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Abstract 35 
Purpose: To assess the use of deep learning (DL) for computer-assisted glaucoma identification, and the 36 

impact of training using images selected by an active learning strategy, which minimizes labeling cost. 37 

Additionally, this study focuses on the explainability of the glaucoma classifier. 38 

Methods: This original investigation pooled 8433 retrospectively collected and anonymized color optic 39 

disc-centered fundus images, in order to develop a deep learning-based classifier for glaucoma 40 

diagnosis. The labels of the various deep learning models were compared with the clinical assessment by 41 

glaucoma experts. Data were analyzed between March and October 2018. Sensitivity, specificity, area 42 

under the receiver operating characteristic curve (AUC), and amount of data used for discriminating 43 

between glaucomatous and non-glaucomatous fundus images, on both image and patient level. 44 

Results: Trained using 2072 color fundus images, representing 42% of the original training data, the 45 

trained DL model achieved an AUC of 0.995, sensitivity and specificity of respectively 98.0% (CI 95.5%–46 

99.4%) and 91% (CI 84.0%–96.0%), for glaucoma versus non-glaucoma patient referral. 47 

Conclusions: These results demonstrate the benefits of deep learning for automated glaucoma detection 48 

based on optic disc-centered fundus images. The combined use of transfer and active learning in the 49 

medical community can optimize performance of DL models, while minimizing the labeling cost of 50 

domain-specific mavens. Glaucoma experts are able to make use of heat maps generated by the deep 51 

learning classifier to assess its decision, which seems to be related to inferior and superior neuroretinal 52 

rim (within ONH), and RNFL in superotemporal and inferotemporal zones (outside ONH).  53 

Key words: glaucoma detection, deep learning, fundus image, artificial intelligence 54 

Introduction 55 
Glaucoma is currently responsible for approximately 12% of all cases of irreversible vision loss 56 

(Kapetanakis et al. 2006). The number of patients is expected to increase in our ageing society. 57 

Predictions indicate that over 110 million people worldwide may be diagnosed with the disease by 2040 58 

(Tham et al. 2014). Glaucoma is a neurodegenerative disease characterized by retinal ganglion cell loss 59 

as a result of multiple factors, including high intraocular pressure, optic nerve ocular blood flow 60 



dysregulation and neurotoxicity. Progressive optic nerve fiber damage leads to visual field (VF) loss, 61 

which often remains unnoticed by the patient because the initial VF loss is peripheral and is compensated 62 

by the overlapping VF of the contralateral eye as well as by a compensatory ‘filling-in’ of these zones by 63 

the brain. The resulting lack of early symptoms implies that a significant number of individuals remain 64 

undiagnosed, even in high-income countries. Besides VF testing, structural assessment of the optic nerve 65 

head (ONH) and retinal nerve fiber layer (RNFL) is crucial in the diagnosis and follow-up of glaucoma. 66 

Optical coherence tomography (OCT) and fundus photography are two complementary imaging 67 

modalities, with the latter allowing qualitative analysis like disc hemorrhages and color changes. General 68 

population screening for glaucoma is currently not common practice (Ervin et al. 2012), as there is no 69 

sufficient evidence of its cost-effectiveness to date (Tuulonen 2010; Burr et al. 2014). With the prospect of 70 

a growing population affected by glaucoma, a thorough reassessment of glaucoma care is warranted. 71 

Ophthalmology is pioneering with future possible application of artificial intelligence (AI) (Ting et al. 2018). 72 

Gulshan et al. (2016) developed a convolutional neural network (CNN) for the detection of diabetic 73 

retinopathy (DR) from fundus images, scoring areas under the receiver operating characteristic curves 74 

(AUCs) of 0.991 and 0.990 on two validation sets. More recently, van der Heijden et al. (2018) reported 75 

an AUC of 0.94 on a referral task for DR in a prospective study with nearly 900 patients. This pivotal 76 

study led to FDA clearance of the first commercial automated grading tool for referable DR using deep 77 

learning. Automated detection of age-related macular degeneration from color fundus images using a 78 

pretrained deep learning encoder on the large public AREDS data set was independently described by 79 

Burlina et al. (2018) and Grassman et al. (2018). 80 

Automated glaucoma detection from fundus imaging has been actively studied prior to deep learning, with 81 

the majority of techniques relying on hand-crafted features, such as the vertical cup-to-disc ratio, 82 

extracted from fundus images. Deep learning architectures for glaucoma have been reported on topics 83 

including optic disc and cup segmentation (Fu et al. 2018), VF prediction (Wen et al. 2018), and 84 

automated glaucoma detection using small data sets (Shibata et al. 2018; Ahn et al. 2018; Muhammad et 85 

al. 2017; Asaoka et al. 2016; Maheshwari et al. 2017; Matsopoulos et al. 2008). In 2015, the first results 86 



on glaucoma classification with deep learning were published, using two data sets (<2000 images) (Chen 87 

et al. (2015). More recently, Li et al. (2018) described automated glaucoma detection using 48116 fundus 88 

images from an Asian population, reporting high sensitivity (95.6%), specificity (92.0%), and AUC (0.986) 89 

on a validation set of more than 8000 images using pretrained deep learning encoders. The main strength 90 

of their work is the recruitment of a large number of trained ophthalmologists, who graded the entire set of 91 

fundus images for signs of glaucoma.  92 

The current paper reports on the development of a glaucoma prediction model. Optic disc changes are 93 

initially subtle and can be challenging to detect by a human grader. Our access to glaucomatous fundus 94 

images – labeled based on a complete ophthalmologic examination (tonometry, OCT or confocal 95 

scanning laser ophthalmoscopy) – allows the deep learning encoder to learn subtle features in fundus 96 

images of early/moderate stage glaucoma patients. Hence, the first objective of this study was to develop 97 

and validate a deep learned glaucoma classifier using color fundus images from a patient population, 98 

measured against clinical diagnosis.  99 

The second objective was to explore the added-value of active learning (Settles, 2009) on top of deep 100 

learning for automated glaucoma detection. Active learning is a special case of semi-supervised learning 101 

that aims to leverage uncertainty information from an unlabeled set in order to predict from which 102 

unlabeled images the classifier would benefit the most if they would become labeled. True labels, 103 

especially in the medical community, can be difficult to obtain. By employing an active learning system 104 

that maximizes classification performance, while minimizing the number of required labels, data sets and 105 

labeling efforts can be used more efficiently. 106 

The third and final objective was to inspect the trained model’s decision process using interpretable heat 107 

maps. DL models learn concepts from the data itself, omitting the need for manual feature extraction, and 108 

leading to state-of-the-art results, but lower transparency in understanding the classifier’s decision 109 

process. Heat maps that visualize the image areas that contributed the most towards glaucoma 110 

classification might assist in opening the black box of the trained deep learning system.  111 



Methods 112 

Image and Label Acquisition 113 
All 30° optic disc-centered color fundus images of 1620x1444 resolution were captured with a Zeiss 114 

VISUCAM (Carl Zeiss Meditec, Jena, Germany) and used retrospectively in the current study. The 115 

glaucomatous fundus images (6651) originate from 1353 unique patients (±4.9 images per patient) 116 

imaged at the glaucoma clinic of the University Hospitals Leuven (Belgium) during several consultations 117 

between 2009 and 2017. Over 60% of patients went to follow-up consultations, leading to images taken at 118 

different points in time, which can differ due disease progression, hence useful for the model. The vast 119 

majority of fundus images (1614) from 403 non-glaucoma (normal) individuals (±4 images per individual) 120 

stem from a data set collected at three different locations in the context of an awareness campaign during 121 

the World Glaucoma Week 2018 that took place between March 11th and 17th. Screening sessions were 122 

organized at different Belgian hospitals (Brussels, Leuven and Bruges), and were aimed at raising public 123 

awareness on the disease, with eligible participants restricted to age 40 or above. The images of the 124 

healthy subjects at the screening sessions were taken at the same time, and show no signs of retinal 125 

changes. However, they do hold additional information because of small changes due to focus, lighting, 126 

eye movement etc. Additionally, a set of normal fundus images (168) from 88 individuals (±1.9 images per 127 

individual, both eyes when applicable) were sourced from a 2016 glaucoma screening program at the 128 

University Hospitals Leuven. This resulted in a total set of 1782 images of 491 non-glaucoma individuals. 129 

For all images, information provided to data processor was limited to an anonymized patient identifier and 130 

glaucoma type. The glaucoma diagnoses (following ICD standards) linked with the fundus images were 131 

obtained through a full ophthalmologic examination. Patients were subjected to neuroretinal rim and 132 

nerve fiber layer analysis using either OCT (Spectralis OCT; Heidelberg Engineering, Heidelberg, 133 

Germany) or confocal scanning laser ophthalmoscopy (Heidelberg retinal tomography; HRT; Heidelberg 134 

Engineering, Heidelberg, Germany), tonometry (Goldmann Applanation Tonometry; Haag-Streit AT900; 135 

Köniz, Switzerland) and visual field testing (Humphrey Visual Field Analyzer; Carl Zeiss Meditec, Jena, 136 

Germany). The glaucoma experts are aware of the so-called red and green disease surrounding OCT 137 

results and do verify the actual images to look for any artifacts or other sources of misinterpretation and 138 

check the reliability of the analysis. The transition HRT to Spectralis OCT device rolled out in 2015. 139 



Patients that were followed up prior to the switch are still imaged with HRT to ensure consistent 140 

progression analysis. Visual field testing at the glaucoma clinic of UZ Leuven is achieved through 141 

Humphrey or Octopus standard automated perimetry. Clinicians look for typical glaucomatous visual field 142 

defects such as wedge shape defects, steps or nasal breakthrough. The glaucoma experts at UZ Leuven 143 

incorporated progression analysis when available, to ensure accurate glaucoma diagnosis. The images 144 

sourced from the screening program were evaluated by two glaucoma experts without the aid of OCT and 145 

VF tests, but did include a slit lamp biomicroscopic examination including fundoscopy by a glaucoma 146 

expert.  147 

Image Preprocessing 148 
All 8433 images were manually inspected by two independent retinal image experts to control for quality, 149 

omitting images without visible optic disc. Because of the high-quality glaucoma labels based on a full 150 

ophthalmological exam, even poor images can be used during training, to increase the robustness of the 151 

deep learning model. This quality control does not match the quality that human experts require for 152 

diagnosis, hence the task being carried out by retinal image experts with experience in deep learning in 153 

ophthalmology. Quality assessed images deemed fit for analysis were initially center cropped to a square 154 

of 1016x1016, removing any risk of influence caused by the image border, and subsequently resized to 155 

224x224 to match the input layer of the ResNet-50 (He et al. 2016) neural network architecture.  156 

Color fundus images are characterized by a large intra-image variance in intensity levels mainly due to 157 

the curvature of the retina. Therefore, the images were convolved with a Gaussian kernel (30x30) to 158 

estimate its background, and this was deducted from the original image. The result is a data set of 159 

standardized fundus images, as illustrated in the top left of Figure 1.  160 

In this study, data augmentation was implemented to artificially increase the number of original images 161 

used to train the CNN. Augmentation techniques included in the training process of the final model were: 162 

horizontal flip, brightness shift, and minor elastic deformation. All image augmentations were randomly 163 

generated at the start of each mini-batch, as can be seen in the top right of Figure 1.  164 



Transfer Learning 165 
This study used the publicly available Keras (v2.2.0, TensorFlow v1.4.1 backend) ResNet-50 encoder 166 

pretrained on ImageNet (Deng et al. 2009), followed by additional layers to increase regularization. The 167 

complete deep neural network counted 182 layers of mathematical operations including convolutions and 168 

batch normalization (see supplementary material for full network details). During training, all pretrained 169 

encoder layers were frozen, except for the last 12 layers, to allow the model to learn features relevant for 170 

glaucoma detection. Standard binary cross entropy was used as cost function, and the Adam (Kingma & 171 

Ba, 2015) optimizer was used with a constant learning rate of 0.0001.  172 

Active Learning 173 
The employed ResNet-50 encoder features over 25 million parameters, requiring a high amount of unique 174 

training data to reach its full potential. This study opted for uncertainty sampling as the active learning 175 

criterion because of its widespread application in image classification (Joshi et al. 2009).  176 

Uncertainty sampling refers to selecting new samples based on their close distance to the decision 177 

boundary set by the classification system, which corresponds to a higher uncertainty. By querying these 178 

labels first, the classifier is expected to reduce its uncertainty on these data, more quickly converging to a 179 

stable solution. To benchmark the performance of this heuristic, this study also conducted an experiment 180 

in which data to be labeled are sampled at random (see Figure 1 and supplementary material for 181 

sampling details). 182 

Saliency maps 183 
The Keras Visualization Toolkit (Kotikalapudi, 2017) was used to generate saliency maps. Saliency maps 184 

for deep learning accentuate the pixels (colored reddish) that contribute the most to the classification 185 

output, i.e. if that pixel were to change, the classification output would be likely to change as well 186 

(Simonyan, Vedaldi & Zisserman, 2014). The generated saliency maps of (1) randomly selected images 187 

classified correctly by the trained model, and (2) the false positives (FP) and false negatives (FN) were 188 

subsequently examined by two blinded glaucoma experts. 189 



In order to reveal a pattern, saliency maps of thirty oculus dextrus fundus images were manually aligned 190 

and averaged. The average saliency map was divided into six zones commonly used in ONH analysis, 191 

with differences in saliency intensity quantified. 192 

Evaluation metrics 193 
All predictions by the deep learning models were evaluated against the ground truth label provided by the 194 

University Hospitals Leuven. AUC was selected as main performance metric, with specificity and 195 

sensitivity also reported. The evaluation phase was conducted using the SciPy Python library (Jones, 196 

Oliphant & Peterson, 2001). 197 

Results 198 
A total number of 7038 images (83.5% of originally pooled number of images) of 1775 patients passed 199 

the manual image quality assessment and were further used in this study. Selected images of 1775 200 

patients were allocated to training (70%; 1244 patients; 4935 images), validation (10%; 177 patients, 679 201 

images), and test set (20%; 354 patients, 1424 images), based on anonymized patient identifier, ensuring 202 

that all images from the same patient were to be found in the same class. All glaucoma detection 203 

experiments were evaluated on the validation set of 679 images as proxy to select the optimal state of 204 

trainable parameters.  205 

Final results are reported on the independent test set of 1424 unique images, corresponding to 354 206 

individuals. For patient level prediction, all glaucoma predictions of images belonging to the same patient 207 

are averaged, and then classified based on the 0.5 cut-off. Results on the patient level were considered 208 

more appropriate for interpretation of the results, as referral decisions would be made on the patient level. 209 

Table 1 outlines classification results for glaucoma detection (glaucoma vs non-glaucoma, abbreviated by 210 

GLC and NO) for the active learning experiments and baseline model with all training images and labels 211 

included at start of the training process. Confusion matrix and performance metrics are given, computed 212 

over the original image with test-time augmentation (TTA). The latter corresponds to randomly 213 

augmenting the image tenfold, using the same techniques as in training, followed by averaging the 214 

prediction probabilities in order to decrease prediction uncertainty. The use of TTA led to reductions in 215 

AUC error up to 14%. 216 



Final models for the two active learning experiments were selected at 2072 training images, due to the 217 

marginal improvements when using additional data (Figure 1, graph bottom right). After seeing 42% 218 

(2072 images) of the training data, the model following the active learning strategy achieved an AUC of 219 

0.995, with sensitivity at 98% and specificity at 91% on the test set, clearly benefitting from the employed 220 

heuristic that leveraged uncertainty information (Table 1). The performance gap is the most prominent 221 

when comparing the specificity of both models, with the random sampling technique yielding a modest 222 

84% on patient level.  223 

The baseline model trained with all original 4935 training images (accompanied by a large set of artificial 224 

images following data augmentation) obtained an AUC of 0.996 on patient referral level. Sensitivity and 225 

specificity reach 99.2% and 93%, respectively, corresponding to a low number of false negatives (2) and 226 

false positives (7). The grouping of images at the patient level led to a reduction in misclassification. 227 

Images of misclassified patients were reviewed by two ophthalmologists specialized in glaucoma. False 228 

positives could be grouped into (1) subpar image quality due to blurriness or artefacts like eye lashes (n = 229 

4) and (2) signs of other ocular diseases like macular drusen (n = 1) and (3) peripapillary atrophy (n = 2). 230 

The fundus image of one false negative patient did not display any clear signs of glaucoma onset, while 231 

the other one was a true FN. 232 

The saliency analysis, aimed at explaining the classifier’s decision process, is given in Figure 2. Careful 233 

analysis of over 500 saliency maps by two glaucoma experts revealed a recurrent pattern of elevated 234 

saliency in inferotemporal and superotemporal zones, either within (early/moderate stage, remaining 235 

neuroretinal rim) or outside (late stage, complete thinning) the ONH. This recurrent pattern was 236 

subsequently confirmed through the averaging of thirty optic disc-aligned saliency maps. 237 

Discussion 238 
This study resulted in an accurate deep learning based glaucoma classifier, achieving patient referral 239 

AUC of 0.995 on 1424 test images from 354 individuals, with only 42% (2072 images) of the complete 240 

training set (4935 images) used. The joint forces of transfer and active learning foster potential in the 241 



domain of glaucoma classification from fundus images, allowing model training with a 58% reduction in 242 

labeling requirements. 243 

The development of a baseline model trained with all available training data (4935 images) and transfer 244 

learning yielded an AUC of 0.996, sensitivity and specificity of 99.2% and 93%, on the test set. The merits 245 

of transfer learning in the field of automated glaucoma detection using fundus images have been 246 

illustrated using both small (Shibata et al. 2018; Ahn et al. 2018) and large (Li et al. 2018; Christopher et 247 

al. 2018) (>5000 images) data sets. Li et al. (2009) trained a CNN for glaucoma classification using a data 248 

set of 48116 images, reporting AUC, sensitivity and specificity of 0.986, 95.6% and 92%, respectively. 249 

While the efforts to reach a labeled data set of this size are to be commended, one could question 250 

whether the same performance can be reached in a more cost-effective manner, with significantly less 251 

labeled fundus images used during training. Annotated medical image data are hard to gather, with 252 

images and associated glaucoma diagnosis employed in this study generated over several years. The 253 

field of active learning encompasses a set of techniques that accelerate training by querying experts for 254 

labels that would benefit the classification system the most. In this study, the addition of an active learning 255 

component resulted in a model with 42% of the data used, while still attaining an AUC of 0.995 on patient 256 

referral.  257 

Two trained glaucoma clinicians analyzed more than 500 saliency maps, accompanied by the original 258 

glaucomatous images, and indicate a recurrent pattern of salient regions in the inferotemporal and 259 

superotemporal zones neighboring the ONH. These regions likely correspond to the RNFL areas that are 260 

affected as a result of glaucoma. The hypothesis of a recurrent pattern of elevated saliency in 261 

inferotemporal and superotemporal regions was supported by a statistical analysis using the manually 262 

aligned average of 30 randomly selected saliency maps (Figure 2). The center part (disc area) of the 263 

average saliency map provides additional evidence on a significant concentration of salient regions in the 264 

inferior, temporal and superotemporal region of the ONH. The latter partly matches the findings described 265 

by Christopher et al. (2018), who used an occlusion-based strategy to reveal salient regions in inferior 266 

and superior zones within the disc. This study is the first to indicate that regions outside the ONH could 267 



be valuable in glaucoma classification using deep learning. We aim to further investigate the importance 268 

of RNFL defects in glaucoma classification from fundus images in future work.  269 

Manual image quality assessment led to 83.5% of available fundus images being actually of sufficient 270 

quality for analysis in this original investigation. Two retinal image experts graded each image, omitting 271 

those with an excessive presence of camera artefacts or missing optic nerve head. Image quality is 272 

essential to ensure proper functioning of the convolutional neural network. In this study, the latter is 273 

backed up by the analysis of false positives and false negatives by two ophthalmologists (performed in a 274 

blind manner), who indicated subpar image quality to be the culprit in several cases.  275 

This study has several limitations. The class distribution, with over 70% glaucomatous images, is far from 276 

the real-life prevalence one would encounter at screening sessions. The selected data imbalance is due 277 

to the small availability of non-glaucomatous images, which are often not stored in hospitals. In addition, a 278 

large set of the glaucoma images are intermediate or late stage (based on neuroretinal rim assessment), 279 

while an important application of glaucoma classification with deep learning could be early detection. 280 

Finally, the models trained and validated in this study used images of mainly Caucasian patients that 281 

were captured with a fundus camera device from one vendor. To overcome this limitation, we are 282 

extending our work by validating and refining our current model using heterogenous data sets obtained 283 

through international collaborations, with the goal to develop a model suitable for global screening.  284 

Conclusions 285 
This study achieves state-of-the-art results for automated glaucoma referral with a 60% decrease in 286 

labeling cost through the combination of transfer learning, careful data augmentation, and uncertainty 287 

sampling, a heuristic commonly used in the domain of active learning. Our iterative sampling process 288 

provides novel evidence that deep learning can achieve excellent performance in glaucoma classification, 289 

even when using a limited amount of labeled training data. These findings should motivate research 290 

groups that have access to less data to help to advance the field of artificial intelligence applied to 291 

ophthalmology. Finally, this study provides novel insights into the decision-making process of the trained 292 

deep learning glaucoma classifier through the averaging of saliency maps, which seem to be highlighting 293 



inferior and superior neuroretinal rim thinning (within ONH) as well as RNFL defects in superotemporal 294 

and inferotemporal zones (outside ONH).  295 
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Tables 314 
 315 

Table 1. Glaucoma detection with transfer and active learning – quantitative results 316 

Model  Confusion matrix Metrics  

Uncertainty sampling 
(2072 training images; 42% of 
training set) 

Im
ag

e 

tru
e 

predicted 
 NO GLC 

NO 324 47 
GLC 42 1011 

 

Sensitivity  
Specificity  
AUC  

96% 
87% 
0.983 

Pa
tie

nt
 

tru
e 

predicted 
 NO GLC 

NO 91 9 
GLC 5 249 

 

Sensitivity  
Specificity  
AUC 

98% 
91% 
0.995 

Random sampling 
(2072 training images; 42% of 
training set) 

Im
ag

e 

tru
e 

predicted 
 NO GLC 

NO 305 66 
GLC 46 1007 

 

Sensitivity  
Specificity  
AUC  

96% 
81% 
0.972 

Pa
tie

nt
 

tru
e 

predicted 
 NO GLC 

NO 84 16 
GLC 5 249 

 

Sensitivity  
Specificity  
AUC 

98% 
84% 
0.986 

Baseline ResNet-50 CNN 
(4935 training images, complete 
training set) 

Im
ag

e 

tru
e 

predicted 
 NO GLC 

NO 346 25 
GLC 42 1011 

 

Sensitivity 
Specificity  
AUC  

96% 
93% 
0.986 

Pa
tie

nt
 

tru
e 

predicted 
 NO GLC 

NO 93 7 
GLC 2 252 

 

Sensitivity 
Specificity 
AUC 

99% 
93% 
0.996 
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Figures 324 
Figure 1. Top: Overview of data used, effect of image quality control, and subdivision in training, 325 
validation and test set.  326 
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Figure 2. Top: Overview of image preprocessing (ROI extraction, background subtraction) and data 348 
augmentation (horizontal flip, elastic deformation and brightness shift). Bottom: Overview of active 349 
learning process. 1: 14 preprocessed and augmented fundus images were used to finetune a CNN with 350 
pretrained ImageNet weights. 2: After convergence (no improvement of validation accuracy for two 351 
epochs), the model was validated on 679 images, with the results of each active learning iteration 352 
visualized in 3. 4: The model was also evaluated on an unlabeled set of (non-)glaucomatous images, with 353 
the 14 most uncertain samples (or random samples) transferred to the training set (5). This process was 354 
repeated until the unlabeled set was depleted. 355 

 356 
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 360 

 361 

 362 



Figure 3. A: Average saliency map of thirty aligned oculus dextrus images split into six sectors, with 363 
reddish color corresponding to high saliency (important area for glaucoma classification); optic disc is 364 
contained inside the inner circle. B: Quantification of average saliency in the six zones outside the disc 365 
area (complementary to A). 366 
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