convergence results for the non-separable case have
recently become available [39], [43] and, more importantly,
the DSB algorithm still leads to a simple solution strategy.

Despite the surrogate problem being non-separable across
DS users, it is still separable across US users, i.e. the surrogate
problem can be independently solved for each US user. The
per user US surrogate problems can be further decoupled over
tones by dual decomposition. The resulting USLagrange dual
problem

minimize
λUn∈R+

qU
n(λ

U
n) (42)

is one-dimensional and convex, such that a simple bisection
search algorithm can be used. As the US surrogate prob-
lem is convex and a primal feasible point exists, the dual-
ity gap between the surrogate problem and (42) is zero
[30, Section 5.2.3], removing the necessity of invoking
the time sharing property to have a zero duality gap. The
Lagrange dual function is defined as

qU
n(λ

U
n)=

∑
k

max
sUk,n

{
f̃ U
k,n(s

U
k,n; s̄

U
k , Q̄

D
k )−λ

U
ns

U
k,n

}
+

∑
n

λU
nP

U
tot,

(43)

The optimal sUk,n is given by (36a) with aU
k,n calculated as

in (40a) instead of (34a) [25]. As the duality gap is zero,
the solution to the US surrogate problem is given by the
unique maximizer in (43) for the optimal λD from (42)
[30, Section 5.5.5].
The surrogate problem is non-separable across DS users.

However, the Lagrange dual decomposition decouples the
problem not only across tones, but also across users. The DS
Lagrange dual problem is given by

minimize
λD∈RN+

qD(λD), (44)

where the Lagrange dual function qD(λD) is defined as

qD(λD) = 1N
T λDPD

tot

+

∑
k

∑
n

max
QD
k,n�0

Hermitian

{
f̃ D
k,n(Q

D
k,n; s̄

D
k , Q̄

D
k )− tr(3DQD

k,n)
}
.

(45)
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As before, a closed form expression for the per tone per user
maximizer in (45) is available [42], i.e.

tDk,n = (AD
k,n +3

D)−1hD
k,n (46a)

sDk,n =
[
ωD
n log(2)

−1
− 0ψ̄D

k,n (h
D
k,n

HtDk,n)
−1

hD
k,n

HtDk,n

]+
(46b)

QD
k,n = sDk,nt

D
k,n t

D
k,n

H
. (46c)

What remains is to solve the dual problem (44). As before,
one possibility is to use a subgradient scheme. The dual func-
tion qD(λD) is however not only convex, but also continuously
differentiable on its domain (see Appendix A, Proposition 5).
More efficient gradient descent schemes can therefore be
employed, constituting a vast improvement over the subgra-
dient method.

The DS dual problem can be further simplified by remov-
ing the positivity constraint on λD, which is justified by
observing that any solution of the DS surrogate problemmust
satisfy the total power constraints with equality. Indeed, for
any DS resource allocation with PD

n < PD
tot, the objective

function value of the surrogate problem can be increased
by adding ξen en H to QD

k,N , with ξ > 0.5 The inequality
constraints in the DS surrogate problem can thus be replaced
with equality constraints, resulting in an unconstrained dual
problem. As such, methods for unconstrained optimization
can be used. We opt for a simple gradient descent algorithm
with Armijo backtracking, which, assuming the starting point
λD is dual feasible and given the fact that q(λD) is continuously
differentiable on its domain, is guaranteed to converge to the
global optimum of (44) [44].

The resulting algorithm, referred to as full-duplex pri-
mal domain distributed spectrum balancing (FDX-PD-DSB),
is summarized in Algorithm 3. The complexity of Algo-
rithm 3 is determined by the calculation of QD

k,n ∀k, n in
line 26, which involves determining a matrix inverse (46a)
resulting in a complexity of O(N 3) for each QD

k,n.
However, by using the Sherman-Morrison identity [41],
(AD

k,n−1 +3
D)−1 can be obtained from (AD

k,n +3
D)−1 with

a complexity of only O(N 2). All other calculations involved
in line 26 have a per user per tone complexity of at most
O(N 2). Each iteration of line 26 therefore results in a
complexity of O(KN 3). With IDSB the number of iterations
required by the DSB algorithm to converge and IGD the num-
ber of iterations required by the gradient descent algorithm to
converge, the resulting total complexity of FDX-PD-DSB is
O(IDSBIGDKN 3).

In order to establish convergence guarantees for the algo-
rithms of [39], [43], assumptions are made that are similar
to C.1-C.5. The surrogates of FDX-PD-DSB do however not
satisfy C.5, such that the results in [39], [43] do not warrant

5 This argument assumes hDk,nN 6= 0. If there does not exist any tone k
for which this is true, the same argument can be repeated for user N − 1,
as hDk,nN = 0 and (40b) imply en ∈ null(AD

k,N−1).

Algorithm 3 FDX-PD-DSB

1: Choose s̄Uk ∈ RN
+, s̄

D
k ∈ RN

+, and set T̄
D

k ← HD
k
−H
∀k

2: Set Q̄D
k,n← s̄Dk,n t̄

D

k,n t̄
D

k,n
H
∀k, n

3: Choose ετ ∈ (0, 1), and set τ+← 1, τ−← 1− τ+

4: while
∑

n ω
U
nR

U
n +

∑
n ω

D
nR

D
n not converged do

5: Calculate aU
k,n and A

D
k,n ∀k, n using (40)

6: sUn← mUS(aU
n, 9̄

U

n) ∀n
7: {QD

1, . . . ,Q
D
N } ← mDS(AD

1, . . . ,A
D
N , ψ̄

D

1, . . . , ψ̄
D

N )
8: Decompose QD

k,n into s
D
k,n and t

D
k,n ∀k, n

9: Set s̄Un← τ−s̄Un + τ
+sUn, s̄

D
n← τ−s̄Dn + τ

+sDn ∀n
10: Set t̄Dk,n← τ− t̄Dk,n + τ

+tDk,n ∀k, n
11: Set τ+← τ+(1− τ+ετ ), τ−← 1− τ+

12: function mUS(aU
n, 9̄

U

n)
13: Choose search interval [λU

min, λ
U
max] ⊂ R+

14: while |
∑

k s
U
k,n − P

U
tot| > δP & λU

n > δλ do
15: Set λU

← (λU
min + λ

U
max)/2

16: Calculate sUk,n ∀k for λ
U using (36a)

17: if PU
n > PU

tot then λ
U
min← λU else λU

max← λU

18: function mDS(AD
1, . . . ,A

D
N , ψ̄

D

1, . . . , ψ̄
D

N )
19: Choose [gprev]n > δP ∀n, λD

∈ RN
+, µmax � 0

20: Set qprev← qD(λD) using (45), QD
k,n ∀k, n from (46)

21: while |[gprev]n| > δP for any n do
22: Set gprev← PD

tot1N −
∑

k
∑

n diag{Q
D
k,n}

23: Set µD
← µmax, qnew← qprev

24: while qnew > qprev − µArmijoµ
D
‖gprev‖

2
2 do

25: Set µD
← µD/2 and 1λD

←−µDgprev
26: Set qnew← qD(λD

+1λD) using (45),
QD
k,n ∀k, n from (46)

27: Set qprev← qnew, λD
← λD

+1λD

convergence of the primal variables sUk,n andQ
D
k,n.

6 All simu-
lations have however shown monotonically increasing WSR
values that converge after only a few iterations.

In the derivation of FDX-PD-DSB, it has already been
indicated how to adapt Algorithm 3 when a linear transceiver
structure is considered. Other versions of FDX-PD-DSB
can be obtained by including bit cap or spectral mask con-
straints. Bit cap constraints are readily enforced by using
the augmented bit loading function of Section V-B. Spectral
mask constraints can be enforced as for FDX-DD-DSB, i.e.

by replacing [·]+ in (36a) with [·]
smask
k
0 in US and by dualizing

the spectral mask constraints in DS. It is noted that, due to
the convexity of the surrogate problems, the duality gap for
DS will still be zero, such that dualizing the DS spectral
mask constraints will not lead to problematic convergence
behavior. Finally, problem (13) can be altered by relaxing
the assumption of perfect DPU-side NEXT cancellation. One
can readily adapt FDX-PD-DSB to networks with imperfect
DPU-side NEXT cancellation by adding a term to (40b)
modeling the DPU-side NEXT influence. As such,

6Even though strong convexity cannot be established, the results in
Appendix A do imply that the surrogate problems have unique solution.
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FIGURE 2. A DSL network in a 10-user fiber to the building scenario,
which is considered to be the main use case for G.mgfast.

FDX-PD-DSB can be applied to the resource allocation prob-
lems of wireless FDX systems [13]–[17] as well. It is noted
that this is in contrast with FDX-OSB and FDX-DD-DSB,
which were both founded on the MAC-BC duality theory
from Section IV that required perfect DPU-side NEXT
cancellation.

Another important property of FDX-PD-DSB is that after
each outer iteration, a new feasible resource allocation is
provided. Therefore, FDX-PD-DSB is a so-called real-time
DSM algorithm, as defined in [45]. From FDX-PD-DSB,
other low complexity real-time DSM algorithms for FDX
DSL networks can be derived. For example, an iterative
waterfilling (IWF) type algorithm [46] can be obtained
by setting aU

k,n and AD
k,n to 0. In addition, constant off-

set autonomous spectrum balancing (CO-ASB) type algo-
rithms [47], [48] can be obtained by setting aU

k,n and AD
k,n to

a predetermined constant value.
An important difference between the proposed SCA

method, and the state-of-the-art (SoA) SCA methods in
[15]–[17] is highlighted. Assuming the multi-carrier exten-
sions of the SCA algorithms in [15]–[17] also entail solv-
ing the Lagrange dual of their respective surrogate problems,
the SoA SCA methods rely on iterative solvers to deal with
the evaluation of their respective Lagrange dual functions.
This is in stark contrast with the evaluation the Lagrange dual
function in FDX-PD-DSB, which can be done analytically
and has a computational complexity that ismainly determined
by a single matrix inversion in (46a).

VI. SIMULATION RESULTS
In this section the performance of the proposed DSM algo-
rithms, as well as that of FDX transmission itself, is analyzed
for the two DSL networks illustrated in Fig. 2. Each network
consists of a fiber to the building (FTTB) scenario with
N = 10. Such FTTB scenarios are considered to be the
main use case for G.mgfast. The channel matrices for these
scenarios are modeled based on lab measurements. The main
difference between the considered scenarios is the separa-
tion length, i.e. the length of the copper line separating
two NTs (e.g. the separation length of user 1 and user 2

in Fig. 2a is 10 m). Due to the larger separation length in
scenario (a), the NEXT signals travel a longer distance before
the copper lines meet, such that more attenuation has taken
place when interference sets in.

As ITU-T recommendations for G.mgfast are not yet
publicly available, the employed system model parameters
are chosen conform G.fast recommendations [8], [49]. The
maximum total per line power is PU

tot = PD
tot = 4 dBm,

and spectral mask constraints range from −65 dBm/Hz to
−79 dBm/Hz. The tone spacing, symbol rate, and SNR-gap
are 1f = 51.75 kHz, fs = 48 kHz, and 0 = 10 dB. A bit cap
of bmax = 15 is assumed. The number of tones is K = 4096,
corresponding to a bandwidth of up to 212 MHz. In addi-
tion to perfect DPU-side echo cancellation, perfect per user
NT-side echo cancellation is assumed.

A. DSB OPTIMALITY GAP
The performance differences between the OSB and DSB
algorithms are analyzed for a network consisting of the
first three users of Fig. 2b. All weights are chosen as
ωU
n = ωD

n = 1, and no bit cap or spectral mask con-
straints are taken into account. A linear transceiver structure
is considered, which in simulations is often seen to result
in the existence of multiple stationary points in the objec-
tive function. A system with a linear transceiver structure
is therefore more adversarial for the DSB algorithms than
one using a non-linear transceiver structure. Hence, it will
highlight the performance difference between the OSB and
DSB algorithms.

Executing FDX-OSB for a 3-user FDX DSL network
is no easy feat. To achieve convergence in an acceptable
amount of time, the dual function (15) is evaluated using 7
parallel computational threads, each employing GPU accel-
eration to evaluate line 14 of Algorithm 1. Using this
setup, a single evaluation of the dual function (15) takes
about 3 min.

The bit loading resulting from FDX-OSB, FDX-DD-DSB,
and FDX-PD-DSB are shown in Fig. 3, and the achieved
per user data rates are given in Table 1. Both Fig. 3 and
Table 1 demonstrate that the solutions found by the DSB
algorithms are very similar to the solution found by the OSB
algorithm. The WSR obtained from the DSB algorithms is
even slightly higher than the WSR obtained from the OSB
algorithm. This is explained by the discrete grid search of
FDX-OSB, which, due to its finite granularity, can result in
a slightly suboptimal solution when compared to the DSB
algorithms.

B. CONVERGENCE OF THE DSB ALGORITHMS
The convergence of the proposed DSB algorithms is ana-
lyzed for the 10-user FTTB network of Fig. 2a. Spectral
mask and bit cap constraints are considered to be inactive.
For various DS weights (with ωU

n = 1 − ωD
n), the total

number of iterations I and the final WSR value are shown
in Fig. 4. For FDX-PD-DSB, I equals the number of outer
DSB updates times the number of gradient updates, i.e.

106610 VOLUME 7, 2019



J. Verdyck et al.: Optimal DSM Algorithms for MU FDX DSL

FIGURE 3. Illustration of the optimality of DSB algorithms. It is seen that the solution obtained by DSB algorithms closely resembles the one
obtained by the OSB algorithm.

TABLE 1. Data rate and WSR for a three user FDX DSL network ( Gbit/s).

I = IDSBIGD, whereas for FDX-DD-DSB, it equals the num-
ber of subgradient updates times the average number of inner
DSB iterations i.e. I = ISGIDSB. In the stop criteria of the
Lagrange multiplier searches, the power constraints should
be satisfied with an accuracy of δP = 10−3PU

tot = 10−3PD
tot.

The DSB algorithms are stopped when the relative objec-
tive function increase between two consecutive iterations
drops below 10−3. FDX-PD-DSB is initialized with non-
linear QRD-based zero-forcing precoder matrices and a flat
spectrum satisfying all power constraints, and FDX-DD-DSB
is initialized by setting all symbol powers equal to zero.

The total number of iterations and final WSR values are
given in Fig. 4. For each DSB algorithm, three modes of
operation are considered, which differ in the way the DSB
algorithm updates its coordinate blocks in each iteration. The
following update rules are considered.

• Data points labeled DDJacobi and PDJacobi are obtained
by executing FDX-DD-DSB and FDX-PD-DSB with
full Jacobi-style updates, as described in Algorithm 2
and Algorithm 3, with ετ = 0.

• Data points labeled DDpart. Jacobi and PDpart. Jacobi are
obtained by letting FDX-DD-DSB and FDX-PD-DSB
alternate between updating all US and all DS variables,
with ετ = 0.

FIGURE 4. Number of iterations required for convergence and final
weighted sum rate value, obtained by executing FDX-DD-DSB and
FDX-PD-DSB for the network of Fig. 2a.

• Data points labeled DDGS are obtained by updating the
power variable of only a single user after each iteration
of the DSB algorithm, with ετ = 0.
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FIGURE 5. Average achievable US and DS rates of FDX transmission in the
DSL networks of Fig. 2, relative to maximum achievable TDD rates.

• Data points labeled PDετ = .1 are obtained by exe-
cuting FDX-PD-DSB with full Jacobi-style updates,
as described in Algorithm 3 with ετ = 0.1.

In Fig. 4, a single iteration of the DSB algorithm, as counted
in I , consists of updating the resource allocation variables of
all users exactly once.

Fig. 4 shows that the final WSR obtained from
FDX-DD-DSB and FDX-PD-DSB are very similar. The num-
ber of iterations required for convergence can however differ
quite significantly. It should however be noted that, even
though the per iteration complexity of the different algorithms
is the same,7 I is not a perfect indicator for the actual number

7 This is not true for FDX-DD-DSB with Gauss Seidel updating, which
has a per iteration complexity ofO(N4).

of additions and multiplications that are executed by each
algorithm. Indeed, in practical implementations, the execu-
tion time of FDX-PD-DSB is often seen to be in the order of
tens of seconds, whereas executing FDX-DD-DSB usually
requires several minutes.

It is seen that for ωD > 0.5, FDX-PD-DSB requires
more iterations to converge than for ωD < 0.5. In these
cases, it takes more iterations of the DSB algorithm to
make the resource allocation converge on some of the tones.
However, as each DSB iteration in FDX-PD-DSB updates
all resource allocation variables, this increased number of
DSB iterations has a significant impact on the execution
time. By contrast, each DSB iteration in FDX-DD-DSB
updates only the resource allocation of a single tone,
such that slower convergence on some of the tones does
not significantly affect the execution time of the entire
algorithm.

Additional simulations have shown that FDX-PD-DSB on
average requires far fewer iterations to solve a single dual
problem than FDX-DD-DSB due to the employed gradient
descent algorithm. An advantage of the gradient descent
algorithm with backtracking is that it requires no parameter
tuning. Indeed, convergence of the subgradient method is
quite sensitive to its parameters, especially to the choice of
the step size µ, and finding good values for them requires
some experience.

The convergence of FDX-PD-DSB is also compared to that
of the WMMSE algorithm. For this purpose, the WMMSE
algorithm from [13] is adapted such that it can be applied to
multi-carrier systems by using techniques from [12]. As the
system model in [13] includes neither an SNR-gap nor non-
linear transceivers, simulations will be executed for0 = 0 dB
and linear transceiver structures. The complexity ofWMMSE
is dominated by solving the Lagrange dual problem of the
downstream precoding matrix optimization, where the most
expensive operation in each iteration is a matrix inversion.

FIGURE 6. Convergence of the WMMSE and FDX-PD-DSB algorithms. Dashed curves correspond to WMMSE, solid curves to FDX-PD-DSB.
Both algorithms are executed for the 10-user FTTB network of Fig. 2a. Both plots consider the same G.fast network, but are obtained using
different values for the noise floor: σk,n = −140 dBm/Hz for the left plot, and σk,n = −110 dBm/Hz for the right plot.
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As such, an outer iteration of WMMSE has the same asymp-
totic complexity as an outer iteration of FDX-PD-DSB.

The convergence experiments are performed for the
10-user FTTB network of Fig. 2a. FDX-PD-DSB is exe-
cuted with ετ = 0.01. Both FDX-PD-DSB and WMMSE
are initialized with linear ZF precoders and with the same
randomly generated transmit powers. For various DS weights
(with ωU

n = 1 − ωD
n), the obtained normalized8 WSR val-

ues are given in the left plot of Fig. 6. It is observed that
FDX-PD-DSB has converged after 50 iterations, whereas
WMMSE has not yet converged after 200 iterations. In
addition, a significant performance gap between the two
algorithms is observed, especially for larger values of ωD

n :
after 200 iterations, FDX-PD-DSB outperforms WMMSE
by 2% to 30%. These observations can be explained by the
high SINR values at the optimum, a condition under which
WMMSE is seen to suffer from a very slow convergence.
When the SINR values are artificially decreased by raising
the noise floor from −140 dBm/Hz to −110 dBm/Hz, as has
been done to obtain convergence results in the right plot of
Fig. 6, WMMSE is observed to converge faster. However,
even in a setting more favorable to WMMSE, FDX-PD-DSB
still requires far fewer iterations to obtain a high WSR.

C. PERFORMANCE OF MU FDX DSL NETWORKS
This section evaluates the FDX performance of DSL net-
works in the scenarios of Fig. 2. Both spectral mask and
bit cap constraints are considered to be active. Fig. 5 shows
the obtained results, consisting of the average achievable US
and DS rates of FDX transmission, relative to the maximum
achievable TDD rates.

The simulation reveals significant performance gains of
FDX transmission over standard TDD transmission. In the
10-user networks of Fig. 2, for instance, at an average US
rate of 50%, FDX transmission achieves a DS rate of 77.5%
and 89% in scenarios (a) and (b) respectively, instead of
the 50% rate achieved by TDD. The slightly higher gain in
scenario (a) is due to the larger separation length between
the NTs on each floor, resulting in more attenuated NT-side
NEXT signals. Moreover, scenario (a) with only one active
user per floor, i.e. N = 4, results in weaker overall NEXT,
yielding even larger FDX gains (see Fig. 5). Even the extreme
case with only 2 active users almost results in a doubled
performance, close to the theoretical optimum. These results
demonstrate that the level of NEXT interference at the NTs
is the performance determining factor for MU FDX transmis-
sion in G.mgfast networks.

VII. CONCLUSION
Three novel DSM algorithms have been presented for theMU
FDXDSL network. First, an OSB algorithm has been derived
which calculates the globally optimal resource allocation,
but does so at an exceedingly high computational cost. Two

8The normalization is such the best normalizedWSR value found by either
WMMSE or FDX-PD-DSB is equal to 1.

low-complexity DSB algorithms have then been proposed,
for which simulations have shown that their performance
is very close to what is achieved by the OSB algorithm.
These DSB algorithms have then been used in performance
simulations, which show that FDX transmission can indeed
lead to significant performance gains in MU DSL networks.

APPENDIX A
DIFFERENTIABILITY OF THE DUAL FUNCTION IN (45)
Differentiability of the dual function is strongly related to
uniqueness of the maximizers in (45). It is therefore first
proven that when 3D

� 0, all maximization problems in (45)
have a unique solution. Differentiability of q(λD) then follows
from standard results in convex analysis.
Lemma 4 (Maximizer uniqueness): Optimization problem

maximize
Q�0

Hermitian

log
(
1+ hHQh

)
− tr(YHQ), (47)

with h 6= 0N and YH positive definite Hermitian, has a
unique solution, which furthermore is a rank-1 matrix.

Proof: The proof is based on the proof of [42, Propo-
sition 1]. Let LLH denote the Cholesky factorization of Y.
Furthermore, factorize Q = TTH where T is an N × N
matrix. Defining T̃ , LHT, the following problem is equiv-
alent to (47).

maximize
T̃

log
∣∣∣I+ T̃

H
L−1hhHL−HT̃

∣∣∣− tr(T̃ T̃
H
)

Let U6UH denote the eigendecomposition of the Hermitian
matrix L−1hhHL−H. After defining T̂ , UHT̃, the follow-
ing problem is obtained, which is still equivalent to (47).

maximize
T̂

log
∣∣∣I+ T̂

H
6T̂

∣∣∣− tr(T̂ T̂
H
)

As 6 contains only a single non-zero element [6]ii = σ ,
the problem (47) simplifies to

maximize
T̂

log
(
1+ σ‖[T̂]rowi‖22

)
− ‖T̂‖2F . (48)

Equation (48) implies that any optimal T̂ has non-zero ele-
ments only in its ith row, as any non-zero element in T̂ that
is not on the i-th row decreases the objective function value
of (48). Therefore, problem (48) simplifies to

maximize
[T̂]rowi

log
(
1+ σ‖[T̂]rowi‖22

)
− ‖[T̂]rowi‖22,

Observe that any optimal [T̂]rowi must satisfy
‖[T̂]rowi‖22 = [1− σ −1]+. Therefore, any optimal T̂ yields

Q = L−HUDUHL−1

with D containing only a single non-zero element
[D]ii = [1− σ −1]+. The solution to (47) is thus unique and
rank-1. �
Proposition 5 (Continuous differentiability qD): If hD

k,n 6=

0N ∀k, n, then the dual function qD(λD) defined by (45) is
continuously differentiable on its domain.
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Proof: First, it is argued that the domain of qD is given by
{λD
∈ RN
+ | λ

D
n > 0∀n}. Then it is shown that on its domain,

qD is continuously differentiable.
If any λD

n ≤ 0, then the objective of the maximiza-
tion in (45) can be made arbitrarily large by choosing
QD
k,N = �en en H, with � → +∞.9 The objective of the

maximization in (45) is therefore unbounded such that λD is
outside domain of qD. For any λD

∈ {λD
∈ RN

+ | λ
D
n > 0∀n}

however, Lemma 4 implies that a finite maximizer exists,
such that qD(λD) is finite also.

To prove that qD is continuously differentiable on its
domain, introduce

Fk,n(QD
k,n) =


−f̃ D

k,n(Q
D
k,n; s̄

D
k , Q̄

D
k ) if QD

k,n � 0,
and QD

k,n= (QD
k,n)

H

+∞ otherwise

and its conjugate function [50, Chapter 11]

F∗k,n(Y) , sup
QD
k,n

{
tr(YHQD

k,n)− Fk,n(Q
D
k,n)

}
.

Using this definition of F∗k,n(Y), (45) can be rewritten as

qD(λD) =
∑
k

∑
n

F∗k,n
(
− diag(λD)

)
+ 1N

T λDPD
tot.

From [50, Theorem 11.8] it is known that the subdifferential
of F∗k,n(Y) is given by the solution set of the optimization
problem defining the conjugate function, i.e.

∂F∗k,n(Y) = argmax
QD
k,n

{
tr(YHQD

k,n)− Fk,n(Q
D
k,n)

}
.

Lemma 4 implies that ∂F∗k,n(Y) is a singleton whenever Y is
negative definite and Hermitian, i.e. F∗k,n(Y) is differentiable
at any negative definite Hermitian Y. Moreover, the proof of
[50, Theorem 11.8] mentions that ‘‘∂F∗k,n(Ȳ) is singleton if
and only if F∗k,n(Y) is strictly differentiable at Ȳ’’. F

∗
k,n(Y) is

thus strictly differentiable on the open set of negative definite
Hermitian matrices, implying that F∗k,n(Y) is continuously
differentiable on the same set [50, Corollary 9.19]. It imme-
diately follows that qD(λD) is continuously differentiable on
its domain. �
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